二次函数与反比例函数(供参考)
初中反比例函数与二次函数知识点详解
初中反比例函数与二次函数知识点详解知识点一、反比例函数1、反比例函数的概念一般地,函数xky =(k 是常数,k ≠0)叫做反比例函数。
反比例函数的解析式也可以写成1-=kx y 的形式。
自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数。
2、反比例函数的图像反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。
由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
3、反比例函数的性质4、反比例函数解析式的确定确定及诶是的方法仍是待定系数法。
由于在反比例函数xky =中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k 的值,从而确定其解析式。
5、反比例函数中反比例系数的几何意义如下图,过反比例函数)0(≠=k xky 图像上任一点P 作x 轴、y 轴的垂线PM ,PN ,则所得的矩形PMON 的面积S=PM ∙PN=xy x y =∙。
k S k xy xky ==∴=,, 。
知识点二、二次函数的概念和图像1、二次函数的概念一般地,如果特)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a 不为零那么y 叫做x 的二次函数。
)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。
2、二次函数的图像二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线。
抛物线的主要特征:①有开口方向;②有对称轴;③有顶点。
3、二次函数图像的画法 五点法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴(2)求抛物线c bx ax y ++=2与坐标轴的交点:当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。
二次函数与反比例函数的对应关系与应用
二次函数与反比例函数的对应关系与应用在数学中,二次函数和反比例函数是常见的数学函数类型之一。
二次函数是指形式为f(x) = ax^2 + bx + c的函数,其中a、b、c为常数且a ≠ 0;而反比例函数是指形式为f(x) = k/x的函数,其中k是常数且k ≠ 0。
本文将深入探讨二次函数与反比例函数之间的对应关系以及它们在实际生活中的应用。
一、二次函数与反比例函数之间的对应关系在数学中,二次函数与反比例函数之间存在一定的对应关系。
具体来说,当二次函数的自变量和函数值互换位置时,可以得到一个对应的反比例函数。
例如,对于二次函数f(x) = ax^2 + bx + c,可以将自变量x和函数值f(x)互换位置后得到新的函数g(x) = a/f(x)。
通过这种方式,二次函数和反比例函数之间可以建立一种对应的关系。
这种对应关系在数学中是有一定意义的。
通过分析二次函数和反比例函数之间的对应关系,可以深入理解两者之间的性质和特点。
在实际应用中,这种对应关系也为求解二次函数和反比例函数提供了一种有效的方法。
二、二次函数与反比例函数的应用二次函数和反比例函数在实际生活中有着广泛的应用。
下面将介绍它们在几个不同领域的具体应用。
1. 物理学:二次函数和反比例函数在物理学中经常被用来描述物体的运动和变化规律。
例如,通过使用二次函数,可以分析抛物线轨迹下的物体运动情况;反比例函数则可以描述两个变量之间的相对关系,比如在光学中的透镜成像过程中。
2. 经济学:二次函数和反比例函数在经济学领域中有着广泛的应用。
例如,二次函数可以用来描述成本、收益和利润之间的关系,帮助经济学家制定相关政策和决策;反比例函数则可以用来描述供求关系中的价格与需求量或供给量之间的关系。
3. 工程学:在工程学中,二次函数和反比例函数被广泛应用于各种设计和分析中。
例如,通过使用二次函数可以优化车辆行驶的轨迹,降低能耗和成本;反比例函数可用于电路设计中的电阻或电容的选取。
《二次函数和反比例函数》常考题集(20)
第20章《二次函数和反比例函数》常考题集(20)20.5 二次函数的一些应用解答题181.(2004•河北)如图1是某段河床横断面的示意图.查阅该河段的水文资料,得到下表关于x的函数图象;x的二次函数的表达式:;(3)当水面宽度为36米时,一艘吃水深度(船底部到水面的距离)为1.8米的货船能否在这个河段安全通过?为什么?182.(2009•孝感校级模拟)宏达纺织品有限公司准备投资开发A、B两种新产品,通过市场调研发现:如果单独投资A种产品,则所获利润(万元)与投资金额x(万元)之间满足正比例函数关系:y A=kx;如果单独投资B种产品,则所获利润(万元)与投资金额x(万元)之间满足二次函数关系:y B=ax2+bx.根据公司信息部的报告,y A,y B(万元)与投资(1)填空:y A= ;y B= ;(2)如果公司准备投资20万元同时开发A、B两种新产品,设公司所获得的总利润为w(万元),试写出w与某种产品的投资金额x之间的函数关系式;(3)请你设计一个在(2)中能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少万元.183.(2000•甘肃)某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足关系:m=140﹣2x.(1)写出商场卖这种商品每天的销售利润y与每件的销售价x间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?184.(2010•双塔区模拟)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)是销售价x(元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日的销售利润是多少元?185.(2010•成都一模)某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元.186.(2000•河北)某跳水运动员进行10米跳台跳水训练,身体(将运动员看成一点)在空中运动的路线是如图所示坐标系经过原点O的抛物线(图中标出的数据为已知数据).在跳某个规定动作时,正常情况下,该运动员在空中最高处距水面米,入水处距池边4米.同时,运动员在距水面高度5米以前,必须完成规定的翻腾、打开动作,并调整好入水姿势,否则就会失误.(1)求这条抛物线的关系式;(2)某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时距池边的水平距离为米,问此次跳水会不会失误?通过计算说明理由.187.(1999•南京)某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)要使商场平均每天赢利最多,请你帮助设计方案.188.(2010•东营模拟)某商店经销一种销售成本为每千克40元的水产品.根据市场分析,若按每千克50元销售,一个月能销售500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题:(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;(2)设销售单价为每千克x元,月销售利润为y元,求y与x之间的函数关系式;(3)当销售单价定为每千克多少元时,月销售利润最大,最大利润是多少?189.