2019年北京八中新高一分班考试数学试题-真题2019.8
2019年重点高中高一新生分班考试数学卷含答案(汇编)
2019年重点高中高一新生分班考试数学卷姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.一个数的倒数的绝对值是3,这个数是()A.3 B. C.3或﹣3 D.或﹣2.如图,已知∠1=120°,则∠2的度数是( )A.120° B.90° C.60° D.30°3.的值是()A.±16 B.±4 C.16 D.−164.如图,Rt△ABC中,∠ACB=90°,DE过点C且平行于AB,若∠BCE=35°,则∠A的度数为( )A.35°B.45°C.55°D.65°5.已知等边三角形的边长为,则它面积与边长之间的关系用图象大致可表示为()A.B. C.D.6.现有2cm,5cm长的两根木棒,再从下列长度的四根木棒中选取一根,可以围成一个三角形的是()A.2cm B.3cm C.5cm D.7cm7.若多项式-6ab+18abx+24aby的一个因式是-6ab,那么另一个因式是()A.1-3x-4y B.-1-3x-4y C.1+3x-4y D.-1-3x+4y8.函数y=与y=x+1的图象的交点坐标为(a,b),则a2+b2的值为()A.1 B.11 C.25 D.无法求解9.用一个半径为30,圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是()A.10 B.20 C.10π D.20π10.如图,在菱形纸片ABCD中,,P为AB中点折叠该纸片使点C落在点处且点P在上,折痕为DE,则的大小为A. B. C. D.二、填空题(本大题共6小题,每小题4分,共24分)11.已知是整数,则n是自然数的值是_____.12.用反证法证明∠A>60°时,应先假设_____.13.如果不等式组有解,那么m的范围是______.14.已知点,轴,且,则点N的坐标为______.15.如图,矩形的顶点在坐标原点,,分别在轴,轴的正半轴上,点的坐标为,点的坐标为,当此矩形绕点旋转到如图位置时的坐标为________.16.已知,在Rt△ABC中,∠C=90°,AC=9,BC=12,点 D、E 分别在边AC、BC上,且CD:CE=3︰4.将△CDE绕点D顺时针旋转,当点C落在线段DE上的点 F处时,BF恰好是∠ABC的平分线,此时线段CD的长是________.三、解答题(本大题共8小题,共66分)17.(本题8分)解方程组和分式方程:(1)解方程组(2)解分式方程.18.(本题8分)平面上有3个点的坐标:,,在A,B,C三个点中任取一个点,这个点既在直线上又在抛物线上上的概率是多少?从A,B,C三个点中任取两个点,求两点都落在抛物线上的概率.19.(本题10分)某校组织学生开展课外社会实践活动,现有甲、乙两种大客车可租,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,甲种客车每辆载客量45人,乙种客车每辆载客量30人,共有师生330人,求最节省的租车费用是多少元?20.(本题8分)周末,小亮一家人去水库游玩,他在大坝上的点A处看到一棵大树的影子刚好落在坝底的BE处点A与大树及其影子在同一平面内,此时太阳光与地面夹角为,在A处测得树顶D的仰角为如图所示,已知背水坡AB的坡度:3,AB的长为10米,请你帮助小亮算一算这颗大树的高度结果精确到米,参考数据:,注:坡度是指坡面的铅直高度与水平宽度的比21.(本题10分)据统计,某小区2011年底拥有私家车125辆,2013年底私家车的拥有量达到180辆.(1)若该小区2011年底到2014年底私家车拥有量的年平均增长率相同,则该小区到2014年底私家车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资3万元再建若干个停车位,据测算,建造费用分别为室内车位1 000元/个,露天车位200元/个.考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,则该小区最多可建两种车位各多少个?试写出所有可能的方案.22.(本题10分)已知:如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点,与y轴交于点C,该抛物线的顶点为M.(1)求点A、B、C的坐标.(2)求直线BM的函数解析式.(3)试说明:∠CBM+∠CMB=90°.(4)在抛物线上是否存在点P,使直线CP把△BCM分成面积相等的两部分?若存在,请求出点P的坐标;若不存在,请说明理由.23.(本题12分)如图1,正方形ABCD中,F为AB中点,连接DF,CE⊥DF于E,连接BE.(1)作出△ADF关于F成中心对称的图形,并探究BE和BC数量关系;(2)如图2,BM平分∠ABE交CE延长线于M,连接MD,试探究DM、CM、BM线段关系并给出证明;(3)若点F在线段AB上运动(不与端点重合),AB=4,写出BE长度的取值范围.答案分析一、选择题(本大题共10小题,每小题3分,共30分。
2019年重点高中高一新生分班考试数学卷含答案
2019年重点高中高一新生分班考试数学 试题卷考生须知:1.全卷满分120分,考试时间120分钟,试题卷共6页,有三大题,共24小题.2.全卷答案必须做在答题纸卷Ⅰ、卷Ⅱ的相应位置上,做在试题卷上无效.卷 Ⅰ一.选择题(本题10小题,共30分.选出各题中唯一正确选项,不选、多选、错选,均不得分)1.﹣8的绝对值等于( )A .B .﹣8C .8D . 2.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( )A .3.386×108B .0.3386×109C .33.86×107D .3.386×1093.下面图案,从几何图形的角度看,这些图案既是中心对称图形又是轴对称图形的是( )A .B .C .D .4.如图是一个正方体,则它的表面展开图可以是( )5.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( )A .B .C .D . 6.如图,BD 是⊙O 的直径,点A 、C 在⊙O 上,,∠AOB=60°,则∠BDC 的度数是( )A .60°B .45°C .35°D .30°7.小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是( )A .①,②B .①,④C .③,④D .②,③8.如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.9.抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,则c的值不可能是()A.4 B.6 C.8 D.1010.如图,已知∠AOB=30°,以O为圆心、a为半径画弧交OA、OB于A1、B1,再分别以A1、B1为圆心、a为半径画弧交于点C1,以上称为一次操作.再以C1为圆心a为半径重新操作,得到C2.重复以上步骤操作,记最后一个两弧的交点(离点O最远)为C K,则点C K到射线OB的距离为()A. B.C.a D.卷Ⅱ二.填空题(本题有6小题,每题4分,共24分)11.数据1,2,3,5,5的众数是,平均数是.12.因式分解:4m3﹣m = .13.如图所示:用一个半径为60cm,圆心角为150°的扇形围成一个圆锥,则这个圆锥的底面半径为 cm.14.如图,将△ABC绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC的延长线上.已知∠A=27°,∠B=40°,则∠ACB′=度.15.书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元以上一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是元.16.如图在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度,按照这种移动规律移动下去,第n次移动到点A n,到达点A如果点A n与原点的距离不小于50,那么n的最小值是,n取最小值时A n表示的数是三.解答题(本题有8小题,第17~19题每题6分,第20、21题8分,第22、23题每题10分,第24题12分,共66分)17.(6分)(1)计算:(2)解方程:18.(6分)为了解七年级学生上学期参加社会实践活动的情况,随机抽查A市七年级部分学生参加社会实践活动天数,并根据抽查结果制作了如下不完整的频数分布表和条形统计图.七年级参加社会实践活动天数的频数分布表七年级参加社会实践活动天数的条形统计图根据以上信息,解答下列问题;(1)求出频数分布表中a的值,并补全条形统计图.(2)A市有七年级学生20000人,请估计该市七年级学生参加社会实践活动不少于5天的人数.19.(6分)根据卫生防疫部门要求,游泳池必须定期换水,清洗.游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m2)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.20.(8分)如图,矩形纸片ABCD中,AD=5,S ABCD=15,在边BC上取一点F,使BF=4,剪下△ABF,将它平移至△DCE的位置,拼成四边形AFED.①求证四边形AFED是菱形;②求四边形AFED两条对角线的长.21.(8分) 某市需要新建一批公交车候车亭,设计师设计了如图1所示产品.产品示意图的侧面如图2,其中支柱长DC 为2.1m ,且支柱DC 垂直于地面DG ,顶棚横梁AE 为长1.5m ,BC 为镶接柱,点B 是顶棚的镶接点,镶接柱与支柱的夹角∠BCD=150°,与顶棚横梁的夹角∠ABC=135°,要求使得横梁一端点E 在支柱DC 的延长线上,此时经测量得镶接点B与点E 的距离为0.35m .( , ,精确到0.01m .)(1)求E 到BC 的距离和EC 长度;(2)求点A 到地面的距离.22.(10分)如图,已知反比例函数(x >0,k 是常数)的图象经过点A (1,4),点 B (m ,n ),其中m >1,AM⊥x 轴,垂足为M ,BN⊥y 轴,垂足为N ,AM 与BN 的交点为C .(1)写出反比例函数解析式;(2)求证:△ACB∽△NOM;(3)若△ACB 与△NOM 的相似比为2,求出B 点的坐标.23.(10分)《函数的图象与性质》拓展学习片段展示:【问题】如图①,在平面直角坐标系中,抛物线 经过原点O ,与x 轴的另一个交点为A ,则a= .【操作】将图①中抛物线在x 轴下方的部分沿x 轴折叠到x 轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G ,如图②.直接写出图象G 对应的函数解析式.【探究】图②中过点B (0,1)作直线l 平行x 轴,与图象G 的交点从左至右依次为点C ,D ,E ,F ,如图③.求图象G 在直线l 上方的部分对应的函数y 随x 增大而增大时x 的取值范围.【应用】P 是图③中图象G 上一点,其横坐标为m ,连接PD ,PE .直接写出△PDE 的面积不小于1时m 的取值范围.24.(12分)如图,在每一个四边形ABCD 中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.G(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,P在四边形ABCD的边AD上运动,作出使∠BPC最大的点P,说明此时∠BPC最大的理由;并求出cos∠BPC的值;。
北京市第八中学2019届高三上学期10月月考数学(理)试题(解析版)
北京市第八中学2019届高三10月月考数学(理)试题(解析版)一、选择题(本大题共8小题)1.,下列不等式中正确的是()A. B. C. D.【答案】A【解析】试题分析:由“同号两数取倒数,不等号反向”知B不对;由“不等式两边同除或同乘一个负数,不等号反向”知C,D均不正确,故选A。
考点:本题主要考查不等式的性质。
点评:简单题,利用不等式的性质及一些“小结论”。
2.已知:,:若是的必要非充分条件,则实数a的取值范围是()A. B. C. D.【答案】B【解析】试题分析:由得,由不能退出,由能推出,故考点:充分条件必要条件的应用.3.下列函数中,在内有零点且单调递增的是()A. B. C. D.【答案】B【解析】解:因为符合(-1,1)内有零点且单调递增的是,选项A没有零点,错误,选项C中零点不在给定区间,选项D中,单调递减,只有C成立。
4.直线l与圆相交于A,B两点,若弦AB的中点C为,则直线l的方程为()A. B.C. D.【答案】A【解析】试题分析:由圆的方程求出圆心坐标,连接OC得到OC⊥AB,所以k OC•k AB=﹣1,圆心坐标和C的坐标求出直线OC的斜率即可得到直线l的斜率,写出直线l的方程即可.解:由圆的一般方程可得圆心O(﹣1,2),由圆的性质易知O(﹣1,2),C(﹣2,3)的连线与弦AB垂直,故有k AB k OC=﹣1⇒k AB=1,故直线AB的方程为:y﹣3=x+2整理得:x﹣y+5=0故选A点评:考查学生利用两直线垂直时斜率的乘积为﹣1这个性质解决数学问题,掌握直线与圆的方程的综合应用,会根据条件求直线的一般式方程.5.调查表明,酒后驾驶是导致交通事故的主要原因,交通法规规定:驾驶员在驾驶机动车时血液中酒精含量不得超过如果某人喝了少量酒后,血液中酒精含量将迅速上升到,在停止喝酒后,血液中酒精含量就以每小时的速度减小,问他至少要经过几小时才可以加强机动车(精确到小时)()A. 1小时B. 2小时C. 4小时D. 6小时【答案】C【解析】【分析】设n个小时后才可以驾车,由题意得方程,解得即可.【详解】设n个小时后才可以驾车,根据题意可知,每小时酒精下降的量成等比数列,公比为进而可得方程得,即,所以至少要经过4小时后才可以驾驶机动车.故选:C.【点睛】本题主要考查了等比数列的性质及实际应用,考查了学生运用所学知识解决实际问题的能力,属于基础题.6.若变量满足,则的最值情况为()A. 有最小值3B. 有最大值3C. 有最小值2D. 有最大值4【答案】A【解析】【分析】先画出约束条件的可行域,由目标函数的几何意义,令得,平行直线得其最值即可.【详解】由约束条件得如图所示的三角形区域,得由目标函数的几何意义,令得,平行直线过点时,n得最小值没有最大值.故选:A.【点睛】本题考查了线性规划求目标函数的最值问题,利用目标函数的几何意义是关键,属于基础题.7.椭圆与双曲线有公共焦点、,P是它们的一个交点,则以下判断正确的个数是()的面积为1.A. 1B. 2C. 3D. 4【答案】D【解析】【分析】由椭圆和双曲线的标准方程的性质即可解决.【详解】因为椭圆与双曲线有公共焦点,所以;,,是它们的一个交点,设为第一象限的点,则① ②联立①②,得,,,,正确命题个数为四个.故选:D.【点睛】本题考查椭圆和双曲线的定义和标准方程的性质,属于基础题.8.设函数,若的图象与图象有且仅有两个不同的公共点,则下列判断正确的是A. 当时,B. 当时,C. 当时,D. 当时,【答案】B【解析】:令可得。
2019年北大附中新高一分班考试数学试题-真题-含详细解析
2019年北大附中新高一分班考试数学试题-真题一、选择题(本大题共8小题,共24分)1.如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为()A. 200tan70°米B. 200tan70∘米 C. 200sin 70°米 D. 200sin70∘米2.二次函数y=ax2+bx+c(a≠0)的顶点坐标为(−1,n),其部分图象如图所示.以下结论错误的是()A. abc>0B. 4ac−b2<0C. 3a+c>0D. 关于x的方程ax2+bx+c=n+1无实数根3.如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A. 1个B. 2个C. 3个D. 4个4.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A. 160B. 128C. 80D. 485.如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O.若AE=5,BF=3,则AO的长为()A. √5B. 3√5 C. 2√5 D. 4√526.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度ℎ(cm)与注水时间t(min)的函数图象大致为图中的()A. B.C. D.7.在平面直角坐标系中,点O为坐标原点,抛物线y=x2−2x−3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt△OAB向右上方平移,得到Rt△O′A′B′,且点O′,A′落在抛物线的对称轴上,点B′落在抛物线上,则直线A′B′的表达式为()D. y=x+2A. y=xB. y=x+1C. y=x+128.已知P1(x1,y1),P2(x2,y2)是抛物线y=ax2−2ax上的点,下列命题正确的是()A. 若|x1−1|>|x2−1|,则y1>y2B. 若|x1−1|>|x2−1|,则y1<y2C. 若|x1−1|=|x2−1|,则y1=y2D. 若y1=y2,则x1=x2二、填空题(本大题共8小题,共24分)9.如图,在△ABC中,按以下步骤作图:①以点B为圆心,任意长为半径作弧,分别交AB、BC于点D、E.DE的同样长为半径作弧,两弧交于点F.②分别以点D、E为圆心,大于12③作射线BF交AC于点G.如果AB=8,BC=12,△ABG的面积为18,则△CBG的面积为______.10.如图,在▱ABCD中,∠B=60°,AB=10,BC=8,点E为边AB上的一个动点,连接ED并延长至点F,使DE,以EC、EF为邻边构造▱EFGC,连接EG,则EG的最小值为______.得DF=1411.抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(−4,0)两点,下列四个结论:①一元二次方程ax2+bx+c=0的根为x1=2,x2=−4;②若点C(−5,y1),D(π,y2)在该抛物线上,则y1<y2;③对于任意实数t,总有at2+bt≤a−b;④对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则p的值只有两个.其中正确的结论是______(填写序号).12.如图,折叠矩形纸片ABCD,使点D落在AB边的点M处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是______.第12题图第13题图13.如图,在△ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC相切于点M,N.已知∠BAC=⏜的长为π,则图中阴影部分的面积为______.120°,AB+AC=16,MN14.矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A′处,展平后得到折痕BE,同时得到线段BA′,EA′,不再添加其它线段.当图中存在30°角时,AE的长为______厘米.第14题图第15题图15.如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC=______度.16.设A,B,C,D是反比例函数y=k图象上的任意四点,现有以下结论:x①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是______.(写出所有正确结论的序号)三、计算题(本大题共1小题,共6分)17.某公司生产A型活动板房成本是每个425元.图①表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.(1)按如图①所示的直角坐标系,抛物线可以用y=kx2+m(k≠0)表示.求该抛物线的函数表达式;(2)现将A型活动板房改造为B型活动板房.如图②,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户的成本为50元/m2.已知GM=2m,求每个B型活动板房的成本是多少?(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本)(3)根据市场调查,以单价650元销售(2)中的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B型活动板房.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w(元)最大?最大利润是多少?四、解答题(本大题共12小题,共46分)18. 如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染.进货单商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下: 李阿姨:我记得甲商品进价比乙商品进价每件高50%. 王师傅:甲商品比乙商品的数量多40件. 请你求出乙商品的进价,并帮助他们补全进货单.19. 阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题: 已知实数x 、y 满足3x −y =5①,2x +3y =7②,求x −4y 和7x +5y 的值.本题常规思路是将①②两式联立组成方程组,解得x 、y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①−②可得x −4y =−2,由①+②×2可得7x +5y =19.这样的解题思想就是通常所说的“整体思想”. 解决问题:(1)已知二元一次方程组{2x +y =7,x +2y =8,则x −y =______,x +y =______;(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数x 、y ,定义新运算:x ∗y =ax +by +c ,其中a 、b 、c 是常数,等式右边是通常的加法和乘法运算.已知3∗5=15,4∗7=28,那么1∗1=______.20.如图,已知点A(1,2)、B(5,n)(n>0),点P为线段AB上的一个动点,反比例函数y=kx(x>0)的图象经过点P.小明说:“点P从点A运动至点B的过程中,k值逐渐增大,当点P在点A位置时k值最小,在点B位置时k值最大.”(1)当n=1时.①求线段AB所在直线的函数表达式.②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k的最小值和最大值.(2)若小明的说法完全正确,求n的取值范围.21.背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且AEAG =ABAD=23,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.22.如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,AE与过点D的切线互相垂直,垂足为E.(1)求证:AD平分∠BAE;(2)若CD=DE,求sin∠BAC的值.23.某公司分别在A,B两城生产同种产品,共100件.A城生产产品的总成本y(万元)与产品数量x(件)之间具有函数关系y=ax2+bx+c.当x=10时,y=400;当x=20时,y=1000.B城生产产品的每件成本为70万元.(1)求a,b的值;(2)当A,B两城生产这批产品的总成本的和最少时,求A,B两城各生产多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,直接写出A,B两城总运费的和的最小值(用含有m的式子表示).24.实际问题:某商场为鼓励消费,设计了抽奖活动,方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额?问题建模:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a个整数之和共有多少种不同的结果?模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法.探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表①如表①,所取的2个整数之和可以为3,4,5,也就是从3到5的连续整数,其中最小是3,最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表②如表②,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有______种不同的结果.(4)从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取2个整数,这2个整数之和共有______种不同的结果.探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有______种不同的结果.(2)从1,2,3,…,n(n为整数,且n≥4)这n个整数中任取3个整数,这3个整数之和共有______种不同的结果.探究三:从1,2,3,…,n(n为整数,且n≥5)这n个整数中任取4个整数,这4个整数之和共有______种不同的结果.归纳结论:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a个整数之和共有______种不同的结果.