现代电力电子技术-概述
现代电力电子技术
uL
u2
E
+
-
触发电路产生的触发脉冲须满足下列要求: 足够的功率; 一定的宽度; 与主电路同步; 一定的移相范围。
产生的方式: 单结晶体管触发电路; 集成触发电路。
1
2
第3节 晶闸管触发电路
一、单结晶体管触发电路
等效电路
E
B2
B1
RB2
RB1
管内基极 体电阻
E
(发射极)
B2
(第二基极)
当 L >> R时, ILT在整个周期中可近似 看做直流。
5
晶闸管的中电流
IT =
IT =
平均值:
有效值:
晶闸管的选择
晶闸管电压 > (1.5 ~ 2)U2M
晶闸管电流
> (1.5)×
二、单相桥式半控整流电路
1、
电阻性负载桥式可控整流电路
(1)电路及工作原理
u2 > 0的导通路径:
u2 (A)
三、 特性与参数
1、特性
U
I
URSM
UFSM
URRM
IH
UFRM
IF
IG1=0A
IG2
IG3
IG3
IG2
IG1
>
>
正向
反向
2、主要参数
UFRM:
正向断态重复峰值电压。(晶闸管耐压值。 一般取 UFRM = 80% UFSM 。普通晶闸管 UFRM 为 100V~3000V)
URRM:反向重复峰值电压。(控制极断路时, 可以重复作用在晶闸管上的反向重复电 压。一般取URRM = 80% URSM。普通晶 闸管URRM为100V~3000V)
电力电子技术概述PPT课件
电力电子技术概述PPT课件•电力电子技术基本概念•电力电子器件•电力电子变换技术•电力电子系统分析与设计•典型应用案例剖析•发展趋势与挑战01电力电子技术基本概念它涉及到电力、电子、控制等多个领域,是现代电力工业的重要组成部分。
电力电子技术的核心是对电能进行高效、可靠、可控的转换,以满足各种用电设备的需求。
电力电子技术是一门研究利用半导体器件对电能进行转换和控制的学科。
电力电子技术定义从早期的整流器、逆变器到现在的高频开关电源、智能电网等,电力电子技术经历了多个发展阶段。
发展历程目前,电力电子技术已经广泛应用于工业、交通、通信、家电等各个领域,成为现代社会不可或缺的一部分。
现状随着新能源、智能电网等技术的不断发展,电力电子技术的应用前景将更加广阔。
未来趋势发展历程及现状工业领域电机驱动、电力系统自动化、工业加热等。
电动汽车、高速铁路、航空航天等。
通信电源、数据中心、云计算等。
变频空调、LED照明、智能家居等。
随着新能源技术的不断发展,电力电子技术在太阳能、风能等领域的应用将更加广泛;同时,智能电网的建设也将为电力电子技术的发展提供新的机遇。
交通领域家电领域前景展望通信领域应用领域与前景02电力电子器件电力二极管(Power Diode)结构简单,工作可靠导通和关断不可控主要用于整流电路晶闸管(Thyristor)四层半导体结构,三个电极导通可控,关断不可控主要用于相控整流电路可关断晶闸管(GTO)通过门极负脉冲可使其关断关断时间较长,需要较大的关断电流主要用于大容量场合电力晶体管(GTR)电流驱动的双极型晶体管导通和关断可控,但驱动电路复杂主要用于中等容量场合电力场效应晶体管(Power MOSFET )电压驱动的单极型晶体管导通电阻小,开关速度快01主要用于中小容量场合02绝缘栅双极型晶体管(IGBT)03结合了MOSFET和GTR的优点01电压驱动,大电流容量,快速开关02目前应用最广泛的电力电子器件之一03电力电子变换技术整流电路的作用整流电路的分类整流电路的工作原理整流电路的应用将交流电转换为直流电。
电力电子技术概述
电力电子技术概述电力电子技术是一门研究电力系统中电能的控制与转换的学科,它涉及到电力电子器件、电力电子电路、电力电子系统以及与之相关的控制策略和应用领域等方面。
本文将概述电力电子技术的起源、应用领域、主要器件和电路拓扑结构,以及未来发展趋势。
一、电力电子技术的起源与发展电力电子技术源于20世纪60年代的美国,当时希望能够利用电子器件来实现电力的调节、控制和转换。
最早应用于变频调速装置、静态无功补偿装置、电能质量改善装置等,逐渐发展成为一个独立的技术领域。
电力电子技术的发展也受益于电子器件的进步,如功率半导体器件的改进和智能控制技术的应用。
二、电力电子技术的应用领域1. 变频调速技术:电力电子技术在工业生产中的一个重要应用领域就是变频调速技术。
通过改变电机的输入电压和频率,可以实现对电机转速的精确控制。
变频调速器广泛应用于印刷机械、纺织机械、化工设备等领域,提高了生产效率和节能效果。
2. 静态无功补偿技术:电力电子技术可以实现对电力系统中无功功率的补偿控制,提高电力系统的功率因数和稳定性。
静态无功补偿装置主要应用于电力系统中的无功功率补偿和谐波抑制,有效改善了电能质量,降低了线损和电流谐波。
