2014-2015学年高中数学(人教A版,选修1-1)单元检测 模块综合检测(A)

合集下载

人教A版高中数学选修一第二学期人教A版选修1综合测试卷及详解.doc

人教A版高中数学选修一第二学期人教A版选修1综合测试卷及详解.doc

第二学期人教A版选修1综合测试卷及详解时间:120分钟满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.过点(3,-2)且与椭圆4x2+9y2=36有相同焦点的椭圆的方程是( )A.错误!未找到引用源。

+错误!未找到引用源。

=1B.错误!未找到引用源。

+错误!未找到引用源。

=1C.错误!未找到引用源。

+错误!未找到引用源。

=1D.错误!未找到引用源。

+错误!未找到引用源。

=1【解析】选 C.椭圆4x2+9y2=36的焦点坐标是(±错误!未找到引用源。

,0),设椭圆的标准方程是错误!未找到引用源。

+错误!未找到引用源。

=1,将(3,-2)代入得错误!未找到引用源。

+错误!未找到引用源。

=1,且a2-b2=5,解得b2=10,a2=15.因此所求椭圆的标准方程是错误!未找到引用源。

+错误!未找到引用源。

=1.2.(2014·乐山高二检测)函数y=(x-a)(x-b)在x=a处的导数为( )A.abB.-a(a-b)C.0D.a-b【解析】选D.因为y=x2-(a+b)x+ab,所以y′=2x-(a+b),所以y′|x=a= 2a-(a+b)=a-b.3.(2014·绵阳高二检测)下列各组命题中,满足“p∨q为真,p∧q为假,p为真”的是( )A.p:0=∅;q:0∈∅B.p:在△ABC中,若cos2A=cos2B,则A=B;q:y=sinx在第一象限是增函数C.p:a+b≥2错误!未找到引用源。

(a,b∈R);q:不等式|x|>x的解集是(-∞,0)D.p:圆(x-1)2+(y-2)2=1的面积被直线x=1平分;q:3≥2【解析】选C.A中,p,q为假命题,不满足“p∨q”为真;B中,p是真命题,则“p”为假,不满足题意;C中,p是假命题,q为真命题,“p∨q”为真,“p∧q”为假,“p”为真,故C正确;D中,p是真命题,不满足“p”为真.4.(2013·大理高二检测)椭圆错误!未找到引用源。

(人教版)高中数学选修1-1检测模块综合检测(A) Word版含答案

(人教版)高中数学选修1-1检测模块综合检测(A) Word版含答案

模块综合检测()一、选择题(本大题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的).命题“任意的∈-+<”的否定是( ).不存在∈-+<.存在∈-+<.存在∈-+≥.对任意的∈-+≥解析:全称命题的否定是特称命题,所以该命题的否定是:存在∈-+≥.答案:.已知()=++,则′()等于( ).+.+·+.+·.+·解析:( )′=,注意避免出现( )′=的错误.答案:.下列选项中,是的必要不充分条件的是( ).:+>+,:>且>.:>,>,:()=-(>,且≠)的图象不过第二象限.:=,:=.:>,:()=(>,且≠)在(,+∞)上为增函数解析:,中是的充分不必要条件,中是的充要条件.答案:.函数()=+在=处取得极值,则的值为( )..-..-解析:′()=+,令′()=,得=-,由题意知,当=-时,原函数在=处取得极值.答案:.下列四个命题:①“若+=,则实数,均为”的逆命题;②“相似三角形的面积相等”的否命题;③“∩=,则⊆”的逆否命题;④“末位数不是的数都能被整除”的逆否命题.其中真命题为( ).①②.②③.①③.③④解析:①的逆命题为“若实数、均为,则+=”,是正确的;③中,∵“∩=,则⊆”是正确的,∴它的逆否命题也正确.答案:.两曲线=++与=-相切于点(,-)处,则,的值分别为( )..,-.-.-,-解析:点(,-)在曲线=++上,可得++=,①又′=+,′==+=,∴=-,代入①,可得=-.答案:.已知椭圆+=(>>),为椭圆上一动点,为椭圆的左焦点,则线段的中点的轨迹是( ) .椭圆.圆.双曲线的一支.线段解析:∵为的中点,为的中点,∴=,又+=,∴+=+=.∴的轨迹是以,为焦点的椭圆.答案:.函数()=(-)的单调递增区间是( ).(-∞,) .().() .(,+∞)解析:′()=+(-)=(-),由′()>,得>.∴()在(,+∞)上是递增的.答案:.设,是椭圆+=的两个焦点,是椭圆上一点,且到两个焦点的距离之差为,则△是( ).钝角三角形.锐角三角形.斜三角形.直角三角形解析:由椭圆的定义,知+==,由题可得-=,则=,=.又==,。

高中数学(人教版A版选修1-1)配套单元检测:3.2.1-3.2.2(含答案)

高中数学(人教版A版选修1-1)配套单元检测:3.2.1-3.2.2(含答案)

§3.2导数的计算3.2.1 几个常用函数的导数3.2.2 基本初等函数的导数公式及导数的运算法则(一) 课时目标 1.能根据定义求函数y =c ,y =x ,y =x 2,y =1x的导数.2.能利用给出的基本初等函数的导数公式求简单函数的导数.1.函数y =f (x )=c 的导数为____________,它表示函数y =c 图象上每一点处,切线的斜率为0.若y =c 表示路程关于时间的函数,则y ′=0可以解释为某物体的____________始终为0,即一直处于________状态.函数y =f (x )=x 的导数为__________,它表示函数y =x 图象上每一点处切线的斜率为1.若y =x 表示路程关于时间的函数,则y ′=1可以解释为某物体做____________为1的______________运动.2.常见基本初等函数的导数公式:(1)若f (x )=c (c 为常数),则f ′(x )=______;(2)若f (x )=x α (α∈Q *),则f ′(x )=________;(3)若f (x )=sin x ,则f ′(x )=________;(4)若f (x )=cos x ,则f ′(x )=________;(5)若f (x )=a x ,则f ′(x )=________ (a >0);(6)若f (x )=e x ,则f ′(x )=________;(7)若f (x )=log a x ,则f ′(x )=________ (a >0,且a ≠1);(8)若f (x )=ln x ,则f ′(x )=________.一、选择题1.下列结论不正确的是( )A .若y =3,则y ′=0B .若y =1x,则y ′=-12x C .若y =-x ,则y ′=-12xD .若y =3x ,则y ′=32.下列结论:①(cos x )′=sin x ;②⎝⎛⎭⎫sin π3′=cos π3;③若y =1x 2,则y ′|x =3=-227.其中正确的有( )A .0个B .1个C .2个D .3个3.已知直线y =kx 是曲线y =e x 的切线,则实数k 的值为( )A.1e B .-1eC .-eD .e 4.正弦曲线y =sin x 上一点P ,以点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是( )A .⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π B .[0,π) C .⎣⎡⎦⎤π4,3π4 D .⎣⎡⎦⎤0,π4∪⎣⎡⎦⎤π2,3π4 5.已知曲线y =x 3在点P 处的切线斜率为k ,则当k =3时的P 点坐标为( )A .(-2,-8)B .(-1,-1)或(1,1)C .(2,8)D .⎝⎛⎭⎫-12,-18 6.质点沿直线运动的路程s 与时间t 的关系是s =5t ,则质点在t =4时的速度为( )A .12523B .110523C .25523D .110523 题 号1 2 3 4 5 6 答 案二、填空题7.曲线y =cos x 在点A ⎝⎛⎭⎫π6,32处的切线方程为__________________________. 8.已知f (x )=x a ,a ∈Q ,若f ′(-1)=-4,则a =________________________________________________________________________.9.若函数y =f (x )满足f (x -1)=1-2x +x 2,则y ′=f ′(x )=________. 三、解答题10.求下列函数的导数:(1)y =x 12;(2)y =1x4;(3)y =5x 3;(4)y =10x .11.求过点(2,0)且与曲线y =x 3相切的直线方程.能力提升12.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 99的值为________.13.求过曲线y =e x 上点P (1,e)且与曲线在该点处的切线垂直的直线方程.1.准确记忆八个公式是求函数导数的前提.2.求函数的导数,要恰当选择公式,保证求导过程中变形的等价性.3.对于一些应用问题如切线、速度等,可以结合导数的几何意义,利用公式进行计算.§3.2 导数的计算3.2.1 几个常用函数的导数3.2.2 基本初等函数的导数公式及导数的运算法则(一)知识梳理1.y ′=0 瞬时速度 静止 y ′=1 瞬时速度 匀速直线2.(1)0 (2)αx α-1 (3)cos x (4)-sin x(5)a x ln a (6)e x (7)1x ln a (8)1x作业设计1.B [y ′=⎝⎛⎭⎫1x ′=(x -12)′=-12x -32=-12x x.] 2.B [直接利用导数公式.因为(cos x )′=-sin x ,所以①错误;sin π3=32,而⎝⎛⎭⎫32′=0,所以②错误; ⎝⎛⎭⎫1x 2′=(x -2)′=-2x -3,则y ′|x =3=-227, 所以③正确.]3.D [设切点为(x 0,y 0).由y ′=e x ,得y ′|x =x 0=e x 0,∴过切点的切线为y -e x 0=e x 0(x -x 0),即y =e x 0x +(1-x 0)e x 0,又y =kx 是切线,∴⎩⎪⎨⎪⎧ k =e x 0,(1-x 0)e x 0=0, ∴⎩⎪⎨⎪⎧x 0=1,k =e.] 4.A [∵y ′=cos x ,而cos x ∈[-1,1].∴直线l 的斜率的范围是[-1,1],∴直线l 倾斜角的范围是⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫34π,π.] 5.B [y ′=3x 2,∵k =3,∴3x 2=3,∴x =±1,则P 点坐标为(-1,-1)或(1,1).]6.B [s ′=15t -45. 当t =4时,s ′=15·1544=110523.] 7.x +2y -3-π6=0 解析 ∵y ′=(cos x )′=-sin x , ∴y ′|x =π6=-sin π6=-12, ∴在点A 处的切线方程为y -32=-12⎝⎛⎭⎫x -π6, 即x +2y -3-π6=0. 8.4解析 ∵f ′(x )=ax a -1,∴f ′(-1)=a (-1)a -1=-4,∴a =4.9.2x解析 ∵f (x -1)=1-2x +x 2=(x -1)2,∴f (x )=x 2,f ′(x )=2x .10.解 (1)y ′=(x 12)′=12x 11.(2)y ′=⎝⎛⎭⎫1x 4′=(x -4)′=-4x -5=-4x 5. (3)y ′=(5x 3)′=(x 35)′=35x -25=355x 2. (4)y ′=(10x )′=10x ln 10.11.解 点(2,0)不在曲线y =x 3上,可令切点坐标为(x 0,x 30).由题意,所求直线方程的斜率k =x 30-0x 0-2=y ′|x =x 0=3x 20,即x 30x 0-2=3x 20,解得x 0=0或x 0=3. 当x 0=0时,得切点坐标是(0,0),斜率k =0,则所求直线方程是y =0;当x 0=3时,得切点坐标是(3,27),斜率k =27,则所求直线方程是y -27=27(x -3), 即27x -y -54=0.综上,所求的直线方程为y =0或27x -y -54=0.12.-2解析 y ′=(n +1)x n ,曲线在点(1,1)处的切线方程为y -1=(n +1)(x -1),令y =0,得x =n n +1. a n =lg x n =lg n n +1=lg n -lg(n +1), 则a 1+a 2+…+a 99=lg 1-lg 2+lg 2-lg 3+…+lg 99-lg 100=-lg 100=-2.13.解 ∵y ′=e x ,∴曲线在点P (1,e)处的切线斜率是y ′|x =1=e ,∴过点P 且与切线垂直的直线的斜率k =-1e, ∴所求直线方程为y -e =-1e(x -1), 即x +e y -e 2-1=0.。