问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有______种不同的优惠金额.拓展延伸:(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,…,n+3(n为整数,且n≥2)这(n+1)个整数中任取a(1<a<n+1)个整数,这a个整数之和共有______种不同的结果.25.在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.特例感知:(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC重合,另一条直角边恰好经过点B.通过观察、测量BF与CG的长度,得到BF=CG.请给予证明.猜想论证:(2)当三角尺沿AC方向移动到图2所示的位置时,一条直角边仍与AC边重合,另一条直角边交BC于点D,过点D作DE⊥BA垂足为E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE、DF与CG之间存在的数量关系,并证明你的猜想.联系拓展:(3)当三角尺在图2的基础上沿AC方向继续移动到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)26.已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…−2−1012…y…m0−3n−3…(1)根据以上信息,可知抛物线开口向______,对称轴为______;(2)求抛物线的表达式及m,n的值;(3)请在图1中画出所求的抛物线.设点P为抛物线上的动点,OP的中点为P′,描出相应的点P′,再把相应的点P′用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y=m(m>−2)与抛物线及(3)中的点P′所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请根据图象直接写出线段A1A2,A3A4之间的数量关系______.27.某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S1,S2,S3之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为斜边向外侧作Rt△ABD,Rt△ACE,Rt△BCF,若∠1=∠2=∠3,则面积S1,S2,S3之间的关系式为______;推广验证(2)如图3,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为边向外侧作任意△ABD,△ACE,△BCF,满足∠1=∠2=∠3,∠D=∠E=∠F,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形ABCDE中,∠A=∠E=∠C=105°,∠ABC=90°,AB=2√3,DE=2,点P在AE上,∠ABP=30°,PE=√2,求五边形ABCDE的面积.28.已知直线l1:y=−2x+10交y轴于点A,交x轴于点B,二次函数的图象过A,B两点,交x轴于另一点C,BC=4,且对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.(1)求二次函数的表达式;(2)若直线l2:y=mx+n(n≠10),求证:当m=−2时,l2//l1;(3)E为线段BC上不与端点重合的点,直线l3:y=−2x+q过点C且交直线AE于点F,求△ABE与△CEF面积之和的最小值.答案和解析1.【答案】B【解析】解:在Rt△PQT中,∵∠QPT=90°,∠PQT=90°−70°=20°,∴∠PTQ=70°,∴tan70°=PQPT,∴PT=PQtan70∘=200tan70∘,即河宽200tan70∘米,故选:B.在直角三角形PQT中,利用PQ的长,以及∠PQT的度数,进而得到∠PTQ的度数,根据三角函数即可求得PT的长.此题考查了解直角三角形的应用−方向角问题,掌握方向角与正切函数的定义是解题的关键.2.【答案】C【解析】解:A.∵抛物线开口向下,∴a<0,∵对称轴为直线x=−b2a=−1,∴b=2a<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故A正确;B.∵抛物线与x轴有两个交点,∴b2−4ac>0,即4ac−b2<0,故B正确;C.∵抛物线的对称轴为直线x=−1,抛物线与x轴的一个交点在(−3,0)和(−2,0)之间,∴抛物线与x轴的另一个交点在(0,0)和(1,0)之间,∴x=1时,y<0,即a+b+c<0,∵b=2a,∴3a+c<0,故C错误;D.∵抛物线开口向下,顶点为(−1,n),∴函数有最大值n,∴抛物线y=ax2+bx+c与直线y=n+1无交点,∴一元二次方程ax2+bx+c=n+1无实数根,故D正确.故选:C.根据抛物线开口方向,对称轴的位置以及与y轴的交点可以对A进行判断;根据抛物线与x轴的交点情况可对B 进行判断;x=1时,y<0,可对C进行判断;根据抛物线y=ax2+bx+c与直线y=n+1无交点,可对D进行判断.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.3.【答案】C【解析】解:如图,连接BE,设EF与BG交于点O,∵将纸片折叠,使点B落在边AD的延长线上的点G处,∴EF垂直平分BG,∴EF⊥BG,BO=GO,BE=EG,BF=FG,故①正确,∵AD//BC,∴∠EGO=∠FBO,又∵∠EOG=∠BOF,∴△BOF≌△GOE(ASA),∴BF=EG,∴BF=EG=GF,故②正确,∵BE=EG=BF=FG,∴四边形BEGF是菱形,∴∠BEF=∠GEF,当点F与点C重合时,则BF=BC=BE=12,∵sin∠AEB=ABBE =612=12,∴∠AEB=30°,∴∠DEF=75°,故④正确,由题意无法证明△GDK和△GKH的面积相等,故③错误;故选:C.连接BE,设EF与BG交于点O,由折叠的性质可得EF垂直平分BG,可判断①;由“ASA”可证△BOF≌△GOE,可得BF=EG=GF,可判断②;通过证明四边形BEGF是菱形,可得∠BEF=∠GEF,由锐角三角函数可求∠AEB=30°,可得∠DEF=75°,可判断④,由题意无法证明△GDK和△GKH的面积相等,即可求解.本题考查了翻折变换,全等三角形的判定和性质,菱形的判定和性质,锐角三角函数等知识,灵活运用这些性质进行推理是本题的关键.4.【答案】A【解析】解:观察图象可知(4)中共有4×5×2=40个3×2的长方形,由(3)可知,每个3×2的长方形有4种不同放置方法,则n的值是40×4=160.故选:A.对于图形的变化类的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.此题考查了规律型:图形的变化类,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.5.【答案】C【解析】解:∵矩形ABCD,∴AD//BC,AD=BC,AB=CD,∴∠EFC=∠AEF,∴AE=AF=3,由折叠得,FC=AF,OA=OC,∴BC=3+5=8,在Rt△ABF中,AB=√52−32=4,在Rt△ABC中,AC=√42+82=4√5,∴OA =OC =2√5,故选:C .由矩形的性质,折叠轴对称的性质,可求出AF =FC =AE =5,由勾股定理求出AB ,AC ,进而求出OA 即可. 本题考查矩形的性质、折叠轴对称的性质,勾股定理等知识,根据图形直观,求出线段的长是得出答案的前提. 6.【答案】B【解析】解:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A 、D 一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间h 不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h 随t 的增大而增大,当水注满小杯后,小杯内水面的高度h 不再变化.故选:B .根据将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水,即可求出小水杯内水面的高度ℎ(cm)与注水时间t(min)的函数图象.本题考查了函数的图象.正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.7.【答案】B【解析】解:如图,∵抛物线y =x 2−2x −3与y 轴交于点A ,与x 轴正半轴交于点B ,令y =0,解得x =−1或3,令x =0,求得y =−3,∴A(3,0),B(0,−3),∵抛物线y =x 2−2x −3的对称轴为直线x =−−22×1=1,∴A′的横坐标为1,设A′(1,n),则B′(4,n +3),∵点B′落在抛物线上,∴n +3=16−8−3,解得n =2,∴A′(1,2),B′(4,5),设直线A′B′的表达式为y =kx +b ,∴{k +b =24k +b =5, 解得{k =1b =1∴直线A′B′的表达式为y =x +1,故选:B.求得A、B的坐标以及抛物线的对称轴,根据题意设出A′(1,n),则B′(4,n+3),把B′(4,n+3)代入抛物线解析式求得n,即可求得A′、B′的坐标,然后根据待定系数法即可求得直线A′B′的表达式.本题考查了抛物线与x轴的交点,坐标和图形变换−平移,二次函数图象上点的坐标特征,待定系数法求一次函数的解析式,根据题意表示出A′、B′的坐标是解题的关键.8.【答案】C【解析】解:∵抛物线y=ax2−2ax=a(x−1)2−a,∴该抛物线的对称轴是直线x=1,当a>0时,若|x1−1|>|x2−1|,则y1>y2,故选项B错误;当a<0时,若|x1−1|>|x2−1|,则y1<y2,故选项A错误;若|x1−1|=|x2−1|,则y1=y2,故选项C正确;若y1=y2,则|x1−1|=|x2−1|,故选项D错误;故选:C.根据题目中的抛物线和二次函数的性质,利用分类讨论的方法可以判断各个选项中的说法是否正确,从而可以解答本题.本题考查二次函数的性质,命题与定理,解答本题的关键是明确题意,利用二次函数的性质解答.9.【答案】27【解析】解:如图,过点G作GM⊥AB于点M,GN⊥AC于点N,根据作图过程可知:BG是∠ABC的平分线,∴GM=GN,∵△ABG的面积为18,∴1×AB×GM=18,2∴4GM=18,∴GM=9,2∴△CBG的面积为:12×BC×GN=12×12×92=27.故答案为:27.过点G作GM⊥AB于点M,GN⊥AC于点N,根据作图过程可得AG是∠ABC的平分线,根据角平分线的性质可得GM=GN,再根据△ABG的面积为18,求出GM的长,进而可得△CBG的面积.本题考查了作图−基本作图、角平分线的性质,解决本题的关键是掌握角平分线的性质.10.【答案】9√3【解析】解:作CH⊥AB于点H,∵在▱ABCD中,∠B=60°,BC=8,∴CH=4√3,∵四边形ECGF是平行四边形,∴EF//CG,∴△EOD∽△GOC,∴EOGO =DOOC=EDGC,∵DF=14DE,∴DEEF =45,∴EDGC =45,∴EOGO =45,∴当EO取得最小值时,EG即可取得最小值,当EO⊥CD时,EO取得最小值,∴CH=EO,∴EO=4√3,∴GO=5√3,∴EG的最小值是9√3,故答案为:9√3.根据题意和平行四边形的性质,可以得到BD和EF的比值,再根据三角形相似和最短距离,即可得到EG的最小值,本题得以解决.本题考查平行四边形的性质、三角形的相似、垂线段最短,解答本题的关键是明确题意,利用数形结合的思想解答.11.【答案】①③【解析】解:∵抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(−4,0)两点,∴当y=0时,0=ax2+bx+c的两个根为x1=2,x2=−4,故①正确;该抛物线的对称轴为直线x=2+(−4)2=−1,函数图象开口向下,若点C(−5,y1),D(π,y2)在该抛物线上,则y1>y2,故②错误;当x=−1时,函数取得最大值y=a−b+c,故对于任意实数t,总有at2+bt+c≤a−b+c,即对于任意实数t,总有at2+bt≤a−b,故③正确;对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则两个根为−3和1或−2和0或−1和−1,故p的值有三个,故④错误;故答案为:①③.根据题目中的抛物线和二次函数的性质,可以判断各个小题中的结论是否正确,从而可以解答本题.本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征、二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用二次函数的性质解答.12.【答案】14t2−14t+1【解析】解:连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2−x,∵AE2+AM2=EM2,∴(2−x)2+t2=x2,解得x=t24+1,∴DE=t24+1,∵折叠矩形纸片ABCD,使点D落在AB边的点M处,∴EF⊥DM,∠ADM+∠DEF=90°,∵EG⊥AD,∴∠DEF+∠FEG=90°,∴∠ADM=∠FEG,∴tan∠ADM=AMAD =t2=FG1,∴FG=t2,∵CG=DE=t24+1,∴CF=t24−t2+1,∴S四边形CDEF =12(CF+DE)×1=14t2−14t+1.故答案为:14t2−14t+1.连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2−x,由勾股定理得出(2−x)2+t2=x2,证得∠ADM=∠FEG,由锐角三角函数的定义得出FG,求出CF,则由梯形的面积公式可得出答案.本题考查了矩形的性质,折叠的性质,勾股定理,锐角三角函数,熟练掌握折叠的性质及方程的思想是解题的关键.13.【答案】3(8−√3−π)【解析】解:如图,连接OM、ON,∵半圆分别与AB,AC相切于点M,N.∴OM⊥AB,ON⊥AC,∵∠BAC=120°,∴∠MON=60°,∴∠MOB+∠NOC=120°,∵MN⏜的长为π,∴60πr180=π,∴r=3,∴OM=ON=r=3,连接OA,在Rt△AON中,∠AON=30°,ON=3,∴AN=√3,∴AM=AN=√3,∴BM+CN=AB+AC−(AM+AN)=16−2√3,∴S阴影=S△OBM+S△OCN−(S扇形MOE+S扇形NOF)=12×3×(BM+CN)−(120π×32360)=32(16−2√3)−3π=24−3√3−3π=3(8−√3−π).故答案为:3(8−√3−π).连接OM、ON,根据半圆分别与AB,AC相切于点M,N.可得OM⊥AB,ON⊥AC,由∠BAC=120°,可得∠MON=60°,得∠MOB+∠NOC=120°,再根据MN⏜的长为π,可得OM=ON=r=3,连接OA,根据Rt△AON中,∠AON=30°,ON=3,可得AM=AN=√3,进而可求图中阴影部分的面积.本题考查了切线的性质、弧长的计算、扇形面积的计算,解决本题的关键是掌握弧长和扇形面积的计算公式.14.【答案】4√33厘米或4√3厘米或8−4√3【解析】解:①当∠ABE=30°时,AE=AB×tan30°=4√33;②当∠AEB=30°时,AE=ABtan30∘=4√33=4√3;③∠ABE=15°时,∠ABA′=30°,延长BA′交AD于F,如下图所示,设AE=x,则EA′=x,EF=xsin60∘=2√3x3,∵AF=AE+EF=ABtan30°=4√33,∴x+2√3x3=4√33,∴x=8−4√3,∴AE=8−4√3.故答案为:4√33厘米或4√3厘米或8−4√3厘米.根据翻折可得∠ABE=∠A′BE,分3种情况讨论:当∠ABE=30°时或当∠AEB=30°时或当∠ABA′=30°时求AE的长.本题考查了翻折变换、矩形的性质,解决本题的关键是掌握矩形性质.15.【答案】30=120°,【解析】解:正六边形的每个内角的度数为:(6−2)⋅180°6所以∠ABC=120°−90°=30°,故答案为:30.由于六边形花环是用六个全等的直角三角形拼成的,所以这个六边形是正六边形,先算出正六边形每个内角的度数,即可求出∠ABC的度数.本题考查了多边形内角和定理.解题的关键是会计算正六边形的每个内角的度数.16.【答案】①④【解析】解:如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.由对称性可知,OA=OC,OB=OD,∴四边形ABCD是平行四边形,当OA=OC=OB=OD时,四边形ABCD是矩形.∵反比例函数的图象在一,三象限,∴直线AC与直线BD不可能垂直,∴四边形ABCD不可能是菱形或正方形,故选项①④正确,故答案为①④,如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.证明四边形ABCD是平行四边形即可解决问题.本题考查反比例函数的性质,平行四边形的判定,矩形的判定,菱形的判定,正方形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.【答案】解:(1)∵长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.∴OH=AB=3,∴EO=EH−OH=4−3=1,∴E(0,1),D(2,0),∴该抛物线的函数表达式y=kx2+1,把点D(2,0)代入,得k=−14,∴该抛物线的函数表达式为:y=−14x2+1;(2)∵GM=2,∴OM=OG=1,∴当x=1时,y=34,∴N(1,34),∴MN=34,∴S矩形MNFG =MN⋅GM=34×2=32,∴每个B型活动板房的成本是:425+32×50=500(元).答:每个B型活动板房的成本是500元;(3)根据题意,得w=(n−500)[100+20(650−n)10]=−2(n−600)2+20000,∵每月最多能生产160个B型活动板房,∴100+20(650−n)10≤160,解得n≥620,∵−2<0,∴n≥620时,w随n的增大而减小,∴当n=620时,w有增大值为19200元.答:公司将销售单价n(元)定为620元时,每月销售B型活动板房所获利润w(元)最大,最大利润是19200元.【解析】(1)根据图形和直角坐标系可得点D和点E的坐标,代入y=kx2+m,即可求解;(2)根据M和N的横坐标相等,求出N点坐标,再求出矩形FGMN的面积,即可求解;(3)根据题意得到w关于n的二次函数,根据二次函数的性质即可求解.本题考查了二次函数的应用,解决本题的关键是掌握二次函数的性质.18.【答案】解:设乙商品的进价为x元/件,则甲商品的进价为(1+50%)x元/件,依题意,得:7200(1+50%)x −3200x=40,解得:x =40,经检验,x =40是原方程的解,且符合题意,∴(1+50%)x =60,3200x =80,7200(1+50%)x =120. 答:甲商品的进价为60元/件,乙商品的进价为40元/件,购进甲商品120件,购进乙商品80件.【解析】设乙商品的进价为x 元/件,则甲商品的进价为(1+50%)x 元/件,根据数量=总价÷单价结合购进的甲商品比乙商品多40件,即可得出关于x 的分式方程,解之经检验后即可得出x 的值,再将其分别代入(1+50%)x ,3200x ,7200(1+50%)x 中即可得出结论. 本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.19.【答案】−1 5 −11【解析】解:(1){2x +y =7 ①x +2y =8 ②. 由①−②可得:x −y =−1,由13(①+②)可得:x +y =5.故答案为:−1;5.(2)设铅笔的单价为m 元,橡皮的单价为n 元,日记本的单价为p 元,依题意,得:{20m +3n +2p =32 ①39m +5n +3p =58 ②, 由2×①−②可得m +n +p =6,∴5m +5n +5p =5×6=30.答:购买5支铅笔、5块橡皮、5本日记本共需30元.(3)依题意,得:{3a +5b +c =15 ①4a +7b +c =28 ②, 由3×①−2×②可得:a +b +c =−11,即1∗1=−11.故答案为:−11.(1)利用①−②可得出x −y 的值,利用13(①+②)可得出x +y 的值;(2)设铅笔的单价为m 元,橡皮的单价为n 元,日记本的单价为p 元,根据“买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元”,即可得出关于m ,n ,p 的三元一次方程组,由2×①−②可得除m +n +p 的值,再乘5即可求出结论;(3)根据新运算的定义可得出关于a ,b ,c 的三元一次方程组,由3×①−2×②可得出a +b +c 的值,即1∗1的值.。
2019年重点高中高一新生分班考试数学卷含答案
2019年重点高中高一新生分班考试数学卷班级: 姓名: 成绩: 一.选择题(本大题10小题,每小题3分,共30分) 1. 16的算术平方根是( )A. ±4B.4C.-4D.±22. 2018年广东省经济保持平稳健康发展,国家统计局核定,其实现地区生产总值(CDP)973000000元将数据973000000000用科学记数法表示为( ) A.9.73×1011 B.97.3×1011 C.9.73×1012 D.0.973×1033. 下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A. B C D 4. 下列计算中,正确的是( )A. 0(5)0-=B. 347x x x +=C. 23246()a b a b -=- D. 1222a a a -∙=5. 若一个多边形的内角和是1080°,则这个多边形的边数为( ) A.6 B.7 C.8 D.106. 在一个不透明的口袋中装有6个红球,2个绿球,这些球除颜色外无其他差别,从这个袋子中随机摸出一个球摸到绿球的概率为( )A.1B. 14C. 12D. 347. 如图,在△ABC 中,点D,E 分别在边AB,AC 上,下列条件中不能判断△ABC △AED 的是( )A .∠AED=∠B B .∠ADE=∠C C .D .8. 下列一元二次方程中,没有实数根的是( )A.x 2-2x=0B.x 2+4x-1=0C.2x 2-4x+3=0D.3x 2=5x-2 9. 等腰三角形的周长为11cm,一边长为3cm,则另两边长为( )A. 3cm,5cmB. 4cm,4cmC.3cm,5cm 或4cm,4cmD.以上都不对 10.如图,过点A(4、5)分别作x 轴、y 轴的平行线,交直线y=-x+6于B,C 两点,若函数(0)ky x x=>的图象与△ABC 的边有公共点,则A 的取值范围是( ) A. 5≤k ≤20 B. 8≤k ≤20 C. 5≤k ≤8 D. 9≤k ≤20二.填空题(本大題6小题,每小题4分,共24分)11.一组数据-3、2、2、0、2、1的众数是 。
高一新生分班考试数学试卷含答案
CB高一新生分班考试数学试卷(含答案)(满分150分,考试时间120分钟)一、选择题(每题5分,共40分) 1.化简=-2aa ( )A .aB .a -C .aD .2a2.分式1||22---x x x 的值为0,则x 的值为 ( )A .21或-B .2C .1-D .2-3.如图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点。
若EF =2,BC =5,CD =3, 则tan C 等于 ( )A .43 B .35 C .34 D .45 4.如图,P A 、PB 是⊙O 切线,A 、B 为切点,AC 是直径,∠P = 40°,则∠BAC =( )A .040 B .080 C .020 D .0105.在两个袋内,分别装着写有1、2、3、4四个数字的4张卡片,今从每个袋中各任取一张卡片,则所取两卡片上数字之积为偶数的概率是 ( )A .21 B .165 C .167 D .436.如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( ) A . 6B.4C .5D . 37.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动B CD CB A 路线是A →D →C →B →A ,设P 点经过的路程为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是 ( )8.若直角坐标系内两点P 、Q 满足条件①P 、Q 都在函数y 的图象上②P 、Q 关于原点对称,则称点对(P ,Q )是函数y 的一个“友好点对”(点对(P ,Q )与(Q ,P )看作同一个“友好点对”)。
已知函数⎪⎩⎪⎨⎧>≤++=02101422x xx x x y ,,,则函数y 的“友好点对”有( )个A .0 B.1 C. 2 D.3注意:请将选择题的答案填入表格中。
2019北京八中高一(下)期末数学
A. 2,5B. 5,18C. 5,8D. 15,18
10.设动点P在棱长为1的正方体ABCD- 的对角线B 上,记 =λ,当∠APC为钝角时,则λ的取值范围是
A.( )B.( )C.( )D.( )
二、填空题(本大题共6小题,每小题5分,共30分,把答案填在答题卡的横线上)
(1)当a=1时,求直线l与圆C相交所得弦长;
(2)若直线l与圆C相切,求实数a的值。
19.(15分)对某校高三年学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数,根据此数据作出了频数与频率的统计表和频率分布直方图如下:
分组
频数
频率
[10,15)
10
0.25
[15,20)
A.若b α,c∥α,则c∥bB.若b α,b∥c,则c∥α