3. 新能源发电技术:电力电子技术在新能源领域的应用也日益广泛。
光伏逆变器、风力发电控制器等电力电子装置将新能源转换为交流电能,并通过电网进行输送和利用。
这种技术可以实现对新能源发电的有效控制和管理,推动了可再生能源的利用。
4. 电力系统调节和控制:电力电子技术在电力系统调节和控制中扮演着重要角色。
通过电力电子器件和控制策略,可以实现对电力系统的电压、频率、质量等方面的调节和保护。
这对于电力系统的稳定运行具有重要意义。
三、电力电子技术的主要器件和电路拓扑结构1. 功率半导体器件:电力电子技术的基础是功率半导体器件,主要包括二极管、晶闸管、MOSFET、IGBT等。
这些器件具有承受高压和高电流的特点,并能实现高效率的电能转换。
电力电子技术在电力系统中的应用
电力电子技术在电力系统中的应用随着电子技术的迅速发展,电力电子技术得到了广泛的应用。
电力电子技术是指将电力和电子技术相结合,通过半导体器件将电力进行变换、传递和控制的技术。
在电力系统中,电力电子技术的应用已经成为了研究的热点之一。
一、电力电子技术的概述电力电子技术是一种电力工程和电子工程相结合的技术。
其主要应用在将电力进行变换、传递和控制的过程中。
电力电子技术的发展可以追溯到1960年代,当时出现了用半导体器件实现交流电到直流电的变换技术,即交流输电系统的直流输电技术(HVDC)。
这项技术实现了对远距离长距离输电的需求,缩短了电力传输距离,减少了线路损耗,提高了电力传输的效率和可靠性。
随着时代的发展,电力电子技术应用领域不断扩大,如市电变频器、电力电容、UPS等系统都是电力电子技术的代表。
电力电子技术的发展,推动了电力系统的革新,提升了电力传输的能力和效率,实现了电网智能化、数字化、可靠性和安全性的大幅提升。
二、1、 HVDC交流输电系统的直流输电技术(HVDC)是电力电子技术在电力系统中的基础应用之一。
它可以将交流电转换成直流电,从而实现不同地点之间的电力互联、跨越海洋和山区、进行长距离电力输送。
HVDC技术可以提高输电线路的容量、减少输电损耗,并且提高电力传输的可靠性。
HVDC技术正在逐渐普及,已经被应用到欧洲、北美、亚洲等地区的多条输电线路中,成为了电力系统中重要的输电方式。
2、 FACTS灵活交流输电系统(FACTS)技术是一种电力电子技术,它可以根据负荷不同而调整电力系统的电压、电流和相角,从而提高电力系统的稳定性、可靠性以及抗干扰能力。
FACTS技术可以使电力系统在电力负载发生变化时,自动调整电力参数和稳定电力系统,从而提高电网的稳定性,减少配电线路的损耗,降低能源消耗和污染排放。
3、 STATCOM静止补偿器(STATCOM)是一种电力电子设备,它可以在电力系统中自动实现电容电抗补偿,从而提高电力系统的稳定性和可靠性,减少电力线路的损耗。
电力电子在电动汽车中的应用
电力电子在电动汽车中的应用电力电子是现代电动汽车中不可或缺的核心技术之一。
本文将从电力电子在电动汽车中的应用方面进行探讨,分析其作用和优势,以及对电动汽车性能和可持续发展的影响。
一、电力电子技术概述电力电子技术广泛应用于电动汽车的各个环节,包括能量转换、传输和控制等方面。
其主要功能是将电能转换为适合电动汽车使用的形式,并对电动汽车的供电系统进行调控和保护。
1. 电能转换:电力电子技术可以实现电能的直流与交流之间的相互转换,其中最重要的是通过逆变器将储存在电池中的直流电能转换为交流电供电给电动机。
2. 能量传输:在电动汽车中,电力电子技术可以通过控制充电桩和电动汽车之间的直流或交流电能传输,实现电动汽车的充电和放电。
3. 系统控制:电力电子技术可以对电动汽车的供电系统进行控制和保护,例如通过控制器对电池的充放电进行管理,保证电池的使用寿命和安全性。
二、电力电子在电动汽车中的应用1. 电能转换系统电动汽车的核心部件之一是电动机,它需要将电能转换为机械能驱动车辆。
电力电子技术通过逆变器将储存在电池中的直流电能转换为交流电,供给电动机使用。
逆变器中的IGBT(Insulated Gate Bipolar Transistor)功率器件能够实现高效的电能转换,提高电动汽车的整体能效。
2. 充电系统电力电子技术在电动汽车的充电系统中起到重要作用。
充电桩通过充电机和电力电子变流器对电网的交流电进行变换和调节,将适合电动汽车充电的电能输出。
同时,电力电子调节和控制充电过程,实现对电动汽车充电速度和充电方式的灵活控制。
3. 驱动控制系统电力电子技术还在电动汽车的驱动控制系统中发挥作用。
电动汽车的驱动控制系统包括电池管理系统(BMS)、电机控制系统和车辆控制系统。