人教A版高中数学选修1-1全册同步练习及单元检测含答案

人教A版高中数学选修1-1全册同步练习及单元检测含答案

人教版高中数学选修1~1 全册同步练习及检测目录1.1命题及其关系1.2充分条件与必要条件11.2充分条件与必要条件21.3_1.4试题1.3简单的逻辑联结词1.4全称量词与存在量词同步测试第1章《常用逻辑用语》单元测试(1)第1章《常用逻辑用语》单元测试(2)第1章《常用逻辑用语》单元测试(3)第1章《常用逻辑用语》单元测试(4)2.1椭圆《椭圆的几何性质》2.1椭圆2.2双曲线双曲线几何性质2.2双曲线双曲线及其标准方程2.3抛物线习题精选2.3抛物线抛物线及其标准方程第2章《圆锥曲线与方程》单元测试(1)第2章《圆锥曲线与方程》单元测试(2)3.1变化率与导数3.2.2导数的运算法则3.2导数的计算3.3.3函数的最大值与最小值3.3《导数在研究函数中的应用》3.4生活中的优化问题举例第3章《导数及其应用》单元测试(1)第3章《导数及其应用》单元测试(2)1.1 命题及其关系测试练习第1题. 已知下列三个方程24430x ax a +-+=,()2210x a x a +-+=,2220x ax a +-=至少有一个方程有实根,求实数a 的取值范围.答案:312a a a⎧⎫--⎨⎬⎩⎭或,剠.第2题. 若a b c ∈R ,,,写出命题“200ac ax bx c <++=若则,”有两个相异实根的逆命题、否命题、逆否命题,并判断它们的真假.答案:逆命题:()200ax bx c a b c ac ++=∈<R 有实根,则若,,,假;否命题:200ac ax bx c ++=若则,…(a b c ∈R ,,)没有实数根,假;逆否命题:()200ax bx c a b c ac ++=∈R 若没有两实根,则,,…,真.第3题. 在命题22a b a b >>若则“,”的逆命题、否命题、逆否命题中,假命题的个数为.答案:3.第4题. 用反证法证明命题“三角形的内角中至少有一个钝角”时反设是.答案:假设三角形的内角中没有钝角.第5题. 命题“若0xy =,则0x =或0y =”的逆否命题是. 答案:若0x ≠且0y ≠,则0xy ≠.第6题. 命题“若a b ,>则55a b -->”的逆否命题是( ) (A)若a b ,<则55a b --<(B)若55a b --,>则a b >(C) 若a b ,…则55a b --… (D)若55a b --,…则a b …答案:D第7题. 命题“两条对角线相等的四边形是矩形”是命题“矩形是两条对角线相等的四边形”的( )(A)逆命题 (B)否命题 (C)逆否命题 (D)无关命题答案:A第8题. 命题“若60A ∠=,则ABC △是等边三角形”的否命题是( ) (A)假命题(B)与原命题同真同假(C)与原命题的逆否命题同真同假 (D)与原命题的逆命题同真同假答案:D第9题. )(A) (B)是有理数(C) (D)答案:D第10题. 命题“对顶角相等”的逆命题、否命题、逆否命题中,真命题是( ) (A)上述四个命题 (B)原命题与逆命题 (C)原命题与逆否命题 (D)原命题与否命题答案:C第11题. 原命题为“圆内接四边形是等腰梯形”,则下列说法正确的是( ) (A)原命题是真命题 (B)逆命题是假命题 (C) 否命题是真命题 (D)逆否命题是真命题答案:C第12题. 命题“若a A b B ∈∈则,”的否定形式是( ) (A)a A b B ∉∉若则, (B)a A b B ∈∉若则, (C)a A b B ∈∈若则, (D)b A a B ∉∉若则,答案:B第13题. 与命题“能被6整除的整数,一定能被3整除”等价的命题是( ) (A)能被3整除的整数,一定能被6整除 (B)不能被3整除的整数,一定不能被6整除 (C)不能被6整除的整数,一定不能被3整除 (D)不能被6整除的整数,不一定能被3整除答案:B第14题. 下列说法中,不正确的是( ) (A)“若p q 则”与“若q p 则”是互逆的命题 (B)“若非p q 则非“与“若q p 则”是互否的命题 (C)“若非p q 则非”与“若p q 则”是互否的命题 (D)“若非p q 则非”与“若q p 则”是互为逆否的命题答案:B第15题. 以下说法错误的是( )(A) 如果一个命题的逆命题为真命题,那么它的否命题也必为真命题 (B)如果一个命题的否命题为假命题,那么它本身一定为真命题(C)原命题、否命题、逆命题、逆否命题中,真命题的个数一定为偶数 (D)一个命题的逆命题、否命题、逆否命题可以同为假命题答案:B第16题. 下列四个命题:⑴“若220x y +=,则实数x y ,均为0”的逆命题;⑵“相似三角形的面积相等“的否命题 ; ⑶“A B A A B =⊆ 则,”逆否命题;⑷“末位数不是0的数可被3整除”的逆否命题,其中真命题为( ) (A) ⑴⑵ (B)⑵⑶ (C)⑴⑶ (D)⑶⑷答案:C第17题. 命题“a b ,都是偶数,则a b +是偶数”的逆否命题是.答案:a b +不是偶数则a b ,不都是偶数.第18题. 已知命题:33p …;:34q >,则下列选项中正确的是() A .p 或q 为真,p 且q 为真,非p 为假; B .p 或q 为真,p 且q 为假,非p 为真; C .p 或q 为假,p 且q 为假,非p 为假; D .p 或q 为真,p 且q 为假,非p 为假答案:D第19题. 下列句子或式子是命题的有()个.①语文和数学;②2340x x --=;③320x ->;④垂直于同一条直线的两条直线必平行吗?⑤一个数不是合数就是质数;⑥把门关上. A.1个 B.3个 C.5个 D.2个答案:A第20题. 命题①12是4和3的公倍数;命题②相似三角形的对应边不一定相等;命题③三角形中位线平行且等于底边长的一半;命题④等腰三角形的底角相等.上述4个命题中,是简单命题的只有( ). A.①,②,④ B.①,④ C.②,④ D.④答案:A第21题. 若命题p 是的逆命题是q ,命题q 的否命题是r ,则q 是r 的( ) A.逆命题 B.逆否命题 C.否命题 D.以上判断都不对答案:B第22题. 如果命题“p 或q ”与命题“非p ”都是真命题,那么q 为 命题.答案:真第23题. 下列命题:①“若1xy =,则x ,y 互为倒数”的逆命题;②4边相等的四边形是正方形的否命题;③“梯形不是平行四边形”的逆否命题;④“22ac bc >则a b >”的逆命题,其中真命题是 .答案:①,②,③第24题. 命题“若0ad =,则0a =或0b =”的逆否命题是 ,是 命题.答案:若0a ≠且0b ≠,则0ab ≠,真第25题. 已知命题:p N Z Ü,:{0}q ∈N ,由命题p ,q 构成的复合命题“p 或q ”是 ,是 命题;“p 且q ”是 ,是 命题;“非p ”是 ,是 命题.答案:p 或q :N Z Ü或{0}∈N ,为真;p 且q :N Z Ü且{0}∈N ,为假;非:p N Z Ú或=N Z ,为假.第26题. 指出下列复合命题构成的形式及构成它的简单命题,并判断复合命题的真假. (1)23≤;(2)()A A B Ú;(3)1是质数或合数;(4)菱形对角线互相垂直平分.答案:(1)这个命题是“p 或q ”形式,p :23<,q :23=.p 真q 假,p ∴或q 为真命题.(2)这个命题是“非p ”形式,:()p A A B ⊆ ,p 为真,∴非p 是假命题.(3)这个命题形式是p 或q 的形式,其中:1p 是命 数,:1q 是质数.因为p 假q 假,所以“p 或q ”为假命题.(4)这个命题是“p 且q ”形式,:p 菱形对角线互相垂直;:q 菱形对角线互相平分. 因为p 真q 真,所以“p 且q ”为真命题.第27题. 如果p ,q 是2个简单命题,试列出下列9个命题的直值表:(1)非p ;(2)非q ;(3)p 或q ;(4)p 且q ;(5)“p 或q ”的否定;(6)“p 且q ”的否定;(7)“非p 或非答案:第28题. 设命题为“若0m >,则关于x 的方程20x x m +-=有实数根”,试写出它的否命题、逆命题和逆否命题,并分别判断它们的真假.答案:否命题为“若0m >,则关于x 的方程20x x m +-=没有实数根”; 逆命题为“若关于x 的方程20x x m +-=有实数根,则0m >”; 逆否命题“若关于x 的方程20x x m +-=没有实数根,则0m ≤”. 由方程的判别式14m =+ 得0> ,即14m >-,方程有实根. 0m ∴>使140m +>,方程20x x m +-=有实数根,∴原命题为真,从而逆否命题为真.但方程20x x m +-=有实根,必须14m >-,不能推出0m >,故逆命题为假.1.2 充分条件与必要条件测试练习第1题. 设原命题“若p 则q ”真而逆命题假,则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分又不必要条件答案:A第2题. 设x ∈R ,则2x >的一个必要不充分条件是( ) A.1x > B.1x < C.3x > D.3x <答案:A第3题. 如果A 是B 的必要不充分条件,B 是C 的充分必要条件,D 是C 的充分不必要条件,那么A 是D 的( ) A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件答案:A第4题. 设集合{}2M x x =>,{}3P x x =<,那么“x M ∈或x P ∈”是“x M P ∈ ”的( )A.充分条件但非必要条件 B.必要条件但非充分条件 C.充分必要条件 D.非充分条件,也非必要条件答案:B第5题.0x ≥是2x x ≤的___________条件. 答案:必要不充分第6题. 从“⇒”“¿”与“⇔”中选出适当的符号填空(U 为全集,A B ,为U 的子集):(1)A B =___________A B ⊆. (2)A B ⊆___________U UB A 痧⊆.答案:⇒ ⇔第7题. 若A ⌝是B 的充分不必要条件,则A 是B ⌝的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件答案:B第8题. 设:05p x <<,:25q x -<,那么p 是q 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件答案:A第9题. 条件甲:()200ax bx c a ++=≠的两根,10x >,20x >,条件乙:0b a ->且0ca>,则甲是乙的( )A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件答案:C第10题. 从“充分条件”“必要条件”中选出适当的一种填空:(1)“()200ax bx c a ++=≠有实根”是“0ac <”的_____________;(2)“AB C A B C '''△≌△”是“ABC A B C '''△∽△”的_____________.答案:(1)必要条件 (2)充分条件第11题. 已知A 是B 的充分条件,B 是C 的充要条件,A ⌝是E 的充分条件,D 是C 是必要条件,则D 是E ⌝的_____________条件.答案:必要第12题. 用多种方法判断“2t ≠”是“24t ≠”的什么条件.答案:必要不充分条件第13题. 设全集为U ,在下列条件中,哪些是B A ⊆的充要条件? (1)A B A = ; (2)U A B =∅ ð; (3)U UA B 痧⊆.答案:三者都是第14题. 是否存在实数p ,使“40x p +<”是“220x x -->”的充分条件?如果存在,求出p 的取值范围.是否存在实数p ,使“40x p +<”是“220x x -->”的必要条件.如果存在,求出p 的取值范围.答案:4p ≥时,“40x p +<”是“220x x -->”的充分条件;不存在实数p ,使“40x p +<”是“220x x -->”的必要条件.第15题. 已知1:123x p --≤,()22:2100q x x m m -+->≤,若p ⌝是q ⌝的必要而不充分条件,求实数m 的取值范围.答案:解:由22210x x m -+-≤得()110m x m m -+>≤≤.所以“q ⌝”:{}110A x x m x m m =∈>+<->R或,.由1123x --≤得210x -≤≤,所以 “p ⌝”:{}102B x x x =∈><-R或.由p ⌝是q ⌝的必要而不充分条件知01203110.m B A m m m >⎧⎪⇔--⇒<⎨⎪+⎩,,⊆≥≤≤故m 的取值范围为03m <≤.第16题. 命题“22530x x --<”的一个必要不充分条件是( ) A.132x -<< B.142x -<< C.132x -<<D.12x -<<答案:B第17题. 设A B ,是非空集合,则A B A = 是A B =的_________条件. 答案:必要不充分第18题. 已知:523p x ->,21:045q x x >+-,试判断p ⌝是q ⌝的什么条件? 答案:充分不必要条件第19题. 设1a ,1b ,1c ,2a ,2b ,2c 均为非零实数,不等式21110a x b x c ++>和22220a x b x c ++>的解集分别为M 和N ,那么“111222a b c a b c ==”是“M N =”的( ) A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件答案:D第20题. 已知条件M :“A B C A B C '''△∽△”;条件N :“AB A B ''∥,AC A C ''∥,BC B C ''∥”,则M 是N 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件答案:B第21题. 从“充分而不必要条件”,“必要而不充分条件”或“充要条件”中选出适当的一种填空:(1)x A B ∈ 是x A ∈的 ; (2)x A B ∈ 是x B ∈的 ;(3)()U x A ∈ð是x U ∈的; (4)()U x A A ∈ 饀是x A ∈的; (5)“A =∅”是“A B B = ”的 ; (6)“A B Ü”是“A B A = ”的;(7)“x A ∈”是“x A B ∈ ”的 ; (8)“四边形的对角线互相垂直平分”是“四边形为矩形”的;(9)“四边形内接于圆”是“四边形对角互补”的;(10)设1O ,2O 的半径为1r ,2r ,则“1212OO r r =+”是“两圆外切”的. 答案:(1)充分不必要条件 (2)必要不充分条件 (3)充分不必要条件 (4)必要不充分条件 (5)充分不必要条件 (6)充分不必要条件(7)必要而不充分条件 (8)既不充分也不必要条件 (9)充要条件 (10)充要条件.第22题. 设{}2A x x a =∈-R ≤≤,{}23B y y x x A ==+∈,,{}2C z z x x A ==∈,,求使C B ⊆的充要条件.答案:132a ≤≤.第23题. 求关于x 的一元二次不等式210ax ax -+>,对一切x ∈R 都成立的充要条件是什么?答案:04a <≤.第24题. 求方程2210ax x ++=至少有一个负根的充要条件.答案:01a <≤.第25题. 求三个实数a b c ,,不全为零的充要条件.答案:a b c ,,中至少有一个不是零.第26题. 设集合{}260A x x x =+-=,{}10B x mx =+=,写出B A Ü的一个充分不必要条件.答案:0m =,13m =,12m =-中之一即可.第27题. 