(2013秋•七里河区校级期末)施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米,现在O点为原点,OM所在直线为x轴建立直角坐标系(如图所示).(1)直接写出点M及抛物线顶点P的坐标;(2)求出这条抛物线的函数解析式;(3)施工队计划在隧道门口搭建一个矩形“脚手架”ABCD,使A、D点在抛物线上,B、C 点在地面OM上.为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少?请你帮施工队计算一下.190.(2011秋•苏州期末)某村为增加蔬菜的种植面积,一年中修建了一些蔬菜大棚.平均修建每公顷大棚要用的支架、塑料膜等材料的费用为27 000元,此外还要购置喷灌设备,这项费用(元)与大棚面积(公顷)的平方成正比,比例系数为9000.每公顷大棚的年平均经济收益为75 000元,这个村一年中由于修建蔬菜大棚而增加的收益(扣除修建费用后)为60 000元.(1)一年中这个村修建了多少公顷蔬菜大棚?(2)若要使收益达到最大,请问应修建多少公顷大棚?并说明理由.191.(2013•成都模拟)某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件,现采用提高售出价,减少进货量的办法增加利润,已知这种商品每涨价1元其销售量就要减少10件,问他将售出价(x)定为多少元时,才能使每天所赚的利润(y)最大并求出最大利润.192.(2004•安徽)某企业投资100万元引进一条产品加工生产线,若不计维修、保养费用,预计投产后每年可创利33万.该生产线投产后,从第1年到第x年的维修、保养费用累计为y(万元),且y=ax2+bx,若第1年的维修、保养费用为2万元,第2年为4万元.(1)求y的解析式;(2)投产后,这个企业在第几年就能收回投资?193.(2015春•石家庄校级期中)如图,矩形的长是4cm,宽是3cm,如果将长和宽都增加xcm,那么面积增加ycm2.(1)求y与x的函数表达式;(2)求当边长增加多少时,面积增加8cm2.194.(2012秋•大丰市期末)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?195.(2004•黄冈)心理学家研究发现,一般情况下,学生的注意力随着老师讲课时间的变化而变化,讲课开始时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力y随时间t(分钟)的变化规律有如下关系式:y=(y值越大表示接受能力越强)(1)讲课开始后第5分钟时与讲课开始后第25分钟时比较,何时学生的注意力更集中;(2)讲课开始后多少分钟,学生的注意力最集中能持续多少分钟;(3)一道数学难题,需要讲解24分钟,为了效果较好,要求学生的注意力最低达到180,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?196.(2002•兰州)如图这是某次运动会开幕式上点燃火炬时在平面直角坐标系中的示意图,在地面有O、A两个观测点,分别测得目标点火炬C的仰视角为α、β,OA=2米,tanα=,tanβ=,位于点O正上方2米处的D点发射装置,可以向目标C发射一个火球点燃火炬,该火球运行的轨迹为一抛物线,当火球运行到距地面最大高度20米时,相应的水平距离为12米(图中E点).(1)求火球运行轨迹的抛物线对应的函数解析式;(2)说明按(1)中轨迹运行的火球能否点燃目标C.197.(2007•余姚市校级模拟)在某市开展的环境创优活动中,某居民小区要在一块靠墙(墙长15米)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长为40m的栅栏围成,若设花园平行于墙的一边长为x(m),花园的面积为y(m2).(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)满足条件的花园面积能达到200m2吗?若能,求出此时x的值,若不能,说明理由;(3)根据(1)中求得的函数关系式,判断当x取何值时,花园的面积最大,最大面积是多少?198.2009年度东风公司神鹰汽车改装厂开发出A型农用车,其成本价为每辆2万元,出厂价为每辆2.4万元,年销售价为10000辆,2010年为了支援西部大开发的生态农业建设,该厂抓住机遇,发展企业,全面提高A型农用车的科技含量,每辆农用车的成本价增长率为x,出厂价增长率为0.75x,预测年销售增长率为0.6x.(年利润=(出厂价﹣成本价)×年销售量)(1)求2010年度该厂销售A型农用车的年利润y(万元)与x之间的函数关系.(2)该厂要是2010年度销售A型农用车的年利润达到4028万元,该年度A型农用车的年销售量应该是多少辆?199.(2014•武汉模拟)施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系(如图1所示).(1)求出这条抛物线的函数解析式,并写出自变量x的取值范围;(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽2.5米、高5米的特种车辆?请通过计算说明;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB,使A、D点在抛物线上.B、C 点在地面OM线上(如图2所示).为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC 的长度之和的最大值是多少,请你帮施工队计算一下.200.(2012•深圳模拟)某通信器材公司销售一种市场需求较大的新型通讯产品.已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)总计120万元.在销售过程中发现,年销售量y(万件)与销售单价x(元)之间存在着一次函数关系,其中整数k使式子有意义.经测算,销售单价60元时,年销售量为50000件.(1)求出这个函数关系式;(2)试写出该公司销售该种产品的年获利z(万元)关于销售单价x(元)的函数关系式(年获利=年销售额﹣年销售产品总进价﹣年总开支).当销售单价x为何值时,年获利最大并求这个最大值;(3)若公司希望该种产品一年的销售获利不低于40万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?201.(2003•上海)嘉兴月河桥拱形可以近似看作抛物线的一部分.在大桥截面1:1000的比例图上,跨度AB=5cm,拱高OC=0.9cm,线段DE表示河流宽度,DE∥AB,如图(1)在比例图上,以直线AB为x轴,抛物线的对称轴为y轴,以1cm作为数轴的单位长度,建立平面直角坐标系,如图(2).(1)求出图(2)上以这一部分抛物线为图象的函数解析式,并写出自变量的取值范围;(2)如果DE与AB的距离OM=0.45cm,求河流宽度(备用数据:,计算结果精确到1米).202.(2010•黔南州)如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x 轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.(1)求线段OA所在直线的函数解析式;(2)设抛物线顶点M的横坐标为m,①用m的代数式表示点P的坐标;②当m为何值时,线段PB最短;(3)当线段PB最短时,相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等?若存在,请求出点Q的坐标;若不存在,请说明理由.203.