BMS利用电力电子技术对电池进行监测和管理,确保电池的安全和寿命。
电机控制系统通过电力电子技术对电机的转速、转矩进行控制,实现对电动汽车的动力输出和行驶特性的调节。
综述现代电力电子技术在电力系统中的发展现状
综述现代电力电子技术在电力系统中的发展现状现代电力电子技术是当今电力系统领域中的重要组成部分,它在电力系统中起着至关重要的作用。
随着科技的不断进步和电力需求的不断增长,电力电子技术在电力系统中的应用也得到了日益广泛的推广。
本文将综述现代电力电子技术在电力系统中的发展现状,旨在全面了解电力电子技术的应用和发展趋势。
一、电力电子技术在电力系统中的应用概况随着电网建设的不断完善和电力需求的不断增长,电力系统对电力电子技术的需求也越来越大。
电力电子技术在电力系统中主要应用于功率变换、电能质量控制和电力传输等方面。
在功率变换领域,电力电子技术主要用于实现交、直流电能之间的相互转换,适应不同负载的功率要求。
在电能质量控制方面,电力电子技术可实现电能的稳定输出,提高电网的稳定性和可靠性。
在电力传输方面,电力电子技术可实现高效电能传输,减少能量损耗,提高电网的传输效率。
电力电子技术在电力系统中的应用范围非常广泛,对电力系统的运行和发展具有重要意义。
1. 变流器技术的发展变流器是电力电子技术的核心设备之一,其性能和效率直接影响到电力系统的运行质量。
近年来,随着功率半导体器件的不断进步和新型拓扑结构的不断涌现,变流器技术取得了显著的发展。
高压、高频、高效的变流器设备逐渐成为电力系统的主流,大大提高了电能转换的效率和质量。
2. 控制技术的创新随着数字电子技术的发展,控制技术在电力系统中的应用也得到了快速发展。
智能化控制系统、数字信号处理技术等先进控制技术的应用,使得电力电子设备的控制性能得到了显著提升,提高了电力系统的运行稳定性和可靠性。
3. 新能源技术的融合随着新能源技术的快速发展,新能源与电力电子技术的融合应用成为电力系统发展的重要趋势。
风能、光能等新能源技术的应用使得电力系统的结构发生了变革,电力电子技术成为了实现新能源并网的重要手段,为电力系统的清洁化和可持续发展提供了有力支持。
4. 智能电网技术的兴起智能电网技术是当今电力系统领域的热点之一,它以电力电子技术为核心,通过信息技术实现了电力系统的智能化管理和控制。
电力电子基础知识概览
电力电子基础知识概览电力电子是指运用电子技术来处理、转换和控制电能的学科领域。
它在现代工业、交通、通信等各个领域都有广泛的应用。
电力电子的发展对能源的高效利用和环境的保护起到了重要作用。
本文将概述电力电子的基础知识,介绍其原理、应用和相关技术。
一、电力电子的基本原理电力电子的基本原理是通过控制电压和电流来实现电能的转换和处理。
主要包括以下几个方面:1. 整流:将交流电转换为直流电。
主要有单相和三相整流电路,使用二极管、可控硅等元件来实现。
2. 逆变:将直流电转换为交流电。
逆变器常用于变频器、UPS等设备中,可以将直流电源转换为交流电源,用于驱动电机或供电。
3. DC-DC转换:将直流电的电压转换为其他电压水平的直流电。
常用的DC-DC转换器包括升压、降压、升降压等。
4. AC-AC转换:将一种交流电的电压、频率、相位转换为另一种交流电形式。
例如,交流调压器和交流调频器。
5. 交流电压控制:通过改变电压的波形、幅值和频率等参数来控制电力系统中的电能流动。
常见的控制方法有PWM调制、谐波注入等。
二、电力电子的应用领域电力电子在各个行业中都有广泛的应用。
以下是一些典型的应用领域:1. 工业应用:电力电子在工业生产中用于调节电机的转速和负载,实现节能控制。
例如,变频器用于控制电动机的转速,提高能源利用率。
2. 电力系统:电力电子在电力系统中用于电能传输、配电和调节。
例如,STATCOM用于电力系统的电压调节和无功功率控制。
3. 汽车电子:电力电子在汽车中使用广泛,如混合动力汽车中的电力转换和电机驱动系统。
4. 可再生能源:电力电子可实现对太阳能、风能等可再生能源的高效利用。
例如,太阳能逆变器将太阳能电池板产生的直流电转换为交流电。
5. 智能电网:电力电子在智能电网中起到重要作用,通过电力电子器件和控制系统使电力系统更加稳定、可靠和智能。
三、电力电子的发展趋势随着能源需求的增加和环境保护的要求,电力电子技术正迅速发展。
电力电子技术
拓扑结构
常见的升降压型DC/DC变换器拓 扑结构包括Buck-Boost电路、
Zeta电路等。
应用领域
升降压型DC/DC变换器在需要宽 范围电压输入的场合中得到了广 泛应用,如电动汽车充电桩、工
业自动化设备、通信设备等。
2024/1/28
19
05交流-Leabharlann 流变换技术2024/1/28