三个数a b c ,,不全为零的充要条件是( ) A.a b c ,,都不是零 B.a b c ,,中至多一个是零 C.a b c ,,中只有一个为零 D.a b c ,,中至少一个不是零答案:D第28题. 设p :“x y z ,,中至少有一个等于1”⇔“(1)(1)(1)0x y z ---=”;q :22(3)0y z -+-=”⇔“(1)(2)(3)0x y z ---=”,那么p ,q 的真假是() A.p 真q 真B.p 真q 假C.p 假q 真D.p 假q 假答案:B第29题. 已知a 为非零实数,x 为某一实数,有命题p :{}x a a ∈-,,q :x a =,则p 是q 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件答案:B第30题. “13x >且23x >”是“126x x +>且129x x >”的充要条件吗?若是,请说明理由;若不是,请给出“13x >且23x >”的充要条件.答案:不是充要条件;1212(3)(3)06x x x x -->⎧⎨+>⎩.1.2 充分条件与必要条件 同步测试第1题. 设原命题“若p 则q ”真而逆命题假,则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分又不必要条件答案:A第2题. 设x ∈R ,则2x >的一个必要不充分条件是( ) A.1x > B.1x < C.3x > D.3x <答案:A第3题. 如果A 是B 的必要不充分条件,B 是C 的充分必要条件,D 是C 的充分不必要条件,那么A 是D 的( ) A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件答案:A第4题. 设集合{}2M x x =>,{}3P x x =<,那么“x M ∈或x P ∈”是“x M P ∈ ”的( )A.充分条件但非必要条件 B.必要条件但非充分条件 C.充分必要条件 D.非充分条件,也非必要条件答案:B第5题.0x ≥是2x x ≤的___________条件. 答案:必要不充分第6题. 从“⇒”“¿”与“⇔”中选出适当的符号填空(U 为全集,A B ,为U 的子集):(1)A B =___________A B ⊆. (2)A B ⊆___________U UB A 痧⊆.答案:⇒ ⇔第7题. 若A ⌝是B 的充分不必要条件,则A 是B ⌝的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件答案:B第8题. 设:05p x <<,:25q x -<,那么p 是q 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件答案:A第9题. 条件甲:()200ax bx c a ++=≠的两根,10x >,20x >,条件乙:0b a ->且0ca>,则甲是乙的( )A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件答案:C第10题. 从“充分条件”“必要条件”中选出适当的一种填空:(1)“()200ax bx c a ++=≠有实根”是“0ac <”的_____________;(2)“AB C A B C '''△≌△”是“ABC A B C '''△∽△”的_____________.答案:(1)必要条件 (2)充分条件第11题. 已知A 是B 的充分条件,B 是C 的充要条件,A ⌝是E 的充分条件,D 是C 是必要条件,则D 是E ⌝的_____________条件.答案:必要第12题. 用多种方法判断“2t ≠”是“24t ≠”的什么条件.答案:必要不充分条件第13题. 设全集为U ,在下列条件中,哪些是B A ⊆的充要条件? (1)A B A = ; (2)U A B =∅ ð; (3)U UA B 痧⊆.答案:三者都是第14题. 是否存在实数p ,使“40x p +<”是“220x x -->”的充分条件?如果存在,求出p 的取值范围.是否存在实数p ,使“40x p +<”是“220x x -->”的必要条件.如果存在,求出p 的取值范围.答案:4p ≥时,“40x p +<”是“220x x -->”的充分条件;不存在实数p ,使“40x p +<”是“220x x -->”的必要条件.第15题. 已知1:123x p --≤,()22:2100q x x m m -+->≤,若p ⌝是q ⌝的必要而不充分条件,求实数m 的取值范围.答案:解:由22210x x m -+-≤得()110m x m m -+>≤≤.所以“q ⌝”:{}110A x x m x m m =∈>+<->R或,.由1123x --≤得210x -≤≤,所以 “p ⌝”:{}102B x x x =∈><-R或.由p ⌝是q ⌝的必要而不充分条件知01203110.m B A m m m >⎧⎪⇔--⇒<⎨⎪+⎩,,⊆≥≤≤故m 的取值范围为03m <≤.第16题. 命题“22530x x --<”的一个必要不充分条件是( ) A.132x -<< B.142x -<< C.132x -<<D.12x -<<答案:B第17题. 设A B ,是非空集合,则A B A = 是A B =的_________条件. 答案:必要不充分第18题. 已知:523p x ->,21:045q x x >+-,试判断p ⌝是q ⌝的什么条件? 答案:充分不必要条件第19题. 设1a ,1b ,1c ,2a ,2b ,2c 均为非零实数,不等式21110a x b x c ++>和22220a x b x c ++>的解集分别为M 和N ,那么“111222a b c a b c ==”是“M N =”的( ) A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件答案:D第20题. 已知条件M :“A B C A B C '''△∽△”;条件N :“AB A B ''∥,AC A C ''∥,BC B C ''∥”,则M 是N 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件答案:B第21题. 从“充分而不必要条件”,“必要而不充分条件”或“充要条件”中选出适当的一种填空:(1)x A B ∈ 是x A ∈的 ; (2)x A B ∈ 是x B ∈的 ;(3)()U x A ∈ð是x U ∈的; (4)()U x A A ∈ 饀是x A ∈的; (5)“A =∅”是“A B B = ”的 ; (6)“A B Ü”是“A B A = ”的;(7)“x A ∈”是“x A B ∈ ”的 ; (8)“四边形的对角线互相垂直平分”是“四边形为矩形”的;(9)“四边形内接于圆”是“四边形对角互补”的;(10)设1O ,2O 的半径为1r ,2r ,则“1212OO r r =+”是“两圆外切”的. 答案:(1)充分不必要条件 (2)必要不充分条件 (3)充分不必要条件 (4)必要不充分条件 (5)充分不必要条件 (6)充分不必要条件(7)必要而不充分条件 (8)既不充分也不必要条件 (9)充要条件 (10)充要条件.第22题. 设{}2A x x a =∈-R ≤≤,{}23B y y x x A ==+∈,,{}2C z z x x A ==∈,,求使C B ⊆的充要条件.答案:132a ≤≤.第23题. 求关于x 的一元二次不等式210ax ax -+>,对一切x ∈R 都成立的充要条件是什么?答案:04a <≤.第24题. 求方程2210ax x ++=至少有一个负根的充要条件.答案:01a <≤.第25题. 求三个实数a b c ,,不全为零的充要条件.答案:a b c ,,中至少有一个不是零.第26题. 设集合{}260A x x x =+-=,{}10B x mx =+=,写出B A Ü的一个充分不必要条件.答案:0m =,13m =,12m =-中之一即可.第27题. 三个数a b c ,,不全为零的充要条件是( ) A.a b c ,,都不是零 B.a b c ,,中至多一个是零 C.a b c ,,中只有一个为零 D.a b c ,,中至少一个不是零答案:D第28题. 设p :“x y z ,,中至少有一个等于1”⇔“(1)(1)(1)0x y z ---=”;q :22(3)0y z -+-=”⇔“(1)(2)(3)0x y z ---=”,那么p ,q 的真假是() A.p 真q 真B.p 真q 假C.p 假q 真D.p 假q 假答案:B第29题. 已知a 为非零实数,x 为某一实数,有命题p :{}x a a ∈-,,q :x a =,则p 是q 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件答案:B第30题. “13x >且23x >”是“126x x +>且129x x >”的充要条件吗?若是,请说明理由;若不是,请给出“13x >且23x >”的充要条件.答案:不是充要条件;1212(3)(3)06x x x x -->⎧⎨+>⎩.高中新课标数学选修(1-1)1.3~1.4测试题一、选择题1.若命题:21()p m m -∈Z 是奇数,命题:21()q n n +∈Z 是偶数,则下列说法正确的是( )A.p q ∨为真 B.p q ∧为真 C.p ⌝为真D.q ⌝为假答案:A2.在下列各结论中,正确的是( )①“p q ∧”为真是“p q ∨”为真的充分条件但不是必要条件; ②“p q ∧”为假是“p q ∨”为假的充分条件但不是必要条件; ③“p q ∨”为真是“p ⌝”为假的必要条件但不充分条件; ④“p ⌝”为真是“p q ∧”为假的必要条件但不是充分条件. A.①② B.①③ C.②④ D.③④ 答案:B3.由下列命题构成的“p q ∨”,“p q ∧”均为真命题的是( ) A.:p 菱形是正方形,:q 正方形是菱形 B.:2p 是偶数,:2q 不是质数 C.:15p 是质数,:4q 是12的约数 D.{}:p a a b c ∈,,,{}{}:q a a b c ⊆,, 答案:D4.命题:p 若a b ∈R ,,则1a b +>是1a b +>的充分条件但不是必要条件,命题:q 函数y =的定义域是(][)13--+ ,,∞∞,则下列命题( )A.p q ∨假B.p q ∧真C.p 真,q 假D.p 假,q 真答案:D5.若命题:p x ∀∈R ,22421ax x a x ++-+≥是真命题,则实数a 的取值范围是( )A.3a -≤或2a ≥ B.2a ≥ C.2a >-D.22a -<<答案:B6.若k M ∃∈,对x ∀∈R ,210kx kx --<是真命题,则k 的最大取值范围M 是( ) A.40k -≤≤ B.40k -<≤ C.40k -<≤D.40k -<<答案:C 二、填空题7.命题“全等三角形一定相似”的否命题是 ,命题的否定是 . 答案:两个三角形或不全等,则不一定相似;两个全等三角形不一定相似8.下列三个特称命题:(1)有一个实数x ,使2440x x ++=成立;(2)存在一个平面与不平行的两条直线都垂直;(3)有些函数既是奇函数又是偶函数.其中真命题的个数为 . 答案:29.命题p q ∧是真命题是命题p q ∨是真命题的 (填“充分”、“必要”或“充要”)条件. 答案:充分10.命题:p x ∃∈R ,2250x x ++<是 (填“全称命题”或“特称命题”),它是 命题(填“真”或“假”),它的否定命题:p ⌝ ,它是 命题(填“真”或“假”).答案:特称命题;假;x ∀∈R ,2250x x ++≥;真11.若x ∀∈R ,11x x a -++>是真命题,则实数a 的取值范围是 .答案:(2)-,∞ 12.若x ∀∈R ,2()(1)x f x a =-是单调减函数,则a 的取值范围是 .答案:(1)- 三、解答题13.已知命题2:10p x mx ++=有两个不相等的负根,命题2:44(2)10q x m x +-+=无实根,若p q ∨为真,p q ∧为假,求m 的取值范围.解:210x mx ++=有两个不相等的负根24020m m m ⎧->⇔⇔>⎨-<⎩,. 244(2)10x m +-+=无实根2216(2)160430m m x ⇔--<⇔-+<13m ⇔<<.由p q ∨为真,即2m >或13m <<得1m >;p q ∧∵为假,()p q p ⌝∧⇒⌝∴或q ⌝为真,p ⌝为真时,2m ≤,q ⌝为真时,1m ≤或3m ≥. p ⌝∴或q ⌝为真时,2m ≤或3m ≥.∴所求m 取值范围为{}123m m m <,或|≤≥.14.若x ∀∈R ,函数2()(1)f x m x x a =-+-的图象和x 轴恒有公共点,求实数a 的取值范围.解:(1)当0m =时,()f x x a =-与x 轴恒相交;(2)当0m ≠时,二次函数2()(1)f x m x x a =-+-的图象和x 轴恒有公共点的充要条件是14()0m m a ∆=++≥恒成立,即24410m am ∆=++≥恒成立,又24410m am ++≥是一个关于m 的二次不等式,恒成立的充要条件是2(4)160a '∆=-≤,解得11a -≤≤.综上,当0m =时,a ∈R ;当0m ≠,[]11a ∈-,.15.有甲、乙、丙、丁四位歌手参加比赛,其中有一位获奖,有人走访了四位歌手,甲说:“我获奖了”,乙说:“甲未获奖,乙也未获奖”,丙说:“是甲或乙获匀”,丁说:“是乙获奖”,四位歌手的话中有两句是对的,请问哪位歌手获奖. 甲获奖或乙获奖.解:①乙说的与甲、丙、丁说的相矛盾,故乙的话是错误的;②若两句正确的话是甲说的和丙说的,则应是甲获奖,正好对应于丁说的错,故此种情况为甲获奖;③若两句正确的话是甲说的和丁说的,两句话矛盾;④若两句正确的话是丙说的和丁说的,则为乙获奖,对应甲说的错,故此种情况乙获奖. 由以上分析知可能是甲获奖或乙获奖.《1.3简单的逻辑联结词》测试题A卷一.选择题:1.如果命题“p或q”是真命题,“非p”是假命题,那么()A 命题p一定是假命题 B命题q一定是假命题C命题q一定是真命题 D命题q是真命题或者是假命题2.在下列结论中,正确的结论为()①“p且q”为真是“p或q”为真的充分不必要条件②“p且q”为假是“p或q”为真的充分不必要条件③“p或q”为真是“ p”为假的必要不充分条件④“ p”为真是“p且q”为假的必要不充分条件A①② B①③ C②④ D③④3.对下列命题的否定说法错误的是()A p:能被3整除的整数是奇数; p:存在一个能被3整除的整数不是奇数B p:每一个四边形的四个顶点共圆; p:存在一个四边形的四个顶点不共圆C p:有的三角形为正三角形; p:所有的三角形都不是正三角形D p: x∈R,x2+2x+2≤0; p:当x2+2x+2>0时,x∈R4.已知p: 由他们构成的新命题“p且q”,“p或q”, “ ”中,真命题有()A 1个B 2个C 3个D 4个5.命题p:存在实数m,使方程x2+mx+1=0有实数根,则“非p”形式的命题是()A存在实数m,使得方程x2+mx+1=0无实根B不存在实数m,使得方程x2+mx+1=0有实根C对任意的实数m,使得方程x2+mx+1=0无实根D至多有一个实数m,使得方程x2+mx+1=0有实根6.若p、q是两个简单命题,且“p或q”的否定是真命题,则必有()A. p真,q真B. p假,q假C. p真,q假D. p假,q真二.填空题:7.命题“ x∈R,x2+1<0”的否定是__________________。