C.若c α,α⊥β,则c⊥βD.若c α,c⊥β,则α⊥β
03.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2).则完成(1)、(2)这两项调查宜采取的抽样方法依次是
三、解答题(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤)
17.(13分)在△ABC中,三个内角A,B,C的对边分别为a,b,c且满足(2a-c)cosB=bcosC
(1)求角B的大小;
(2)若b= ,a+c=4,求△ABC的面积。
18.(13分)已知直线l:ax+y-2=0及圆心为C: + =4
2019年北京八中新高一分班考试数学试题-真题-含详细解析-2019.8
2019年北京八中新高一入学分班考试数学试题2019.8一、选择题(本大题共9小题,共31.0分)1.如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是()A.0B.4C.6D.8第1题图第2题图第3题图2.如图是二次函数y=ax2+bx+c的图象,对于下列说法:①ac>0,②2a+b>0,③4ac<b2,④a+b+c<0,⑤当x>0时,y随x的增大而减小,其中正确的是()A.①②③B.①②④C.②③④D.③④⑤3.如图,边长为√2的正方形ABCD的对角线AC与BD交于点O,将正方形ABCD沿直线DF折叠,点C落在对角线BD上的点E处,折痕DF交AC于点M,则OM=()A.12B.√2C.2√3−1D.√2−14.如图,正方形ABCD的边长为4,延长CB至E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接A M,AF,H为AD的中点,连接FH分别与AB,A M交于点N、K:则下列结论:①△ANH△≌GNF;②∠AFN=∠HFG;③FN=2NK;④S△AFN:△??ADM=1:4.其中正确的结论有()A.1个B.2个C.3个D.4个5.关于x的一元二次方程x2−(k−1)x−k+2=0有两个实数根x1,x2,若(x1−x2+2)(x1−x2−2)+2x1x2=−3,则k的值()A.0或2B.−2或2C.−2D.26.若关于x的一元一次不等式组{3x−14<x+2x−1(4a−2)≤12的解集是x≤a,且关于y的分式方程2y−a−y−12y−41−y=1有非负整数解,则符合条件的所有整数a的和为()A.0B.1C.4D.67.如图,在△ABC中,D是AC边上的中点,连结BD△,把BDC沿BD翻折,得到△BDC′,DC′与AB交于点E,连结AC′,若AD=AC′=2,BD=3,则点D到BC′的距离为()A.3√32B.3√21C.7√7 D.√13第7题图第8题图8.如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A.as i n x+b s i n xB.ac o s x+bc o s xC.as i n x+bc o s xD.ac o s x+b s i n x9.在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A.M=N−1或M=N+1C.M=N或M=N+1B.M=N−1或M=N+2D.M=N或M=N−1二、填空题(本大题共6小题,共22.0分)10.如图,矩形ABCD,∠BAC=60°,以点A为圆心,以任意长为半径作弧分别交AB,AC于点M,N两点,再分别以点M,N为圆心,以大于1MN的长作半径作弧交于点P,作射线AP交2BC于点E,若BE=1,则矩形ABCD的面积等于______.11.如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是______(结果用含a,b代数式表示).第11题图12.如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM=45°,点F在射线A M上,且AF=√2BE,CF与AD相交于点G,连接EC,EF,EG,则下列结论:①∠ECF=45°;②△AEG的周长为(1+√2)a;2③BE2+DG2=EG2;④△EAF的面积的最大值1a2.8其中正确的结论是______.(填写所有正确结论的序号)第12题图第13题图第14题图13.我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,且b2−4a>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2−2x−3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为(−1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当−1≤x≤1或x≥3时,函数值y随x值的增大而增大;④当x=−1或x=3时,函数的最小值是0;⑤当x=1时,函数的最大值是4.其中正确结论的个数是______.14.某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是______米.15.如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°△,A′EP的面积为4△,D′PH的面积为1,则矩形ABCD的面积等于______.第15题图三、解答题(本大题共10小题,共108.0分)16.筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨迹是以轴心O为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB长为6米,∠OAB=41.3°,若点C为运行轨道的最高点(C,O的连线垂直于AB),求点C到弦AB所在直线的距离.(参考数据:si n41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)217.如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.(1)求证:△PAB△∽PBC;(2)求证:PA=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为ℎ1,ℎ2,ℎ3,求证ℎ1=ℎ2⋅ℎ3.18.为了保证人们上下楼的安全,楼梯踏步的宽度和高度都要加以限制.中小学楼梯宽度的范围是260mm~300mm含(300mm),高度的范围是120mm~150m m(含150mm).如图是某中学的楼梯扶手的截面示意图,测量结果如下:AB,CD分别垂直平分踏步EF,GH,各踏步互相平行,AB=CD,AC=900mm,∠ACD=65°,试问该中学楼梯踏步的宽度和高度是否符合规定.(结果精确到1mm,参考数据:si n65°≈0.906,cos65°≈0.423)19.通过对下面数学模型的研究学习,解决问题.【模型呈现】我们把这个数学模型成为“K型”.推理过程如下:【模型应用】如图,在Rt△ABC内接于⊙O,∠ACB=90°,BC=2,将斜边AB绕点A顺时针旋转一定的角度得到AD,过点D作DE⊥AC于点E,∠DAE=∠ABC,DE=1,连接DO交⊙O于点F.(1)求证:AD是⊙O的切线;(2)连接FC交AB于点G,连接FB.求证:FG2=GO⋅GB.20.通过对下面数学模型的研究学习,解决问题.我们把这个数学模型成为“K型”.推理过程如下:【模型迁移】二次函数y=ax2+bx+2的图象交x轴于点(−1,0),B(4,0)两点,交y轴于点C.动点M从点A 出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)连接BD,当t=3时,求△DNB的面积;2,当PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐(3)在直线MN上存在一点P△标;(4)当t=5时,在直线MN上存在一点Q,使得∠AQC+∠OAC=90°,求点Q的坐标.421.阅读下面的例题及点拨,并解决问题:例题:如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN=60°.点拨:如图②,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连接EM.易△证:ABM△≌EBM(SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM=MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠5,又因为∠2+∠6=120°,所以∠5+∠6=120°,即:∠AMN=60°.问题:如图③,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1是正方形A 1B1C1D1的外角∠D1C1H1的平分线上一点,且A1M1=M1N1.求证:∠A1M1N1=90°.22.已知抛物线G:y=mx2−2mx−3有最低点.(1)求二次函数y=mx2−2mx−3的最小值(用含m的式子表示);(2)将抛物线G向右平移m个单位得到抛物线G1.经过探究发现,随着m的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x的取值范围;(3)记(2)所求的函数为H,抛物线G与函数H的图象交于点P,结合图象,求点P的纵坐标的取值范围.23.在初中阶段的函数学习中,我们经历了“确定函数的表达式--利用函数图象研究其性质一一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图a(a≥0)象.同时,我们也学习了绝对值的意义|a|={−a(a<0).结合上面经历的学习过程,现在来解决下面的问题在函数y=|kx−3|+b中,当x=2时,y=−4;当x=0时,y=−1.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法面出这个函数的图象井写出这个函数的一条性质;(3)已知函y=1x−3的图象如图所示,结合你所画的函数图象,直接写出不等式|kx−3|+b≤21x−3的解集.224.如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S,点E在DC边上,点G在BC1的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.25.如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,①求证:OD=1OA.2②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m−n+2=0.2019年北京八中新高一入学分班考试数学试题2019.8答案和解析1.【答案】D【解析】【分析】本题考查了正方形的性质,最短路径问题,在BC上找到点H,使点H到点E和点F的距离之和最小是本题的关键.作点F关于BC的对称点M,连接FM交BC于点N,连接EM,交BC于点H,可得点H到点E和点F的距离之和最小,可求最小值,即可求解.【解答】解:如图,作点F关于BC的对称点M,连接FM交BC于点N,连接EM,交BC于点H∵点E,F将对角线AC三等分,且AC=12,∴EC=8,FC=4=AE,∵点M与点F关于BC对称,∴CF=CM=4,∠ACB=∠BCM=45°,∴∠ACM=90°,∴EM=√EC 2+CM2=4√5,则在线段BC存在点H到点E和点F的距离之和最小为4√5<9,在点H右侧,当点P与点C重合时,则PE+PF=12,∴点P在CH上时,4√5<PE+PF≤12,在点H左侧,当点P与点B重合时,BF=√FN2+BN2=2√10,∵AB=BC,CF=AE,∠BAE=∠BCF,∴△ABE△≌CBF(SAS),∴BE=BF=2√10,2a<1,2a 时,y随着x的增大而增大,故⑤错误;∴PE+PF=4√10,∴点P在BH上时,4√5<PE+PF<4√10,∴在线段BC上点H的左右两边各有一个点P使PE+PF=9,同理在线段AB,AD,CD上都存在两个点使PE+PF=9.即共有8个点P满足PE+PF=9,故选:D.2.【答案】C【解析】【分析】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.根据二次函数的图象与性质即可求出答案.【解答】解:①由图象可知:a>0,c<0,∴ac<0,故①错误;②由于对称轴可知:−b∴2a+b>0,故②正确;③由于抛物线与x轴有两个交点,∴△=b2−4ac>0,故③正确;④由图象可知:x=1时,y=a+b+c<0,故④正确;⑤当x>−b故选:C.3.【答案】D【解析】解:∵四边形ABCD是正方形,∴AB=AD=BC=CD=√2,∠DCB=∠COD=∠BOC=90°,OD=OC,∴BD=√2AB=2,∴OD=BO=OC=1,∵将正方形ABCD沿直线DF折叠,点C落在对角线BD上的点E处,∴DE=DC=√2,DF⊥CE,∴OE=√2−1,∠EDF+∠FED=∠ECO+∠OEC=90°,∴∠ODM=∠ECO,∠EOC=∠DOC=90°与OMD中,{OD=OC,在△OEC△∠OCE=∠ODM△OEC△≌OMD(ASA),∴OM=OE=√2−1,故选:D.根据正方形的性质得到AB=AD=BC=CD=√2,∠DCB=∠COD=∠BOC=90°,OD=OC,求得BD=√2AB=2,得到OD=BO=OC=1,根据折叠的性质得到DE=DC=√2,DF⊥CE,求得OE=√2−1,根据全等三角形的性质即可得到结论.本题考查了翻折变换(折叠问题),全等三角形的判定和性质,正方形的性质,正确的识别图形是解题的关键.4.【答案】C【解析】解:∵四边形EFGB是正方形,EB=2,∴FG=BE=2,∠FGB=90°,∵四边形ABCD是正方形,H为AD的中点,∴AD=4,AH=2,∠BAD=90°,∴∠HAN=∠FGN,AH=FG,∵∠ANH=∠GNF,∴△ANH△≌GNF(AAS),故①正确;∴∠AHN=∠HFG,∵AG=FG=2=AH,∴AF=√2FG=√2AH,∴∠AFH≠∠AHF,∴∠AFN≠∠HFG,故②错误;∵△ANH△≌GNF,∴AN=1AG=1,2∵GM=BC=4,∴AH=GM=2,AN AG∵∠HAN=∠AGM=90°,∴△AHN∽△GMA,2 2 2 2∴ ∠AHN = ∠AMG ,∵ AD//GM ,∴ ∠HAK = ∠AMG ,∴ ∠AHK = ∠HAK ,∴ AK = HK ,∴ AK = HK = NK ,∵ FN = HN ,∴ FN = 2NK ;故③正确;∵延长 FG 交 DC 于 M ,∴四边形 ADMG 是矩形,∴ DM = AG = 2,∵ △?? AFN = 1 AN ⋅ FG = 1 × 2 × 1 = 1,△?? ADM = 1 AD ⋅ DM = 1 × 4 × 2 = 4,∴ △?? AFN :△?? ADM = 1:4 故④正确,故选:C .由正方形的性质得到FG = BE = 2,∠FGB = 90°,AD = 4,AH = 2,∠BAD = 90°,求得∠HAN =∠FGN ,AH = FG ,根据全等三角形的定理定理得到△ ANH ≌△ GNF(AAS),故①正确;根据全等三角形的性质得到∠AHN = ∠HFG ,推出∠AFH ≠ ∠AHF ,得到∠AFN ≠ ∠HFG ,故②错误;根据全等三角形的性质得到AN = 1 AG = 1,根据相似三角形的性质得到∠AHN = ∠AMG ,根据平行线的性质 2得到∠HAK = ∠AMG ,根据直角三角形的性质得到FN = 2NK ;故③正确;根据矩形的性质得到DM = AG = 2,根据三角形的面积公式即可得到结论.本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,矩形的判定和性质,直角三角形的性质,正确的识别图形是解题的关键.5. 【答案】D【解析】解:∵关于 x 的一元二次方程x 2 − (k − 1)x − k + 2 = 0的两个实数根为x 1,x 2,∴ x 1 + x 2 = k − 1,x 1 x 2 = −k + 2.∵ (x 1 − x 2 + 2)(x 1 − x 2 − 2) + 2x 1 x 2 = −3,即(x 1 + x 2 )2 − 2x 1 x 2 − 4 = −3,∴ (k − 1)2 + 2k − 4 − 4 = −3,解得:k = ±2.∵关于 x 的一元二次方程x 2 − (k − 1)x − k + 2 = 0有实数根,∴ Δ = [−(k − 1)]2 − 4 × 1 × (−k + 2) ≥ 0,于易错题.先解关于 x 的一元一次不等式组{3x−14 x − 1 (4a − 2) ≤ 1 解:由不等式组{3x−14 2得:{ < x + 2 由关于 y 的分式方程 解得:k ≥ 2√2 − 1或k ≤ −2√2 − 1,∴ k = 2.故选:D .由根与系数的关系可得出x 1 + x 2 = k − 1,x 1 x 2 = −k + 2,结合(x 1 − x 2 + 2)(x 1 − x 2 − 2) +2x 1 x 2 = −3可求出 k 的值,根据方程的系数结合根的判别式Δ ≥ 0可得出关于 k 的一元二次不等式,解之即可得出 k 的取值范围,进而可确定 k 的值,此题得解.本题考查了根的判别式以及根与系数的关系,利用根与系数的关系结合(x 1 − x 2 + 2)(x 1 − x 2 − 2) + 2x 1 x 2 = −3,求出 k 的值.6.【答案】B【解析】【分析】本题综合考查了含参一元一次不等式组的整数解,含参分式方程得问题,需要考虑的因素较多,属x − 1 (4a − 2) ≤ 1 2,再根据其解集是x ≤ a ,得 a 小于 < x + 2 25;再解分式方程,根据其有非负整数解,同时考虑增根的情况,得出 a 的值,再求和即可.【解答】x ≤ a x < 5 2∵解集是x ≤ a ,∴ a < 5;2y−a y−1 − y−4 = 1得2y − a + y − 4 = y − 1 1−y∴ y = 3+a , 2∵有非负整数解,∴ 3+a ≥ 0, 2∴ a ≥ −3,且a = −3,a = −1(舍,此时分式方程为增根),a = 1,a = 3它们的和为 1.故选:B .7.【答案】B′ 2 2 【解析】解:如图,连接CC′,交 BD 于点 M ,过点 D 作DH ⊥BC′于点 H ,∵ AD = AC′ = 2,D 是 AC 边上的中点,∴ DC = AD = 2,由翻折知,△ BDC △≌BDC′,BD 垂直平分CC′,∴ DC = DC′ = 2,BC = BC′,CM = C′M ,∴ AD = AC′ = DC′ = 2,∴△ ADC′为等边三角形,∴ ∠ADC′ = ∠AC′D = ∠C′AC = 60°,∵ DC = DC′,∴ ∠DCC′ = ∠DC′C = 1 × 60° = 30°, 2在Rt △ C′DM 中,∠DC′C = 30°,DC′ = 2,∴ DM = 1,C′M = √3DM = √3,∴ BM = BD − DM = 3 − 1 = 2,在Rt △ BMC′中,BC′ = √BM 2 + C′M 2 = √ 22 + (√3)2 = √7,∵ △?? BDC = 1 BC′ ⋅ DH = 1 BD ⋅ CM, ∴ √7DH = 3 × √3,∴ DH = 3√21,7故选:B .连接CC′,交 BD 于点 M ,过点 D 作DH ⊥ BC′于点 H ,由翻折知,△ BDC △≌BDC′,BD 垂直平分CC′△,证ADC′为等边三角形,利用解直角三角形求出DM = 1,C′M = √3DM = √3,BM = 2,在Rt △ BMC′中,利用勾股定理求出BC′的长,在△ BDC′中利用面积法求出 DH 的长.本题考查了轴对称的性质,解直角三角形,勾股定理等,解题关键是会通过面积法求线段的长度.8.【答案】D【解析】解:作AE⊥OC于点E,作AF⊥OB于点F,∵四边形ABCD是矩形,∴∠ABC=90°,∵∠ABC=∠AEC,∠BCO=x,∴∠EAB=x,∴∠FBA=x,∵AB=a,AD=b,∴FO=FB+BO=a⋅c o s x+b⋅s i n x,故选:D.根据题意,作出合适的辅助线,然后利用锐角三角函数即可表示出点A到OC的距离,本题得以解决.本题考查解直角三角形的应用−坡度角问题、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.9.【答案】C【解析】解:∵y=(x+a)(x+b)=x2+(a+b)x+ab,∴△=(a+b)2−4ab=(a−b)2>0,∴函数y=(x+a)(x+b)的图象与x轴有2个交点,∴M=2,∵函数y=(ax+1)(bx+1)=abx2+(a+b)x+1,时,=(a+b)2−4ab=(a−b)2>0,函数y=(ax+1)(bx+1)的图象与x轴有2个交∴当ab≠0△点,即N=2,此时M=N;当ab=0时,不妨令a=0,∵a≠b,∴b≠0,函数y=(ax+1)(bx+1)=bx+1为一次函数,与x轴有一个交点,即N=1,此时M=N+1;综上可知,M=N或M=N+1.故选:C.先把两个函数化成一般形式,若为二次函数,再计算根的判别式,从而确定图象与x轴的交点个数,若一次函数,则与x轴只有一个交点,据此解答.本题主要考查一次函数与二次函数与x轴的交点问题,关键是根据根的判别式的取值确定抛物线与x 轴的交点个数,二次项系数为字母的代数式时,要根据系数是否为0,确定它是什么函数,进而确定与x轴的交点个数.10.【答案】3√3【解析】解:∵四边形ABCD是矩形,∴∠B=∠BAD=90°,∵∠BAC=60°,∴∠ACB=30°,由作图知,AE是∠BAC的平分线,∴∠BAE=∠CAE=30°,∴∠EAC=∠ACE=30°,∴AE=CE,过E作EF⊥AC于F,∴EF=BE=1,∴AC=2CF=2√3,∴AB=√3,BC=3,∴矩形ABCD的面积=AB⋅BC=3√3,故答案为:3√3.根据矩形的性质得到∠B=∠BAD=90°,求得∠ACB=30°,由作图知,AE是∠BAC的平分线,得到∠BAE=∠CAE=30°,根据等腰三角形的性质得到AE=CE,过E作EFAC于F,求得EF=BE=1,求得AC=2CF=2√3,解直角三角形得到AB=√3,BC=3,于是得到结论.本题主要考查矩形的性质,作图−基本作图,解题的关键是熟练掌握角平分线的定义和性质及直角三角形30°角所对边等于斜边的一半.11.【答案】a+8b【解析】解:由图可得,拼出来的图形的总长度=9a−8(a−b)=a+8b.故答案为:a+8b.用9个这样的图形的总长减去拼接时的重叠部分,即可得到拼出来的图形的总长度.本题主要考查了利用轴对称设计图案,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.12.【答案】①④【解析】解:如图1中,在BC上截取BH=BE,连接EH.∵BE=BH,∠EBH=90°,∴EH=√2BE,∵AF=√2BE,∴AF=EH,∵∠DAM=∠EHB=45°,∠BAD=90°,∴∠FAE=∠EHC=135°,∵BA=BC,BE=BH,∴AE=HC,∴△FAE△≌EHC(SAS),∴EF=EC,∠AEF=∠ECH,∵∠ECH+∠CEB=90°,∴∠AEF+∠CEB=90°,∴∠FEC=90°,∴∠ECF=∠EFC=45°,故①正确,,则CBE≌△CDH(SAS),如图2中,延长AD到H,使得DH=BE△∴∠ECB=∠DCH,∴∠ECH=∠BCD=90°,∴∠ECG=∠GCH=45°,∵CG=CG,CE=CH,∴△GCE△≌GCH(SAS),∴EG=GH,∵GH=DG+DH,DH=BE,∴EG=BE+DG,故③错误,∴△AEG的周长=AE+EG+AG=AG+GH=AD+DH+AE=AE+EB+AD=AB+AD=2a,故②错误,2 2 2 2 4 4 22 8∴ △?? AEF = 1 ⋅ (a − x) × x = − 1 x 2 + 1 ax = − 1 (x 2 − ax + 1 a 2 − 1 a 2 ) = − 1 (x − 1 a)2 + 1 a 2 , ∵ − 1 < 0, 2∴ x = 1 a △时, AEF 的面积的最大值为1 a 2 .故④正确, 28 故答案为①④.①正确.如图 1 中,在 BC 上截取BH = BE ,连接EH.△证明FAE △≌ EHC(SAS),即可解决问题. ②③错误.如图 2 中,延长 AD 到 H ,使得DH = BE ,则△ CBE △≌CDH(SAS),再证明△ GCE △≌ GCH(SAS),即可解决问题.④正确.设BE = x ,则AE = a − x ,AF = √2x ,构建二次函数,利用二次函数的性质解决最值问题.本题考查正方形的性质,全等三角形的判定和性质,二次函数的应用等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考填空题中的压轴题.13.【答案】4【解析】解:① ∵ (−1,0),(3,0)和(0,3)坐标都满足函数y = |x 2 − 2x −3|,∴ ①是正确的;②从图象可知图象具有对称性,对称轴可用对称轴公式求得是直线x = 1,因此②也是正确的;③根据函数的图象和性质,发现当−1 ≤ x ≤ 1或x ≥ 3时,函数值 y 随 x 值的增大而增大,因此③也是正确的;④函数图象的最低点就是与 x 轴的两个交点,根据y = 0,求出相应的 x 的值为x = −1或x = 3,因此④也是正确的;⑤从图象上看,当x < −1或x > 3,函数值要大于当x = 1时的y = |x 2 − 2x − 3| = 4,因此⑤时不正确的;故答案是:4由(−1,0),(3,0)和(0,3)坐标都满足函数y = |x 2 − 2x − 3|,∴ ①是正确的;从图象可以看出图象具有对称性,对称轴可用对称轴公式求得是直线x = 1,②也是正确的;根据函数的图象和性质,发现当−1 ≤ x ≤ 1或x ≥ 3时,函数值 y 随 x 值的增大而增大,因此③也是正确的;函数图象的最低点就是与 x 轴的两个交点,根据y = 0,求出相应的 x 的值为x = −1或x =3,因此④也是正确的;从图象上看,当x < −1或x > 3,函数值要大于当x = 1时的y = |x 2 − 2x −4a ,理解“鹊桥”函数y=|ax2+bx+c|的意义,掌握“鹊桥”函数与y=|ax2+bx+c|与二次函数y=ax2+bx+c之间的关系;两个函数性质之间的联系和区别是解决问题的关键;二次函数y=ax2+bx+c与x轴的交点、对称性、对称轴及最值的求法以及增减性应熟练掌握.14.