(2009•锦州)如图,抛物线与x轴交于A(x1,0),B(x2,0)两点,且x1>x2,与y轴交于点C(0,4),其中x1,x2是方程x2﹣2x﹣8=0的两个根.(1)求这条抛物线的解析式;(2)点P是线段AB上的动点,过点P作PE∥AC,交BC于点E,连接CP,当△CPE的面积最大时,求点P的坐标;(3)探究:若点Q是抛物线对称轴上的点,是否存在这样的点Q,使△QBC成为等腰三角形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.204.(2010•丹东)如图,平面直角坐标系中有一直角梯形OMNH,点H的坐标为(﹣8,0),点N的坐标为(﹣6,﹣4).(1)画出直角梯形OMNH绕点O旋转180°的图形OABC,并写出顶点A,B,C的坐标(点M的对应点为A,点N的对应点为B,点H的对应点为C);(2)求出过A,B,C三点的抛物线的表达式;(3)截取CE=OF=AD=m,且E,F,D分别在线段CO,OA,AB上,求四边形BEFD的面积S与m之间的函数关系式,并写出自变量m的取值范围;面积S是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;(4)在(3)的情况下,四边形BEFD是否存在邻边相等的情况?若存在,请直接写出此时m的值,并指出相等的邻边;若不存在,说明理由.205.(2010•本溪)如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=3.(1)在AB边上取一点D,将纸片沿OD翻折,使点A落在BC边上的点E处,求点D,E的坐标;(2)若过点D,E的抛物线与x轴相交于点F(﹣5,0),求抛物线的解析式和对称轴方程;(3)若(2)中的抛物线与y轴交于点H,在抛物线上是否存在点P,使△PFH的内心在坐标轴上?若存在,求出点P的坐标,若不存在,请说明理由.(4)若(2)中的抛物线与y轴相交于点H,点Q在线段OD上移动,作直线HQ,当点Q 移动到什么位置时,O,D两点到直线HQ的距离之和最大?请直接写出此时点Q的坐标及直线HQ的解析式.206.(2009•包头)已知二次函数y=ax2+bx+c(a≠0)的图象经过点A(1,0),B(2,0),C(0,﹣2),直线x=m(m>2)与x轴交于点D.(1)求二次函数的解析式;(2)在直线x=m(m>2)上有一点E(点E在第四象限),使得E、D、B为顶点的三角形与以A、O、C为顶点的三角形相似,求E点坐标(用含m的代数式表示);(3)在(2)成立的条件下,抛物线上是否存在一点F,使得四边形ABEF为平行四边形?若存在,请求出m的值及四边形ABEF的面积;若不存在,请说明理由.207.(2010•安顺)如图,抛物线y=x2+3与x轴交于点A,点B,与直线y=x+b相交于点B,点C,直线y=x+b与y轴交于点E.(1)写出直线BC的解析式.(2)求△ABC的面积.(3)若点M在线段AB上以每秒1个单位长度的速度从A向B运动(不与A,B重合),同时,点N在射线BC上以每秒2个单位长度的速度从B向C运动.设运动时间为t秒,请写出△MNB的面积S与t的函数关系式,并求出点M运动多少时间时,△MNB的面积最大,最大面积是多少?208.(2009•株洲)如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x 轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.(1)求点A的坐标(用m表示);(2)求抛物线的解析式;(3)设点Q为抛物线上点P至点B之间的一动点,连接PQ并延长交BC于点E,连接BQ 并延长交AC于点F,试证明:FC(AC+EC)为定值.209.(2009•枣庄)如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.(1)求抛物线的解析式;(2)在抛物线上求点M,使△MOB的面积是△AOB面积的3倍;(3)连接OA,AB,在x轴下方的抛物线上是否存在点N,使△OBN与△OAB相似?若存在,求出N点的坐标;若不存在,说明理由.210.(2009•益阳)阅读材料:如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半.解答下列问题:如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求抛物线和直线AB的解析式;(2)点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C 时,求△CAB的铅垂高CD及S△CAB;(3)是否存在抛物线上一点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明理由.第20章《二次函数和反比例函数》常考题集(20):20.5二次函数的一些应用参考答案解答题181.182.183.184.185.186.187.188.189.190.191.192.193.194.195.196.197.198.199.200.201.202.203.204.205.206.207.208.209.210.。
二次函数及反比例函数知识点
二次函数及反比例函数知识点二次函数和反比例函数是初中和高中数学中经常涉及的函数。
它们在数学上有着重要的应用,同时也具有一定的难度。
下面我们来详细介绍二次函数和反比例函数的知识点。
一、二次函数1. 定义:二次函数是指形如y = ax^2 + bx + c的函数,其中a、b、c为实数,且a≠0。
2.二次函数的图像:二次函数的图像是一个开口朝上或开口朝下的抛物线。
当a>0时,抛物线开口朝上;当a<0时,抛物线开口朝下。
3.二次函数的性质:(1) 顶点坐标:二次函数的顶点坐标为(-b/2a, f(-b/2a)),其中f(x)=ax^2 + bx + c。
(2)对称轴:顶点坐标为(-b/2a,f(-b/2a))的直线称为二次函数的对称轴,方程为x=-b/2a。
(3)开口方向:二次函数的开口方向取决于系数a的正负。
(4) 判别式:二次函数ax^2 + bx + c的判别式为Δ = b^2 - 4ac,当Δ > 0时,二次函数有两个不相等的实根;当Δ = 0时,有两个相等的实根;当Δ < 0时,无实根。
4.二次函数的平移:二次函数的横向平移和纵向平移可以通过对函数的自变量和因变量进行平移操作实现。
5.二次函数的解析式:通过给定的定点和顶点坐标,可以确定一条与x轴相交的二次函数。
6.二次函数的应用:二次函数在数学和物理等领域有着广泛的应用,如碰撞问题、抛物线运动等。
二、反比例函数1.定义:反比例函数是指形如y=k/x的函数,其中k为非零实数。
2.变化规律:反比例函数的特点是随着x的增大,y的值会逐渐减小;反之,随着x的减小,y的值会逐渐增大。
3.反比例函数的性质:(1)零点:当x≠0时,y=0称为反比例函数的零点。
(2)渐近线:反比例函数y=k/x的图像有两个渐进线x=0和y=0。
(3)对称性:反比例函数的图象关于坐标轴对称。
(4)奇函数:反比例函数是一个奇函数,满足f(-x)=-f(x)。
反比例函数与二次函数
4
龙文教育·教务管理部
中小学 1 对 1 课外辅导专家 A. N 处 B. P 处 C. Q 处 D. M 处
例 11、我们把分子为 1 的分数叫做理想分数,如 不同理想分数的和,如 果理想分数
1 n
1 2
, ,
3
1
1 4
,„,任何一个理想分数都可以写成两个
1 2
1 3
1 6
;
3
1
1 4
M
(填 a, b, c 的大小关系). ”证
2 x
y 2, x 2 y, x y m in 2 x y 2, x 2 y, x y ,则 x y 2 2
2
.