2014-2015学年高中数学 模块综合测评(一)新人教A版选修4-5

2014-2015学年高中数学 模块综合测评(一)新人教A版选修4-5

模块综合测评(一) 选修4-5(A 版)(时间:90分钟 满分:120分)第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,共50分.1.不等式|3x -2|>4的解集是( )A .{x|x >2}B .{x|x <-23} C .{x|x <-23或x >2} D .{x|-23<x <2} 解析:因为|3x -2|>4,所以3x -2>4或3x -2<-4,整理得x >2或x <-23. 答案:C2.设a 、b 、c ∈R ,给出下列命题:①a >b ⇒ac2>bc2;②a >b ⇒a2>b2;③a >|b|⇒a2>b2;④a <b <c ,a >0⇒c a >c b其中正确命题的个数是( )A .1个B .2个C .3个D .4个解析:若c =0,则ac2=bc2,故①不正确;若a =0,b =-1,则a2<b2,故②不正确;若a >|b|≥0,则a2>b2,故③正确;若c >b >a >0,则1a >1b ,从而c a >c b,故④正确. 答案:B3.若a 、b 、c 、d ∈R ,且ab >0,-c a <-d b,则下列各式恒成立的是( ) A .bc <ad B .bc >ab C.a c >b d D.a c <b d解析:对-c a <-d b两边同乘以-ab ,由-ab <0,得bc >ad. 答案:B4.若P =2,Q =7-3,R =6-2,则P 、Q 、R 的大小顺序是( )A .P >Q >RB .P >R >QC .Q >P >RD .Q >R >P解析:P =2=422,Q =7-3=47+3, R =6-2=46+2. ∵22<6+2<7+3,∴422>46+2>47+3, ∴P >R >Q.答案:B5.若a 、b ∈R ,则不等式|a|+|b|≥|a +b|中等号成立的充要条件是( )A .ab >0B .ab≥0C .ab <0D .ab≤0解析:若ab =0,则|a|+|b|=|a +b|;若ab >0,则|a|+|b|=|a +b|;若ab <0,则|a|+|b|>|a +b|.故选B.答案:B6.已知a >b >0,且ab =1,若c =2a +b,P =logca ,N =logcb ,M =logc(ab),则( ) A .P <M <N B .M <P <NC .N <P <MD .P <N <M解析:方法一:因为a >b >0,且ab =1,所以a >1,0<b <1,a +b >2ab =2,c =2a +b∈(0,1), 所以logca <logc(ab)<logcb ,即P <M <N.故选A.方法二(特值法):令a =2,b =12, 于是c =22+12=45. 从而logca =log 45 2<0,logcb =log 45 12>0,logc(ab)=log 451=0. 故P <M <N.答案:A7.设a >1,方程|x +logax|=|x|+|logax|的解是( )A .0≤x≤1B .x≥1C .x≥aD .0<x≤a解析:∵|x +logax|=|x|+|logax|,∴x·logax≥0.又∵a >1,x >0,∴logax≥0,∴x≥1.答案:B8.若a 1-a>0,且x >1,则下列不等式成立的是( ) A .ax <x 1a <logax B .logax <ax <x 1aC .log 1ax <x 1a <ax D .ax <logax <x 1a解析:由a 1-a>0,x >1,得0<a <1,且logax <0<ax <1<x 1a . 答案:B9.用数学归纳法证明1+12+13+…+12n -1>n 2(n ∈N*),假设n =k 时成立,当n =k +1时,左端增加的项数是( )A .1项B .k -1项C .k 项D .2k 项解析:当n =k 时,不等式左端为1+12+13+…+12k -1;当n =k +1时,不等式左端为1+12+13+…+12k -1+12k +…+12k +1-1,增加了12k +…+12k +1-1,共(2k +1-1)-2k +1=2k 项. 答案:D10.记满足下列条件的函数f(x)的集合为M ,当|x1|≤1,|x2|≤1时,|f(x1)-f(x2)|≤4|x1-x2|,若令g(x)=x2+2x -1(|x|≤1),则g(x)与M 的关系是( ) A .g(x)M B .g(x)∈MC .g(x)∉MD .不能确定解析:g(x1)-g(x2)=x21+2x1-x22-2x2=(x1-x2)(x1+x2+2),|g(x1)-g(x2)|=|x1-x2|·|x1+x2+2|≤|x1-x2|·(|x1|+|x2|+2) ≤4|x1-x2|,所以g(x)∈M. 答案:B第Ⅱ卷(非选择题,共70分)二、填空题:本大题共4小题,每小题5分,共20分.11.若|x +y|=4,则xy 的最大值是__________.解析:xy≤⎝⎛⎭⎫x +y 22=⎝⎛⎭⎫422=4. 答案:412.若x <0,则函数f(x)=x2+1x2-x -1x的最小值是__________. 解析:令t =x +1x.∵x <0,∴t≤-2. ∴f(x)≥2+2=4,当且仅当⎩⎪⎨⎪⎧ x2=1x2,x =1x ,x <0,即x =-1时等号成立.答案:413.若关于x 的不等式|x -2|+|x +4|<a 的解集是空集,则实数a 的取值X 围是__________. 解析:∵|x -2|+|x +4|≥|2-x +x +4|=6,∴a≤6.答案:(-∞,6]14.下列四个命题中:①a +b≥2ab ;②sin2x +4sin2x ≥4;③设x 、y 都是正数,若1x +9y=1,则x +y 的最小值是12;④若|x -2|<ε,|y -2|<ε,则|x -y|<2ε.其中所有真命题的序号是__________.解析:①不正确,a 、b 符号不定;②不正确,sin2x ∈(0,1],利用函数y =x +4x单调性可求得sin2x +4sin2x ≥5;③不正确,(x +y)⎝⎛⎭⎫1x +9y =10+y x +9x y≥10+6=16;④正确,|x -y|=|x -2+2-y|≤|x -2|+|2-y|<ε+ε=2ε.答案:④三、解答题:本大题共4小题,满分50分.15.(12分)已知函数f(x)是R 上的增函数,a 、b ∈R.(1)若a +b≥0,求证:f(a)+f(b)≥f(-a)+f(-b);(2)判断(1)中命题的逆命题是否成立,并证明你的结论.证明:(1)∵a +b≥0,∴a≥-b.由已知f(x)是R 上的增函数,于是f(a)≥f(-b).又a +b≥0⇒b≥-a.同理f(b)≥f(-a).两式相加,可得f(a)+f(b)≥f(-a)+f(-b).(6分)(2)逆命题:f(a)+f(b)≥f(-a)+f(-b)⇒a +b≥0.下面用反证法证明,设a +b <0,则⎭⎪⎬⎪⎫a +b <0⇒a <-b ⇒f a <f -b ,a +b <0⇒b <-a ⇒f b <f -a ⇒f(a)+f(b)<f(-a)+f(-b),这与已知矛盾,故有a +b≥0成立.从而逆命题成立.(12分)16.(12分)设函数f(x)=|2x +1|-|x -4|.(1)解不等式f(x)>2;(2)求函数y =f(x)的最小值.解:(1)令y =|2x +1|-|x -4|,则y =⎩⎪⎨⎪⎧ -x -5, x≤-12,3x -3,-12<x <4,x +5, x≥4.作出函数y =|2x +1|-|x -4|的图像,它与直线y =2的交点为(-7,2)和⎝⎛⎭⎫53,2.于是|2x +1|-|x -4|>2的解集为(-∞,-7)∪⎝⎛⎭⎫53,+∞.(6分)(2)由函数y =|2x +1|-|x -4|的图像可知,当x =-12时,y =|2x +1|-|x -4|取得最小值-92.(12分) 17.(12分)已知f(n)=(2n +7)·3n +9,是否存在自然数m ,使得对任意的n ∈N*,都能使m 整除f(n),如果存在,求出最大的m 值,并证明你的结论;如果不存在,请说明理由.解:先找出最大的m 值,由f(n)=(2n +7)·3n +9可知,f(1)=36,f(2)=108,f(3)=360,f(4)=1 224,猜想能整除f(n)的最大整数为36.(4分)下面用数学归纳法证明f(n)能被36整除.①当n =1时,f(1)=36,能被36整除.②假设n =k(k ∈N*)时,f(k)能被36整除.那么n =k +1时,f(k +1)=[2(k +1)+7]·3k +1+9=3[(2k +7)·3k +9]+18(3k -1-1).由归纳假设可知3[(2k +7)·3k +9]能被36整除,而(3k -1-1)为偶数,所以18(3k -1-1)能被36整除.故f(k +1)能被 36整除.由①与②知,f(n)能被36整除.由于f(1)=36,从而能整除f(n)的最大整数是36.(12分)18.(14分)已知数列{an}是由非负整数组成的数列,满足a1=0,a2=3,an +1an =(an -1+2)(an -2+2),n =3,4,5,….(1)求a3;(2)求证:an =an -2+2,n =3,4,5,…;(3)求{an}的通项公式及前n 项和Sn.解:(1)由题设,当n =3时,得a3a4=10.因为a3、a4均为非负整数,所以a3的可能值为1、2、5、10.若a3=1,则a4=10,a5=32,与题设矛盾;若a3=5,则a4=2,a5=352,与题设矛盾; 若a3=10,则a4=1,a5=60,a6=35,与题设矛盾; 故a3=2.(4分)(2)当n =3时,a3=a1+2,等式成立.假设当n =k(k≥3)时,等式成立,即ak =ak -2+2,则ak +1ak =(ak -1+2)(ak -2+2). 因为ak =ak -2+2≠0,所以ak +1=ak -1+2.这就是说,当n =k +1时,等式ak +1=ak -1+2也成立.综上,可知对于所有n≥3,有an =an -2+2.(8分)(3)由a2k -1=a2k -3+2=a2(k -1)-1+2,且a1=0,可得a2k -1=2(k -1)=(2k -1)-1. 再由a2k =a2k -2+2,且a2=3,得a2k =3+(k -1)·2=2k +1,以上k =1,2,3…因此an =n +(-1)n ,n =1,2,3,…故Sn =⎩⎨⎧ 12n n +1, 当n 为偶数时,12nn +1-1,当n 为奇数时.(14分)。

人教A版高中数学选修一模块综合检测(A).docx

人教A版高中数学选修一模块综合检测(A).docx

模块综合检测(A)(时间:100分钟;满分:120分)一、选择题(本大题共10小题,在每小题给出的四个选项中,只有一项是符合题目要求的)1.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( ) A.y ^=-10x +200 B.y ^=10x +200 C.y ^=-10x -200 D.y ^=10x -200解析:选A.由题意知选项B 、D 为正相关,选项C 不符合实际意义.2.在复平面内,复数10i3+i对应的点的坐标为( )A .(1,3)B .(3,1)C .(-1,3)D .(3,-1)解析:选A.∵10i 3+i =10i (3-i )(3+i )(3-i )=i(3-i)=1+3i.又复数1+3i 对应复平面内的点(1,3),故选A. 3.复数引入后,数系的结构图为( )解析:选A.复数引入后,数系扩充为实数和虚数两部分,故选A. 4.数列2,5,11,20,x,47,…中的x 等于( ) A .28 B .32 C .33 D .27解析:选B.由题中数字可发现:2+3=5,5+6=11,11+9=20,故20+12=32. 5.用反证法证明命题:“若(a -1)(b -1)(c -1)>0,则a ,b ,c 中至少有一个大于1”时,下列假设中正确的是( )A .假设a ,b ,c 都大于1B .假设a ,b ,c 都不大于1C .假设a ,b ,c 至多有一个大于1D .假设a ,b ,c 至多有两个大于1解析:选B.a ,b ,c 至少有一个大于1的否定为a ,b ,c 都不大于1.6.已知线性回归方程y ^=1+bx ,若x =2,y =9,则b =( ) A .4 B .-4 C .18D .0解析:选A.因为y ^=1+bx ,且x =2,y =9,所以9=1+2b ,所以b =4. 7.已知z 1=a +b i ,z 2=c +d i ,若z 1-z 2是纯虚数,则( ) A .a -c =0,且b -d ≠0 B .a -c =0,且b +d ≠0 C .a +c =0,且b -d ≠0 D .a +c =0,且b +d ≠0解析:选A.∵z 1-z 2=a +b i -(c +d i) =(a -c )+(b -d )i 为纯虚数,∴⎩⎪⎨⎪⎧a -c =0b -d ≠0.8.甲、乙、丙、丁四位同学各自对A ,B 两变量的线性相关性做试验,并由回归分析法分别求得相关指数R) A .甲 B .乙 C .丙 D .丁解析:选D.相关指数R 越接近1,试验中两变量线性关系越强;残差平方和越小,线性关系越强.9.执行如图所示的程序框图,若输入n 的值为6,则输出s 的值为( )A .105B .16C .15D .1解析:选C.当i =1时,s =1×1=1;当i =3时,s =1×3=3;当i =5时,s =3×5=15;当i =7时,i <n 不成立,输出s =15.10.设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c,类比这个结论可知:四面体S -ABC 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球半径为R ,四面体S -ABC 的体积为V ,则R =( )A.VS 1+S 2+S 3+S 4 B.2VS 1+S 2+S 3+S 4C.3V S 1+S 2+S 3+S 4D.4VS 1+S 2+S 3+S 4 解析:选C.设四面体的内切球的球心为O ,则球心O 到四个面的距离都是R , 所以四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和. 则四面体的体积为V S -ABC =13(S 1+S 2+S 3+S 4)R ,∴R =3VS 1+S 2+S 3+S 4,故选C.二、填空题(本大题共5小题,把正确的答案填在题中横线上)11.复数z 1=cos θ+i ,z 2=sin θ-i ,则|z 1-z 2|的最大值为________. 解析:|z 1-z 2|=|(cos θ-sin θ)+2i|= (cos θ-sin θ)2+4 =5-2sin θcos θ =5-sin 2θ≤ 6. 答案: 612.若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系为________.解析:要比较P 与Q 的大小,只需比较P 2与Q 2的大小,只需比较2a +7+2a ·(a +7)与2a +7+2(a +3)(a +4)的大小,只需比较a 2+7a 与a 2+7a +12的大小,即比较0与12的大小,而0<12.故P <Q .答案:P <Q13.由一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )得到的回归直线y ^=b ^x +a ^,那么下面说法不正确的是________.①直线y ^=b ^x +a ^必经过点(x ,y );②直线y ^=b ^x +a ^至少经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个点;③直线y ^=b ^x +a ^的斜率为ni =1x i y i -n x yni =1x 2i -n (x )2;④直线y ^=b ^x +a ^和各点(x 1,y 1),(x 2,y 2),…,(x n ,y n )的偏差的平方和ni =1[y i -(b ^x i +a ^)]2是该坐标平面上所有直线与这些点的偏差的平方和中最小的直线.解析:由回归直线方程的推导知,回归直线方程y ^=b ^x +a ^不一定至少经过点(x 1,y 1),…,(x n ,y n )中的一个点,④就是最小二乘法推导的理论基础,①,③是公式,故选②.答案:② 14.为研究大气污染与人的呼吸系统疾病是否有关,对重污染地区和轻污染地区做跟踪 患呼吸系 统疾病 未患呼吸系统疾病总计重污染地区 103 1 397 1 500 轻污染地区 13 1 487 1 500总计 116 2 884 3 000解析:由公式得K 2的观测值k =3 000×(103×1 487-1 397×13)2116×2 884×1 500×1 500≈72.636 答案:72.63615.自然数列按如图规律排列,若2 008在第m 行第n 个数,则n m=________. 1 3 2 4 5 6 10 9 8 711 12 13 14 15 …解析:观察图中数字的排列规律,可知自然数的排列个数呈等差数列,所以其总个数之和与行数m 有关,为m (m +1)2.而62×632<2 008<63×642,∴m =63.而2 008-62×632=55,∴n =55.答案:5563三、解答题(本大题共5小题,解答时应写出必要的文字说明、证明过程或演算步骤) 16.已知复数z =cos θ+isin θ(0≤θ≤2π),求θ为何值时,|1-i +z |取得最值.并求出它的最值.解:|1-i +z |=|cos θ+isin θ+1-i|= (cos θ+1)2+(sin θ-1)2=2(cos θ-sin θ)+3= 22cos (θ+π4)+3,当θ=7π4时,|1-i +z |max =2+1;当θ=3π4时,|1-i +z |min =2-1.17.已知sin α+cos α=1,求证:sin 6α+cos 6α=1.证明:要证sin 6α+cos 6α=1,只需证(sin 2α+cos 2α)(sin 4α-sin 2αcos 2α+cos 4α)=1.即证sin 4α-sin 2αcos 2α+cos 4α=1,只需证(sin 2α+cos 2α)2-3sin 2αcos 2α=1,即证1-3sin 2αcos 2α=1,即证sin 2αcos 2α=0,由已知sin α+cos α=1,所以sin 2α+cos 2α+2sin αcos α=1,所以sin αcos α=0,所以sin 2αcos 2α=0,故sin 6α+cos 6α=1.18.设三组实验数据(x 1,y 1),(x 2,y 2),(x 3,y 3)的回归直线方程是:y ^=b ^x +a ^,使代数式[y 1-(bx 1+a )]2+[y 2-(bx 2+a )]2+[y 3-(bx 3+a )]2的值最小时,a ^=y -b ^x ,b ^=x 1y 1+x 2y 2+x 3y 3-3x yx 21+x 22+x 23-3x2,(x ,y 分别是这三组数据的横、纵坐标的平均数)若有7组数据,列表如下:(1)(2)若|y i -(b ^x i +a ^)|≤0.2,即称(x i ,y i )为(1)中回归直线的拟和“好点”,求后四组数据中拟合“好点”的概率.解:(1)前三组数的平均数:x =13×(2+3+4)=3,y =13×(4+6+5)=5,根据公式:b ^=2×4+3×6+4×5-3×3×522+32+42-3×32=12, ∴a ^=5-12×3=72,∴回归直线方程是y ^=12x +72.(2)|6.2-3.5-0.5×5|=0.2≤0.2, |8-3.5-0.5×6|=1.5>0.2, |7.1-3.5-0.5×7|=0.1<0.2, |8.6-3.5-0.5×8|=1.1>0.2, 综上,拟合的“好点”有2组,∴“好点”的概率P =24=12.19.请阅读下列不等式的证法:已知a 1,a 2∈R ,a 21+a 22=1,求证:|a 1+a 2|≤ 2.证明:构造函数f (x )=(x -a 1)2+(x -a 2)2,则f (x )=2x 2-2(a 1+a 2)x +a 21+a 22=2x 2-2(a 1+a 2)x +1.因为对一切x∈R,恒有f(x)≥0,所以Δ=4(a1+a2)2-8≤0,从而得|a1+a2|≤ 2.请回答下面的问题:若a1,a2,…,a n∈R,a21+a22+…+a2n=1,请写出上述结论的推广形式,并进行证明.解:推广形式:若a1,a2,…,a n∈R,a21+a22+…+a2n=1,则|a1+a2+…+a n|≤n.证明:构造函数f(x)=(x-a1)2+(x-a2)2+…+(x-a n)2,则f(x)=nx2-2(a1+a2+…+a n)x+a21+a22+…+a2n=nx2-2(a1+a2+…+a n)x+1.因为对一切x∈R,恒有f(x)≥0,所以Δ=4(a1+a2+…+a n)2-4n≤0,从而得|a1+a2+…+a n|≤n.20.如图(1),在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD 上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图(2).(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.解:(1)证明:因为D,E分别为AC,AB的中点,所以DE∥BC.又因为DE⊂/ 平面A1CB,所以DE∥平面A1CB.(2)证明:由已知得AC⊥BC且DE∥BC,所以DE⊥AC.所以DE⊥A1D,DE⊥CD.所以DE⊥平面A1DC.而A1F⊂平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,DE∩CD=D,所以A1F⊥平面BCDE,所以A1F⊥BE.(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC. 又因为DE∥BC,所以DE∥PQ.所以平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,所以DE⊥A1C.又因为P是等腰三角形DA1C底边A1C的中点,所以A1C⊥DP.又DE∩DP=D,所以A1C⊥平面DEP. 从而A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.。