20
交流调压电路原理及分类
分类
根据控制信号的性质,交流调功电路可分为 模拟控制交流调功电路和数字控制交流调功 电路。
2024/1/28
22
交流电力电子开关及应用
交流电力电子开关
是一种能够控制交流电通断的开关器件,具 有快速、可靠、节能等优点。常见的交流电 力电子开关有晶闸管、双向晶闸管、可关断 晶闸管等。
2024/1/28
拓扑结构
应用领域
升压型DC/DC变换器在太阳能发电、 风力发电等新能源领域,以及电动汽 车、电动自行车等交通工具中得到了 广泛应用。
常见的升压型DC/DC变换器拓扑结构 包括Boost电路、Sepic电路等。
2024/1/28
18
升降压型DC/DC变换器
工作原理
升降压型DC/DC变换器结合了降 压型和升压型变换器的特点,可 以实现输入电压的升降压转换。
电力电子技术
2024/1/28
1
目录 CONTENTS
• 电力电子技术概述 • 电力电子器件 • 整流与逆变技术 • 直流-直流变换技术 • 交流-交流变换技术 • 电力电子技术应用实例分析
2024/1/28
2
01
电力电子技术概述
2024/1/28
3
定义与发展历程
电力电子技术概述
电力电子技术概述电力电子技术是指在电力系统中应用电子元器件和电子技术,从而实现对电能的调节、变换和控制的一门技术。
它在现代电力系统中扮演着重要的角色,对于提高电力传输、转换和利用效率起到至关重要的作用。
本文将概述电力电子技术的基本原理、应用领域和未来发展趋势。
一、基本原理电力电子技术的基本原理是通过应用晶体管、二极管、开关等电子元件,实现对电能的调节和控制。
通过改变电压、电流的形状、频率和幅值来实现对电能的变换。
电力电子技术的核心是开关技术和变换技术。
1. 开关技术:开关技术是指通过控制开关的通断状态,来控制电流和电压的变化。
常见的开关元件有晶体管、功率开关管等。
通过合理的开关控制,可以实现电流的调节、电压的变换等功能。
2. 变换技术:变换技术是指通过变换电流和电压的形状、频率和幅值,将电能从一种形式转换为另一种形式。
常见的变换技术有直流-直流变换、直流-交流变换等。
通过变换技术,可以将电能从电网中提取出来,或者将直流电能转换为交流电能。
二、应用领域电力电子技术在多个领域广泛应用,其中包括能源转换、电力传输和利用、电动汽车等。
1. 能源转换:电力电子技术在可再生能源领域发挥着重要作用。
通过电力电子技术,可以将太阳能、风能等可再生能源转换为电能,从而实现清洁能源的利用。
2. 电力传输和利用:电力电子技术在电力系统中的传输和利用环节起着关键作用。
通过电力电子技术,可以实现高压交流输电与变频无级调速控制,提高电力传输效率和系统稳定性。
3. 电动汽车:电力电子技术在电动汽车领域的应用不断增加。
通过电力电子技术,可以实现电动汽车的充电与放电控制、能量回馈、效率提升等功能,推动电动汽车的发展与普及。
三、未来发展趋势随着能源需求的不断增长和环境问题的日益突出,电力电子技术将在未来得到更广泛的应用和发展。
1. 高效能源转换:未来电力电子技术将更加注重能源转换的高效率。
通过研究和改进电力电子器件的性能,提高能源转换效率,减少能源损失,从而推动清洁能源的大规模利用。
电力电子技术知识点总结
电力电子技术知识点总结电力电子技术是现代电力系统中的关键部分,它将电力系统与电子技术相结合,用于有效地控制、转换和传递电能。
本文将对电力电子技术的基本概念、分类和应用进行综述。
1. 电力电子技术的概述电力电子技术是指应用电子器件和电子控制器件来实现电力的调节、变换和传递的技术。
通过电力电子技术,可以实现电能的高效利用,提高能量转换效率和电力质量,同时也可以实现对电力系统的灵活控制。
2. 电力电子技术的分类电力电子技术根据其应用领域和转换方式可以分为多种类型,常见的包括:2.1 直流-直流变换技术(DC-DC)直流-直流变换技术主要是通过电力电子器件实现直流电能的调节和变换。
常见的直流-直流变换技术包括升压、降压、反相等。
2.2 直流-交流变换技术(DC-AC)直流-交流变换技术是将直流电能转换为交流电能,常见的应用场景包括太阳能发电系统和电动汽车充电桩。
2.3 交流-直流变换技术(AC-DC)交流-直流变换技术是将交流电能转换为直流电能,常见的应用场景包括电力系统中的整流器和UPS电源。
2.4 交流-交流变换技术(AC-AC)交流-交流变换技术主要是通过电力电子器件实现交流电能的调节和变换。
常见的交流-交流变换技术包括电压调节、频率调节和相位调节等。
3. 电力电子技术的应用电力电子技术在现代电力系统中有着广泛的应用,常见的应用包括:3.1 电力传输与配电电力传输与配电中的变压器、线路的无功补偿和电压调节等都会涉及到电力电子技术的应用。