(3)在同一直角坐标系中作出函数 y x 1 , y ( x 1) , y 2 x 的图象(不需列表描点) .通过观察图象,填
2 2 2
联,并说明理由。 (2)抛物线 C 1 : y
1 8 ( x 1) 2 ,动点
2
P 的坐标为(t,2) ,将抛物线绕点 P(t,2)旋转 180 得到抛物线 C 2 ,若
抛物线 C 1 与 C 2 关联,求抛物线 C 2 的解析式。
(3)A 为抛物线 C 1 : y
1 8
③
D
②
C (第 10 题)
3、对于三个数 a, b, c ,用 M a, b, c 表示这三个数的平均数,用 m in a, b, c 表示这三个数中最小的
23 1,, 1 2 3 3 4 3
数.例如: 解决下列问题:
M
23 ; m in 1,, 1 ;
例 5、如图,抛物线 y=ax2 与反比例函数 y 则关于 x 的不等式 a x 2
反比例函数一次函数二次函数性质及图像
反比例函数1、反比例函数图象:反比例函数的图像属于以原点为对称中心的中心对称的双曲线反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。
2、性质:1.当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。
>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。
定义域为x≠0;值域为y≠0。
3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。
4. 在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2=|K|5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴 y=x y=-x(即第一三,二四象限角平分线),对称中心是坐标原点。
6.若设正比例函数y=mx与反比例函数y=n/x交于A、B两点(m、n同号),那么A B两点关于原点对称。
7.设在平面内有反比例函数y=k/x和一次函数y=mx+n,要使它们有公共交点,则n^2+4k·m≥(不小于)0。
8.反比例函数y=k/x的渐近线:x轴与y轴。
9.反比例函数关于正比例函数y=x,y=-x 轴对称,并且关于原点中心对称.10.反比例上一点m 向x 、y 分别做垂线,交于q 、w ,则矩形mwqo (o 为原点)的面积为|k|值相等的反比例函数重合,k 值不相等的反比例函数永不相交。
12.|k|越大,反比例函数的图象离坐标轴的距离越远。
13.反比例函数图象是中心对称图形,对称中心是原点一次函数(一)函数1、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
沪科9年级数学上册第21章 二次函数与反比例函数5 反比例函数
3 m=-2 时,反比例函数的表达式为
y=-4x.
完成表格如下:
x … -4 -3 -2 -1 1 2 3 4 …
y…1
4 3
2
4 -4 -2 -43 -1 …
感悟新知
知2-练
(3)以表中各组对应值为点的坐标,在下面的平面直角 坐标系中描点并画出函数图象 . 解:如图所示.
知识点 3 反比例函数的性质
.
知3-练
解:由 m=-6 知反比例函数 y= mx 的表达式为 y=-6x.
∴当
x=2
时,
y=
-
6 2
=
-
3.
∵在第四象限内, y 随 x 的增大而增大,
∴当 x>2 时, - 3<y<0.
感悟新知
知3-练
6-1. [ 月考·亳州 ] 若点 A( 1,y1), B(- 1,y2) 在 反比
例函数y=m
感悟新知
5-1. [ 月考·皖东南 ] 若点 A( x1, y1), B( x2, y2), 知3-练 C(x3,y3) 都在反比例函数y=m2x+1的图象上,且 x1<0<x2<x3, 则y1, y2, y3 的 大 小 关 系是( B )
A. y1<y2<y3
B. y1<y3<y2
C. y2<y3<y1
第二十一章
二次函数与反比例函数
21.5 反比例函数
学习目标
1 课时讲解
反比例函数的定义 反比例函数的图象 反比例函数的性质 求反比例函数的表达式 建立反比例函数模型解实际问题
反比例函数
y=
k x
(
k
反比例函数与二次函数
反比例函数与二次函数在数学中,反比例函数和二次函数都是常见的函数类型,它们在不同的数学问题中具有不同的应用和特点。
本文将从定义、图像、性质、应用等方面介绍反比例函数和二次函数的相关知识。
一、反比例函数1. 定义:反比例函数是指两个变量之间的关系,其中一个变量的值与另一个变量的值成反比。
一般而言,反比例函数的形式可以表示为 y = k/x (其中k ≠ 0),x 和 y 分别表示两个变量,k 为常数。
2. 图像:反比例函数的图像呈现出一条从第一象限原点 (0, 0) 开始的曲线,并向 x 轴和 y 轴无限延伸。
其特点是随着 x 的增大,y 的值逐渐减小;反之,随着 x 的减小,y 的值逐渐增大。
这种关系如同两个变量的“倒数”关系。
3. 性质:(1)反比例函数的定义域为除了 x = 0 的所有实数,值域为除了 y= 0 的所有实数。
(2)反比例函数的图像关于 y 轴和 x 轴对称。
(3)反比例函数的渐近线分别为 x 轴和 y 轴。
当 x 趋向于正无穷大或负无穷大时,y 趋向于 0。
4. 应用:反比例函数在实际问题中具有广泛的应用,如电阻与电流的关系、速度与时间的关系等。
反比例函数的特性使得在一些情况下,两个变量之间的变化趋势可以用反比例函数来表示和计算。
二、二次函数1. 定义:二次函数是指一个变量的平方与另一个变量之间的关系。
一般而言,二次函数的形式可以表示为 y = ax^2 + bx + c,其中 a、b 和 c 为常数,且a ≠ 0。
2. 图像:二次函数的图像呈现出一个开口向上或向下的抛物线。
开口的方向由二次项系数 a 的正负决定。
当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。
3. 性质:(1)二次函数的定义域为所有实数,值域视图像的开口方向而定。
(2)二次函数的顶点为抛物线的最高点或最低点,其 x 坐标为 -b/2a,y 坐标可以通过代入计算得出。
(3)二次函数的对称轴为通过顶点的直线。
沪科9年级数学上册第21章 二次函数与反比例函数2 二次函数 y=ax 2 +bx+c的图象和性质
b, c 的符号关系
学习目标
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
知识点 1 二次函数y=ax2+k的图象和性质 知1-讲
1. 二次函数y=ax2+k的图象与二次函数y=ax2的图象的 关系 它们的形状(开口大小、方向)相同,只是上、下位 置不同,二次函数y=ax2+k的图象可由二次函数y=ax2 的图象上下平移|k|个单位得到.