人教A版高中数学选修1-1:综合质量评估含答案

人教A版高中数学选修1-1:综合质量评估含答案

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

综合质量评估第一至第三章(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.“x>3”是“不等式x2-2x>0”的( )A.充分不必要条件B.充分必要条件C.必要不充分条件D.非充分必要条件【解析】选A.解不等式x2-2x>0得x<0或x>2,故“x>3”是“不等式x2-2x>0”的充分不必要条件.2.(2016·临沂高二检测)命题:“∀x∈R,都有x2-x+1>0”的否定是( )A.∀x∈R,都有x2-x+1≤0B.∃x0∈R,使-x0+1>0C.∃x0∈R,使-x0+1≤0D.∃x0∈R,使x2-x0+1<0【解析】选C.全称命题的否定是特称命题.3.函数y=f(x)的图象如图1所示,则y=f′(x)的图象可能是( )【解析】选D.由函数y=f(x)的图象可知当x<0时,函数单调递增,故f′(x)>0,当x>0时,函数单调递减,故f′(x)<0.4.(2016·河南南阳高二期末)若函数f(x)=x3+ax2+3x-9在x=-1时取得极值,则a等于( )A.1B.2C.3D.4【解析】选C.f′(x)=3x2+2ax+3.由题意知f′(-1)=0,解得a=3.5.设曲线y=ax2在点(1,a)处的切线与直线2x-y-6=0平行,则a的值为( )A.1B.C.-D.-1【解析】选A.y′=2ax,于是曲线y=ax2在点(1,a)处切线的斜率为2a,由题意得2a=2,解得a=1.6.已知点P是双曲线-=1(a>0)上一点,双曲线的一条渐近线方程为3x-2y=0,F1,F2分别是双曲线的左、右焦点,若|PF1|=3,则|PF2|等于( )A.7B.6C.5D.3【解题指南】先根据渐近线方程求出a,再根据双曲线的定义求|PF2|.【解析】选A.由双曲线方程得渐近线方程为3x±ay=0,则a=2,双曲线中c=,b=3,由|PF1|=3知P为双曲线左支上一点,则|PF2|=|PF1|+4=7.7.椭圆+=1(a>b>0)的离心率为,则双曲线-=1(a>0,b>0)的离心率为( )A. B. C. D.【解析】选B.由题意知=,得a2=4b2,又a>b>0,所以a=2b.所以双曲线的离心率e===.【补偿训练】设双曲线-=1的一条渐近线与抛物线y=x2+1只有一个公共点,则双曲线的离心率为( )A. B.5 C. D.【解析】选D.设双曲线的渐近线方程为y=kx,这条直线与抛物线y=x2+1相切,联立方程得整理得x2-kx+1=0,则Δ=k2-4=0,解得k=±2,即=2,故双曲线的离心率e====.8.(2016·青岛高二检测)设函数f(x)=x2-9lnx在区间上单调递减,则实数a的取值范围是( )A.(1,2]B. D.(0,3]【解析】选A.f′(x)=x-=(x>0),令f′(x)≤0得0<x≤3.所以f(x)在(0,3]上单调递减,所以解得1<a≤2.9.已知双曲线-=1(a>0,b>0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为( )A.-=1B.-=1C.-=1D.-=1 【解析】选B.因为双曲线-=1(a>0,b>0)的一个焦点在抛物线y2=24x的准线上,所以F(-6,0)是双曲线的左焦点,即a2+b2=36,又双曲线的一条渐近线方程是y=x,所以=,解得a2=9,b2=27,所以双曲线的方程为-=1.10.(2016·大连高二检测)抛物线C:y2=2px(p>0)的焦点为F,M是抛物线C上的点,若三角形OFM的外接圆与抛物线C的准线相切,且该圆的面积为36π,则p的值为( )A.2B.4C.6D.8【解析】选D.因为△OFM的外接圆与抛物线C:y2=2px(p>0)的准线相切,所以△OFM的外接圆的圆心到准线的距离等于圆的半径.因为圆的面积为36π,所以圆的半径为6,又因为圆心在OF的垂直平分线上,|OF|=,所以+=6,p=8.11.(2015·济南二模)已知函数f(x)=x3+ax2+bx+c在x1处取得极大值,在x2处取得极小值,满足x1∈(-1,0),x2∈(0,1),则的取值范围是( )A.(0,2)B.(1,3)C. D.【解析】选B.因为f(x)=x3+ax2+bx+c,所以f′(x)=x2+ax+b.因为函数f(x)在区间(-1,0)内取得极大值,在区间(0,1)内取得极小值,所以f′(x)=x2+ax+b=0在(-1,0)和(0,1)内各有一个根,f′(0)<0,f′(-1)>0,f′(1)>0,即在aOb坐标系中画出其表示的区域,如图,=1+2×,令m=,其几何意义为区域中任意一点与点(-2,-1)连线的斜率,分析可得0<<1,则1<<3,所以的取值范围是(1,3).12.(2016·厦门模拟)若点O和点F(-2,0)分别是双曲线-y2=1(a>0)的中心和左焦点,点P为双曲线右支上的任意一点,则·的取值范围为( )A.∪∪(3,+∞).18.(12分)(2016·衡水高二检测)已知函数f(x)=x3-x2+bx+c.(1)若f(x)的图象有与x轴平行的切线,求b的取值范围.(2)若f(x)在x=1处取得极值,且x∈时,f(x)<c2恒成立,求c的取值范围.【解析】(1)f′(x)=3x2-x+b,f(x)的图象上有与x轴平行的切线,则f′(x)=0有实数解. 即方程3x2-x+b=0有实数解.所以Δ=1-12b≥0,解得b≤.(2)由题意,得x=1是方程3x2-x+b=0的一个根,设另一个根为x0,则解得所以f(x)=x3-x2-2x+c,f′(x)=3x2-x-2.当x∈时,f′(x)<0;当x∈(1,2]∪时,f′(x)>0.所以当x=-时,f(x)有极大值+c,又f(-1)=+c,f(2)=2+c,所以当x∈时,f(x)的最大值为f(2)=2+c.因为当x∈时,f(x)<c2恒成立.所以c2>2+c,解得c<-1或c>2,所以c的取值范围是(-∞,-1)∪(2,+∞).19.(12分)已知椭圆的两焦点为F1(-,0),F2(,0),离心率e=.(1)求此椭圆的方程.(2)设直线l:y=x+m,若l与此椭圆相交于P,Q两点,且|PQ|等于椭圆的短轴长,求m的值. 【解析】(1)设椭圆方程为+=1(a>b>0),则c=,=,所以a=2,b2=a2-c2=1.所以所求椭圆方程为+y2=1.(2)由消去y,得5x2+8mx+4(m2-1)=0,则Δ=64m2-80(m2-1)>0,得m2<5(*).设P(x1,y1),Q(x2,y2),则x1+x2=-,x1x2=,y1-y2=x1-x2,|PQ|===2.解得m2=,满足(*),所以m=±.20.(12分)已知函数f(x)=-x3+2ax2-3a2x+b(a>0).(1)当f(x)的极小值为-,极大值为-1时,求函数f(x)的解析式.(2)若f(x)在区间上为增函数,在区间上是减函数,在上是增函数, 在上是减函数,在上是增函数,在上为增函数,在区间=-4,所以·=(x1+1,y1)·(x2+1,y2)=x1x2+(x1+x2)+1+y1y2=1++1-4==1.解得k=±2.(2)因为y1>0,所以tan∠ATF===≤1.当且仅当y1=即y1=2时取等号.故∠ATF的最大值为.22.(12分)已知函数f(x)=-x3+x2-2x(a∈R).(1)当a=3时,求函数f(x)的单调区间.(2)若对于任意x∈[1,+∞)都有f′(x)<2(a-1)成立,求实数a的取值范围. 【解析】(1)当a=3时,函数f(x)=-x3+x2-2x,得f′(x)=-x2+3x-2=-(x-1)(x-2).所以当1<x<2时,f′(x)>0,函数f(x)单调递增;当x<1或x>2时,f′(x)<0,函数f(x)单调递减;所以函数f(x)的单调递增区间为(1,2),单调递减区间为(-∞,1)和(2,+∞).(2)由f(x)=-x3+x2-2x,得f′(x)=-x2+ax-2,因为对于任意x∈[1,+∞)都有f′(x)<2(a-1)成立,所以问题转化为对于任意x∈[1,+∞)都有f′(x)max<2(a-1).因为f′(x)=-+-2,其图象开口向下,对称轴为x=.①当≤1即a≤2时,f′(x)在[1,+∞)上单调递减,所以f′(x)max=f′(1)=a-3,由a-3<2(a-1),得a>-1,此时-1<a≤2.②当>1即a>2时,f′(x)在上单调减增,在上单调递减,所以f′(x)max=f′=-2,由-2<2(a-1),得0<a<8,此时2<a<8,综上可得,实数a的取值范围为(-1,8).关闭Word文档返回原板块。