【答案】6000【解析】解:由题意可得,甲的速度为:4000÷(12−2−2)=500米/分,乙的速度为:4000+500×2−500×2=1000米/分,2+2乙从与甲相遇到返回公司用的时间为4分钟,则乙回到公司时,甲距公司的路程是:500×(12−2)−500×2+500×4=6000(米),故答案为:6000.根据函数图象和题意可以分别求得甲乙的速度和乙从与甲相遇到返回公司用的时间,从而可以求得当乙回到公司时,甲距公司的路程.本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.15.【答案】2(5+3√5)【解析】解:∵四边形ABCD是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,∵△A′EP的面积为4△,D′PH的面积为1,∴A′E=4D′H,设D′H=a,则A′E=4a,∵△A′EP△∽D′PH,∴D′H=PD′,PA′EA′∴a=xx∴x2=4a2,∴x=2a或−2a(舍弃),∴PA′=PD′=2a,∵1⋅a⋅2a=1,24a=2a,再利用三角形的面积公式求出a即可解决问题.cos41.3∘=30.75=4(米),∴x=2,∴AB=CD=2,PE=√22+42=2√5,PH=√12+22=√5,∴AD=4+2√5+√5+1=5+3√5,∴矩形ABCD的面积=2(5+3√5).故答案为2(5+3√5)设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,因为△A′EP的面积为4△,D′PH的面积为1,推出A′E=4D′H,设D′H=a,则A′E=4a△,由A′EP△∽D′PH,推出D′H=PD′,推出PA′EA′ax=x,可得x本题考查翻折变换,矩形的性质,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考填空题中的压轴题.16.【答案】解:连接CO并延长,与AB交于点D,∵CD⊥AB,∴AD=BD=1AB=3(米),2在Rt△AOD中,∠OAB=41.3°,∴cos41.3°=AD,即OA=3OAtan41.3°=OD,即OD=AD⋅tan41.3°=3×0.88=2.64(米),AD则CD=CO+OD=4+2.64=6.64(米).【解析】此题考查了解直角三角形的应用,垂径定理,熟练掌握各自的性质是解本题的关键.连接CO并延长,与AB交于点D,由CD与AB垂直,利用垂径定理得到D为AB的中点,在直角三角形AOD中,利用锐角三角函数定义求出OA,进而求出OD,由CO+OD求出CD的长即可.17.【答案】解:(1)∵∠ACB=90°,AB=BC,∴∠ABC=45°=∠PBA+∠PBC又∠APB=135°,∴∠PAB+∠PBA=45°∴∠PBC=∠PAB又∵∠APB=∠BPC=135°,∴△PAB△∽PBC(2)∵△PAB△∽PBC∴在Rt△ABC中,AC=BC,∴∴∴PA=2PC(3)如图,过点P作PD⊥BC于D,PE⊥AC于E,过P作PF⊥AB于点F ∴PF=ℎ1,PD=ℎ2,PE=ℎ3,∵∠CPB+∠APB=135°+135°=270°∴∠APC=90°,∴∠EAP+∠ACP=90°,又∵∠ACB=∠ACP+∠PCD=90°∴∠EAP=∠PCD,∴Rt△AEP∽Rt△CDP,∴,即,∴ℎ3=2ℎ2∵△PAB△∽PBC,∴∴,2∴即:ℎ1=ℎ2⋅ℎ3..【解析】(1)利用等式的性质判断出∠PBC=∠PAB,即可得出结论;(2)由(1)的结论得出,进而得出,即可得出结论;(3)先判断出Rt△AEP∽Rt△CDP,得出,即ℎ3=2ℎ2,再由△PAB∽△PBC,判断出,即可得出结论.此题主要考查了相似三角形的判定和性质,等腰直角三角形的性质,判断出∠EAP=∠PCD是解本题的关键.18.【答案】解:连接BD,作DM⊥AB于点M,∵AB=CD,AB,CD分别垂直平分踏步EF,GH,∴AB//CD,AB=CD,∴四边形ABCD是平行四边形,∴∠C=∠ABD,AC=BD,∵∠C=65°,AC=900,∴∠ABD=65°,BD=900,∴BM=BD⋅cos65°=900×0.423≈381,DM=BD⋅si n65°=900×0.906≈815,∵381÷3=127,120<127<150,∴该中学楼梯踏步的高度符合规定,∵815÷3≈272,260<272<300,∴该中学楼梯踏步的宽度符合规定,由上可得,该中学楼梯踏步的宽度和高度都符合规定.【解析】根据题意,作出合适的辅助线,然后根据锐角三角函数即可求得BM和DM的长,然后计算出该中学楼梯踏步的宽度和高度,再与规定的比较大小,即可解答本题.本题考查解直角三角形的应用,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.19.【答案】证明:(1)∵⊙O为Rt△ABC的外接圆∴O为斜边AB中点,AB为直径∵∠ACB=90°∴∠ABC+∠BAC=90°∵∠DAE=∠ABC∴∠DAE+∠BAC=90°∴∠BAD=180°−(∠DAE+∠BAC)=90°∴AD⊥AB∴AD是⊙O的切线(2)延长DO交BC于点H,连接OC∵DE⊥AC于点E∴∠DEA=90°∵AB绕点A旋转得到AD∴AB=AD在△DEA△与ACB中∠DEA=∠ACB=90°{∠DAE=∠ABCDA=AB∴△DEA△≌ACB(AAS)∴AE=BC=2,AC=DE=1∴AD=AB=√AC2+BC2=√5∵O为AB中点1√5∴AO=AB=22AO√5AD∴==DE2AE∵∠DAO=∠AED=90°∴△DAO△∽AED∴FG∴∠ADO=∠EAD∴DO//EA∴∠OHB=∠ACB=90°,即DH⊥BC∵OB=OC∴OH平分∠BOC,即∠BOH=1∠BOC2∵∠FOG=∠BOH,∠BFG=1∠BOC2∴∠FOG=∠BFG∵∠FGO=∠BGF∴△FGO△∽BGFGO=BG GF∴FG2=GO⋅GB【解析】(1)因为直角三角形的外心为斜边中点,所以点O在AB上,AB为⊙O直径,故只需证AD⊥AB即可.由∠ABC+∠BAC=90°和∠DAE=∠ABC可证得∠DAE+∠BAC=90°,而E、A、C在同一直线上,用180°减去90°即为∠BAD=90°,得证.(2)依题意画出图形,由要证的结论FG2=GO⋅GB联想到对应边成比例,所以需证△FGO∽△BGF.其中∠FGO=∠BGF为公共角,即需证∠FOG=∠BFG.∠BFG为圆周角,所对的弧为弧BC,故连接OC后有∠BFG=1∠BOC,问题又转化为证∠FOG=1∠BOC.把DO延长交BC于点H后,有∠FOG=22∠BOH,故问题转化为证∠BOH=1∠BOC.只要OH⊥BC,由等腰三角形三线合一即有∠BOH=21∠BOC,故问题继续转化为证DH//CE.联系【模型呈现】发现能证△2DEA△≌ACB,得到AE=BC=2,AC=DE=1,即能求AD=AB=√5.又因为O为AB中点,可得到AO=√5=AD,再加上第(1)题DE2AE证得∠BAD=90°,可得△DAO△∽AED,所以∠ADO=∠EAD,DO//EA,得证.本题考查了三角形外心定义,圆的切线判定,旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质,平行线的判定和性质,垂径定理,等腰三角形三线合一,圆周角定理.其中第(2)题证明DO//EA进而得到DO垂直BC是解题关键.20.【答案】解:(1)将点(−1,0),B(4,0)代入y=ax2+bx+2,∴a=−1,b=3,22132(2)C(0,2),∴ BC 的直线解析式为y = − 1 x + 2,2当t = 3时,AM = 3,2∵ AB = 5,∴ MB = 2,∴ M(2,0),N(2,1),D(2,3),∴△ DNB 的面积=△ DMB 的面积− △ MNB 的面积=1 2 × MB × DM − 1 × MB × MN = 1 × 2 × 2 = 2; 2 2(3) ∵ BM = 5 − 2t ,∴ M(2t − 1,0),设P(2t − 1, m),∵ PC 2 = (2t − 1)2 + (m − 2)2 ,PB 2 = (2t − 5)2 +m 2,∵ PB = PC ,∴ (2t − 1)2 + (m − 2)2 = (2t − 5)2 + m 2,∴ m = 4t − 5,∴ P(2t − 1,4t − 5),∵ PC ⊥ PB ,∴ 4t − 7 4t − 5 ⋅ = −1 2t − 1 2t − 5∴ t = 1或t = 2,∴ M(1,0)或M(3,0),∴ D(1,3)或D(3,2);(4)当t = 5时,M(3 , 0),42∴点 Q 在抛物线对称性x = 3上,2如图:过点 A 作 AC 的垂线,以 M 为圆心 AB 为直径构造圆,圆与x = 3的交点分别为Q 1与Q 2,∵ AB = 5,∴ AM = 5,2∵ ∠AQ 1C + ∠OAC = 90°,∠OAC + ∠MAG = 90°,⋅ 4t−5 = −1求出t = 1或t = 2,即可求 D 点坐标;2 22 22 2又∵ ∠AQ 1C = ∠CGA = ∠MAG ,∴ Q 1(3 , − 5),∵ Q 1与Q 2关于 x 轴对称,∴ Q 2 (3 , 5),∴ Q 点坐标分别为(3 , − 5),(3 , 5);22 2 2【解析】(1)将点(−1,0),B(4,0)代入y = ax 2 + bx + 2即可;(2)由已知分别求出M(2,0),N(2,1),D(2,3),根据∴△ DNB 的面积=△ DMB 的面积− △ MNB 的面积即可求解;(3)由已知可得M(2t − 1,0),设P(2t − 1, m),根据勾股定理可得PC 2 = (2t − 1)2 + (m − 2)2,PB 2 = (2t − 5)2 + m 2,再由PB = PC ,得到 m 与 t 的关系式:m = 4t − 5,因为PC ⊥ PB ,则有4t−7 2t−12t−5(4)当t = 5时,M(3 , 0),可知点 Q 在抛物线对称性x = 3上;过点 A 作 AC 的垂线,以 M 为圆心 AB42 2为直径构造圆,圆与x = 3的交点分别为Q 1与Q 2,由AB = 5,可得圆半径AM = 5,即可求 Q 点坐标分别为(3 , − 5),(3 , 5).22 2 2本题考查二次函数的图象及性质,动点问题;能够熟练掌握二次函数解析式与相应点的求法,熟悉等腰直角三角形的性质,应用勾股定理和直线垂直的性质建立坐标之间的联系,借助圆周角的性质,等腰三角形的性质,互余角的性质将角进行转换是解题的关键.21.【答案】解:延长A 1B 1至 E ,使EB 1 = A 1B 1,连接EM 1C 、EC 1,如图所示:则EB 1 = B 1C 1,∠EB 1M 1中= 90° = ∠A 1B 1M 1,∴△ EB 1C 1是等腰直角三角形, ∴ ∠B 1EC 1 = ∠B 1C 1E = 45°,∵ N 1是正方形A 1B 1C 1D 1的外角∠D 1C 1H 1的平分线上一点, ∴ ∠M 1C 1N 1 = 90° + 45° = 135°, ∴ ∠B 1C 1E + ∠M 1C 1N 1 = 180°, ∴ E 、C 1、N 1,三点共线,A 1B1=EB1在△A1B1M1△和EB1M1中,{∠A1B1M1=∠EB1M1B 1M1=B1M1∴△A1B1M1△≌EB1M1(SAS),∴A1M1=EM1,∠1=∠2,∵A1M1=M1N1,∴EM1=M1N1,∴∠3=∠4,∵∠2+∠3=45°,∠4+∠5=45°,∴∠1=∠2=∠5,∵∠1+∠6=90°,∴∠5+∠6=90°,∴∠A1M1N1=180°−90°=90°.,【解析】延长A1B1至E,使EB1=A1B1,连接EM1C、EC1,则EB1=B1C1,∠EB1M1中=90°=∠A 1B1M1,得出△EB1C1是等腰直角三角形,由等腰直角三角形的性质得出∠B1EC1=∠B1C1E=45°,证出∠B1C1E+∠M1C1N1=180°,得出E、C1、N1,三点共线,由SAS△证明A1B1M1△≌EB 1M1得出A1M1=EM1,∠1=∠2,得出EM1=M1N1,由等腰三角形的性质得出∠3=∠4,证出∠1=∠2=∠5,得出∠5+∠6=90°,即可得出结论.此题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的判定与性质、三角形的外角性质等知识;本题综合性强,熟练掌握正方形的性质,通过作辅助线构造三角形全等是解本题的关键.22.【答案】解:(1)∵y=mx2−2mx−3=m(x−1)2−m−3,抛物线有最低点,∴二次函数y=mx2−2mx−3的最小值为−m−3;(2)∵抛物线G:y=m(x−1)2−m−3∴平移后的抛物线G1:y=m(x−1−m)2−m−3∴抛物线G1顶点坐标为(m+1,−m−3)∴x=m+1,y=−m−3∴x+y=m+1−m−3=−2即x+y=−2,变形得y=−x−2∵m>0,m=x−1法二:{∴x>1∴y与x的函数关系式为y=−x−2(x>1);(3)法一:如图,函数H:y=−x−2(x>1)图象为射线x=1时,y=−1−2=−3;x=2时,y=−2−2=−4∴函数H的图象恒过点B(2,−4)∵抛物线G:y=m(x−1)2−m−3x=1时,y=−m−3;x=2时,y=m−m−3=−3∴抛物线G恒过点A(2,−3)由图象可知,若抛物线与函数H的图象有交点P,则y B<y P<y A,∴点P纵坐标的取值范围为−4<yP<−3;y=−x−2y=mx2−2mx−3整理的:m(x2−2x)=1−x∵x>1,且x=2时,方程为0=−1不成立∴x≠2,即x2−2x=x(x−2)≠0∴m=1−x x(x−2)∵x>1∴1−x<0∴x(x−2)<0∴x−2<0>0∴x<2即1<x<2∵yP=−x−2∴−4<yP<−3.【解析】本题考查了求二次函数的最值,二次函数的平移,二次函数与一次函数的关系.解题关键是在无图的情况下运用二次函数性质解题,第(3)题结合图象解题体现数形结合的运用.(1)抛物线有最低点即开口向上,m>0,用配方法或公式法求得对称轴和函数最小值.(2)写出抛物线G的顶点式,根据平移规律即得到抛物线G1的顶点式,进而得到抛物线G1顶点坐标(m+1,−m−3),即x=m+1,y=−m−3,x+y=−2即消去m,得到y与x的函数关系式.再由m>0,即求得x的取值范围.(3)法一:求出抛物线恒过点B(2,−4),函数H图象恒过点A(2,−3),由图象可知两图象交点P应在|2k−3|+b=−4k=3∴{,得{,b=−4{2点A、B之间,即点P纵坐标在A、B纵坐标之间.法二:联立函数H解析式与抛物线解析式组成方程组,整理得到用x表示m的式子.由x与m的范围讨论x的具体范围,即求得函数H对应的交点P纵坐标的范围.23.【答案】解:(1)∵在函数y=|kx−3|+b中,当x=2时,y=−4;当x=0时,y=−1,|−3|+b=−1∴这个函数的表达式是y=|3x−3|−4;2(2)∵y=|3x−3|−4,2∴y=3x−7−3x−21(x≥2),(x<2)∴函数y=3x−7过点(2,−4)和点(4,−1);函数y=−3x−1过点(0,−1)和点(−2,2);22该函数的图象如图所示,性质是当x>2时,y随x的增大而增大(答案不唯一);(3)由函数图象可得,不等式|kx−3|+b≤1x−3的解集是1≤x≤4.2【解析】本题考查一次函数的应用、一元一次不等式与一次函数的关系,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.(1)根据在函数y=|kx−3|+b中,当x=2时,y=−4;当x=0时,y=−1,可以求得该函数的表达式;(2)根据(1)中的表达式可以画出该函数的图象并写出它的一条性质;(3)根据图象可以直接写出所求不等式的解集.24.【答案】解:(1)设正方形CEFG的边长为a,第31页,共33页。
2019年重点高中高一新生分班考试数学卷含答案
2019年重点高中高一新生分班考试数学卷含答案(共23页)-本页仅作为预览文档封面,使用时请删除本页-2019年重点高中高一新生分班考试数学卷姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.一个数的倒数的绝对值是3,这个数是()A.3 B. C.3或﹣3 D.或﹣2.如图,已知∠1=120°,则∠2的度数是( )A.120° B.90° C.60° D.30°3.的值是()A.±16 B.±4 C.16 D.−164.如图,Rt△ABC中,∠ACB=90°,DE过点C且平行于AB,若∠BCE=35°,则∠A的度数为( )A.35°B.45°C.55°D.65°5.已知等边三角形的边长为,则它面积与边长之间的关系用图象大致可表示为()A.B.C.D.6.现有2cm,5cm长的两根木棒,再从下列长度的四根木棒中选取一根,可以围成一个三角形的是()A.2cm B.3cm C.5cm D.7cm 7.若多项式-6ab+18abx+24aby的一个因式是-6ab,那么另一个因式是()A.1-3x-4y B.-1-3x-4y C.1+3x-4y D.-1-3x+4y8.函数y=与y=x+1的图象的交点坐标为(a,b),则a2+b2的值为()A.1 B.11 C.25 D.无法求解9.用一个半径为30,圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是()A.10 B.20 C.10π D.20π10.如图,在菱形纸片ABCD中,,P为AB中点折叠该纸片使点C落在点处且点P在上,折痕为DE,则的大小为A. B. C. D.二、填空题(本大题共6小题,每小题4分,共24分)11.已知是整数,则n是自然数的值是_____.12.用反证法证明∠A>60°时,应先假设_____.13.如果不等式组有解,那么m的范围是______.14.已知点,轴,且,则点N的坐标为______.15.如图,矩形的顶点在坐标原点,,分别在轴,轴的正半轴上,点的坐标为,点的坐标为,当此矩形绕点旋转到如图位置时的坐标为________.16.已知,在Rt△ABC中,∠C=90°,AC=9,BC=12,点 D、E 分别在边AC、BC上,且CD:CE=3︰4.将△CDE绕点D顺时针旋转,当点C落在线段DE上的点 F处时,BF恰好是∠ABC的平分线,此时线段CD的长是________.三、解答题(本大题共8小题,共66分)17.(本题8分)解方程组和分式方程:(1)解方程组(2)解分式方程.18.(本题8分)平面上有3个点的坐标:,,在A,B,C三个点中任取一个点,这个点既在直线上又在抛物线上上的概率是多少?从A,B,C三个点中任取两个点,求两点都落在抛物线上的概率.19.(本题10分)某校组织学生开展课外社会实践活动,现有甲、乙两种大客车可租,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,甲种客车每辆载客量45人,乙种客车每辆载客量30人,共有师生330人,求最节省的租车费用是多少元?20.(本题8分)周末,小亮一家人去水库游玩,他在大坝上的点A处看到一棵大树的影子刚好落在坝底的BE处点A与大树及其影子在同一平面内,此时太阳光与地面夹角为,在A处测得树顶D的仰角为如图所示,已知背水坡AB的坡度:3,AB的长为10米,请你帮助小亮算一算这颗大树的高度结果精确到米,参考数据:,注:坡度是指坡面的铅直高度与水平宽度的比21.(本题10分)据统计,某小区2011年底拥有私家车125辆,2013年底私家车的拥有量达到180辆.(1)若该小区2011年底到2014年底私家车拥有量的年平均增长率相同,则该小区到2014年底私家车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资3万元再建若干个停车位,据测算,建造费用分别为室内车位1 000元/个,露天车位200元/个.考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的倍,则该小区最多可建两种车位各多少个?试写出所有可能的方案.22.(本题10分)已知:如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点,与y轴交于点C,该抛物线的顶点为M.(1)求点A、B、C的坐标.(2)求直线BM的函数解析式.(3)试说明:∠CBM+∠CMB=90°.(4)在抛物线上是否存在点P,使直线CP把△BCM分成面积相等的两部分?若存在,请求出点P的坐标;若不存在,请说明理由.23.(本题12分)如图1,正方形ABCD中,F为AB中点,连接DF,CE⊥DF于E,连接BE.(1)作出△ADF关于F成中心对称的图形,并探究BE和BC数量关系;(2)如图2,BM平分∠ABE交CE延长线于M,连接MD,试探究DM、CM、BM线段关系并给出证明;(3)若点F在线段AB上运动(不与端点重合),AB=4,写出BE长度的取值范围.答案分析一、选择题(本大题共10小题,每小题3分,共30分。
北京市海淀区高一新生入学分班考试数学试题及答案
高一新生入学分班考试数 学试 题总分:150分 时量:120分钟第Ⅰ卷一. 选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列运算正确的是( )。
A 、a 2·a 3=a 6B 、a 8÷a 4=a 2 C 、a 3+a 3=2a 6 D 、(a 3)2=a 62.一元二次方程2x 2-7x+k=0的一个根是x 1=2,则另一个根和k 的值是 ( )A .x 2=1 ,k=4B .x 2= - 1, k= -4C .x 2=32,k=6 D .x 2= 32-,k=-6 3.如果关于x 的一元二次方程220x kx -+=中,k 是投掷骰子所得的数字(1,2,3,4,5,6),则该二次方程有两个不等实数根的概率P= ( ) A .23B .12C .13D .164.二次函数y=-x 2-4x+2的顶点坐标、对称轴分别是( )A.(-2,6),x=-2B.(2,6),x=2C.(2,6),x=-2D.(-2,6),x=25.已知关于023,034,045=+-=+-=+-c x b x a x x 有两个解无解的方程只有一个解,则化简b a bc c a ---+-的结果是 ( )A 、2aB 、2bC 、2cD 、06. 在物理实验课上,小明用弹簧称将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y (单位N )与铁块被提起的高度x (单位cm )之间的函数关系的大致图象是 ( )A BC B 7. 下列图中阴影部分的面积与算式12221(|43|-++-的结果相同的是 ( )8.已知四边形1S 2S ,顺次连结2S 各边中点得四边形3S ,以此类推,则2006S 为( )A .是矩形但不是菱形; B. 是菱形但不是矩形; C.既是菱形又是矩形; D.既非矩形又非菱形.9.如图 ,D 是直角△ABC 斜边BC 上一点,AB=AD,记∠CAD=α,∠ABC=β. 若10,αβ=︒则的度数是 A .40︒B . 50︒C . 60︒D .不能确定10.如图为由一些边长为1cm 正方体堆积在桌面形成的立方体的三视图,则该立方体露在外面部分的表面积是________ cm 2。
北京高一新生入学分班考试数学(2)
A BC 北京高一新生入学分班考试数学(2)一. 选择题1.下列运算正确的是( )。
A 、a 2·a 3=a 6B 、a 8÷a 4=a 2C 、a 3+a 3=2a 6D 、(a 3)2=a 62.一元二次方程2x 2-7x+k=0的一个根是x 1=2,则另一个根和k 的值是 ( )A .x 2=1 ,k=4B .x 2= - 1, k= -4C .x 2=32,k=6 D .x 2= 32-,k=-6 3.如果关于x 的一元二次方程220x kx -+=中,k 是投掷骰子所得的数字(1,2,3,4,5,6),则该二次方程有两个不等实数根的概率P= ( ) A .23B .12C .13D .164.二次函数y=-x 2-4x+2的顶点坐标、对称轴分别是( )A.(-2,6),x=-2B.(2,6),x=2C.(2,6),x=-2D.(-2,6),x=25.已知关于023,034,045=+-=+-=+-c x b x a x x 有两个解无解的方程只有一个解,则化简b a bc c a ---+-的结果是 ( )A 、2aB 、2bC 、2cD 、06. 在物理实验课上,小明用弹簧称将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y (单位N )与铁块被提起的高度x (单位cm )之间的函数关系的大致图象是 ( )7. 下列图中阴影部分的面积与算式122)21(|43|-++-的结果相同的是( )8.如图为由一些边长为1cm 正方体堆积在桌面形成的立方体的三视图,则该立方体露在外面部分的表面积是________ cm 2。
A . 11B .15C .18D .22 二. 填空题9.函数21--=x x y 中,自变量x 的取值范围是. 10.在Rt △ABC 中,∠ACB =90°,CD AB D ⊥于,AC =10, CD =6,则sinB 的值为_____。
2019_2020学年10月北京北京市第八中学高一上学期月考数学试卷
4. 不等式 A.