解题秘方:紧扣抛物线y=ax2+k与抛物线y=ax2 间的关系及图象的平移规律解答.
知1-练
解:列表如下:
x
… -3 -2 -1 0 1 2 3 …
y=-x2+1 … -8 -3 0 1 0 -3 -8 …
y=-x2-1 … -10 -5 -2 -1 -2 -5 -10 …
描点、连线,即可得这两个函 数的图象,如图21.2-8 所示.
增减性
大而减小;当x>-
b 2a
时,大而增大;当x>-
b 2a
时,
y随x的增大而增大
y随x的增大而减小
续表 最值
当x=-2ba时, y最小值=4ac4-a b2
知5-讲
当x=-2ba时, y最大值=4ac4-a b2
特别解读 抛物线的对称性
知5-讲
(1)如图,若抛物线 上 x=m 和 x=n 对应的
感悟新知
知1-练
1-1. [ 月考·安庆迎江区 ] 二次函数 y=-x2-1的图象是一条 抛物线, 下列关于该抛物线的说法正确的是( B ) A. 开口向上 B. 当 x=0 时,函数的最大值是 -1 C. 对称轴是直线 x=1 D. 抛物线与x轴有两个交点
反比例函数一次函数二次函数性质及图像
在工程学中,反比例函数、一次函数和二次函数可以用来描 述各种工程问题的数学模型,如结构优化、路径规划等。利 用这些函数的性质和图像,可以进行工程设计和优化,提高 工程质量和效率。
感谢您的观看
THANKS
顶点
二次函数的顶点坐标为 $left(frac{b}{2a}, c frac{b^2}{4a}right)$。
04
图像特征
01
02
03
04
形状
二次函数的图像是一条抛物线 。
位置
根据 $a$、$b$、$c$ 的取值 ,抛物线的位置会有所不同。
与坐标轴的交点
令 $y = 0$ 可求得与 $x$ 轴 的交点,令 $x = 0$ 可求得
05
函数图像比较
图像的平移与伸缩
平移
函数图像在平面直角坐标系中的位置可以通过平移来改变。对于一次函数和二次函数,图像可以沿x轴或y轴进 行平移,而对于反比例函数,图像可以沿原点进行平移。
伸缩
函数图像的形状可以通过伸缩来改变。对于一次函数,图像的伸缩表现为斜率的改变;对于二次函数,图像的 伸缩表现为开口大小或方向的改变;对于反比例函数,图像的伸缩表现为离原点的远近。
单调性
反比例函数
反比例函数的单调性取决于其定义域。在每个象限内,反比例函数都是单调的,但在整个 定义域内不是单调的。
一次函数
一次函数的单调性取决于其斜率。当斜率大于0时,函数在整个定义域内单调递增;当斜 率小于0时,函数在整个定义域内单调递减。
二次函数
二次函数的单调性取决于其二次项系数的正负和对称轴的位置。当二次项系数为正时,函 数在对称轴左侧单调递减,在对称轴右侧单调递增;当二次项系数为负时,函数在对称轴 左侧单调递增,在对称轴右侧单调递减。
初中数学(4)--函数(2)--反比例函数与二次函数
6.(2005 徐州) 已知正比例函数 1).求这两个函数关系式.