最新精编高中人教A版选修1-1高中数学强化训练模块综合检测(c)和答案

最新精编高中人教A版选修1-1高中数学强化训练模块综合检测(c)和答案

模块综合检测(C)(时间:120分钟满分:150分)一、选择题(本大题12小题,每小题5分,共60分)1.方程x=1-4y2所表示的曲线是( )A.双曲线的一部分B.椭圆的一部分C.圆的一部分D.直线的一部分2.若抛物线的准线方程为x=-7,则抛物线的标准方程为( ) A.x2=-28y B.x2=28yC.y2=-28x D.y2=28x3.双曲线x2a2-y2b2=1的两条渐近线互相垂直,那么该双曲线的离心率是( )A.2 B. 3 C. 2 D.3 24.用a,b,c表示三条不同的直线,γ表示平面,给出下列命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c;③若a∥γ,b∥γ,则a∥b;④若a⊥γ,b⊥γ,则a∥b.其中真命题的序号是( )A.①②B.②③C.①④ D.③④5.已知a、b为不等于0的实数,则ab>1是a>b的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件6.若抛物线y2=4x的焦点是F,准线是l,点M(4,m)是抛物线上一点,则经过点F、M且与l相切的圆一共有( )A .0个B .1个C .2个D .4个7.若双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的左、右焦点分别为F 1,F 2.线段F 1F 2被抛物线y 2=2bx 的焦点分成5∶3两段,则此双曲线的离心率为( ) A. 3 B. 6 C.233 D.263 8.已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为245,则此双曲线方程是( )A.x 212-y 24=1 B .-x 212+y 24=1 C.x 24-y 212=1 D .-x 24+y 212=1 9.下列四个结论中正确的个数为( )①命题“若x 2<1,则-1<x <1”的逆否命题是“若x >1或x <-1,则x 2>1”; ②已知p :∀x ∈R ,sin x ≤1,q :若a <b ,则am 2<bm 2,则p ∧q 为真命题; ③命题“∃x ∈R ,x 2-x >0”的否定是“∀x ∈R ,x 2-x ≤0”;④“x >2”是“x 2>4”的必要不充分条件.A .0个B .1个C .2个D .3个10.设f (x )=x (ax 2+bx +c ) (a ≠0)在x =1和x =-1处有极值,则下列点中一定在x 轴上的是( )A .(a ,b )B .(a ,c )C .(b ,c )D .(a +b ,c )11.函数y =ln x x 的最大值为( ) A .e -1 B .e C .e 2 D.10312.已知命题P :函数y =log 0.5(x 2+2x +a )的值域为R ;命题Q :函数y =-(5-2a )x 是R 上的减函数.若P 或Q 为真命题,P 且Q 为假命题,则实数a 的取值范围是( )A .a ≤1B .a <2C .1<a <2D .a ≤1或a ≥2二、填空题(本大题共4小题,每小题5分,共20分)13.若函数f (x )=x 3+x 2+mx +1是R 上的单调函数,则m 的取值范围是________.14.一动圆圆心在抛物线x 2=8y 上,且动圆恒与直线y +2=0相切,则动圆必过定点________. 15.已知F 1、F 2是椭圆C x 2a 2+y 2b2=1 (a >b >0)的两个焦点,P 为椭圆C 上一点,PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________. 16.设f (x )、g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是________________________________________________________________________.三、解答题(本大题共6小题,共70分)17.(10分)已知p :x 2-12x +20<0,q :x 2-2x +1-a 2>0 (a >0).若綈q 是綈p 的充分条件,求a 的取值范围.18.(12分)已知函数f(x)=x3+bx2+cx+d在(-∞,0)上是增函数,在[0,2]上是减函数,且方程f(x)=0的一个根为2.(1)求c的值;(2)求证:f(1)≥2.19.(12分) 如图,M是抛物线y2=x上的一个定点,动弦ME、MF分别与x 轴交于不同的点A、B,且|MA|=|MB|.证明:直线EF的斜率为定值.20.(12分)命题p:关于x的不等式x2+2ax+4>0,对一切x∈R恒成立,命题q:指数函数f(x)=(3-2a)x是增函数,若p或q为真,p且q为假,求实数a 的取值范围.21.(12分)已知函数f(x)=ax-ln x,若f(x)>1在区间(1,+∞)内恒成立,求实数a的取值范围.22.(12分)如图所示,已知直线l:y=kx-2与抛物线C:x2=-2py(p>0)交于A,B两点,O为坐标原点,OA→+OB→=(-4,-12).(1)求直线l和抛物线C的方程;(2)抛物线上一动点P从A到B运动时,求△ABP面积的最大值.模块综合检测(C) 答案1.B [x =1-4y 2,∴x 2+4y 2=1 (x ≥0).即x 2+y 24=1 (x ≥0).] 2.D 3.C [由已知,b 2a 2=1,∴a =b , ∴c 2=2a 2,∴e =c a =2a a = 2.] 4.C5.D [如取a =-3,b =-2,满足a b>1,但不满足a >b .反过来取a =1,b =-5,满足a >b ,但不满足a b>1,故答案为D.] 6.D [因为点M (4,m )在抛物线y 2=4x 上,所以可求得m =±4.由于圆经过焦点F 且和准线l 相切,由抛物线的定义知圆心在抛物线上.又因为圆经过抛物线上的点M ,所以圆心在线段FM 的垂直平分线上,即圆心是线段FM 的垂直平分线与抛物线的交点,结合图形易知对于点M (4,4)和(4,-4),都各有两个交点,因此一共有4个满足条件的圆.]7.C8.B [由已知得椭圆中a =5,b =3,∴c =4,且它的焦点在y 轴上,故双曲线的焦点也应在y 轴上且为(0,4)和(0,-4),又椭圆的离心率为e =c a =45, 所以双曲线的离心率为2,即c a=2, 又c =4,∴它的实半轴为2,虚半轴平方为b 2=c 2-a 2=16-4=12,则双曲线方程为y 24-x 212=1.] 9.B [只有③中结论正确.]10.A11.A [令y ′=x x -ln x ·x ′x 2=1-ln x x 2=0,x =e ,当x >e 时,y ′<0;当x <e 时,y ′>0,y 极大值=f (e)=1e ,在定义域内只有一个极值,所以y max =1e.] 12.C [先化简P 与Q ,建构关于a 的关系式;由函数y =log 0.5(x 2+2x +a )的值域为R 知:内层函数u (x )=x 2+2x +a 恰好取遍(0,+∞)内的所有实数⇔Δ=4-4a ≥0⇔a ≤1,即P ⇔a ≤1;同样由y =-(5-2a )x 是减函数⇔5-2a >1,即Q ⇔a <2;由P 或Q 为真,P 且Q 为假知,P 与Q 中必有一真一假.故答案为C.]13.⎣⎢⎡⎭⎪⎫13,+∞ 解析 f ′(x )=3x 2+2x +m ,依题意可知f (x )在R 上只能单调递增,所以Δ=4-12m ≤0,∴m ≥13. 14.(0,2)解析 动圆一定过抛物线x 2=8y 的焦点.15.3解析 由已知,得⎩⎪⎨⎪⎧|PF 1|+|PF 2|=2a |PF 1|·|PF 2|=18, ∴|PF 1|2+|PF 2|2+36=4a 2,又|PF 1|2+|PF 2|2=4c 2,∴4a 2-4c 2=36,∴b =3.16.(-∞,-3)∪(0,3)解析 设F (x )=f (x )g (x ),由已知得,F ′(x )=f ′(x )g (x )+f (x )g ′(x ).当x<0时,F′(x)>0,∴F(x)在(-∞,0)上为增函数.又∵f(x)为奇函数,g(x)为偶函数.∴F(-x)=f(-x)g(-x)=-f(x)g(x)=-F(x),∴F(x)为奇函数.∴F(x)在(0,+∞)上也为增函数.又g(-3)=0,∴F(-3)=0,F(3)=0.∴f(x)g(x)<0的解集为(-∞,-3)∪(0,3).17.解p:{x|2<x<10},q:{x|x<1-a,或x>1+a}.由綈q⇒綈p,得p⇒q,于是1+a<2,∴0<a<1.18.(1)解∵f(x)在(-∞,0)上是增函数,在[0,2]上是减函数,∴f′(0)=0. ∵f′(x)=3x2+2bx+c,∴f′(0)=c=0.∴c=0.(2)证明∵f(2)=0,∴8+4b+2c+d=0,而c=0,∴d=-4(b+2).∵方程f′(x)=3x2+2bx=0的两个根分别为x1=0,x2=-23b,且f(x)在[0,2]上是减函数,∴x2=-23b≥2,∴b≤-3.∴f(1)=b+d+1=b-4(b+2)+1=-7-3b≥-7+9=2.故f(1)≥2.19.证明设M(y20,y0),直线ME的斜率为k (k>0),则直线MF的斜率为-k,直线ME的方程为y-y0=k(x-y20).由⎩⎪⎨⎪⎧ y -y 0=k x -y 20y 2=x得ky 2-y +y 0(1-ky 0)=0.于是y 0·y E =y 0-ky 0k . 所以y E =1-ky 0k .同理可得y F =1+ky 0-k. ∴k EF =y E -y F x E -x F =y E -y F y 2E -y 2F=1y E +y F =-12y 0(定值). 20.解 设g (x )=x 2+2ax +4,由于关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,所以函数g (x )的图象开口向上且与x 轴没有交点,故Δ=4a 2-16<0,∴-2<a <2.函数f (x )=(3-2a )x 是增函数,则有3-2a >1,即a <1.又由于p 或q 为真,p 且q 为假,可知p 和q 一真一假.①若p 真q 假,则⎩⎪⎨⎪⎧ -2<a <2,a ≥1,∴1≤a <2.②若p 假q 真,则⎩⎪⎨⎪⎧ a ≤-2,或a ≥2,a <1, ∴a ≤-2.综上可知,所求实数a 的取值范围为{a |1≤a <2或a ≤-2}.21.解 由f (x )>1,得ax -ln x -1>0.即a >1+ln x x在区间(1,+∞)内恒成立. 设g (x )=1+ln x x ,则g ′(x )=-ln x x 2,∵x >1,∴g ′(x )<0.∴g (x )=1+ln x x 在区间(1,+∞)内单调递减.∴g (x )<g (1)=1,即1+ln x x <1在区间(1,+∞)内恒成立,∴a ≥1.22.解 (1)由⎩⎪⎨⎪⎧y =kx -2,x 2=-2py ,得x 2+2pkx -4p =0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk , y 1+y 2=k (x 1+x 2)-4=-2pk 2-4.因为 OA →+OB →=(x 1+x 2,y 1+y 2) =(-2pk ,-2pk 2-4)=(-4,-12),所以⎩⎪⎨⎪⎧ -2pk =-4,-2pk 2-4=-12. 解得⎩⎪⎨⎪⎧p =1,k =2. 所以直线l 的方程为y =2x -2,抛物线C 的方程为x 2=-2y .(2)设P (x 0,y 0),依题意,抛物线过点P 的切线与l 平行时,△ABP 的面积最大, y ′=-x ,所以-x 0=2⇒x 0=-2,y 0=-12x 20=-2, 所以P (-2,-2).此时点P 到直线l 的距离d =----2|22+-12=45=455, 由⎩⎪⎨⎪⎧ y =2x -2,x 2=-2y ,得x 2+4x -4=0, |AB |=1+k 2·x 1+x 22-4x 1x 2=1+22·-2--=410.∴△ABP面积的最大值为410×4552=8 2.。