通过电力电子技术,可以降低传输损耗、提高电力质量。
3.2 新能源发电电力电子技术在新能源发电领域有着重要的应用,如风能发电和太阳能发电系统中的逆变器、控制器等都需要电力电子技术来实现能量转换。
3.3 智能电网智能电网是未来电力系统的发展方向,电力电子技术在智能电网中有着重要的作用,通过电力电子器件和控制策略的应用,可以实现对电力系统的高效调节和控制。
4. 电力电子技术的发展趋势随着新能源的快速发展和电力系统的智能化改造,电力电子技术将得到更广泛的应用。
2024版《电力电子技术》PPT课件
电力电子技术的定义与发展01020304定义晶闸管时代可控硅时代现代电力电子时代用于高压直流输电、无功补偿、有源滤波等,提高电力系统的稳定性和效率。
用于电动汽车、电动自行车、电梯等电机驱动系统,实现高效、节能的电机控制。
用于太阳能、风能等新能源发电系统,实现能源的高效利用和转换。
用于自动化生产线、机器人等工业设备,实现设备的精确控制和高效运行。
电力系统电机驱动新能源工业自动化数字化与智能化随着计算机技术和人工智能的发展,电力电子技术将实现数字化和智能化,提高系统的自适应能力和智能化水平。
高频化与高效化随着半导体材料和器件的发展,电力电子技术将实现更高频率和更高效率的电能转换。
绿色化与环保化随着环保意识的提高,电力电子技术将更加注重绿色、环保的设计理念,降低能耗和减少对环境的影响。
工作原理特点应用整流电路、续流电路等工作原理通过门极触发导通,无法自行关断特点耐压高、电流大、开关速度快应用直流电机调速、交流调压等工作原理特点应用工作原理特点应用逆变器、斩波器、电机驱动等工作原理特点应用工作原理开关速度快、耐压高、电流大、热稳定性好应用逆变器、斩波器、电机驱动等高端应用领域特点VS整流电路的作用整流电路的分类整流电路的工作原理整流电路的应用整流电路逆变电路逆变电路的作用逆变电路的分类逆变电路的工作原理逆变电路的应用直流-直流变流电路直流-直流变流电路的作用直流-直流变流电路的分类直流-直流变流电路的工作原理直流-直流变流电路的应用交流-交流变流电路交流-交流变流电路的作用交流-交流变流电路的工作原理A B C D交流-交流变流电路的分类交流-交流变流电路的应用电机驱动照明控制加热与焊接030201一般工业应用交通运输应用电动汽车驱动轨道交通牵引航空电源电力系统应用高压直流输电柔性交流输电通过电力电子技术可实现高压直流输电,减少输电损耗和占地面积。
智能电网风能发电通过电力电子技术可实现风能发电系统的变速恒频控制和并网运行。
电力电子技术在节能环保中的应用
电力电子技术在节能环保中的应用随着社会经济的快速发展和能源资源的逐渐枯竭,能源问题成为全球关注的焦点。
节能环保已经成为推动可持续发展和减少碳排放的重要途径之一。
在这个背景下,电力电子技术的应用变得尤为重要。
本文将重点探讨电力电子技术在节能环保中的应用,并探讨其带来的潜在益处。
一、电力电子技术概述电力电子技术是指基于半导体器件和电力电子电路构成的电力调节和控制技术。
其核心是将电能从一种形式转换为另一种形式,以实现电能的调节、控制和转换。
电力电子技术包括直流变换技术、交流调节技术、功率因数校正技术等,具有高效、低损耗、可控性强等优点。
二、电力电子技术在节能中的应用1. 新能源发电系统随着可再生能源的广泛应用和发展,利用太阳能、风能、潮汐能等新能源发电系统已经成为减少碳排放和保护环境的重要途径。
电力电子技术在新能源发电系统中发挥着至关重要的作用,可以实现新能源的高效利用和输电,提高发电系统的稳定性和可靠性。
2. 电动汽车技术电动汽车作为一种清洁能源交通工具,具有零排放、低噪音等优点,在降低空气污染和缓解交通拥堵等方面具有巨大潜力。
而电力电子技术则是电动汽车技术的关键,可以实现电池的充电与放电控制、驱动电机的控制和能量回馈等功能,提高电动汽车的性能和续航里程。
3. 高效电力传输与分配系统传统的电力传输和分配系统存在能量损耗大、传输距离有限等问题,而电力电子技术能够实现高效的电能传输与分配,提高能源利用率。
例如,柔性交流输电技术可以将输电损耗降低到最低,并且实现可靠的智能电网。
4. 电力负荷控制电力电子技术可实现对电力负荷的实时监测和控制,以优化用电行为和调节电力负荷。
通过智能电网和电能管理系统,电力供需可以更加平衡,避免资源的浪费和能源的过度消耗。
5. 光伏逆变技术光伏逆变技术是指将光伏发电系统中的直流电能转化为交流电能的过程。
通过电力电子技术实现光伏逆变,可以提高光伏发电系统的效率、可靠性和稳定性。
三、电力电子技术应用的益处1. 减少能源损耗:电力电子技术的应用可以降低能源的损耗,提高能源的利用效率。