y k1 x 与反比例函数 y
k2 x
的图象都经过点(2,
7. (2004 贵阳)如图,一次函数
y ax b 的图象与反比例函数 y
k 的图象交于 M 、 N 两点 . x
17 已知关于x的一次函数y=(m-1)x+7,如果y随x的增大而减小,则m的取值范围是 18 某乡粮食总产值为m吨,那么该乡每人平均拥有粮食y(吨) ,与该乡人口数x的函数关系式是 19、函数y= x-5 中,自变量x的取值范围 (A)x>5 (A)第一象限 (A)0 (B)x<5
2
( (
) (D)x≥5 ) (D) 第四象限 ( ) ) (D) (3,-5)
y O
3/5
y x O x
y O x
y O x
数学复习
版权所有,翻版必究
By fangjiyong
y 4. (2005 安徽)任意写出一个图象经过二、 四象限的反比例函数的解析式:__________ M(2,m) O N(-1,-4) x
k 2 5. (2005 苏州)已知反比例函数 y ,其图象在第一、第三象限内,则 k 的值 x
28.某幢建筑物,从 10 米高的窗口 A 用水管和向外喷水,喷的水流呈抛物线(抛物线所在平 面与墙面垂直, (如图)如果抛物线的最高点 M 离墙 1 米,离地面 距离 OB 是( (A)2 米 ) (B)3 米 (C)4 米 (D)5 米 40 米,则水流下落点 B 离墙 3
29.求下列函数的最大值或最小值. (1)
x1 x2 2 y1 y2 2
2、函数平移规律(中考试题中,只占 3 分,但掌握这个知识点,对提高答题速度有很大帮 助,可以大大节省做题的时间)左加右减、上加下减 随堂练习:
九年级 反比例函数与二次函数
第一章 反比例函数一、反比例函数的定义:若两个变量x ,y 可以表示成为x k y =(k ≠0)的形式,则我们称y 是x 的反比例函数。
二、反比例函数的判定方法:1、函数解析式满足形如xk y =(k ≠0)的形式; 2、如果两个变量的积为常数,则两个变量建立的是反比例函数;3、如果函数的图像是双曲线或双曲线的某一支,则这两个变量建立的是反比例函数。
三、反比例函数的图像:反比例函数的图像是双曲线,并且位于坐标系的一三象限或二四象限;当k >0时,在一三象限;k <0,则在二四象限四、反比例函数的性质:当k >0时,在每一个象限内,y 随x 的增大而减小;当k <0时,在每一个象限内,y 随x 的增大而增大。
五、函数表达式的确定:反比例函数的解析式的确定,只需确定k 值即可,所以一般只需在图像找任意一点带进去求k 值即可。
第二章 二次函数一、二次函数的定义:形如c bx ax y ++=2(a ≠0,a 、b 、c 为常数)的函数叫做x 的二次函数。
二次函数的另一种形式:ab ac a b x a y 44)2(22-++=二、二次函数的特殊形式:1、当b =c =0时,函数解析式形如2ax y =;2、当b =0时,函数解析式形如c ax y +=23、当c =0时,函数解析式形如bx ax y +=2三、二次函数的图像:二次函数的图像是一条抛物线。
二次函数是轴对称图形。
四、二次函数的开口问题:二次函数的开口方向和开口大小只与a 值有关。
a >0时,开口向上;a <0时,开口向下。
五、二次函数的对称轴问题:二次函数的对称轴为ab x 2-= 六、二次函数的交点问题:二次函数的交点与判别式ac b 42-=∆有关。
当△>0时,有两个交点;当△=0时,有一个交点;△<0时,没有交点。
七、二次函数的最值问题:当a <0时有最大值,当a >0时有最小值。
八、顶点坐标为⎪⎪⎭⎫ ⎝⎛--a ac b a b 4422,;当x =0时的坐标为(0,c ) 九、韦达定理:044)2(0222=-++⇒=++a b ac a b x a c bx ax aac b b x a ac b b x 24242221---=-+-=, ac x x a b x x =-=+2121,十、二次函数的三种表达式:1、一般式:c bx ax y ++=22、顶点式:()k m x a y ++=23、交点式:()()21x x x x a y --=十一、二次函数与二次不等式:(难点,根据图像去理解)。
2021年全国各地中考数学真题汇编《二次函数和反比例函数》(含答案)
【精品】全国中考数学真题汇编专题一:二次函数一、选择题1.给出下列函数:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A. ①③B. ③④C. ②④D. ②③【答案】B2.如图,函数和( 是常数,且)在同一平面直角坐标系的图象可能是()A. B. C. D.【答案】B3.关于二次函数,下列说法正确的是()A. 图像与轴的交点坐标为B. 图像的对称轴在轴的右侧C. 当时,的值随值的增大而减小D. 的最小值为-3【答案】D4.二次函数的图像如图所示,下列结论正确是( )A. B. C. D. 有两个不相等的实数根【答案】C5.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( ) A. B. C. D.【答案】B6.若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线。
已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A. (-3,-6)B. (-3,0)C. (-3,-5)D. (-3,-1)【答案】B7.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是()A. 点火后9s和点火后13s的升空高度相同B. 点火后24s火箭落于地面C. 点火后10s的升空高度为139mD. 火箭升空的最大高度为145m【答案】D8.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A. 1B. 2C. 3D. 4【答案】B9.如图是二次函数(,,是常数,)图象的一部分,与轴的交点在点和之间,对称轴是.对于下列说法:①;②;③;④(为实数);⑤当时,,其中正确的是()A. ①②④B. ①②⑤C. ②③④D. ③④⑤【答案】A10.如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是()A. B. C. D.【答案】D11.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁【答案】B12.如图所示,△DEF中,∠DEF=90°,∠D=30°,DF=16,B是斜边DF上一动点,过B作AB⊥DF于B,交边DE(或边EF)于点A,设BD=x,△ABD的面积为y,则y与x之间的函数图象大致为()A. (B.C. D. (【答案】B二、填空题13.已知二次函数,当x>0时,y随x的增大而________(填“增大”或“减小”)【答案】增大14.右图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加________m。