[精品]新人教A版选修1-1高中数学强化训练模块综合检测(a)和答案

[精品]新人教A版选修1-1高中数学强化训练模块综合检测(a)和答案

模块综合检测(A)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.命题“若A ⊆B ,则A =B ”与其逆命题、否命题、逆否命题这四个命题中,真命题的个数是( )A .0B .2C .3D .42.已知命题p :若x 2+y 2=0 (x ,y ∈R ),则x ,y 全为0;命题q :若a >b ,则1a <1b.给出下列四个复合命题:①p 且q ;②p 或q ;③綈p ;④綈q .其中真命题的个数是( )A .1B .2C .3D .43.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为( )A.x 216+y 212=1B.x 212+y 216=1 C.x 216+y 24=1 D.x 24+y 216=1 4.已知a >0,则x 0满足关于x 的方程ax =b 的充要条件是( ) A .∃x ∈R ,12ax 2-bx ≥12ax 20-bx 0B .∃x ∈R ,12ax 2-bx ≤12ax 20-bx 0C .∀x ∈R ,12ax 2-bx ≥12ax 20-bx 0D .∀x ∈R ,12ax 2-bx ≤12ax 20-bx 05.已知椭圆x 2a 2+y 2b2=1 (a >b >0),M 为椭圆上一动点,F 1为椭圆的左焦点,则线段MF 1的中点P 的轨迹是( )A .椭圆B .圆C .双曲线的一支D .线段6.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )A .[0,π4)B .[π4,π2)C .(π2,3π4]D .[3π4,π)7.已知a >0,函数f (x )=x 3-ax 在区间[1,+∞)上是单调递增函数,则a 的最大值是( )A .1B .3C .9D .不存在 8.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如果x 1+x 2=6,那么|AB |等于( )A .10B .8C .6D .49.中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为( )A. 6B. 5C.62 D.5210.若当x =2时,函数f (x )=ax 3-bx +4有极值-43,则函数的解析式为( )A .f (x )=3x 3-4x +4 B .f (x )=13x 2+4C .f (x )=3x 3+4x +4 D .f (x )=13x 3-4x +411.设O 为坐标原点,F 1、F 2是x 2a 2-y 2b2=1(a >0,b >0)的焦点,若在双曲线上存在点P ,满足∠F 1PF 2=60°,|OP |=7a ,则该双曲线的渐近线方程为( )A .x ±3y =0 B.3x ±y =0 C .x ±2y =0 D.2x ±y =012.若函数f (x )=x 2+ax(a ∈R ),则下列结论正确的是( )A .∀a ∈R ,f (x )在(0,+∞)上是增函数B .∀a ∈R ,f (x )在(0,+∞)上是减函数C .∃a ∈R ,f (x )是偶函数D .∃a ∈R ,f (x )是奇函数 题号 12345678910 11 12答案二、填空题(本大题共4小题,每小题5分,共20分) 13.已知p (x ):x 2+2x -m >0,如果p (1)是假命题,p (2)是真命题,那么实数m 的取值范围是________________________________________________________________.14.已知双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点与抛物线y 2=16x 的焦点相同,则双曲线的方程为________________________________________________________________________.15.若AB 是过椭圆x 2a 2+y 2b2=1 (a >b >0)中心的一条弦,M 是椭圆上任意一点,且AM 、BM 与坐标轴不平行,k AM 、k BM 分别表示直线AM 、BM 的斜率,则k AM ²k BM =________.16.已知f (x )=x 3+3x 2+a (a 为常数)在[-3,3]上有最小值3,那么在[-3,3]上f (x )的最大值是________.三、解答题(本大题共6小题,共70分)17.(10分)已知p :2x 2-9x +a <0,q :⎩⎪⎨⎪⎧x 2-4x +3<0 x 2-6x +8<0,且綈q 是綈p 的必要条件,求实数a 的取值范围.18.(12分)设P 为椭圆x 2100+y 264=1上一点,F 1、F 2是其焦点,若∠F 1PF 2=π3,求△F 1PF 2的面积.19.(12分)已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足|MN →||MP →|+MN →²NP →=0,求动点P (x ,y )的轨迹方程.20.(12分)已知函数f (x )=ax 2-43ax +b ,f (1)=2,f ′(1)=1.(1)求f (x )的解析式;(2)求f (x )在(1,2)处的切线方程.21.(12分)已知直线y=ax+1与双曲线3x2-y2=1交于A,B两点.(1)求a的取值范围;(2)若以AB为直径的圆过坐标原点,求实数a的值.22.(12分)已知函数f(x)=ln x-ax+1-ax-1(a∈R).(1)当a=-1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)当a ≤12时,讨论f (x )的单调性.模块综合检测(A) 答案1.B [原命题为假,故其逆否命题为假;其逆命题为真,故其否命题为真;故共有2个真命题.]2.B [命题p 为真,命题q 为假,故p ∨q 真,綈q 真.] 3.D [双曲线x 24-y 212=-1,即y 212-x 24=1的焦点为(0,±4),顶点为(0,±23).所以对椭圆y 2a 2+x 2b 2=1而言,a 2=16,c 2=12.∴b 2=4,因此方程为y 216+x 24=1.]4.C [由于a >0,令函数y =12ax 2-bx =12a (x -b a )2-b 22a,此时函数对应的图象开口向上,当x =b a 时,取得最小值-b 22a ,而x 0满足关于x 的方程ax =b ,那么x 0=b a ,y min =12ax 20-bx 0=-b 22a,那么对于任意的x ∈R ,都有y =12ax 2-bx ≥-b 22a =12ax 20-bx 0.]5.A [∵P 为MF 1中点,O 为F 1F 2的中点, ∴|OP |=12|MF 2|,又|MF 1|+|MF 2|=2a ,∴|PF 1|+|PO |=12|MF 1|+12|MF 2|=a .∴P 的轨迹是以F 1,O 为焦点的椭圆.] 6.D [∵y =4e x +1,∴y ′=-4e xe x +1 2. 令e x +1=t ,则e x =t -1且t >1, ∴y ′=-4t +4t 2=4t 2-4t. 再令1t=m ,则0<m <1,∴y ′=4m 2-4m =4(m -12)2-1,m ∈(0,1).容易求得-1≤y ′<0,∴-1≤tan α<0,得34π≤α<π.]7.B [因为函数f (x )在区间[1,+∞)上单调递增,所以有f ′(x )≥0,x ∈[1,+∞),即3x 2-a ≥0在区间[1,+∞)上恒成立,所以a ≤3x 2.因为x ∈[1,+∞)时,3x 2≥3,从而a ≤3.] 8.B [由抛物线的定义, 得|AB |=x 1+x 2+p =6+2=8.]9.D [由题意知,过点(4,-2)的渐近线方程为y =-b ax ,∴-2=-ba³4,∴a =2b ,设b =k ,则a =2k ,c =5k ,∴e =c a =5k 2k =52.] 10.D [因为f (x )=ax 3-bx +4, 所以f ′(x )=3ax 2-b .由题意得⎩⎪⎨⎪⎧f ′ 2 =12a -b =0f 2 =8a -2b +4=-43,解得⎩⎪⎨⎪⎧a =13b =4,故所求函数解析式为f (x )=13x 3-4x +4.]11.D [如图所示,∵O 是F 1F 2的中点,PF 1→+PF 2→=2PO →, ∴(PF 1→+PF 2→)2=(2PO →)2.即 |PF1→|2+|PF 2→|2+2|PF 1→|²|PF 2→|²cos 60°=4|PO →|2. 又∵|PO |=7a ,∴ |PF1→|2+|PF 2→|2+|PF 1→||PF 2→|=28a 2. ① 又由双曲线定义得|PF 1|-|PF 2|=2a , ∴(|PF 1|-|PF 2|)2=4a 2.即|PF 1|2+|PF 2|2-2|PF 1||PF 2|=4a 2. ② 由①-②得|PF 1|²|PF 2|=8a 2, ∴|PF 1|2+|PF 2|2=20a 2. 在△F 1PF 2中,由余弦定理得cos 60°=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|,∴8a 2=20a 2-4c 2.即c 2=3a 2. 又∵c 2=a 2+b 2,∴b 2=2a 2.即b 2a 2=2,ba= 2. ∴双曲线的渐近线方程为2x ±y =0.]12.C [f ′(x )=2x -ax2,故只有当a ≤0时,f (x )在(0,+∞)上才是增函数,因此A 、B 不对,当a =0时,f (x )=x 2是偶函数,因此C 对,D 不对.]13.[3,8)解析 因为p (1)是假命题,所以1+2-m ≤0, 即m ≥3.又因为p (2)是真命题,所以4+4-m >0, 即m <8.故实数m 的取值范围是3≤m <8. 14.x 24-y 212=1解析 由双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的一条渐近线方程为y =3x 得ba=3,∴b =3a .∵抛物线y 2=16x 的焦点为F (4,0),∴c =4. 又∵c 2=a 2+b 2,∴16=a 2+(3a )2, ∴a 2=4,b 2=12.∴所求双曲线的方程为x 24-y 212=1.15.-b 2a2解析 设A (x 1,y 1),M (x 0,y 0), 则B (-x 1,-y 1),则k AM ²k BM =y 0-y 1x 0-x 1²y 0+y 1x 0+x 1=y 20-y 21x 20-x 21=⎝ ⎛⎭⎪⎫-b 2a 2x 20+b 2-⎝ ⎛⎭⎪⎫-b 2a 2x 21+b 2x 20-x 21=-b 2a2.16.57解析 f ′(x )=3x 2+6x ,令f ′(x )=0, 得x =0或x =-2. 又∵f (0)=a ,f (-3)=a ,f (-2)=a +4,f (3)=54+a ,∴f (x )的最小值为a ,最大值为54+a . 由题可知a =3,∴f (x )的最大值为57.17.解 由⎩⎪⎨⎪⎧x 2-4x +3<0x 2-6x +8<0,得⎩⎪⎨⎪⎧1<x <32<x <4,即2<x <3.∴q :2<x <3.设A ={x |2x 2-9x +a <0},B ={x |2<x <3}, ∵綈p ⇒綈q ,∴q ⇒p ,∴B ⊆A . 即2<x <3满足不等式2x 2-9x +a <0. 设f (x )=2x 2-9x +a ,要使2<x <3满足不等式2x 2-9x +a <0,需⎩⎪⎨⎪⎧f 2 ≤0f 3 ≤0,即⎩⎪⎨⎪⎧8-18+a ≤018-27+a ≤0.∴a ≤9.故所求实数a 的取值范围是{a |a ≤9}. 18.解 如图所示,设|PF 1|=m ,|PF 2|=n ,则S △F 1PF 2=12mn sin π3=34mn . 由椭圆的定义知 |PF 1|+|PF 2|=20,即m +n =20. ① 又由余弦定理,得|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos π3=|F 1F 2|2,即m 2+n 2-mn =122. ② 由①2-②,得mn =2563.∴S △F 1PF 2=6433.19.解 设 P =(x ,y ),则 MN →=(4,0),MP →=(x +2,y ), NP →=(x -2,y ).∴ |MN→|=4,|MP →|= x +2 2+y 2, MN →²NP→=4(x -2), 代入 |MN →|²|MP →|+MN →²NP →=0, 得4 x +2 2+y 2+4(x -2)=0, 即 x +2 2+y 2=2-x ,化简整理,得y 2=-8x .故动点P (x ,y )的轨迹方程为y 2=-8x . 20.解 (1)f ′(x )=2ax -43a ,由已知得⎩⎪⎨⎪⎧f ′ 1 =2a -43a =1f 1 =a -43a +b =2,解得⎩⎪⎨⎪⎧a =32b =52,∴f (x )=32x 2-2x +52.(2)函数f (x )在(1,2)处的切线方程为y -2=x -1,即x -y +1=0.21.解 (1)由⎩⎪⎨⎪⎧y =ax +1,3x 2-y 2=1消去y ,得(3-a 2)x 2-2ax -2=0.依题意得⎩⎪⎨⎪⎧3-a 2≠0,Δ>0,即-6<a <6且a ≠± 3.(2)设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=2a3-a 2,x 1x 2=-23-a 2.∵以AB 为直径的圆过原点,∴OA ⊥OB , ∴x 1x 2+y 1y 2=0,即x 1x 2+(ax 1+1)(ax 2+1)=0, 即(a 2+1)x 1x 2+a (x 1+x 2)+1=0. ∴(a 2+1)²-23-a 2+a ²2a3-a 2+1=0,∴a =±1,满足(1)所求的取值范围. 故a =±1.22.解 (1)当a =-1时,f (x )=ln x +x +2x-1,x ∈(0,+∞),所以f ′(x )=x 2+x -2x2,x ∈(0,+∞), 因此f ′(2)=1,即曲线y =f (x )在点(2,f (2))处的切线斜率为1. 又f (2)=ln 2+2,所以曲线y =f (x )在点(2,f (2))处的切线方程为y -(ln 2+2)=x -2,即x -y +ln 2=0.(2)因为f (x )=ln x -ax +1-ax-1,所以f ′(x )=1x -a +a -1x 2=-ax 2-x +1-a x2,x ∈(0,+∞). 令g (x )=ax 2-x +1-a ,x ∈(0,+∞). ①当a =0时,g (x )=-x +1,x ∈(0,+∞), 所以当x ∈(0,1)时,g (x )>0, 此时f ′(x )<0,函数f (x )单调递减; 当x ∈(1,+∞)时,g (x )<0, 此时f ′(x )>0,函数f (x )单调递增. ②当a ≠0时,由f ′(x )=0,即ax 2-x +1-a =0,解得x 1=1,x 2=1a-1.a .当a =12时,x 1=x 2,g (x )≥0恒成立,此时f ′(x )≤0,函数f (x )在(0,+∞)上单调递减. b .当0<a <12时,1a-1>1,x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减;x ∈⎝⎛⎭⎪⎫1,1a -1时,g (x )<0,此时f ′(x )>0,函数f (x )单调递增;x ∈⎝ ⎛⎭⎪⎫1a -1,+∞时,g (x )>0, 此时f ′(x )<0,函数f (x )单调递减. c .当a <0时,由于1a-1<0.x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减;x ∈(1,+∞)时,g (x )<0,此时f ′(x )>0,函数f (x )单调递增. 综上所述:当a ≤0时,函数f (x )在(0,1)上单调递减, 在(1,+∞)上单调递增;当a =12时,函数f (x )在(0,+∞)上单调递减;当0<a <12时,函数f (x )在(0,1)上单调递减,在⎝⎛⎭⎪⎫1,1a -1上单调递增,在⎝ ⎛⎭⎪⎫1a -1,+∞上单调递减.。

人教a版数学【选修1-1】:模块综合检测(c)(含答案)

人教a版数学【选修1-1】:模块综合检测(c)(含答案)