对一切实数 恒成立,则 的取值范围是( ).
B.
C.
D.
5. 已知集合 A.
,
,则 , , 的关系( ).
B.
C.
, D.
6. 在如图电路中,闭合开关 是灯泡 亮的( )条件.
A. 充分不必要 C. 充要
7. 命题 :
,
B. 必要不充分 D. 既不充分也不必要
,则 是( ).
A.
.(把你认为正确的命题的序号都填上)
三、解答题
(本大题共3小题,每小题10分,共30分。)
15. 设集合
,
,
.
1 )若
,求 的值.
2 )若
,
,求 的值.
16. 解下列不等式.
1)
.
2)
.
17. 解关于 的不等式( 为任意实数):
.
四、附加题
(本大题共1小题,共10分。)
18. 若 , 是关于 的方程
,
B.
,
C.
,
D.
,
8. 已知
值范围是( ).
A.
B.
, C.
,且
,那么实数 的取
D.
二、填空题
(本大题共6小题,每小题5分,共30分。)
9. 在实数范围内因式分解
.
10. 不等式
的解集是
.Leabharlann 11. 已知的两实根为 、 ,则以 、 为两根的一个一元二次方程是
.
12. 已知方程
有两个正根,则 的取值范围是
.
13. 已知关于 的一元二次方程
为
.
,两实根的平方和为 ,则 的值
14. 设 是一个数集,且至少含有两个数,若对任意 ,
2019年北大附中新高一分班考试数学试题-真题-含详细解析
2019年北大附中新高一分班考试数学试题-真题一、选择题(本大题共8小题,共24分)1.如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为()A. 200tan70°米B. 200tan70∘米 C. 200sin 70°米 D. 200sin70∘米2.二次函数y=ax2+bx+c(a≠0)的顶点坐标为(−1,n),其部分图象如图所示.以下结论错误的是()A. abc>0B. 4ac−b2<0C. 3a+c>0D. 关于x的方程ax2+bx+c=n+1无实数根3.如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A. 1个B. 2个C. 3个D. 4个4.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A. 160B. 128C. 80D. 485.如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O.若AE=5,BF=3,则AO的长为()A. √5B. 3√5 C. 2√5 D. 4√526.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度ℎ(cm)与注水时间t(min)的函数图象大致为图中的()A. B.C. D.7.在平面直角坐标系中,点O为坐标原点,抛物线y=x2−2x−3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt△OAB向右上方平移,得到Rt△O′A′B′,且点O′,A′落在抛物线的对称轴上,点B′落在抛物线上,则直线A′B′的表达式为()D. y=x+2A. y=xB. y=x+1C. y=x+128.已知P1(x1,y1),P2(x2,y2)是抛物线y=ax2−2ax上的点,下列命题正确的是()A. 若|x1−1|>|x2−1|,则y1>y2B. 若|x1−1|>|x2−1|,则y1<y2C. 若|x1−1|=|x2−1|,则y1=y2D. 若y1=y2,则x1=x2二、填空题(本大题共8小题,共24分)9.如图,在△ABC中,按以下步骤作图:①以点B为圆心,任意长为半径作弧,分别交AB、BC于点D、E.DE的同样长为半径作弧,两弧交于点F.②分别以点D、E为圆心,大于12③作射线BF交AC于点G.如果AB=8,BC=12,△ABG的面积为18,则△CBG的面积为______.10.如图,在▱ABCD中,∠B=60°,AB=10,BC=8,点E为边AB上的一个动点,连接ED并延长至点F,使DE,以EC、EF为邻边构造▱EFGC,连接EG,则EG的最小值为______.得DF=1411.抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(−4,0)两点,下列四个结论:①一元二次方程ax2+bx+c=0的根为x1=2,x2=−4;②若点C(−5,y1),D(π,y2)在该抛物线上,则y1<y2;③对于任意实数t,总有at2+bt≤a−b;④对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则p的值只有两个.其中正确的结论是______(填写序号).12.如图,折叠矩形纸片ABCD,使点D落在AB边的点M处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是______.第12题图第13题图13.如图,在△ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC相切于点M,N.已知∠BAC=⏜的长为π,则图中阴影部分的面积为______.120°,AB+AC=16,MN14.矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A′处,展平后得到折痕BE,同时得到线段BA′,EA′,不再添加其它线段.当图中存在30°角时,AE的长为______厘米.第14题图第15题图15.如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC=______度.16.设A,B,C,D是反比例函数y=k图象上的任意四点,现有以下结论:x①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是______.(写出所有正确结论的序号)三、计算题(本大题共1小题,共6分)17.某公司生产A型活动板房成本是每个425元.图①表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.(1)按如图①所示的直角坐标系,抛物线可以用y=kx2+m(k≠0)表示.求该抛物线的函数表达式;(2)现将A型活动板房改造为B型活动板房.如图②,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户的成本为50元/m2.已知GM=2m,求每个B型活动板房的成本是多少?(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本)(3)根据市场调查,以单价650元销售(2)中的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B型活动板房.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w(元)最大?最大利润是多少?四、解答题(本大题共12小题,共46分)18. 如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染.进货单商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下: 李阿姨:我记得甲商品进价比乙商品进价每件高50%. 王师傅:甲商品比乙商品的数量多40件. 请你求出乙商品的进价,并帮助他们补全进货单.19. 阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题: 已知实数x 、y 满足3x −y =5①,2x +3y =7②,求x −4y 和7x +5y 的值.本题常规思路是将①②两式联立组成方程组,解得x 、y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①−②可得x −4y =−2,由①+②×2可得7x +5y =19.这样的解题思想就是通常所说的“整体思想”. 解决问题:(1)已知二元一次方程组{2x +y =7,x +2y =8,则x −y =______,x +y =______;(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数x 、y ,定义新运算:x ∗y =ax +by +c ,其中a 、b 、c 是常数,等式右边是通常的加法和乘法运算.已知3∗5=15,4∗7=28,那么1∗1=______.20.如图,已知点A(1,2)、B(5,n)(n>0),点P为线段AB上的一个动点,反比例函数y=kx(x>0)的图象经过点P.小明说:“点P从点A运动至点B的过程中,k值逐渐增大,当点P在点A位置时k值最小,在点B位置时k值最大.”(1)当n=1时.①求线段AB所在直线的函数表达式.②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k的最小值和最大值.(2)若小明的说法完全正确,求n的取值范围.21.背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且AEAG =ABAD=23,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.22.如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,AE与过点D的切线互相垂直,垂足为E.(1)求证:AD平分∠BAE;(2)若CD=DE,求sin∠BAC的值.23.某公司分别在A,B两城生产同种产品,共100件.A城生产产品的总成本y(万元)与产品数量x(件)之间具有函数关系y=ax2+bx+c.当x=10时,y=400;当x=20时,y=1000.B城生产产品的每件成本为70万元.(1)求a,b的值;(2)当A,B两城生产这批产品的总成本的和最少时,求A,B两城各生产多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,直接写出A,B两城总运费的和的最小值(用含有m的式子表示).24.实际问题:某商场为鼓励消费,设计了抽奖活动,方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额?问题建模:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a个整数之和共有多少种不同的结果?模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法.探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表①如表①,所取的2个整数之和可以为3,4,5,也就是从3到5的连续整数,其中最小是3,最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表②如表②,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有______种不同的结果.(4)从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取2个整数,这2个整数之和共有______种不同的结果.探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有______种不同的结果.(2)从1,2,3,…,n(n为整数,且n≥4)这n个整数中任取3个整数,这3个整数之和共有______种不同的结果.探究三:从1,2,3,…,n(n为整数,且n≥5)这n个整数中任取4个整数,这4个整数之和共有______种不同的结果.归纳结论:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a个整数之和共有______种不同的结果.问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有______种不同的优惠金额.拓展延伸:(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,…,n+3(n为整数,且n≥2)这(n+1)个整数中任取a(1<a<n+1)个整数,这a个整数之和共有______种不同的结果.25.在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.特例感知:(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC重合,另一条直角边恰好经过点B.通过观察、测量BF与CG的长度,得到BF=CG.请给予证明.猜想论证:(2)当三角尺沿AC方向移动到图2所示的位置时,一条直角边仍与AC边重合,另一条直角边交BC于点D,过点D作DE⊥BA垂足为E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE、DF与CG之间存在的数量关系,并证明你的猜想.联系拓展:(3)当三角尺在图2的基础上沿AC方向继续移动到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)26.已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…−2−1012…y…m0−3n−3…(1)根据以上信息,可知抛物线开口向______,对称轴为______;(2)求抛物线的表达式及m,n的值;(3)请在图1中画出所求的抛物线.设点P为抛物线上的动点,OP的中点为P′,描出相应的点P′,再把相应的点P′用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y=m(m>−2)与抛物线及(3)中的点P′所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请根据图象直接写出线段A1A2,A3A4之间的数量关系______.27.某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S1,S2,S3之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为斜边向外侧作Rt△ABD,Rt△ACE,Rt△BCF,若∠1=∠2=∠3,则面积S1,S2,S3之间的关系式为______;推广验证(2)如图3,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为边向外侧作任意△ABD,△ACE,△BCF,满足∠1=∠2=∠3,∠D=∠E=∠F,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形ABCDE中,∠A=∠E=∠C=105°,∠ABC=90°,AB=2√3,DE=2,点P在AE上,∠ABP=30°,PE=√2,求五边形ABCDE的面积.28.已知直线l1:y=−2x+10交y轴于点A,交x轴于点B,二次函数的图象过A,B两点,交x轴于另一点C,BC=4,且对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.(1)求二次函数的表达式;(2)若直线l2:y=mx+n(n≠10),求证:当m=−2时,l2//l1;(3)E为线段BC上不与端点重合的点,直线l3:y=−2x+q过点C且交直线AE于点F,求△ABE与△CEF面积之和的最小值.答案和解析1.【答案】B【解析】解:在Rt△PQT中,∵∠QPT=90°,∠PQT=90°−70°=20°,∴∠PTQ=70°,∴tan70°=PQPT,∴PT=PQtan70∘=200tan70∘,即河宽200tan70∘米,故选:B.在直角三角形PQT中,利用PQ的长,以及∠PQT的度数,进而得到∠PTQ的度数,根据三角函数即可求得PT的长.此题考查了解直角三角形的应用−方向角问题,掌握方向角与正切函数的定义是解题的关键.2.【答案】C【解析】解:A.∵抛物线开口向下,∴a<0,∵对称轴为直线x=−b2a=−1,∴b=2a<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故A正确;B.∵抛物线与x轴有两个交点,∴b2−4ac>0,即4ac−b2<0,故B正确;C.∵抛物线的对称轴为直线x=−1,抛物线与x轴的一个交点在(−3,0)和(−2,0)之间,∴抛物线与x轴的另一个交点在(0,0)和(1,0)之间,∴x=1时,y<0,即a+b+c<0,∵b=2a,∴3a+c<0,故C错误;D.∵抛物线开口向下,顶点为(−1,n),∴函数有最大值n,∴抛物线y=ax2+bx+c与直线y=n+1无交点,∴一元二次方程ax2+bx+c=n+1无实数根,故D正确.故选:C.根据抛物线开口方向,对称轴的位置以及与y轴的交点可以对A进行判断;根据抛物线与x轴的交点情况可对B 进行判断;x=1时,y<0,可对C进行判断;根据抛物线y=ax2+bx+c与直线y=n+1无交点,可对D进行判断.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.3.【答案】C【解析】解:如图,连接BE,设EF与BG交于点O,∵将纸片折叠,使点B落在边AD的延长线上的点G处,∴EF垂直平分BG,∴EF⊥BG,BO=GO,BE=EG,BF=FG,故①正确,∵AD//BC,∴∠EGO=∠FBO,又∵∠EOG=∠BOF,∴△BOF≌△GOE(ASA),∴BF=EG,∴BF=EG=GF,故②正确,∵BE=EG=BF=FG,∴四边形BEGF是菱形,∴∠BEF=∠GEF,当点F与点C重合时,则BF=BC=BE=12,∵sin∠AEB=ABBE =612=12,∴∠AEB=30°,∴∠DEF=75°,故④正确,由题意无法证明△GDK和△GKH的面积相等,故③错误;故选:C.连接BE,设EF与BG交于点O,由折叠的性质可得EF垂直平分BG,可判断①;由“ASA”可证△BOF≌△GOE,可得BF=EG=GF,可判断②;通过证明四边形BEGF是菱形,可得∠BEF=∠GEF,由锐角三角函数可求∠AEB=30°,可得∠DEF=75°,可判断④,由题意无法证明△GDK和△GKH的面积相等,即可求解.本题考查了翻折变换,全等三角形的判定和性质,菱形的判定和性质,锐角三角函数等知识,灵活运用这些性质进行推理是本题的关键.4.【答案】A【解析】解:观察图象可知(4)中共有4×5×2=40个3×2的长方形,由(3)可知,每个3×2的长方形有4种不同放置方法,则n的值是40×4=160.故选:A.对于图形的变化类的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.此题考查了规律型:图形的变化类,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.5.【答案】C【解析】解:∵矩形ABCD,∴AD//BC,AD=BC,AB=CD,∴∠EFC=∠AEF,∴AE=AF=3,由折叠得,FC=AF,OA=OC,∴BC=3+5=8,在Rt△ABF中,AB=√52−32=4,在Rt△ABC中,AC=√42+82=4√5,∴OA =OC =2√5,故选:C .由矩形的性质,折叠轴对称的性质,可求出AF =FC =AE =5,由勾股定理求出AB ,AC ,进而求出OA 即可. 本题考查矩形的性质、折叠轴对称的性质,勾股定理等知识,根据图形直观,求出线段的长是得出答案的前提. 6.【答案】B【解析】解:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A 、D 一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间h 不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h 随t 的增大而增大,当水注满小杯后,小杯内水面的高度h 不再变化.故选:B .根据将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水,即可求出小水杯内水面的高度ℎ(cm)与注水时间t(min)的函数图象.本题考查了函数的图象.正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.7.【答案】B【解析】解:如图,∵抛物线y =x 2−2x −3与y 轴交于点A ,与x 轴正半轴交于点B ,令y =0,解得x =−1或3,令x =0,求得y =−3,∴A(3,0),B(0,−3),∵抛物线y =x 2−2x −3的对称轴为直线x =−−22×1=1,∴A′的横坐标为1,设A′(1,n),则B′(4,n +3),∵点B′落在抛物线上,∴n +3=16−8−3,解得n =2,∴A′(1,2),B′(4,5),设直线A′B′的表达式为y =kx +b ,∴{k +b =24k +b =5, 解得{k =1b =1∴直线A′B′的表达式为y =x +1,故选:B.求得A、B的坐标以及抛物线的对称轴,根据题意设出A′(1,n),则B′(4,n+3),把B′(4,n+3)代入抛物线解析式求得n,即可求得A′、B′的坐标,然后根据待定系数法即可求得直线A′B′的表达式.本题考查了抛物线与x轴的交点,坐标和图形变换−平移,二次函数图象上点的坐标特征,待定系数法求一次函数的解析式,根据题意表示出A′、B′的坐标是解题的关键.8.【答案】C【解析】解:∵抛物线y=ax2−2ax=a(x−1)2−a,∴该抛物线的对称轴是直线x=1,当a>0时,若|x1−1|>|x2−1|,则y1>y2,故选项B错误;当a<0时,若|x1−1|>|x2−1|,则y1<y2,故选项A错误;若|x1−1|=|x2−1|,则y1=y2,故选项C正确;若y1=y2,则|x1−1|=|x2−1|,故选项D错误;故选:C.根据题目中的抛物线和二次函数的性质,利用分类讨论的方法可以判断各个选项中的说法是否正确,从而可以解答本题.本题考查二次函数的性质,命题与定理,解答本题的关键是明确题意,利用二次函数的性质解答.9.【答案】27【解析】解:如图,过点G作GM⊥AB于点M,GN⊥AC于点N,根据作图过程可知:BG是∠ABC的平分线,∴GM=GN,∵△ABG的面积为18,∴1×AB×GM=18,2∴4GM=18,∴GM=9,2∴△CBG的面积为:12×BC×GN=12×12×92=27.故答案为:27.过点G作GM⊥AB于点M,GN⊥AC于点N,根据作图过程可得AG是∠ABC的平分线,根据角平分线的性质可得GM=GN,再根据△ABG的面积为18,求出GM的长,进而可得△CBG的面积.本题考查了作图−基本作图、角平分线的性质,解决本题的关键是掌握角平分线的性质.10.【答案】9√3【解析】解:作CH⊥AB于点H,∵在▱ABCD中,∠B=60°,BC=8,∴CH=4√3,∵四边形ECGF是平行四边形,∴EF//CG,∴△EOD∽△GOC,∴EOGO =DOOC=EDGC,∵DF=14DE,∴DEEF =45,∴EDGC =45,∴EOGO =45,∴当EO取得最小值时,EG即可取得最小值,当EO⊥CD时,EO取得最小值,∴CH=EO,∴EO=4√3,∴GO=5√3,∴EG的最小值是9√3,故答案为:9√3.根据题意和平行四边形的性质,可以得到BD和EF的比值,再根据三角形相似和最短距离,即可得到EG的最小值,本题得以解决.本题考查平行四边形的性质、三角形的相似、垂线段最短,解答本题的关键是明确题意,利用数形结合的思想解答.11.【答案】①③【解析】解:∵抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(−4,0)两点,∴当y=0时,0=ax2+bx+c的两个根为x1=2,x2=−4,故①正确;该抛物线的对称轴为直线x=2+(−4)2=−1,函数图象开口向下,若点C(−5,y1),D(π,y2)在该抛物线上,则y1>y2,故②错误;当x=−1时,函数取得最大值y=a−b+c,故对于任意实数t,总有at2+bt+c≤a−b+c,即对于任意实数t,总有at2+bt≤a−b,故③正确;对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则两个根为−3和1或−2和0或−1和−1,故p的值有三个,故④错误;故答案为:①③.根据题目中的抛物线和二次函数的性质,可以判断各个小题中的结论是否正确,从而可以解答本题.本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征、二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用二次函数的性质解答.12.【答案】14t2−14t+1【解析】解:连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2−x,∵AE2+AM2=EM2,∴(2−x)2+t2=x2,解得x=t24+1,∴DE=t24+1,∵折叠矩形纸片ABCD,使点D落在AB边的点M处,∴EF⊥DM,∠ADM+∠DEF=90°,∵EG⊥AD,∴∠DEF+∠FEG=90°,∴∠ADM=∠FEG,∴tan∠ADM=AMAD =t2=FG1,∴FG=t2,∵CG=DE=t24+1,∴CF=t24−t2+1,∴S四边形CDEF =12(CF+DE)×1=14t2−14t+1.故答案为:14t2−14t+1.连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2−x,由勾股定理得出(2−x)2+t2=x2,证得∠ADM=∠FEG,由锐角三角函数的定义得出FG,求出CF,则由梯形的面积公式可得出答案.