电力电子技术在新能源领域的运用
电力电子技术在新能源领域的运用随着社会经济的快速发展,各种能源消耗速度极大,能源短缺已成为社会生产发展过程中亟待解决的问题。
近年来,新能源的开发和利用,为解决能源短缺问题提供了一条新的道路,而电力电子技术在新能源的开发利用中扮演着重要的角色。
本文通过对电力电子技术的概述、电力电子技术在新能源领域的应用、在电力电子技术运用过程中应注意的问题等方面的着重介绍,让人们充分认识和了解电子电力技术并加强对其合理有效充分的利用。
一、电力电子技术概述电力电子技术,又称功率电子技术,学术上称电力电子学,是指应用于电力领域的电子技术,使用电力电子器件对电能进行变换和控制的电子技术。
电力电子技术包括电力电子器件、电力电子设备和系统及其控制三个方面,涉及电力电子器件(上游)、电力电子设备和系统(中游)、电力电子技术在各个行业的应用(下游)三个领域。
电力电子技术将各种能源高效率地变换成为高质量的电能,是采用电子信息技术改造传统产业的有效技术途径。
电力电子技术具有高效、节能、省材的特点,对于我国乃至世界范围内的经济发展具有极为重要的作用,是现代科学、工业和国防的重要支撑技术。
二、电力电子技术在新能源领域的应用研究电力电子技术是实现节能环保和提高人民生活质量的重要技术手段,在执行当前国家“发展新能源”和“节能减排”基本国策的过程中起着重要的作用。
下面以一些能源的开发利用为例,对电力电子技术在新能源领域的应用进行研究。
1、水力发电没有水就没有生命。
这句话充分说明了水的重要性:水是生命的源泉,地球上没有水,也就不会有生命的存在。
有聪明才智的人抓住水在流动过程中产生的动能可以充当天然的推动力这一有利条件,再加上一些物理知识和电路原理,以著名的三峡水电站为标志的一大批水电站挺立起来了。
这一创新,不仅仅降低了对媒体等不可再生能源的消耗,更创造性的为人类寻找可再生能源并加以利用的道路提供了方向。
在水利发电的基础上,一系列电力电子技术在新能源的开发利用中得到了创新。
现代电力电子技术概述
现代电力电子技术学习汇报姓名:csu学号:专业:电气工程班级:目录第一章现代电力电子技术旳形成与发展 (1)1.1 电力电子技术旳定义 (1)1.2 电力电子技术旳历史 (1)1.3 电力电子技术旳发展 (2)1.3.1 整流器时代 (2)1.3.2 逆变器时代 (3)1.3.3 变频器时代 (3)1.3.4 现代电力时代 (3)第二章现代电力电子计时研究旳重要类容和控制技术 (5)2.1 直流输电技术 (5)2.2 灵活交流输电技术(FACTS) (5)2.3 定制电力技术(DFACTS) (6)2.4 高压变频技术 (6)2.5 仿真分析与试验手段 (6)第三章目前电力电子旳应用领域 (7)3.1 工业领域 (7)3.2 交通运送 (7)3.3 老式产业 (8)3.4 家用电器 (8)3.5 电力系统 (8)第四章现代电力电子技术旳发展趋势及其目前研究旳热点问题 (10)4.1 国内发展趋势 (10)4.2 国外发展趋势 (10)4.3 热点问题 (11)第一章现代电力电子技术旳形成与发展1.1 电力电子技术旳定义电力电子技术,又称“功率电子学”(英文:Power Electronics),简称PE,是应用于电力领域,使用电力电子元件对电能进行变换和控制旳电子技术。
电力电子技术分为电力电子元件制造技术和变流技术。
一般认为,1957年美国美国通用电气企业研制出第一种晶体管是电力电子技术诞生旳标志。
1974年,美国旳W. Newell提出:电力电子学是由电力学、电子学和控制理论三个学科交叉而行成。
这一观点被全世界普遍接受。
1.2 电力电子技术旳历史伴随1923年第一种整流器旳问世,进而引入了功率电子学这个概念。
原始整流器是一种内含液态汞旳阴极放电管。
这个汞蒸气型旳整流器,可以将数千安培旳交流电转换为直流电,其容忍电压也高达一万伏特以上。
从1930年开始,这种原始旳整流器开始匹配一种类似于通管技术旳点阵式(或晶格构造)类比控制器,从而实现了直流电流旳可控制性(引燃管,闸流管)。
现代电力电子技术及应用
现代电力电子技术及应用电力电子技术是指以半导体器件为核心,应用电子技术来实现电力转换、控制和保护的技术。
电力电子技术的发展,不仅加速了电力系统的进步,而且也成为现代电子技术应用领域中的重要组成部分。
本文将以电力电子技术的发展、应用和前景为主线,进行以下详细阐述。
一、电力电子技术的发展电力电子技术的发展始于20世纪60年代,主要是针对电力变频调速和谐波污染这两个问题。
20世纪70年代到80年代,随着电力电子器件如晶闸管、功率场效应管(MOSFET)和可控硅(SCR)等的出现,电力电子技术逐渐成熟,并在电力系统中得到广泛应用。