二次函数及反比例函数知识点
二次函数及反比例函数知识点二次函数是一种重要的数学函数形式,其形式为 f(x) = ax^2 + bx + c,其中 a、b、c 是实数,且a ≠ 0。
这种函数在数学和科学中有广泛的应用。
反比例函数也是常见的函数形式,其形式为 f(x) = k/x,其中 k 是非零常数。
本文将介绍二次函数和反比例函数的基本性质和应用。
一、二次函数的基本性质1. 定义域和值域:二次函数 f(x) = ax^2 + bx + c 的定义域为全体实数,值域的范围取决于二次函数的开口方向和 a 的正负性。
当 a > 0 时,二次函数的开口向上,值域为[f(c), ∞)。
当 a < 0 时,二次函数的开口向下,值域为 (-∞, f(c)]。
2. 对称轴和顶点:二次函数的对称轴为 x = -b/2a,对称轴将二次函数分成两个对称的部分。
二次函数的顶点为 (-b/2a, f(-b/2a)),是二次函数的最值点。
3. 最值点和开口方向:当二次函数的开口向上时,顶点是最小值点,当二次函数的开口向下时,顶点是最大值点。
4. 零点与判别式:二次函数的零点是函数的解,即满足 ax^2 + bx + c = 0 的 x 值。
二次函数的判别式Δ = b^2 - 4ac 可以用来判断二次函数的零点情况:a) 当Δ > 0 时,二次函数有两个不相等的实数根;b) 当Δ = 0 时,二次函数有两个相等的实数根;c) 当Δ < 0 时,二次函数没有实数根。
二、二次函数的应用1. 抛物线运动:抛物线运动是二次函数的经典应用,它可以描述抛射物体的运动轨迹。
通过控制二次函数的参数,可以调节抛射物的抛射角度和最远射程。
2. 优化问题:二次函数经常被用于解决优化问题,如寻找函数的最大值或最小值。
例如,在生产制造中,可以利用二次函数来确定产品的最佳产量和成本。
三、反比例函数的基本性质1. 定义域和值域:反比例函数 f(x) = k/x 的定义域为除了 x = 0 外的全体实数,值域也为除了 k = 0 外的全体实数。
二次函数与反比例函数二次函数与反比例函数的综合应用
二次函数与反比例函数二次函数与反比例函数的综合应用随着数学的发展,二次函数与反比例函数的综合应用在现实生活中扮演着重要的角色。
本文将探讨二次函数与反比例函数的基本概念,并通过实际案例来说明它们在应用中的价值。
二次函数是一种以x的平方为最高次的多项式函数。
它的一般形式为:y=ax^2+bx+c,其中a、b和c为常数,且a不等于0。
二次函数的图像通常呈现为一条抛物线,其开口的方向取决于a的正负。
反比例函数,也被称为倒数函数,是指两个变量之间的关系满足乘积为常数的特性。
反比例函数的一般形式为:y=k/x,其中k为常数。
二次函数与反比例函数的综合应用可以广泛应用于物理学、经济学和工程学等实际领域。
下面将分别介绍它们在这些领域中的应用。
一、物理学中的应用二次函数在物理学中常用于描述抛体运动的轨迹。
例如,当一个物体被抛出时,它的运动轨迹可以用一个二次函数来表示。
其中,抛物线的开口方向与抛出的物体的初速度和抛出角度有关。
反比例函数在物理学中也有着重要的应用,特别是在描述压力和容积之间的关系时。
根据波义耳定律,一个封闭系统中的气体压力与其容积成反比。
因此,我们可以使用反比例函数来表示它们之间的关系,从而帮助我们理解气体的性质和行为。
二、经济学中的应用二次函数在经济学中被广泛应用于成本函数和利润函数的建模。
在生产过程中,成本往往与生产规模和产量呈二次函数关系。
通过分析二次函数的图像和性质,经济学家可以研究如何最大化利润或最小化成本,从而为企业的经营决策提供依据。
反比例函数在经济学中的一个重要应用是供求关系的建模。
根据经济学原理,供求关系可以用反比例函数来表示。
市场上的物品价格往往与供给量和需求量成反比。
通过解析反比例函数,经济学家可以预测市场价格的变化趋势,并为政府和企业的决策提供参考。
三、工程学中的应用二次函数在工程学中常用于描述材料的应力-应变关系。
通过对材料的试验数据进行拟合,可以得到二次函数模型,从而推导出材料的力学性质和特点。
第22章:二次函数与反比例函数知识点总结
第22章:二次函数与反比例函数强化记忆知识点知识点1:二次函数的图象与系数的关系.二次函数2y ax bx c =++中图象与系数的关系:(1)二次项系数a 的正负决定开口方向,a 的大小决定开口的大小. a>0时,开口向上,a<0时,开口向下。
a 越大,开口越小。
a 越小,开口越大。
(2)一次项系数b ,在a 确定的前提下,b 决定了抛物线对称轴的位置.若0>ab ,则对称轴a b x 2-=在y 轴左边,若0<ab ,则对称轴a bx 2-=在y 轴的右侧。
若b=0,则对称轴abx 2-==0,即对称轴是y 轴.概括的说就是“左同右异,y 轴0” (3)常数项c ,c 决定了抛物线与y 轴交点的位置.当0c >时,交点在y 轴的正半轴上 ;当0c =时,抛物线经过原点,;当0c <时,交点在y 轴的负半轴上, 简记为“上正下负原点0”(4) △=b 2-4ac 决定了抛物线与x 轴交点的个数. ① 当0∆>时,抛物线与x 轴有两个交点 ② 当0∆=时,抛物线与x 轴只有一个交点; ③ 当0∆<时,抛物线与x 轴没有交点.另外当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.注:a +b +c 表示x=1时,对应的函数值。
a -b +c 表示x= -1时,对应的函数值.4a +2b +c 表示x=2时,对应的函数值。
9a -3b +c 表示x= -3时,对应的函数值.等知识2:一次函数的图象与系数的关系.一次函数:y=kx +b(k,b 是常数,k≠0) 中图象与系数的关系:(1)走向:k>0,图象经过第一、三象限;k<0,图象经过第二、四象限b>0,图象经过第一、二象限;b<0,图象经过第三、四象限⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<00b k 直线经过第二、三、四象限 (2)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(3)截距: 当b>0时,图象交于y 轴正半轴, 当b<0时,图象交于y 轴负半轴,当b=0时,图象交于原点.(4)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.知识3:反比例函数的图象与系数的关系以及反比例函数性质. 反比例函数:y =xk(k 为常数,k ≠0)中图象与系数的关系: (1)反比例函数的增减性不连续,在讨论函数增减问题时,必须有“在每一个象限内”这一条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数与反比例函数