本题考查了矩形的性质,折叠的性质,勾股定理,锐角三角函数,熟练掌握折叠的性质及方程的思想是解题的关键.13.【答案】3(8−√3−π)【解析】解:如图,连接OM、ON,∵半圆分别与AB,AC相切于点M,N.∴OM⊥AB,ON⊥AC,∵∠BAC=120°,∴∠MON=60°,∴∠MOB+∠NOC=120°,∵MN⏜的长为π,∴60πr180=π,∴r=3,∴OM=ON=r=3,连接OA,在Rt△AON中,∠AON=30°,ON=3,∴AN=√3,∴AM=AN=√3,∴BM+CN=AB+AC−(AM+AN)=16−2√3,∴S阴影=S△OBM+S△OCN−(S扇形MOE+S扇形NOF)=12×3×(BM+CN)−(120π×32360)=32(16−2√3)−3π=24−3√3−3π=3(8−√3−π).故答案为:3(8−√3−π).连接OM、ON,根据半圆分别与AB,AC相切于点M,N.可得OM⊥AB,ON⊥AC,由∠BAC=120°,可得∠MON=60°,得∠MOB+∠NOC=120°,再根据MN⏜的长为π,可得OM=ON=r=3,连接OA,根据Rt△AON中,∠AON=30°,ON=3,可得AM=AN=√3,进而可求图中阴影部分的面积.本题考查了切线的性质、弧长的计算、扇形面积的计算,解决本题的关键是掌握弧长和扇形面积的计算公式.14.【答案】4√33厘米或4√3厘米或8−4√3【解析】解:①当∠ABE=30°时,AE=AB×tan30°=4√33;②当∠AEB=30°时,AE=ABtan30∘=4√33=4√3;③∠ABE=15°时,∠ABA′=30°,延长BA′交AD于F,如下图所示,设AE=x,则EA′=x,EF=xsin60∘=2√3x3,∵AF=AE+EF=ABtan30°=4√33,∴x+2√3x3=4√33,∴x=8−4√3,∴AE=8−4√3.故答案为:4√33厘米或4√3厘米或8−4√3厘米.根据翻折可得∠ABE=∠A′BE,分3种情况讨论:当∠ABE=30°时或当∠AEB=30°时或当∠ABA′=30°时求AE的长.本题考查了翻折变换、矩形的性质,解决本题的关键是掌握矩形性质.15.【答案】30=120°,【解析】解:正六边形的每个内角的度数为:(6−2)⋅180°6所以∠ABC=120°−90°=30°,故答案为:30.由于六边形花环是用六个全等的直角三角形拼成的,所以这个六边形是正六边形,先算出正六边形每个内角的度数,即可求出∠ABC的度数.本题考查了多边形内角和定理.解题的关键是会计算正六边形的每个内角的度数.16.【答案】①④【解析】解:如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.由对称性可知,OA=OC,OB=OD,∴四边形ABCD是平行四边形,当OA=OC=OB=OD时,四边形ABCD是矩形.∵反比例函数的图象在一,三象限,∴直线AC与直线BD不可能垂直,∴四边形ABCD不可能是菱形或正方形,故选项①④正确,故答案为①④,如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.证明四边形ABCD是平行四边形即可解决问题.本题考查反比例函数的性质,平行四边形的判定,矩形的判定,菱形的判定,正方形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.【答案】解:(1)∵长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.∴OH=AB=3,∴EO=EH−OH=4−3=1,∴E(0,1),D(2,0),∴该抛物线的函数表达式y=kx2+1,把点D(2,0)代入,得k=−14,∴该抛物线的函数表达式为:y=−14x2+1;(2)∵GM=2,∴OM=OG=1,∴当x=1时,y=34,∴N(1,34),∴MN=34,∴S矩形MNFG =MN⋅GM=34×2=32,∴每个B型活动板房的成本是:425+32×50=500(元).答:每个B型活动板房的成本是500元;(3)根据题意,得w=(n−500)[100+20(650−n)10]=−2(n−600)2+20000,∵每月最多能生产160个B型活动板房,∴100+20(650−n)10≤160,解得n≥620,∵−2<0,∴n≥620时,w随n的增大而减小,∴当n=620时,w有增大值为19200元.答:公司将销售单价n(元)定为620元时,每月销售B型活动板房所获利润w(元)最大,最大利润是19200元.【解析】(1)根据图形和直角坐标系可得点D和点E的坐标,代入y=kx2+m,即可求解;(2)根据M和N的横坐标相等,求出N点坐标,再求出矩形FGMN的面积,即可求解;(3)根据题意得到w关于n的二次函数,根据二次函数的性质即可求解.本题考查了二次函数的应用,解决本题的关键是掌握二次函数的性质.18.【答案】解:设乙商品的进价为x元/件,则甲商品的进价为(1+50%)x元/件,依题意,得:7200(1+50%)x −3200x=40,解得:x =40,经检验,x =40是原方程的解,且符合题意,∴(1+50%)x =60,3200x =80,7200(1+50%)x =120. 答:甲商品的进价为60元/件,乙商品的进价为40元/件,购进甲商品120件,购进乙商品80件.【解析】设乙商品的进价为x 元/件,则甲商品的进价为(1+50%)x 元/件,根据数量=总价÷单价结合购进的甲商品比乙商品多40件,即可得出关于x 的分式方程,解之经检验后即可得出x 的值,再将其分别代入(1+50%)x ,3200x ,7200(1+50%)x 中即可得出结论. 本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.19.【答案】−1 5 −11【解析】解:(1){2x +y =7 ①x +2y =8 ②. 由①−②可得:x −y =−1,由13(①+②)可得:x +y =5.故答案为:−1;5.(2)设铅笔的单价为m 元,橡皮的单价为n 元,日记本的单价为p 元,依题意,得:{20m +3n +2p =32 ①39m +5n +3p =58 ②, 由2×①−②可得m +n +p =6,∴5m +5n +5p =5×6=30.答:购买5支铅笔、5块橡皮、5本日记本共需30元.(3)依题意,得:{3a +5b +c =15 ①4a +7b +c =28 ②, 由3×①−2×②可得:a +b +c =−11,即1∗1=−11.故答案为:−11.(1)利用①−②可得出x −y 的值,利用13(①+②)可得出x +y 的值;(2)设铅笔的单价为m 元,橡皮的单价为n 元,日记本的单价为p 元,根据“买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元”,即可得出关于m ,n ,p 的三元一次方程组,由2×①−②可得除m +n +p 的值,再乘5即可求出结论;(3)根据新运算的定义可得出关于a ,b ,c 的三元一次方程组,由3×①−2×②可得出a +b +c 的值,即1∗1的值.。
2019年北大附中新高一分班考试数学试题-真题-含详细解析
t a n70∘米si n70∘米2019年北大附中新高一分班考试数学试题-真题一、选择题(本大题共8小题,共24分)1.如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为()A.200tan70°米B.200C.200sin70°米D.2002.二次函数y=ax2+bx+c(a≠0)的顶点坐标为(−1,n),其部分图象如图所示.以下结论错误的是()A.abc>0B.4ac−b2<0C.3a+c>0D.关于x的方程ax2+bx+c=n+1无实数根3.如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK△和GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A.1个B.2个C.3个D.4个4.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()B. 若|x − 1| > |x − 1|,则y < yD. 若y = y ,则x = xA. 160B. 128C. 80D. 485.如图,将矩形 ABCD 折叠,使点 C 和点 A 重合,折痕为 EF ,EF 与 AC 交于点O.若AE = 5,BF = 3,则 AO的长为( )A. √5B. 3 √52C. 2√5D. 4√56.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度ℎ(cm)与注水时间t (mi n )的函数图象大致为图中的()A.B.C. D.7.在平面直角坐标系中,点 O 为坐标原点,抛物线y = x 2 − 2x − 3与 y 轴交于点 A ,与 x 轴正半轴交于点 B ,连接 AB ,将Rt △ OAB 向右上方平移,得到Rt △ O′A′B′,且点O′,A′落在抛物线的对称轴上,点B′落在抛物线上,则直线A′B′的表达式为()A. y = xB. y = x + 1C. y = x + 1D. y = x + 228.已知P 1(x 1, y 1),P 2(x 2, y 2)是抛物线y = ax 2 − 2ax 上的点,下列命题正确的是()A. 若|x 1 − 1| > |x 2 − 1|,则y 1 > y 2 C. 若|x 1 − 1| = |x 2 − 1|,则y 1 = y 21 2 1 21 2 1 2⏜二、填空题(本大题共 8 小题,共 24 分)9.如图,在△ ABC 中,按以下步骤作图:①以点 B 为圆心,任意长为半径作弧,分别交 AB 、BC 于点 D 、E .②分别以点 D 、E 为圆心,大于1 DE 的同样长为半径作弧,两弧交于点 F .2③作射线 BF 交 AC 于点 G .如果AB = 8,BC = 12△,ABG 的面积为 18△,则 CBG 的面积为______.10. 如图,在▱ABCD 中,∠B = 60°,AB = 10,BC = 8,点 E 为边 AB 上的一个动点,连接 ED 并延长至点 F ,使得DF = 1 DE ,以 EC 、EF 为邻边构造▱EFGC ,连接 EG ,则 EG 的最小值为______.411. 抛物线y = ax 2 + bx + c(a,b ,c 为常数,a < 0)经过A(2,0),B(−4,0)两点,下列四个结论:①一元二次方程ax 2 + bx + c = 0的根为x 1 = 2,x 2 = −4; ②若点C(−5, y 1),D(π, y 2)在该抛物线上,则y 1 < y 2;③对于任意实数 t ,总有a t 2 + bt ≤ a − b ;④对于 a 的每一个确定值,若一元二次方程ax 2 + bx + c = p(p 为常数,p > 0)的根为整数,则 p 的值只有两个.其中正确的结论是______(填写序号).12. 如图,折叠矩形纸片 ABCD ,使点 D 落在 AB 边的点 M 处,EF 为折痕,AB = 1,AD = 2.设 AM 的长为 t ,用含有 t 的式子表示四边形 CDEF 的面积是______.第 12 题图第 13 题图13. 如图,在△ ABC 中,O 为 BC 边上的一点,以 O 为圆心的半圆分别与 AB ,AC 相切于点 M ,N.已知∠BAC =120°,AB + AC = 16,MN 的长为π,则图中阴影部分的面积为______.14.矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A′处,展平后得到折痕BE,同时得到线段BA′,EA′,不再添加其它线段.当图中存在30°角时,AE的长为______厘米.第14题图第15题图15.如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC=______度.16.设A,B,C,D是反比例函数y=k图象上的任意四点,现有以下结论:x①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是______.(写出所有正确结论的序号)三、计算题(本大题共1小题,共6分)17.某公司生产A型活动板房成本是每个425元.图①表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.(1)按如图①所示的直角坐标系,抛物线可以用y=kx2+m(k≠0)表示.求该抛物线的函数表达式;(2)现将A型活动板房改造为B型活动板房.如图②,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户的成本为50元/m2.已知GM=2m,求每个B型活动板房的成本是多少?(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本)(3)根据市场调查,以单价650元销售(2)中的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B型活动板房.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w(元)最大?最大利润是多少?(1)已知二元一次方程组{四、解答题(本大题共 12 小题,共 46 分)18. 如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染.进货单商品甲乙进价(元/件) 数量(件) 总金额(元)72003200商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下:李阿姨:我记得甲商品进价比乙商品进价每件高50%.王师傅:甲商品比乙商品的数量多 40 件.请你求出乙商品的进价,并帮助他们补全进货单.19. 阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数 x 、y 满足3x − y = 5①,2x + 3y = 7②,求x − 4y 和7x + 5y 的值.本题常规思路是将①②两式联立组成方程组,解得 x 、y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由① − ②可得x − 4y = −2,由① + ② × 2可得7x + 5y = 19.这样的解题思想就是通常所说的“整体思想”.解决问题:2x + y = 7,x + 2y = 8,则x − y =______,x + y =______;(2)某班级组织活动购买小奖品,买 20 支铅笔、3 块橡皮、2 本日记本共需 32 元,买 39 支铅笔、5 块橡皮、3本日记本共需 58 元,则购买 5 支铅笔、5 块橡皮、5 本日记本共需多少元?(3)对于实数 x 、y ,定义新运算:x ∗ y = ax + by + c ,其中 a 、b 、c 是常数,等式右边是通常的加法和乘法运算.已知3 ∗ 5 = 15,4 ∗ 7 = 28,那么1 ∗ 1 =______.20.如图,已知点A(1,2)、B(5,n)(n>0),点P为线段AB上的一个动点,反比例函数y=k(x>0)的图象经过点x P.小明说:“点P从点A运动至点B的过程中,k值逐渐增大,当点P在点A位置时k值最小,在点B位置时k值最大.”(1)当n=1时.①求线段AB所在直线的函数表达式.②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k的最小值和最大值.(2)若小明的说法完全正确,求n的取值范围.21.背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且AE=AB=2,AE=4,AB=8,将矩形AEFGAG AD3绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.22.如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,AE与过点D的切线互相垂直,垂足为E.(1)求证:AD平分∠BAE;(2)若CD=DE,求sin∠BAC的值.23.某公司分别在A,B两城生产同种产品,共100件.A城生产产品的总成本y(万元)与产品数量x(件)之间具有函数关系y=ax2+bx+c.当x=10时,y=400;当x=20时,y=1000.B城生产产品的每件成本为70万元.(1)求a,b的值;(2)当A,B两城生产这批产品的总成本的和最少时,求A,B两城各生产多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,直接写出A,B两城总运费的和的最小值(用含有m的式子表示).24.实际问题:某商场为鼓励消费,设计了抽奖活动,方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额?问题建模:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a个整数之和共有多少种不同的结果?模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法.探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表①所取的2个整数2个整数之和1,231,342,35如表①,所取的2个整数之和可以为3,4,5,也就是从3到5的连续整数,其中最小是3,最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表②所取的2个整数2个整数之和1,231,341,452,352,463,47如表②,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有______种不同的结果.(4)从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取2个整数,这2个整数之和共有______种不同的结果.探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有______种不同的结果.(2)从1,2,3,…,n(n为整数,且n≥4)这n个整数中任取3个整数,这3个整数之和共有______种不同的结果.探究三:果.归纳结论:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a个整数之和共有______种不同的结果.问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有______种不同的优惠金额.拓展延伸:(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,…,n+3(n为整数,且n≥2)这(n+1)个整数中任取a(1<a<n+1)个整数,这a个整数之和共有______种不同的结果.25.在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.特例感知:(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC重合,另一条直角边恰好经过点B.通过观察、测量BF与CG的长度,得到BF=CG.请给予证明.猜想论证:(2)当三角尺沿AC方向移动到图2所示的位置时,一条直角边仍与AC边重合,另一条直角边交BC于点D,过点D作DE⊥BA垂足为E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE、DF与CG之间存在的数量关系,并证明你的猜想.联系拓展:(3)当三角尺在图2的基础上沿AC方向继续移动到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)26. 已知抛物线y = ax 2 + bx + c(a,b ,c 是常数,a ≠ 0)的自变量 x 与函数值 y 的部分对应值如下表:x …−2−1 01 2… y… m−3n−3…(1)根据以上信息,可知抛物线开口向______,对称轴为______;(2)求抛物线的表达式及 m ,n 的值;(3)请在图 1 中画出所求的抛物线.设点 P 为抛物线上的动点,OP 的中点为P′,描出相应的点P′,再把相应的点P′用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y = m(m > −2)与抛物线及(3)中的点P′所在曲线都有两个交点,交点从左到右依次为A 1,A 2,A 3,A 4,请根据图象直接写出线段A 1A 2,A 3A 4之间的数量关系______.27. 某数学课外活动小组在学习了勾股定理之后,针对图 1 中所示的“由直角三角形三边向外侧作多边形,它们的面积S 1,S 2,S 3之间的关系问题”进行了以下探究:类比探究(1)如图 2,在Rt △ ABC 中,BC 为斜边,分别以 AB ,AC ,BC 为斜边向外侧作Rt △ ABD ,Rt △ ACE ,Rt △BCF ,若∠1 = ∠2 = ∠3,则面积S 1,S 2,S 3之间的关系式为______;推广验证(2)如图 3,在Rt △ ABC 中,BC 为斜边,分别以 AB ,AC ,BC 为边向外侧作任意△ ABD △, ACE △, BCF ,满足∠1 = ∠2 = ∠3,∠D = ∠E = ∠F ,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图 4,在五边形 ABCDE 中,∠A = ∠E = ∠C = 105°,∠ABC = 90°,AB = 2√3,DE = 2,点 P 在 AE上,∠ABP = 30°,PE = √2,求五边形 ABCDE 的面积.28. 已知直线l 1:y = −2x + 10交 y 轴于点 A ,交 x 轴于点 B ,二次函数的图象过 A ,B 两点,交 x 轴于另一点 C ,BC = 4,且对于该二次函数图象上的任意两点P 1(x 1, y 1 ),P 2(x 2, y 2 ),当x 1 > x 2 ≥ 5时,总有y 1 > y 2.(1)求二次函数的表达式;(2)若直线l 2:y = mx + n(n ≠ 10),求证:当m = −2时,l 2//l 1;(3)E 为线段 BC 上不与端点重合的点,直线l 3:y = −2x + q 过点 C 且交直线 AE 于点 F △,求ABE △与 CEF 面积之和的最小值.t a n70∘=t a n70∘,即河宽t a n70∘米,2a =−1,答案和解析1.【答案】B【解析】解:在Rt△PQT中,∵∠QPT=90°,∠PQT=90°−70°=20°,∴∠PTQ=70°,∴tan70°=PQ,PT∴PT=PQ200200故选:B.在直角三角形PQT中,利用PQ的长,以及∠PQT的度数,进而得到∠PTQ的度数,根据三角函数即可求得PT的长.此题考查了解直角三角形的应用−方向角问题,掌握方向角与正切函数的定义是解题的关键.2.【答案】C【解析】解:A.∵抛物线开口向下,∴a<0,∵对称轴为直线x=−b∴b=2a<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故A正确;B.∵抛物线与x轴有两个交点,∴b2−4ac>0,即4ac−b2<0,故B正确;C.∵抛物线的对称轴为直线x=−1,抛物线与x轴的一个交点在(−3,0)和(−2,0)之间,∴抛物线与x轴的另一个交点在(0,0)和(1,0)之间,∴x=1时,y<0,即a+b+c<0,∴3a+c<0,故C错误;D.∵抛物线开口向下,顶点为(−1,n),∴函数有最大值n,∴抛物线y=ax2+bx+c与直线y=n+1无交点,∴一元二次方程ax2+bx+c=n+1无实数根,故D正确.故选:C.根据抛物线开口方向,对称轴的位置以及与y轴的交点可以对A进行判断;根据抛物线与x轴的交点情况可对B 进行判断;x=1时,y<0,可对C进行判断;根据抛物线y=ax2+bx+c与直线y=n+1无交点,可对D进行判断.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.3.【答案】C【解析】解:如图,连接BE,设EF与BG交于点O,∵将纸片折叠,使点B落在边AD的延长线上的点G处,∴EF垂直平分BG,∴EF⊥BG,BO=GO,BE=EG,BF=FG,故①正确,∵AD//BC,∴∠EGO=∠FBO,又∵∠EOG=∠BOF,∴△BOF≌△GOE(ASA),∴BF=EG,∴BF=EG=GF,故②正确,∵BE=EG=BF=FG,12=1,∴∠BEF=∠GEF,当点F与点C重合时,则BF=BC=BE=12,∵sin∠AEB=AB=BE 62∴∠AEB=30°,∴∠DEF=75°,故④正确,由题意无法证明△GDK△和GKH的面积相等,故③错误;故选:C.连接BE,设EF与BG交于点O,由折叠的性质可得EF垂直平分BG,可判断①;由“ASA”可证△BOF≌△GOE,可得BF=EG=GF,可判断②;通过证明四边形BEGF是菱形,可得∠BEF=∠GEF,由锐角三角函数可求∠AEB=30°,可得∠DEF=75°,可判断④,由题意无法证明△GDK△和GKH的面积相等,即可求解.本题考查了翻折变换,全等三角形的判定和性质,菱形的判定和性质,锐角三角函数等知识,灵活运用这些性质进行推理是本题的关键.4.【答案】A【解析】解:观察图象可知(4)中共有4×5×2=40个3×2的长方形,由(3)可知,每个3×2的长方形有4种不同放置方法,则n的值是40×4=160.故选:A.