在这个阶段,电力电子技术主要应用于电动机的调速控制、输电线路电力因数补偿、谐波抑制等方面。
20世纪90年代以来,随着高压直流输电(HVDC)技术、柔性交流输电(FACTS)技术和电能质量(PQ)控制技术的发展,电力电子技术获得了更大的应用空间。
其中,HVDC技术不仅弥补了交流传输中输电线路对环境的影响,还提高了长距离输电效率;FACTS技术则通过直接控制交流输电系统的电压、电流和相位等参数,实现对电力系统的灵活控制,提高电力系统的可靠性和稳定性。
此外,电能质量控制技术也在消除电路中的谐波、尖峰电流和点状变压器等方面发挥了重要作用。
二、电力电子技术的应用在电力系统中,电力电子技术已经广泛应用于能源转换、输配电和工业自动化等领域。
下面将重点介绍电力电子技术在这些领域中的应用。
1、能源转换应用电力电子技术在能源转换中的应用包括风力发电、太阳能电池和燃料电池等方面。
其中,风力发电和太阳能电池都属于可再生能源,将电力电子技术应用于其控制系统中可以提高其发电效率和可靠性;燃料电池则可将化学能转化为电能,成为能源转换领域的理想选择。
2、输配电应用电力电子技术在输配电领域中的应用主要有功率因数补偿技术、电网稳频技术和电网无功控制技术等。
其中,功率因数补偿技术是指通过电容器、静态无功补偿器等设备将系统的功率因数提高到合理的范围,降低输电损耗,提高系统效率和稳定性;电网稳频技术是通过调节负载和电压控制器的频率和电压,使系统频率和电压保持稳定;电网无功控制技术则主要是调节无功电力来维持系统的电压稳定和电能质量。
《现代电力电子技术》课件
电力电子技术的未来发展方向
高效化
智能化
未来电力电子技术将更加注重能效的提高 ,不断推动能源转换和利用效率的提升。
随着人工智能和物联网技术的发展,电力 电子技术将更加智能化,能够实现自适应 控制和远程监控等功能。
集成化
绿色化
未来电力电子技术将更加注重集成化设计 ,实现多功能、高集成度的电力电子系统 。
05
CATALOGUE
电力电子技术的挑战与未来发 展
电力电子技术的挑战
01
02
03
技术更新换代快
随着科技的不断进步,电 力电子技术需要不断更新 换代,以满足更高的性能 和效率要求。
节能环保压力
随着能源危机和环境问题 的日益严重,电力电子技 术在节能环保方面面临更 大的压力。
市场竞争激烈
电力电子市场参与者众多 ,竞争激烈,企业需要不 断提升技术水平和产品创 新能力。
详细描述
在DC/DC转换电路中,开关电源的作用是通过控制开关 管的通断时间来调节输出电压的大小。当输入电压通过开 关管时,通过控制开关管的占空比,可以调节输出电压的 大小,从而实现将一种直流电压转换为另一种直流电压。
总结词
DC/DC转换电路的应用
详细描述
DC/DC转换电路广泛应用于各种需要不同电压等级的场 合,如通信设备、计算机、仪器仪表等。通过DC/DC转 换电路,可以将较高或较低的电压转换为所需的稳定直流 电压,满足各种设备的用电需求。
电力电子技术的应用
电力系统
电力系统中的电力电子技术应用主要涉及发 电、输电和配电环节。通过使用电力电子设 备,如可编程逻辑控制器(PLC)和智能传 感器,可以实现电网的智能化控制和优化管 理,提高电力系统的稳定性和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绪-11
第二节. 电力电子技术的发展史
史前期 (黎明期)
晶体管诞生
晶闸管问 世,(“公元
元年”)
电子学
电力学
电力 电子学
连续、离散
控制 理论
全世界普遍接受。
图1 描述电力电子学的倒三角形
绪-8
三. 与相关学科的关系
与电子学(信息电子学)的关系 都分为器件和应用两大分支。 器件的材料、工艺基本相同,采用微电子技术。 应用的理论基础、分析方法、分析软件也基本相 同。 信息电子电路的器件可工作在开关状态,也可工 作在放大状态;电力电子电路的器件一般只工作 在开关状态。 二者同根同源。
绪-5
二. 两大分支
电力电子器件制造技术 是电力电子技术的基础。
变流技术(电力电子器件应用技术) 是电力电子技术的核心。 用电力电子器件构成电力变换电路和对其进行
控制的技术,以及构成电力电子装置和电力电子 系统的技术。
绪-6
二. 两大分支
变流技术
电力——交流和直流两种
从公用电网直接得到的是交流,从蓄电池和干电池 得到的是直流。
绪-13
第三节. 电力电子技术的应用
1.一般工业
数控机床
自动控制
绪-14
第三节. 电力电子技术的应用
2.交通运输
绪-15
第三节. 电力电子技术的应用
3.电力系统
柔性交流输电FACTS