一、选择题(本大题共10小题,共40分)
1.下列函数是二次函数的是()
A.y=-
B.y=x2+xz+1
C.x2+2y-1=0
D.xy=x2-y
2.函数y=-2x2+12x-12的顶点坐标是()
A.(-3,6)
B.(3,-6)
C.(3,6)
D.(6,3)
3.已知抛物线y=ax2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()
A.-1<x<3
B.-1<x<4
C.x<-1或 x>4
D.x<-1或 x>3
4.二次函数y=ax2+bx+c(a≠0,a,b,c为常数)的图象,则关于x的方程ax2+bx+c=m有实数根的条件是()
A.m≥2
B.m≥5
C.m≥0
D.m>4
3题 4题 5题
9题 5.如图,反比例函数y1=的图象与正比例函数y2=k2x的图象交于
点(2,1),则使y1>y2的x的取值范围是()
A.0<x<2
B.x>2
C.x>2或-2<x<0
D.x<-2或0<x<2
6.反比例函数y=-的图象上有P1(x1,-2),P2(x2,-3)两点,则x1与x2的大小关系是
()
A.x1>x2
B.x1=x2
C.x1<x2
D.不确定
7.若二次函数y=ax2-2ax+c的图象经过点(-1,0),则方程ax2-2ax+c=0的解为()
A.x1=-3,x2=-1
B.x1=1,x2=3
C.x1=-1,x2=3
D.x1=-3,x2=1
8.若抛物线y=x2-2x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为()
A.y=(x-2)2+3
B.y=(x-2)2+5
C.y=x2-1
D.y=x2+4
9.如图,点A为反比例函数图象上一点,过A作AB⊥x轴于点B,连接OA,则
△ABO的面积为()
A.-4
B.4
C.-2
D.2
10.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(-1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论:①当x>3
时,y<0;②3a+b<0;③-1≤a≤-;④4ac-b2>8a;其中正确的结论是()
A.①③④
B.①②③
C.①②④
D.①②③④
二、填空题(本大题共4小题,共20分)
11.已知关于x的函数y=(m-1)x2+2x+m图象与坐标轴只有2个交点,则m= ______ .
12.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则不等式ax2+bx+c<0的解集是
______ .
13.抛物线y=x2-2x+a2的顶点在直线y=2上,则a= ______ .
14.如图,已知正比例函数y1=x与反比例函数y2=的图象交于A、C两点,AB⊥x轴,垂足
为B,CD⊥x轴,垂足为D.给出下列结论:
①四边形ABCD是平行四边形,其面积为18;②AC=3;③当-3≤x<0或x≥3时,
y1≥y2;④当x逐渐增大时,y1随x的增大而增大,y2随x的增大而减小.
其中,正确的结论有 ______ .(把你认为正确的结论的序号都填上)
10题
12题 14题
三、计算题(本大题共8小题,共76分)
15.已知正比例函数与反比例函数的图象都过A(m,1)点.
(1)求m的值,并求反比例函数的解析式;
(2)求正比例函数与反比例函数的另一个交点B的坐标.
16.如图,已知二次函数的图象经过A(2,0)、B(0,-6)两点.
(1)求这个二次函数的解析式;(2)求该二次函数图象的顶点坐标、对称轴以及二次函数图象与x轴的另一个交点;(3)在右图的直角坐标系内描点画出该二次函数的图象及对称轴.
17.已知二次函数y=x2-2(m+2)x+2(m-1).
(1)证明:无论m取何值,函数图象与x轴都有两个不相同的交点;
(2)当图象的对称轴为直线x=3时,求它与x轴两交点及顶点所构成的三角形的面积.
18.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示.
(1)求这个二次函数的解析式;(2)根据图象回答:当y>0时,x的取值范围;(3)当
时,求y得取值范围.
19.如图,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的下底AD在x轴上,其中A(-2,0),B(-1,-3).
(1)求此抛物线的解析式;
(2)连接BD交y轴于F,求直线BD的解析式;
(3)设抛物线的顶点为E,连接BE、DE,求△BDE的面积.
20.如图,隧道的截面由抛物线和长方形构成.长方形的长是8m,
宽是2m,抛物线可以用
表示.
(1)一辆货运卡车高4m,宽2m,
它能通过该隧道吗?
(2)如果该隧道内设双行道,那么这辆货运卡车是否可以通过?
21.某大学毕业生响应国家“自主创业”的号召,投资开办了一个装饰品商店.该店采购进一种今年新上市的饰品进行了30天的试销售,购进价格为20元/件.销售结束后,得知日销售量P(件)与销售时间x(天)之间有如下关系:P=-2x+80(1≤x≤30,且x为整数);又知前20天的销售价格Q1(元/件)与销售时间x(天)之间
有如下关系:Q1=x+30(1≤x≤20,且x为整数),后10天的销售价格Q2(元/件)与销
售时间x(天)之间有如下关系:Q2=45(21≤x≤30,且x为整数).
(1)试写出该商店前20天的日销售利润R1(元)和后10天的日销售利润R2(元)分别与销售时间x(天)之间的函数关系式;
(2)请问在这30天的试销售中,哪一天的日销售利润最大?并求出这个最大利润.
注:销售利润=销售收入-购进成本.
22.如图,已知反比例函数(m为常数)的图象经过点A(1,6).
(1)求m的值;
(2)过点A的直线交x轴于点B,交y轴于点C,且OC=OB,求直线BC的解析式.
四、解答题(本大题共1小题,共14分)
23.如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的
坐标为(6,0).抛物线y=-x2+bx+c经过A、C两点,与AB边交于
点D.
(1)求抛物线的函数表达式;
(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设
CP=m,△CPQ的面积为S.①求S关于m的函数表达式,并求出m为何值时,S取得最大值;
②当S最大时,在抛物线y=-x2+bx+c的对称
轴l上若存在点F,使△FDQ为直角三角形?若存在,请直接写出所有符合条件的F的坐标;若不存在,请说明理由.。