对于图形的变化类的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.此题考查了规律型:图形的变化类,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.5.【答案】C【解析】解:∵矩形ABCD,∴AD//BC,AD=BC,AB=CD,∴∠EFC=∠AEF,∴AE=AF=3,由折叠得,FC=AF,OA=OC,∴BC=3+5=8,在Rt△ABF中,AB=√52−32=4,2×1 = 1, 解得{ ∴ OA = OC = 2√5,故选:C .由矩形的性质,折叠轴对称的性质,可求出AF = FC = AE = 5,由勾股定理求出 AB ,AC ,进而求出 OA 即可.本题考查矩形的性质、折叠轴对称的性质,勾股定理等知识,根据图形直观,求出线段的长是得出答案的前提.6.【答案】B【解析】解:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于 0,则可以判断 A 、D 一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间 h 不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h 随 t 的增大而增大,当水注满小杯后,小杯内水面的高度 h 不再变化.故选:B .根据将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水,即可求出小水杯内水面的高度ℎ(cm)与注水时间t (mi n )的函数图象.本题考查了函数的图象.正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.7.【答案】B【解析】解:如图,∵抛物线y = x 2 − 2x − 3与 y 轴交于点 A ,与 x 轴正半轴交于点 B ,令y = 0,解得x = −1或 3,令x = 0,求得y = −3,∴ A(3,0),B(0, −3),∵抛物线y = x 2 − 2x − 3的对称轴为直线x = −∴ A′的横坐标为 1,设A ′(1, n),则B′(4, n + 3),∵点B′落在抛物线上,∴ n + 3 = 16 − 8 − 3,解得n = 2,∴ A′(1,2),B′(4,5),设直线A′B′的表达式为y = kx + b ,∴{ k + b = 2 , 4k + b = 5k = 1−2故选:B.求得A、B的坐标以及抛物线的对称轴,根据题意设出A′(1,n),则B′(4,n+3),把B′(4,n+3)代入抛物线解析式求得n,即可求得A′、B′的坐标,然后根据待定系数法即可求得直线A′B′的表达式.本题考查了抛物线与x轴的交点,坐标和图形变换−平移,二次函数图象上点的坐标特征,待定系数法求一次函数的解析式,根据题意表示出A′、B′的坐标是解题的关键.8.【答案】C【解析】解:∵抛物线y=ax2−2ax=a(x−1)2−a,∴该抛物线的对称轴是直线x=1,当a>0时,若|x1−1|>|x2−1|,则y1>y2,故选项B错误;当a<0时,若|x1−1|>|x2−1|,则y1<y2,故选项A错误;若|x1−1|=|x2−1|,则y1=y2,故选项C正确;若y1=y2,则|x1−1|=|x2−1|,故选项D错误;故选:C.根据题目中的抛物线和二次函数的性质,利用分类讨论的方法可以判断各个选项中的说法是否正确,从而可以解答本题.本题考查二次函数的性质,命题与定理,解答本题的关键是明确题意,利用二次函数的性质解答.9.【答案】27【解析】解:如图,过点G作GM⊥AB于点M,GN⊥AC于点N,根据作图过程可知:BG是∠ABC的平分线,∴GM=GN,∵△ABG的面积为18,∴1×AB×GM=18,2∴4GM=18,∴△CBG的面积为:1×BC×GN=1×12×9=27.222故答案为:27.过点G作GM⊥AB于点M,GN⊥AC于点N,根据作图过程可得AG是∠ABC的平分线,根据角平分线的性质可得GM=GN,再根据△ABG的面积为18,求出GM的长,进而可得△CBG的面积.本题考查了作图−基本作图、角平分线的性质,解决本题的关键是掌握角平分线的性质.10.【答案】9√3【解析】解:作CH⊥AB于点H,∵在ABCD中,∠B=60°,BC=8,∴CH=4√3,∵四边形ECGF是平行四边形,∴EF//CG,∴△EOD∽△GOC,∴EO=DO=ED,GO OC GC∵DF=1DE,4∴DE=4,EF5∴ED=4,GC5∴EO=4,GO5∴当EO取得最小值时,EG即可取得最小值,当EO⊥CD时,EO取得最小值,∴CH=EO,∴EO=4√3,∴GO=5√3,∴EG的最小值是9√3,故答案为:9√3.根据题意和平行四边形的性质,可以得到BD和EF的比值,再根据三角形相似和最短距离,即可得到EG的最小值,本题得以解决.本题考查平行四边形的性质、三角形的相似、垂线段最短,解答本题的关键是明确题意,利用数形结合的思想解答.11.【答案】①③【解析】解:∵抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(−4,0)两点,∴当y=0时,0=ax2+bx+c的两个根为x1=2,x2=−4,故①正确;该抛物线的对称轴为直线x=2+(−4)=−1,函数图象开口向下,若点C(−5,y1),D(π,y2)在该抛物线上,则y1>y2,故②错误;当x=−1时,函数取得最大值y=a−b+c,故对于任意实数t,总有a t2+b t+c≤a−b+c,即对于任意实数t,总有at2+b t≤a−b,故③正确;对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则两个根为−3和1或−2和0或−1和−1,故p的值有三个,故④错误;故答案为:①③.根据题目中的抛物线和二次函数的性质,可以判断各个小题中的结论是否正确,从而可以解答本题.本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征、二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用二次函数的性质解答.12.【答案】1t2−1t+144【解析】解:连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2−x,∵AE2+AM2=EM2,∴(2−x)2+t2=x2,解得x=t 2+1,4∴DE=t2+1,4∵折叠矩形纸片ABCD,使点D落在AB边的点M处,∴EF⊥DM,∠ADM+∠DEF=90°,∵EG⊥AD,∴∠DEF+∠FEG=90°,∴∠ADM=∠FEG,211⏜∴FG=t,2∵CG=DE=t2+1,4∴CF=t2−t+1,42∴S四边形CDEF=1(CF+DE)×1=4t2−4t+1.故答案为:1t2−1t+1.44连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2−x,由勾股定理得出(2−x)2+t2=x2,证得∠ADM=∠FEG,由锐角三角函数的定义得出FG,求出CF,则由梯形的面积公式可得出答案.本题考查了矩形的性质,折叠的性质,勾股定理,锐角三角函数,熟练掌握折叠的性质及方程的思想是解题的关键.13.【答案】3(8−√3−π)【解析】解:如图,连接OM、ON,∵半圆分别与AB,AC相切于点M,N.∴OM⊥AB,ON⊥AC,∵∠BAC=120°,∴∠MON=60°,∴∠MOB+∠NOC=120°,∵MN的长为π,∴60πr=π,180∴r=3,∴OM=ON=r=3,连接OA,在Rt△AON中,∠AON=30°,ON=3,∴AN=√3,∴AM=AN=√3,∴BM+CN=AB+AC−(AM+AN)=16−2√3,⏜②当∠AEB=30°时,AE=t a n30∘=si n60∘=2√3x,1120π×32=×3×(BM+CN)−()23603=(16−2√3)−3π2=24−3√3−3π=3(8−√3−π).故答案为:3(8−√3−π).连接OM、ON,根据半圆分别与AB,AC相切于点M,N.可得OM⊥AB,ON⊥AC,由∠BAC=120°,可得∠MON=60°,得∠MOB+∠NOC=120°,再根据MN的长为π,可得OM=ON=r=3,连接OA,根据Rt△AON中,∠AON=30°,ON=3,可得AM=AN=√3,进而可求图中阴影部分的面积.本题考查了切线的性质、弧长的计算、扇形面积的计算,解决本题的关键是掌握弧长和扇形面积的计算公式.14.【答案】4√3厘米或4√3厘米或8−4√33【解析】解:①当∠ABE=30°时,AE=AB×tan30°=4√3;3AB4√3=4√3;3③∠ABE=15°时,∠ABA′=30°,延长BA′交AD于F,如下图所示,设AE=x,则EA′=x,EF=x3∵AF=AE+EF=ABtan30°=4√3,3∴x+2√3x=4√3,33∴x=8−4√3,∴AE=8−4√3.故答案为:4√3厘米或4√3厘米或8−4√3厘米.3根据翻折可得∠ABE=∠A′BE,分3种情况讨论:当∠ABE=30°时或当∠AEB=30°时或当∠ABA′=30°时求AE的长.本题考查了翻折变换、矩形的性质,解决本题的关键是掌握矩形性质.15.【答案】30【解析】解:正六边形的每个内角的度数为:(62)⋅180°=120°,6所以∠ABC=120°90°=30°,故答案为:30.由于六边形花环是用六个全等的直角三角形拼成的,所以这个六边形是正六边形,先算出正六边形每个内角的度数,即可求出∠ABC的度数.本题考查了多边形内角和定理.解题的关键是会计算正六边形的每个内角的度数.16.【答案】①④【解析】解:如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.由对称性可知,OA=OC,OB=OD,∴四边形ABCD是平行四边形,当OA=OC=OB=OD时,四边形ABCD是矩形.∵反比例函数的图象在一,三象限,∴直线AC与直线BD不可能垂直,∴四边形ABCD不可能是菱形或正方形,故选项①④正确,故答案为①④,如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.证明四边形ABCD是平行四边形即可解决问题.本题考查反比例函数的性质,平行四边形的判定,矩形的判定,菱形的判定,正方形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.【答案】解:(1)∵长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.∴OH=AB=3,∴EO=EH OH=43=1,∴E(0,1),D(2,0),32依题意,得:∴该抛物线的函数表达式y = kx 2 + 1,把点D(2,0)代入,得k = − 1,4∴该抛物线的函数表达式为:y = − 1 x 2 + 1;4(2) ∵ GM = 2,∴ OM = OG = 1,∴当x = 1时,y = 3,4∴ N(1, 3),4∴ MN = 3,4矩形MNFG = MN ⋅ GM = 4 × 2 = 3,∴ S∴每个 B 型活动板房的成本是:425 + 3 × 50 = 500(元).2答:每个 B 型活动板房的成本是 500 元;(3)根据题意,得w = (n − 500)[100 +20(650 − n)10]= −2(n − 600)2 + 20000,∵每月最多能生产 160 个 B 型活动板房,∴ 100 + 20(650−n) ≤ 160,10解得n ≥ 620,∵ −2 < 0,∴ n ≥ 620时,w 随 n 的增大而减小,∴当n = 620时,w 有增大值为 19200 元.答:公司将销售单价n(元)定为 620 元时,每月销售 B 型活动板房所获利润w(元)最大,最大利润是 19200 元.【解析】(1)根据图形和直角坐标系可得点 D 和点 E 的坐标,代入y = kx 2 + m ,即可求解;(2)根据 M 和 N 的横坐标相等,求出 N 点坐标,再求出矩形 FGMN 的面积,即可求解;(3)根据题意得到 w 关于 n 的二次函数,根据二次函数的性质即可求解.本题考查了二次函数的应用,解决本题的关键是掌握二次函数的性质.18.【答案】解:设乙商品的进价为 x 元/件,则甲商品的进价为(1 + 50%)x 元/件,7200(1+50%)x− 3200 = 40,x第23页,共36页∴(1+50%)x=60,3200=80,(1+50%)x=120.x ,(1+50%)x中即可得出结论.解得:x=40,经检验,x=40是原方程的解,且符合题意,7200x答:甲商品的进价为60元/件,乙商品的进价为40元/件,购进甲商品120件,购进乙商品80件.【解析】设乙商品的进价为x元/件,则甲商品的进价为(1+50%)x元/件,根据数量=总价÷单价结合购进的甲商品比乙商品多40件,即可得出关于x的分式方程,解之经检验后即可得出x的值,再将其分别代入(1+50%)x,32007200本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.19.【答案】−15−112x+y=7 ①【解析】解:(1){.x+2y=8 ②由①−②可得:x−y=−1,由1(①+②)可得:x+y=5.3故答案为:−1;5.(2)设铅笔的单价为m元,橡皮的单价为n元,日记本的单价为p元,依题意,得:{20m+3n+2p=32 ①,39m+5n+3p=58 ②由2×①−②可得m+n+p=6,∴5m+5n+5p=5×6=30.答:购买5支铅笔、5块橡皮、5本日记本共需30元.(3)依题意,得:{3a+5b+c=15 ①,4a+7b+c=28 ②由3×①−2×②可得:a+b+c=−11,即1∗1=−11.故答案为:−11.(1)利用①−②可得出x−y的值,利用1(①+②)可得出x+y的值;3(2)设铅笔的单价为m元,橡皮的单价为n元,日记本的单价为p元,根据“买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元”,即可得出关于m,n,p的三元一次方程组,由2×①−②可得除m+n+p的值,再乘5即可求出结论;(3)根据新运算的定义可得出关于a,b,c的三元一次方程组,由3×①−2×②可得出a+b+c的值,即1∗1的值.。
解析】北京市第八中学2019-2020学年高一10月月考数学试题
北京市第八中学2019—2020学年高一(上)数学十月月考一、选择题1. 已知{}1,2,3,4,5U =,{}2,3A =,{}3,4,5B =,则下列运算中错误的是( ) A.{}1,4,5UA =B.{}1,2UB =C. {}2,3,4,5A B ⋃=D. {}1,2,3UAB =【★★★答案★★★】D 【解析】 【分析】根据集合的运算法则依次计算得到★★★答案★★★. 【详解】{}1,2,3,4,5U =,{}2,3A =,{}3,4,5B =, 则{}1,4,5UA =,{}1,2UB =,{}2,3,4,5A B ⋃=,{}1UAB =.故选:D.【点睛】本题考查了集合的运算,属于简单题.2. 已知{}21,P y y x x R ==+∈,{}1,Q y y x x R ==+∈,则P Q =( )A.()(){}0,1,1,2B. {0,1}C. {1,2}D.[)1,+∞【★★★答案★★★】D 【解析】 【分析】计算{}1P y y =≥,Q R =,再计算交集得到★★★答案★★★.【详解】{}{}21,1P y y x x R y y ==+∈=≥,{}1,Q y y x x R R ==+∈=, 则[)1,P Q ⋂=+∞. 故选:D.【点睛】本题考查了函数值域,交集运算,属于简单题.3. 已知x 是实数,则使24x <成立的一个必要不充分条件是( ) A. 2x <± B. 2x < C. 2x <D.11x -<<【★★★答案★★★】B 【解析】 【分析】根据命题和集合的关系,若要求24x <成立的一个必要不充分条件,只要求真包含集合{}2|4x x<的集合,即可得解.【详解】由24x <,可得:22x -<<,根据题意,若要求24x <成立的一个必要不充分条件, 只要求真包含{}|22x x -<<的集合,A 选项表达错误;B 选项的范围包含22x -<<,正确;C 选项的范围就是22x -<<,是充要条件,错误;D 选项的范围是{}|22x x -<<的子集,是充分不必要条件,错误. 故选:B.【点睛】本题考查了必要充分条件的判断,考查了集合语言和命题语言之间的关系,考查了转化思想,属于基础题.4. 不等式()()21110a x a x +-+-<对一切实数x 恒成立,则a 的取值范围是( )A. 15a <<B. 51a -<<-C. 51a -<≤-D. 13a ≤<-【★★★答案★★★】C 【解析】 【分析】考虑10a +=和10a +≠两种情况,计算()()2101410a a a +<⎧⎪⎨∆=+++<⎪⎩得到★★★答案★★★.【详解】不等式()()21110a x a x +-+-<对一切实数x 恒成立,当10a +=,1a =-时,10-<恒成立;当10a +≠,即1a ≠-时,()()2101410a a a +<⎧⎪⎨∆=+++<⎪⎩,解得51a -<<-. 综上所述:51a -<≤- 故选:C.【点睛】本题考查了二次不等式恒成立问题,意在考查学生的计算能力和转化能力,忽略二次系数为零的情况是容易发生的错误. 5. 已知集合1,6M x x m m ⎧⎫==+∈⎨⎬⎩⎭Z ,1,23n N x x n ⎧⎫==-∈⎨⎬⎩⎭Z ,1,26p P x x p ⎧⎫==+∈⎨⎬⎩⎭Z ,则M ,N ,P 的关系为( ).A. M N P =B. M N P =C. MNPD. NPM【★★★答案★★★】B 【解析】 【分析】把集合中元素的共同特征都用类似的形式来表示,即使分母都为6,进一步通过元素都属于整数来判断三个集合的关系 【详解】1321,66m M x x m m ⎧⎫⨯+==+=∈⎨⎬⎩⎭Z ,()311,6n N x x n ⎧⎫-+⎪⎪==∈⎨⎬⎪⎪⎩⎭Z ,31,6p P x x p ⎧⎫+==∈⎨⎬⎩⎭Z ,1n ∴-和p 均表示全体整数,2m 表示偶数,∴M N P =.故选B【点睛】本题考查集合之间关系,利用描述法中元素的共同特征的关系来判断是解题关键6. 在如图的电路图中,“开关A 的闭合”是“灯泡B 亮”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件 【★★★答案★★★】B 【解析】试题分析:根据充分条件和必要条件的定义进行判断即可.解:若开关A 的闭合,开关B 打开,则灯泡B 不亮,即充分性不成立, 若灯泡B 令亮,则开关A ,B 都闭合,则开关A 的闭合成立, 则,“开关A 的闭合”是“灯泡B 亮”的必要不充分条件, 故选B考点:必要条件、充分条件与充要条件的判断. 7. 命题:0p x ∀>,01xx >-,则p ⌝是( ) A. 0x ∃<,01xx ≤- B. 0x ∃>,[]0,1x ∈ C. 0x ∃>,01xx ≤-D. 0x ∃>,()0,1x ∈【★★★答案★★★】B 【解析】 【分析】根据命题的否定形式直接得解.【详解】命题的否定形式即条件不变,结论变相反,p ⌝:0x ∃>,01x x ≤-或1x = 解得[]0,1x ∈故选:B【点睛】本题考查命题的否定形式,属于基础题.8. 已知{}22240A x x mx m =++-<,{}|1B x x =<,且A B B =,那么实数m 的取值范围是( ) A. ()1,1-B. ()2,1-C. []2,1-D. []1,1-【★★★答案★★★】D 【解析】 【分析】根据一元二次不等式的解法,求得{}22A x m x m =--<<-+,再结合集合的包含关系,列出不等式组,即可求解.【详解】由不等式22240x mx m ++-<,可化为(2)(2)0x m x m +-++<, 解得22m x m --<<-+,即集合{}22A x m x m =--<<-+, 因为集合{}{}|1|11B x x x x =<=-<< 又因为AB B =,可得B A ⊆,则满足2121m m --≤-⎧⎨-+≥⎩,解得11m -≤≤,即实数m 的取值范围是[]1,1-.故选:D.【点睛】本题主要考查了根据集合的包含关系求参数,以及一元二次不等式的解法,其中解答中熟记一元二次不等式的解法求得集合A 是解答的关键,着重考查推理与运算能力.二、填空题9. 在实数范围内因式分解,()2226x xx x -+--=______.【★★★答案★★★】()()()2213x x x x -+-+ 【解析】 【分析】利用十字相乘法分解因式得到★★★答案★★★. 【详解】()()()()()()222222632321x xx x x x x x x x x x -+--=-+--=-+-+.故★★★答案★★★为:()()()2213x x x x -+-+.【点睛】本题考查了因式分解,属于简单题.10. 不等式261120x x +->的解集是______. 【★★★答案★★★】1,62⎛⎫- ⎪⎝⎭【解析】 【分析】直接解不等式得到★★★答案★★★.【详解】261120x x +->,即()()6210x x -+<,解得1,62x ⎛⎫-⎪⎝⎭∈. 故★★★答案★★★为:1,62⎛⎫-⎪⎝⎭. 【点睛】本题考查了解不等式,属于简单题.11. 已知2210x x --=的两实根为a ,b ,则以3a ,3b 为两根的一个一元二次方程是______.【★★★答案★★★】21410x x --= 【解析】 【分析】根据韦达定理得到21a b ab +=⎧⎨=-⎩,计算()3331a b ab ==-,3314a b +=,得到★★★答案★★★.【详解】2210x x --=的两实根为a ,b ,4480∆=+=>,则21a b ab +=⎧⎨=-⎩,()3331a b ab ==-,()()()()2332232714a b a b a ab b a b a b ab ⎡⎤+=+-+=++-=⨯=⎣⎦,故以3a ,3b 为两根的一个一元二次方程是21410x x --=. 故★★★答案★★★为:21410x x --=.【点睛】本题考查了二次方程根与系数的关系,意在考查学生的计算能力和转化能力.12. 已知方程2220x mx m +++=有两个不等正根,则实数m 的取值范围是______. 【★★★答案★★★】()2,1--【解析】 【分析】根据韦达定理得到()244202020m m m m ⎧∆=-+>⎪->⎨⎪+>⎩,解得★★★答案★★★.【详解】2220x mx m +++=有两个不等正根,则()244202020m m m m ⎧∆=-+>⎪->⎨⎪+>⎩,解得21m -<<-.故★★★答案★★★为:()2,1--.【点睛】本题考查了根据二次方程解的范围求参数,意在考查学生的计算能力. 13. 已知关于x 的一元二次方程22210x ax a +-+=,两个实根的平方和为294,则实数a 的值______.【★★★答案★★★】3 【解析】 【分析】根据条件,结合韦达定理代入计算,同时进行验算即可得解. 【详解】设一元二次方程22210x ax a +-+=的两个根为12,x x , 根据韦达定理可得:122a x x +=-,12212a x x -+=,根据题意有:2212294x x +=, 则222212121229()22144a x x x x x x a +=+-=+-=, 整理可得28330a a +-=, 解得11a =-或3a =,又由228(21)1680a a a a ∆=--+=+->,显然11a =-不满足,3a =满足, 所以3a =.故★★★答案★★★为:3.【点睛】本题考查了一元二次方程根的问题,考查了韦达定理和根的判别式,易错点是不进行根的判别式的验算,属于基础题.14. 设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a+b 、a-b 、ab 、ab∈P (除数b≠0)则称P 是一个数域,例如有理数集Q 是数域,有下列命题: ①数域必含有0,1两个数; ②整数集是数域;③若有理数集Q ⊆M ,则数集M 必为数域; ④数域必为无限集.其中正确的命题的序号是 .(填上你认为正确的命题的序号) 【★★★答案★★★】①④ 【解析】【详解】解:当a=b 时,a-b=0、a b =1∈P ,故可知①正确. 当a=1,b=2,12∉Z 不满足条件,故可知②不正确. 对③当M 中多一个元素i 则会出现1+i ∉M 所以它也不是一个数域;故可知③不正确. 根据数据的性质易得数域有无限多个元素,必为无限集,故可知④正确. 故★★★答案★★★为①④.三、解答题15. 集合{}22190A x x ax a =-+-=,{}2560B x x x =-+=,{}2280C x x x =+-=. (1)若A B A B =,求a 的值;(2)若AB φ,A C φ⋂=,求a 的值.【★★★答案★★★】(1)5a =;(2)2a =-. 【解析】 【分析】(1)求出集合B,C 利用AB A B =得到A B =得解(2)A B φ⋂≠,A C φ⋂=得到3A ∈求得5a =或2a =-.再检验得解 【详解】解:由题意,{}2,3B =,{}4,2C =-. (1)因为AB A B =,所以A B =.又{}2,3B =,则25196a a =⎧⎨-=⎩,解得5a =. (2)由于A B φ⋂≠,而A C φ⋂=,则3A ∈,即293190a a -+-=,解得5a =或2a =-. 由(1)知,当5a =时,{}2,3A B ==. 此时A C ⋂≠∅,矛盾,舍去. 因此2a =-.【点睛】本题考查利用集合间的关系求参数值,属于基础题 16. 解下列不等式. (1)235223x x x -≤+-(2)232x x ->【★★★答案★★★】(1){3x x <-或112x ≤≤-或}1x >;(2){1x x <或}3x >. 