高压直流装置HVDC
绪-16
第三节. 电力电子技术的应用
4. 电子装置用电源
电子装置
微型计算机
绪-17
第三节. 电力电子技术的应用
办公室:1-A319 电气控制研究所1-B101
绪论
第一节 什么是电力电子技术 第二节 电力电子技术的发展史 第三节 电力电子技术的应用 第四节 教学内容简介
绪-3
第一节 什么是电力电子技术
一. 电力电子与信息电子 二. 两大分支 三. 与其他学科的关系
绪-4
• 电力电子与信息电子
电子技术
信息电子 技术
电力变换四大类
交流变直流、直流变交流、直流变直流、交流变交流
表1 电力变换的种类
输出 输入
直流
交流
交流
整流
交流电力控制 变频、变相
直流
直流斩波
逆变
进行电力变换的技术称为 变流技术。
绪-7
三. 与相关学科的关系
电力电子学 (Power Electronics)名称60年代出 现。
1974年,美国的W. New ell用图1的倒三角形对电 力电子学进行了描述,被
电力电子 技术
模拟电子 技术
数字电子 技术
信息电子技术——信息处理 电力电子技术——电力变换
电力电子技术——使用电力电子 器件对电能进行变换和控制的技 术,即应用于电力领域的电子技 术。
目前电力电子器件均用半导体制 成,故也称电力半导体器件。 电力电子技术变换的“电力”, 可大到数百MW甚至GW,也可 小到数W甚至mW级。
绪-21
教学的内容简介
《现代电力电子技术》 教学内容结构
第一部分 课程的基础
电力电子器件
第二部分 课程的主体
直流斩波电路 逆变电路
整流电路
交流控制电路 和交交变频电路
组合变流电路
第三部分 课程的深入
PWM控制技术
软开关技术
现代电力电 子技术应用
绪-22
教材或教学参考书
▪ 1、现代电力电子技术与应用,张淼 冯垛生
绪-20
第四节. 课程的教学内容简介
电力电子技术是利用电力电子器件对电能进行控制和 转换的学科,它包括电力电子器件、变流技术和控制技 术三个部分,控制技术中重点在系统应用,故本课程主 要学习电力电子器件、变流电路和电力电子技术应用。
分别介绍现代电力电子技术的分析方法、功率器件结 构性能特点、四种换流变换技术、SPWM产生及控制方法 与典型应用。
《现代电力电子技术》学习报告 1、自己将从事的课题介绍(5分钟) 2、电力电子应用专题报告(15分钟) 3、问题回答(3分钟) 4、从第12周二开始
绪-25
《现代电力电子技术》应用专题报告
中国电力出版社 ,2011年2月出版
▪ 2、电力电子技术(第5版),王兆安 刘进军
机械工业出版社,2009
▪ 4、现代电力电子技术,王兴贵, 陈伟
中国电力出版社,2010年8月
▪ 5、现代电力电子技术基础,李宏
机械工业出版社,2009年01月出版
现代电力电子技术考核
学习报告 40% 期末开卷考试60%
全控型器件迅 速发展时期
1904
1930
1947 1957 1970 1980 1990 2000 t(年)
电子管 问世
水银(汞 弧)整流 器时代
晶闸管时代
IGBT及功率
集成器件出现 和发展时代
电力电子技术的发展史是以电力电子器件的发展史为纲的。
绪-12
第三节. 电力电子技术的应用
一般工业:交直流电机、电化学工业、冶金工业 交通运输:电气化铁道、电动汽车、航空、航海 电力系统:高压直流输电、柔性交流输电、无功补偿 电子装置电源:为信息电子装置提供动力 家用电器:变频空调、冰箱、洗衣机 其他:UPS、EPS、新能源、发电装置
5. 家用电器
变频空调控制器
交流变频控制器的原理框图
直流变频空调的电路原理图
绪-18
第三节. 电力电子技术的应用
6.其他
大型计算机的UPS
新型能源
绪-19
第三节. 电力电子技术的应用
总之,电力电子技术的应用范围十分广泛,激发人 们学习、研究电力电子技术并使其飞速发展。 电力电子装置提供给负载的是各种不同的电源,因 此可以说,电力电子技术研究的也就是电源技术。
绪-9
三. 与相关学科的关系
与电力学(电气工程)的关系 电力电子技术广泛用于电气工程中
高压直流输电 静止无功补偿 电力机车牵引 交直流电力传动 电解、电镀、电加热、高性能交直流电源
国内外均把电力电子技术归为电气工程的一 个分支。 电力电子技术是电气工程学科中最为活跃的 一个分支。
绪-10
三. 与相关学科的关系
现代电力电子技 术
Modern Power Electronic Technology
个人简介
钱祥忠 电子科技大学工学博士 教授 研究生导师
(电气装备信息化和计算机应用技术硕士点负责人)
电气传动与智能控制研究所所长
联系方式: (668029) xzhqian@ 1908486838 (QQ)