【解析】 【分析】(1)不等式等价于()()()()()()211310310x x x x x x ⎧-++-≥⎪⎨+-≠⎪⎩,解得★★★答案★★★.(2)考虑0x ≤和0x >两种情况,设2x t =得到()234t t ->,解不等式得到★★★答案★★★.【详解】(1)原不等式可变形为2352023x x x --≤+-,即2221023x x x x --+≤+-,等价于()()()()()()211310310x x x x x x ⎧-++-≥⎪⎨+-≠⎪⎩. 解得原不等式的解集为{3x x <-或112x ≤≤-或}1x >. (2)当0x ≤时,原不等式恒成立; 当0x >时,原不等式两边平方,得()22234x x ->,令2x t =,则()234t t ->,解得9t >或1t <, 又()20t xx =>,有3x >或01x <<.综上,原不等式的解集为{1x x <或}3x >.【点睛】本题考查了解不等式,意在考查学生对于解不等式方法的掌握情况,换元法是解题的关键.17. 解关于x 的不等式(m 为任意实数):()2220mx m x +--<【★★★答案★★★】★★★答案★★★见解析 【解析】 【分析】分类讨论得不等式的解集.【详解】解:当0m =时,原不等式化为220x -<,解得1x <; 当0m ≠时,原不等式可化为()()120x mx -+<,即11x =,22x m=-. 当0m >时,20x <,则原不等式的解集为21x x m ⎧⎫-<<⎨⎬⎩⎭当0m <时,20x >,当21m-=,即2m =-时,有121x x ==,则原不等式的解集为{}1x x ≠; 当21m -<,即2m <-时,则原不等式的解集为2x x m ⎧<-⎨⎩或}1x >当21m ->,即20m -<<时,则原不等式的解集为.2x x m ⎧>-⎨⎩或}1x < 【点睛】本题考查含参不等式的解集,通常分类讨论进行是解题的关键,属于基础题. 四、附加题18. 若1x ,2x 是关于x 的方程20x bx c ++=的两个实数根,且122x x k +=(k 是整数),则称方程20x bx c ++=为“偶系二次方程”.如方程26270x x --=,2280x x --=,227304x x +-=,26270x x +-=,2440x x ++=,都是“偶系二次方程”. (1)判断方程2120x x +-=是不是“偶系二次方程”,并说明理由;(2)对于任意一个整数b ,是否存在实数c ,使得关于x 的方程20x bx c ++=是“偶系二次方程”,并说明理由.【★★★答案★★★】(1)不是.理由见解析;(2)存在234c b =-,使得关于x 的方程20x bx c ++=是“偶系二次方程”,理由见解析【解析】【分析】(1)求出方程的根,代入122x x k +=验证即可;(2)由条件26270x x --=,26270x x +-=是偶系二次方程建模,设2c mb n =+,就可以表示出c ,然后根据公式法就可以求出其根,再代入122x x k +=就可以得出结论.【详解】(1)不是.理由如下:解方程2120x x +-=得13x =,24x =-,123472 3.5x x +=+==⨯,3.5不是整数,∴2120x x +-=不是“偶系二次方程”.(2)存在.理由如下: 解法一:2 6270x x --=和26270x x +-=是“偶系二次方程”,∴假设2c mb n =+,当6b =-,27c =-时,2736m n -=+,20x =是“偶系二次方程”,∴当0n =时,34m =-,∴234c b =-,227304x x +-=是“偶系二次方程”, 当3b =时,2327344c =-⨯=-,符合题意,∴可设234c b =-. 对于任意一个整数b ,当234c b =-时,2244b ac b ∆=-=,22b b x -±=, ∴132x b =-,212x b =-,∴122x x b +=,b 是整数, ∴对于任意一个整数b ,存在234c b =-,使得关于x 的方程20x bx c ++=是“偶系二次方程”.解法二:由题可知,12x x b +=-,12x x c =,假设对于任意一个整数b ,存在实数c ,使得关于x 的方程20x bx c ++=是“偶系二次方程”,则122x x k +=, ∴222112224x x x x k ++=,∴()22121212224x x x x x x k +-+= ∴22224b c c k -+=,当0c >时,224b k =,与题意不符,舍去;当0c <时,2244b c k -=. b 为任意一个整数,k 为整数,∴设b k =,则2244b c b -=,∴234c b =-,又222430b c b b ∆=-=+≥,符合题意, ∴对于任意一个整数b ,存在234c b =-,使得关于x 的方程20x bx c ++=是“偶系二次方程”.【点睛】本题考查了一元二次方程的解法的运用,根的判别式的运用、根与系数的关系的运用及数学建模思想的运用,解答本题时根据条件特征建立模型是关键.感谢您的下载!快乐分享,知识无限!由Ruize收集整理!。
北京学年度八中高一第二学期期末数学练习题
北京八中2018-2019学年度高一第二学期期末练习题一、选择题(本大题共10分,每小题5分,共50分)01.光线自点M(2,3)射到N(1,0)后被x轴反射,则反射光线所在的直线方程为【】A.y=3x﹣3 B.y=﹣3x+3 C.y=﹣3x﹣3 D.y=3x+302.设b,c表示两条直线,α,β表示两个平面,则下列命题正确的是【】A.若b⊂α,c∥α,则c∥b B.若b⊂α,b∥c,则c∥αC.若c⊂α,α⊥β,则c⊥βD.若c⊂α,c⊥β,则α⊥β03.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是【】A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法04.某协会有200名会员,现要从中抽取40名会员作样本,采用系统抽样法等间距样本,将全体会员随机按1﹣200编号,并按编号顺序平均分为40组(1﹣5号,6﹣10号,…,196﹣200号),若第5组抽出的号码为23,则第1组至第3组抽出的号码依次是【】A.3,8,13 B.2,7,12 C.3,9,15 D.2,6,12 05.从装有两个红球和两个黑球的口袋里任取两个球,那么对立的两个事件是【】A.“至少有一个黑球”与“都是黑球”B.“至少有一个黑球”与“至少有一个红球”C.“恰好有一个黑球”与“恰好有两个黑球”D.“至少有一个黑球”与“都是红球”06.从3位男运动员和4位女运动员中选派3人参加记者招待会,至少有1位男运动员和1位女运动员的选法有【】种A.C B.CC.C D.C07.在△ABC中,A,B,C所对的边分别为a,b,c.若c,A=45°,B=75°,则a=【】A.B.C.1 D.308.某几何体的三视图如图所示,则它的体积是【】A.8B.8C.8﹣2πD.09.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为【】A.2,5 B.5,5 C.5,8 D.8,810.记动点P是棱长为1的正方体ABCD﹣A1B1C1D1的对角线BD1上一点,记.当∠APC 为钝角时,则λ的取值范围为【】A.(0,1)B.,C.,D.(1,3)二、填空题(本大题共6小题,每小题5分,共30分,把答案填在答题卡的横线上)11.5人排成一行合影,甲和乙不相邻的排法有种.(用数字回答)12.直线的倾斜角为.13.己知正方形ABCD,向正方形ABCD内任投一点P,则△PAB的面积大于正方形ABCD面积四分之一的概率是14.水平放置的△ABC的斜二测直观图如图所示,已知A′C′=3,B′C′=2,则AB边上的中线的实际长度为.15.把三位学生分配到四间教室,每位学生被分配到每一间教室的可能性相同,则三位学生都被分配到同一间教室的概率为;至少有两位学生被分配到同一间教室的概率为.16.一项抛掷骰子的过关游戏规定:在第n关要抛掷一颗骰子n次,如里这n次抛掷所出现的点数和大于n2,则算过关,可以随意挑战某一关.若直接挑战第三关,则通关的概率为;若直接扬战第四关,则通关的慨率为.三、解答题(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(13分)在△ABC中,角A、B、C的对边分别为a、b、c,且满足(2a﹣c)cos B=b cos C,(1)求角B的大小;(2)若b,a+c=4,求△ABC的面积.18.(13分)已知直线1:ax+y﹣2=0及圆心为C的圆C:(x﹣1)2+(y﹣a)2=4.(1)当a=1时,求直线l与圆C相交所得弦长;(2)若直线l与圆C相切,求实数a的值.19.(15分)对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图:(Ⅰ)求出表中M,p及图中a的值;(Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;(Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25,30)内的概率.20.(15分)如图,已知等腰梯形ABCD中,AD∥BC,AB=AD BC=2,E是BC的中点,AE ∩BD=M,将△BAE沿着AE翻折成△B1AE,使平面B1AE⊥平面AECD.(Ⅰ)求证:CD⊥平面B1DM;(Ⅱ)求二面角D﹣AB1﹣E的余弦值;(Ⅲ)在线段B1C上是否存在点P,使得MP∥平面B1AD,若存在,求出的值;若不存在,说明理由.21.(14分)在平面直角坐标系xOy中,已知曲线C的方程是1(a,b>0).(1)当a=1,b=2时,求曲线C围成的区域的面积;(2)若直线l:x+y=1与曲线C交于x轴上方的两点M,N,且OM⊥ON,求点(,)到直线l距离的最小值.1. B.2. D.3. B.4. A.5.D.6. C.7. A.8. A.9. C.10.B.11.72.12..13..14.15.,.16.,.17.(1)在△ABC中,∵(2a﹣c)cos B=b cos C,结合正弦定理得(2sin A﹣sin C)cos B=sin B cos C,2sin A cos B=sin B cos C+cos B sin C=sin A,∴cos B,∴B=60°.(2)若b,a+c=4,由余弦定理b2=a2+c2﹣2ac cos B得,ac=3,∴.18.(1)当a=1时,直线l:x+y﹣2=0,圆C:(x﹣1)2+(y﹣1)2=4.圆心坐标为(1,1),半径为2.圆心(1,1)在直线x+y﹣2=0上,则直线l与圆C相交所得弦长为4;(2)由直线l与圆C相切,得,解得:a=1.19.(Ⅰ)由分组[10,15)内的频数是10,频率是0.25知,0.25,∴M=40.∵频数之和为40,∴10+24+m+2=40,m=4.p0.10.∵a是对应分组[15,20)的频率与组距的商,∴a0.12;(Ⅱ)因为该校高三学生有240人,分组[10,15)内的频率是0.25,∴估计该校高三学生参加社区服务的次数在此区间内的人数为60人.(Ⅲ)这个样本参加社区服务的次数不少于20次的学生共有m+2=6人,设在区间[20,25)内的人为a1,a2,a3,a4,在区间[25,30)内的人为b1,b2.则任选2人共有(a1,a2),(a1,a3),(a1,a4),(a1,b1),(a1,b2),(a2,a3),(a2,a4),(a2,b1),(a2,b2),(a3,a4),(a3,b1),(a3,b2),(a4,b1),(a4,b2),(b1,b2)15种情况,而两人都在[25,30)内只能是(b1,b2)一种,∴所求概率为P=1.20.(Ⅰ)证明:由题意可知四边形ABED是平行四边形,所以AM=ME,故B1M⊥AE.又因为AB=BE,M为AE的中点,所以BM⊥AE,即DM⊥AE.又因为AD∥BC,AD=CE=2.所以四边形ADCE是平行四边形.所以AE∥CD.故CD⊥DM.因为平面B1AE⊥平面AECD,平面B1AE∩平面AECD=AE,B1M⊂平面AECD所以B1M⊥平面AECD.B1M⊥AE.因为CD⊂平面AECD,所以B1M⊥CD.因为MD∩B1M=M,MD、B1M⊂平面B1MD,所以CD⊥平面B1MD.…(Ⅱ)解:以ME为x轴,MD为y轴,MB1为z轴建立空间直角坐标系,则,,,,,,A(﹣1,0,0),,,.平面AB1E的法向量为(0,,0).设平面DB1A的法向量为(x,y,z),因为(1,0,),(1,,0),,令z=1得,(,1,1).所以cos<,>,因为二面角D﹣AB1﹣E为锐角,所以二面角D﹣AB1﹣E的余弦值为.…(10分)(Ⅲ)存在点P,使得MP∥平面B1AD.…(11分)法一:取线段B1C中点P,B1D中点Q,连结MP,PQ,AQ.则PQ∥CD,且.又因为四边形AECD是平行四边形,所以.因为M为AE的中点,则.所以四边形AMPQ是平行四边形,则.又因为AQ⊂平面AB1D,所以MP∥平面AB1D.所以在线段B1C上存在点P,使得MP∥平面B1AD,.法二:设在线段B1C上存在点P,使得MP∥平面B1AD,设,(0≤λ≤1),,,,因为.所以,,.因为MP∥平面B1AD,所以,所以,解得,又因为MP⊄平面B1AD,所以在线段B1C上存在点P,使得MP∥平面B1AD,21.(1)当a=1,b=2时,曲线C的方程是|x|1,曲线C围成的区域为菱形,其面积为2×4=4;(2)当x>0,y>0时,有1,联立直线x+y=1可得M(,),当x<0,y>0时,有1,联立直线x+y=1可得N(,),由OM⊥ON可得k OM k ON=﹣1,即有•1,化为2,点(,)到直线l距离d,由题意可得a﹣ab<0,a﹣b<0,ab﹣b<0,即a<ab<b,可得0<a<1,b>1,可得当,即b=2时,点(,)到直线l距离取得最小值.。
北京八中乌兰察布分校2019年秋学期高一数学第二次调研试卷附答案详析
北京八中乌兰察布分校2019年秋学期高一第二次调研数学试卷一、单选题1.已知集合A ={x |2x -2x -3≤0},B ={x |y =ln (2-x )},则A∩B =A .(1,3)B .(1,3]C .[-1,2)D .(-1,2)2.下列各组函数中,表示同一函数的是()A .y x =,y =B .y =,y =C .y =1,x y x=D .y x =,2y =3.若函数(2)23,g x x +=+则(3)g 的值是A .3B .5C .7D .94.三个数a =0.312,b =log 20.31,c =20.31之间的大小关系为()A .a<c <b B .a <b <c C .b <a <c D .b <c <a5.已知集合{}|15A x x =≤<,{}|3B x a x a =-<≤+.若B A B =I ,则a 的取值范围为()A .3,12⎛⎤-- ⎥⎝⎦B .3,2∞⎛⎤-- ⎥⎝⎦C .(],1-∞-D .3,2⎛⎫-+∞ ⎪⎝⎭6.函数1()2ax f x x +=+在区间(2,)-+∞上单调递增,则实数a 的取值范围()A .10,2⎛⎫ ⎪⎝⎭B .1,2⎛⎫+∞⎪⎝⎭C .(2,)-+∞D .(,1)(1,)-∞-+∞ 7.已知函数3()3(,)f x ax bx a b =++∈R .若(2)5f =,则(2)f -=()A .4B .3C .2D .18.函数()1ln f x x x=-的零点所在的区间是()A .()0,1B .()1,e C .()2,e eD .()2,e +∞9.已知偶函数()f x 满足:对任意的[)()1212,0,x x x x ∈+∞≠,都有()()12120f x f x x x ->-成立,则满足()1213f x f ⎛⎫-< ⎪⎝⎭的x 取值范围是()A .12,33⎛⎫ ⎪⎝⎭B .12,33⎡⎫⎪⎢⎣⎭C .12,23⎛⎫ ⎪⎝⎭D .12,23⎡⎫⎪⎢⎣⎭10.函数6()lg 13f x x ⎛⎫=- ⎪+⎝⎭的图象关于A .原点对称B .x 轴对称C .y 轴对称D .直线y =x 对称11.已知偶函数()f x 在(),0∞-上单调递增,若()10f -=,则()0x f x ⋅<的解集是()A .()(),10,1∞--⋃B .()(),11,∞∞--⋃+C .()()1,00,1-⋃D .()()1,01,∞-⋃+12.对于函数()lg f x x =定义域内任意1212,()x x x x ≠,有如下结论:①1212()()()f x x f x f x +=+;②1212()()()f x x f x f x ⋅=+;③1212()()0f x f x x x ->-;④1212()()22x x f x f x f ++⎛⎫<⎪⎝⎭.上述结论正确的是()A .②③④B .①②③C .②③D .①③④二、填空题13.已知函数2()1x f x a-=+(0a >且1a ≠)的图象过定点P ,则点P 的坐标为_______.14.函数212()log (4)f x x =-的单调递增区间为________.15.幂函数221()(21)m f x m m x-=-+在(0,)+∞上为增函数,则实数m 的值为_______.16.已知()()74,1,1xa x a x f x a x ⎧--<=⎨≥⎩是-∞+∞(,)上的增函数,那么a 的取值范围是______.三、解答题17.计算下列各式的值(1))21132270.0021028π---⎛⎫-+-+ ⎪⎝⎭(2)()266661log 3log 2log 18log 4-+⋅18.已知集合A ={x |1<x +3≤7},B ={x |y =.(1)当a =1时,求A ∩B ;(2)若A ∪B =B ,求a 的取值范围.19.已知函数()()()log 2log 2a a f x x x =+--,(0a >且1)a ≠.()1求函数()f x 的定义域;()2求满足()0f x ≤的实数x 的取值范围.20.已知函数()224422f x x ax a a =-+-+.(1)求()f x 在区间[]0,2上的最小值()g a ;(2)若()f x 在区间[]0,2上的最小值为3,求a 的值.21.函数f(x)=2x −a2x 是奇函数.(1)求f(x)的解析式;(2)当x ∈(0,+∞)时,f(x)>m ⋅2−x +4恒成立,求m 的取值范围.22.已知函数2()=42f x ax x -+,函数()1()3f x g x ⎛⎫= ⎪⎝⎭.(1)若函数()f x 在(],2-∞和[)2,+∞上单调性相反,求()f x 的解析式;(2)若0a <,不等式()9g x ≤在10,2x ⎛⎤∈ ⎥⎝⎦上恒成立,求a 的取值范围;(3)已知1a ≤,若函数2()log 8xy f x =-在[]1,2内有且只有一个零点,试确定实数a 的取值范围.解析北京八中乌兰察布分校2019年秋学期高一第二次调研数学试卷一、单选题1.已知集合A ={x |2x -2x -3≤0},B ={x |y =ln (2-x )},则A∩B =A .(1,3)B .(1,3]C .[-1,2)D .(-1,2)【答案】C【解析】分析:解一元二次不等式得到集合A ,求对数函数的定义域得到集合B ,然后再求交集即可.详解:由题意得{}{}2A x|2x 30x|1x 3x =--≤=-≤≤,{}{}B x|y ln2x x|x 2=<==-,∴A∩B ={}[)x|1x 21,2-≤<=-.故选C .点睛:本题考查二次不等式的解法、函数定义域的求法和集合的交集,考查学生的运算能力,属于容易题.2.下列各组函数中,表示同一函数的是()A .y x =,y =B .y =,y =C .y =1,x y x=D .y x =,2y =【答案】A【解析】判断时每组函数的定义域和对应关系是否相同.【详解】A 中的函数y x ==()x R ∈与y x =()x R ∈是同一函数;B 中y ==()1x ≥,y =()11x x ≥≤-或定义域不相同,不是同一函数;C 中y =1()x R ∈,()10x y x x==≠定义域不相同,不是同一函数;D 中y x =()x R ∈,()20y x x ==≥两个函数的定义域不相同,对应法则也不相同,不是同一函数;故选:A .【点睛】本题考查相等函数的定义,相等函数的是“定义域、对应关系、值域”三要素完全相同的函数.3.若函数(2)23,g x x +=+则(3)g 的值是A .3B .5C .7D .9【答案】B【解析】令2=3x +,可得=1x ,将=1x 代入表达式23x +可求得函数值【详解】令2=3x +,得=1x ,则(12)=(3)213=5g g +=⨯+答案选B 【点睛】本题考查函数值的求法,根据对应关系解题相对比较快捷,也可采用换元法令2t x =+,将函数表示成关于t 的表达式,再进行求值4.三个数a =0.312,b =log 20.31,c =20.31之间的大小关系为()A .a<c <b B .a <b <c C .b <a <c D .b<c <a【答案】C【解析】利用指数函数和对数函数的单调性即可得出.【详解】解:∵0<0.312<0.310=1,log 20.31<log 21=0,20.31>20=1,∴b <a <c .故选:C .【点睛】熟练掌握指数函数和对数函数的单调性是解题的关键.5.已知集合{}|15A x x =≤<,{}|3B x a x a =-<≤+.若B A B =I ,则a 的取值范围为()A .3,12⎛⎤-- ⎥⎝⎦B .3,2∞⎛⎤--⎥⎝⎦C .(],1-∞-D .3,2⎛⎫-+∞ ⎪⎝⎭【答案】C【解析】首先确定B A ⊂,分B φ=和B φ≠两种情况讨论,求a 的取值范围.【详解】B A B=Q I B A ∴⊂,当B φ=时,332a a a -≥+⇒≤-;当B φ≠时,3135a a a a -<+⎧⎪-≥⎨⎪+<⎩,312a ∴-<≤-,综上:1a ≤-,故选C.【点睛】本题考查根据集合的包含关系,求参数取值范围,意在考查分类讨论的思想,属于基础题型.6.函数1()2ax f x x +=+在区间(2,)-+∞上单调递增,则实数a 的取值范围()A .10,2⎛⎫ ⎪⎝⎭B .1,2⎛⎫+∞⎪⎝⎭C .(2,)-+∞D .(,1)(1,)-∞-+∞【答案】B【解析】把原函数用分离常数法分开,再利用复合函数的单调性即可得解.【详解】当0a =时,1()2f x x =+在区间(2,)-+∞上单调递减,故0a =舍去,0a ∴≠,此时1(2)1212()222ax a x a af x a x x x +++--===++++,又因为12y x =+在区间(2,)-+∞上单调递减,而函数1()2ax f x x +=+在区间(2,)-+∞上单调递增,∴须有120a -<,即12a >,故选:B .【点睛】本题考查分离常数法的应用,分离常数法一般用于求值域,求单调区间,及判断单调性.7.已知函数3()3(,)f x ax bx a b =++∈R .若(2)5f =,则(2)f -=()A .4B .3C .2D .1【答案】D 【解析】令()3g x ax bx =+,则()g x 是R 上的奇函数,利用函数的奇偶性可以推得(2)f -的值.【详解】令3()g x ax bx =+,则()g x 是R 上的奇函数,又(2)3f =,所以(2)35g +=,所以(2)2g =,()22g-=-,所以(2)(2)3231f g -=-+=-+=,故选D.【点睛】本题主要考查函数的奇偶性的应用,属于中档题.8.函数()1ln f x x x=-的零点所在的区间是()A .()0,1B .()1,e C .()2,e eD .()2,e +∞【答案】B【解析】首先判断出函数的单调性,根据零点存在定理求得结果.【详解】由题意知:()f x 在()0,∞+上单调递增当0x →时,()f x →-∞;()110f =-<;()110f e e =->;()22120f e e=->;当x →+∞时,()f x →+∞可知:()()10f f e ⋅<()f x ∴零点所在区间为:B【点睛】本题考查利用零点存在定理判断零点所在区间,属于基础题.9.已知偶函数()f x 满足:对任意的[)()1212,0,x x x x ∈+∞≠,都有()()12120f x f x x x ->-成立,则满足()1213f x f ⎛⎫-< ⎪⎝⎭的x 取值范围是()A .12,33⎛⎫⎪⎝⎭B .12,33⎡⎫⎪⎢⎣⎭C .12,23⎛⎫⎪⎝⎭D .12,23⎡⎫⎪⎢⎣⎭【答案】A【解析】因为函数是偶函数,所以不等式转化为()1213f x f ⎛⎫-< ⎪⎝⎭,再根据函数的单调性转化为1213x -<解不等式.【详解】有题意可知,x ∈[)0,+∞时,函数单调递增,且函数是偶函数,()()11212133f x f f x f ⎛⎫⎛⎫∴-<⇔-< ⎪ ⎪⎝⎭⎝⎭1213x ∴-<112133x ∴-<-<解得1233x <<.故选A.【点睛】本题考查了利用函数的性质解抽象不等式,当函数是偶函数,并且在()0,∞+单调递增时,解不等式()()12f x f x <时,根据()()f x f x =转化为原不等式为()()12f x f x <,再根据单调性表示为12x x <求解.10.函数6()lg 13f x x ⎛⎫=-⎪+⎝⎭的图象关于A .原点对称B .x 轴对称C .y 轴对称D .直线y =x 对称【答案】A【解析】先求定义域,再根据奇函数定义进行判断选择【详解】610333x x ->∴-<<+633()lg 1lg lg ()333x x f x f x x x x +-⎛⎫-=-==-=- ⎪-+-+⎝⎭因此6()lg 13f x x ⎛⎫=-⎪+⎝⎭为奇函数,图象关于原点对称,显然不关于x 轴对称如()f x 图象也关于y 轴对称,则()0f x =,与题意不合;如()f x 图象也关于y =x 对称,则()f x 反函数为本身,与题意不合;综上选A.【点睛】本题考查函数图像与性质,考查综合分析判断能力,属中档题。