模块综合检测(C)(时间:120分钟 满分:150分)一、选择题(本大题12小题,每小题5分,共60分)1.方程x =1-4y 2所表示的曲线是( )A .双曲线的一部分B .椭圆的一部分C .圆的一部分D .直线的一部分2.若抛物线的准线方程为x =-7,则抛物线的标准方程为( )A .x 2=-28yB .x 2=28yC .y 2=-28xD .y 2=28x3.双曲线x 2a 2-y 2b 2=1的两条渐近线互相垂直,那么该双曲线的离心率是( ) A .2 B. 3 C. 2 D.324.用a ,b ,c 表示三条不同的直线,γ表示平面,给出下列命题:①若a ∥b ,b ∥c ,则a ∥c ;②若a ⊥b ,b ⊥c ,则a ⊥c ;③若a ∥γ,b ∥γ,则a ∥b ;④若a ⊥γ,b ⊥γ,则a ∥b . 其中真命题的序号是( )A .①②B .②③C .①④D .③④5.已知a 、b 为不等于0的实数,则a b>1是a >b 的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件6.若抛物线y 2=4x 的焦点是F ,准线是l ,点M (4,m )是抛物线上一点,则经过点F 、M 且与l 相切的圆一共有( )A .0个B .1个C .2个D .4个7.若双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的左、右焦点分别为F 1,F 2.线段F 1F 2被抛物线y 2=2bx 的焦点分成5∶3两段,则此双曲线的离心率为( ) A. 3 B. 6 C.233 D.263 8.已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为245,则此双曲线方程是( )A.x 212-y 24=1 B .-x 212+y 24=1 C.x 24-y 212=1 D .-x 24+y 212=1 9.下列四个结论中正确的个数为( )①命题“若x 2<1,则-1<x <1”的逆否命题是“若x >1或x <-1,则x 2>1”; ②已知p :∀x ∈R ,sin x ≤1,q :若a <b ,则am 2<bm 2,则p ∧q 为真命题; ③命题“∃x ∈R ,x 2-x >0”的否定是“∀x ∈R ,x 2-x ≤0”;④“x >2”是“x 2>4”的必要不充分条件.A .0个B .1个C .2个D .3个10.设f (x )=x (ax 2+bx +c ) (a ≠0)在x =1和x =-1处有极值,则下列点中一定在x 轴上的是( )A .(a ,b )B .(a ,c )C .(b ,c )D .(a +b ,c )11.函数y =ln x x的最大值为( ) A .e -1 B .e C .e 2 D.10312.已知命题P :函数y =log 0.5(x 2+2x +a )的值域为R ;命题Q :函数y =-(5-2a )x 是R 上的减函数.若P 或Q 为真命题,P 且Q 为假命题,则实数a 的取值范围是( )A .a ≤1B .a <2C .1<a <2D .a ≤1或a ≥2二、填空题(本大题共4小题,每小题5分,共20分)13.若函数f (x )=x 3+x 2+mx +1是R 上的单调函数,则m 的取值范围是________.14.一动圆圆心在抛物线x 2=8y 上,且动圆恒与直线y +2=0相切,则动圆必过定点________.15.已知F 1、F 2是椭圆C x 2a 2+y 2b2=1 (a >b >0)的两个焦点,P 为椭圆C 上一点,PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.16.设f (x )、g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是________________________________________________________________________.三、解答题(本大题共6小题,共70分)17.(10分)已知p :x 2-12x +20<0,q :x 2-2x +1-a 2>0 (a >0).若綈q 是綈p 的充分条 件,求a 的取值范围.18.(12分)已知函数f (x )=x 3+bx 2+cx +d 在(-∞,0)上是增函数,在[0,2]上是减函数,且方程f (x )=0的一个根为2.(1)求c 的值;(2)求证:f (1)≥2.19.(12分) 如图,M 是抛物线y 2=x 上的一个定点,动弦ME 、MF 分别与x 轴交于不同的点A 、B ,且|MA |=|MB |.证明:直线EF 的斜率为定值.20.(12分)命题p :关于x 的不等式x 2+2ax +4>0,对一切x ∈R 恒成立,命题q :指数函数f (x )=(3-2a )x 是增函数,若p 或q 为真,p 且q 为假,求实数a 的取值范围.21.(12分)已知函数f (x )=ax -ln x ,若f (x )>1在区间(1,+∞)内恒成立,求实数a 的取值范围.22.(12分)如图所示,已知直线l :y =kx -2与抛物线C :x 2=-2py (p>0)交于A ,B 两点,O 为坐标原点,OA →+OB →=(-4,-12).(1)求直线l 和抛物线C 的方程;(2)抛物线上一动点P 从A 到B 运动时,求△ABP 面积的最大值.模块综合检测(C) 答案1.B [x =1-4y 2,∴x 2+4y 2=1 (x ≥0).即x 2+y 214=1 (x ≥0).] 2.D3.C [由已知,b 2a 2=1,∴a =b , ∴c 2=2a 2,∴e =c a =2a a= 2.] 4.C5.D [如取a =-3,b =-2,满足a b>1,但不满足a >b .反过来取a =1,b =-5,满足a >b ,但不满足a b>1,故答案为D.] 6.D [因为点M (4,m )在抛物线y 2=4x 上,所以可求得m =±4.由于圆经过焦点F 且和准线l 相切,由抛物线的定义知圆心在抛物线上.又因为圆经过抛物线上的点M ,所以圆心在线段FM 的垂直平分线上,即圆心是线段FM 的垂直平分线与抛物线的交点,结合图形易知对于点M (4,4)和(4,-4),都各有两个交点,因此一共有4个满足条件的圆.]7.C8.B [由已知得椭圆中a =5,b =3,∴c =4,且它的焦点在y 轴上,故双曲线的焦点也应在y 轴上且为(0,4)和(0,-4),又椭圆的离心率为e =c a =45, 所以双曲线的离心率为2,即c a=2, 又c =4,∴它的实半轴为2,虚半轴平方为b 2=c 2-a 2=16-4=12, 则双曲线方程为y 24-x 212=1.] 9.B [只有③中结论正确.]10.A11.A [令y ′=(ln x )′x -ln x ·x ′x 2=1-ln x x 2=0,x =e ,当x >e 时,y ′<0;当x <e 时,y ′>0,y 极大值=f (e)=1e ,在定义域内只有一个极值,所以y max =1e.] 12.C [先化简P 与Q ,建构关于a 的关系式;由函数y =log 0.5(x 2+2x +a )的值域为R 知:内层函数u (x )=x 2+2x +a 恰好取遍(0,+∞)内的所有实数⇔Δ=4-4a ≥0⇔a ≤1,即P ⇔a ≤1;同样由y =-(5-2a )x 是减函数⇔5-2a >1,即Q ⇔a <2;由P 或Q 为真,P 且Q 为假知,P 与Q 中必有一真一假.故答案为C.]13.⎣⎡⎭⎫13,+∞解析 f ′(x )=3x 2+2x +m ,依题意可知f (x )在R 上只能单调递增,所以Δ=4-12m ≤0,∴m ≥13. 14.(0,2)解析 动圆一定过抛物线x 2=8y 的焦点.15.3解析 由已知,得⎩⎪⎨⎪⎧|PF 1|+|PF 2|=2a |PF 1|·|PF 2|=18, ∴|PF 1|2+|PF 2|2+36=4a 2,又|PF 1|2+|PF 2|2=4c 2,∴4a 2-4c 2=36,∴b =3.16.(-∞,-3)∪(0,3)解析 设F (x )=f (x )g (x ),由已知得,F ′(x )=f ′(x )g (x )+f (x )g ′(x ).当x <0时,F ′(x )>0,∴F (x )在(-∞,0)上为增函数.又∵f (x )为奇函数,g (x )为偶函数.∴F (-x )=f (-x )g (-x )=-f (x )g (x )=-F (x ),∴F (x )为奇函数.∴F (x )在(0,+∞)上也为增函数.又g (-3)=0,∴F (-3)=0,F (3)=0.∴f (x )g (x )<0的解集为(-∞,-3)∪(0,3).17.解 p :{x |2<x <10},q :{x |x <1-a ,或x >1+a }.由綈q ⇒綈p ,得p ⇒q ,于是1+a <2,∴0<a <1.18.(1)解 ∵f (x )在(-∞,0)上是增函数,在[0,2]上是减函数,∴f ′(0)=0.∵f ′(x )=3x 2+2bx +c ,∴f ′(0)=c =0.∴c =0.(2)证明 ∵f (2)=0,∴8+4b +2c +d =0,而c =0,∴d =-4(b +2).∵方程f ′(x )=3x 2+2bx =0的两个根分别为x 1=0,x 2=-23b ,且f (x )在[0,2]上是减函数, ∴x 2=-23b ≥2,∴b ≤-3. ∴f (1)=b +d +1=b -4(b +2)+1=-7-3b ≥-7+9=2.故f (1)≥2.19.证明 设M (y 20,y 0),直线ME 的斜率为k (k >0),则直线MF 的斜率为-k ,直线ME 的方程为y -y 0=k (x -y 20).由⎩⎪⎨⎪⎧y -y 0=k (x -y 20)y 2=x 得ky 2-y +y 0(1-ky 0)=0.于是y 0·y E =y 0(1-ky 0)k. 所以y E =1-ky 0k .同理可得y F =1+ky 0-k. ∴k EF =y E -y F x E -x F =y E -y F y 2E -y 2F=1y E +y F=-12y 0(定值). 20.解 设g (x )=x 2+2ax +4,由于关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,所以函数g (x )的图象开口向上且与x 轴没有交点,故Δ=4a 2-16<0,∴-2<a <2.函数f (x )=(3-2a )x 是增函数,则有3-2a >1,即a <1.又由于p 或q 为真,p 且q 为假,可知p 和q 一真一假.①若p 真q 假,则⎩⎪⎨⎪⎧-2<a <2,a ≥1, ∴1≤a <2.②若p 假q 真,则⎩⎪⎨⎪⎧a ≤-2,或a ≥2,a <1, ∴a ≤-2.综上可知,所求实数a 的取值范围为{a |1≤a <2或a ≤-2}.21.解 由f (x )>1,得ax -ln x -1>0.即a >1+ln x x在区间(1,+∞)内恒成立. 设g (x )=1+ln x x ,则g ′(x )=-ln x x 2, ∵x >1,∴g ′(x )<0.∴g (x )=1+ln x x在区间(1,+∞)内单调递减. ∴g (x )<g (1)=1,即1+ln x x<1在区间(1,+∞)内恒成立,∴a ≥1. 22.解 (1)由⎩⎪⎨⎪⎧ y =kx -2,x 2=-2py ,得x 2+2pkx -4p =0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4.因为 OA →+OB →=(x 1+x 2,y 1+y 2)=(-2pk ,-2pk 2-4)=(-4,-12),所以⎩⎪⎨⎪⎧ -2pk =-4,-2pk 2-4=-12. 解得⎩⎪⎨⎪⎧p =1,k =2. 所以直线l 的方程为y =2x -2,抛物线C 的方程为x 2=-2y .(2)设P (x 0,y 0),依题意,抛物线过点P 的切线与l 平行时,△ABP 的面积最大,y ′=-x ,所以-x 0=2⇒x 0=-2,y 0=-12x 20=-2, 所以P (-2,-2).此时点P 到直线l 的距离d =|2×(-2)-(-2)-2|22+(-1)2=45=455, 由⎩⎪⎨⎪⎧y =2x -2,x 2=-2y ,得x 2+4x -4=0, |AB |=1+k 2·(x 1+x 2)2-4x 1x 2=1+22·(-4)2-4×(-4)=410.∴△ABP 面积的最大值为410×4552=8 2.小课堂:如何培养中学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。

高中数学 模块综合评价(一)(含解析)新人教A版高二选修1-1数学试题

高中数学 模块综合评价(一)(含解析)新人教A版高二选修1-1数学试题

模块综合评价(一)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列命题中的假命题是( ) A .∀x ∈R ,2x -1>0 B .∀x ∈N *,(x -1)2>0 C .∃x ∈R ,lg x <1D .∃x ∈R ,tan x =2解析:当x =1∈N *时,x -1=0,不满足(x -1)2>0,所以 B 为假命题. 答案:B2.“a =-1”是“函数f (x )=ax 2+(a -1)x -1有且只有一个零点”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:当a =-1时,易知函数f (x )有且只有一个零点,故充分性成立;当a =0时,函数f (x )也有且只有一个零点,故必要性不成立.答案:A3.与双曲线y 25-x 2=1共焦点,且过点(1,2)的椭圆的标准方程为()A.x 28+y 22=1B.x 210+y 24=1C.y 28+x 22=1 D.y 210+x 24=1 解析:由题知,焦点在y 轴上,排除A ,B ,将(1,2)代入C ,D 可得C 正确,故选C. 答案:C4.函数f (x )=e xln x 在点(1,f (1))处的切线方程是() A .y =2e(x -1) B .y =e x -1 C .y =e(x -1) D .y =x -e 解析:因为f ′(x )=e x ⎝ ⎛⎭⎪⎫ln x +1x ,所以f ′(1)=e.又f (1)=0, 所以所求的切线方程为y =e(x -1). 答案:C5.设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k =( )A.12 B .1 C.32D .2解析:根据抛物线的方程求出焦点坐标,利用PF ⊥x 轴,知点P ,F 的横坐标相等,再根据点P 在曲线y =k x上求出k .因为y 2=4x ,所以F (1,0).又因为曲线y =k x(k >0)与C 交于点P ,PF ⊥x 轴,所以P (1,2). 将点P (1,2)的坐标代入y =k x(k >0)得k =2.故选D. 答案:D6.已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图所示,则下叙述正确的是()A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e )C .f (c )>f (b )>f (a )D .f (c )>f (e )>f (d )解析:依题意得,当x ∈(-∞,c )时,f ′(x )>0;当x ∈(c ,e )时,f ′(x )<0;当x ∈(e ,+∞)时,f ′(x )>0.因此,函数f (x )在(-∞,c )上是增函数,在(c ,e )上是减函数,在(e ,+∞)上增函数,又a <b <c ,所以f (c )>f (b )>f (a ),选C.答案:C7.函数f (x )=x 2+2xf ′(1),则f (-1)与f (1)的大小关系为( ) A .f (-1)=f (1) B .f (-1)<f (1) C .f (-1)>f (1)D .无法确定解析:f ′(x )=2x +2f ′(1), 令x =1,得f ′(1)=2+2f ′(1),所以 f ′(1)=-2.所以 f (x )=x 2+2x ·f ′(1)=x 2-4x .f (1)=-3,f (-1)=5. 所以 f (-1)>f (1). 答案:C8.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b2=1的渐近线方程为()A .y =±12x B .y =±2xC .y =±4xD .y =±14x解析:由椭圆的离心率e =c a =32,可知c 2a 2=a 2-b 2a 2=34,所以b a =12,故双曲线x 2a 2-y 2b2=1的渐近线方程为y =±12x .答案:A9.若函数y =ax 与y =-b x在(0,+∞)上都是减函数,则y =ax 2+bx 在(0,+∞)上是()A .增函数B .减函数C .先增后减D .先减后增解析:y =ax 与y =-b x在(0,+∞)上都是减函数,所以a <0,b <0,二次函数y =ax 2+bx 的对称轴为x =-b2a<0,且函数图象开口向下,所以在区间(0,+∞)上单调递减.答案:B10.以正方形ABCD 的相对顶点A ,C 为焦点的椭圆,恰好过正方形四边的中点,则该椭圆的离心率为( )A.10-23 B.5-13 C.5-12D.10-22解析:设正方形的边长为m ,则椭圆中的2c =2m ,2a = 12m +m 2+14m 2=1+52m ,故椭圆的离心率为c a =221+5=10-22. 答案:D11.已知a 为常数,函数f (x )=x (ln x -ax )有两个极值点x 1,x 2(x 1<x 2),则( ) A .f (x 1)>0,f (x 2)>-12B .f (x 1)<0,f (x 2)<-12C .f (x 1)>0,f (x 2)<-12D .f (x 1)<0,f (x 2)>-12解析:函数f (x )=x (ln x -ax )有两个极值点x 1,x 2(x 1<x 2),则f ′(x )=ln x -2ax +1有两个零点,即方程ln x =2ax -1有两个极根,由数形结合易知0<a <12且0<x 1<1<x 2.因为在(x 1,x 2)上f (x )递增,所以f (x 1)<f (1)<f (x 2),即f (x 1)<-a <f (x 2), 所以f (x 1)<0,f (x 2)>-12.答案:D12.已知抛物线y 2=4x 的准线过椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点,且与椭圆交于A ,B两点,O 为坐标原点,△AOB 的面积为32,则椭圆的离心率为( )A.23B.12C.13D.14解析:因为抛物线y 2=4x 的准线方程为x =-1,抛物线y 2=4x 的准线过椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点,所以椭圆的左焦点坐标为(-1,0),所以c =1, 因为O 为坐标原点,△AOB 的面积为32,所以12×2b 2a ×1=32,所以b 2a =a 2-1a =32,整理得2a 2-3a -2=0,解得a =2或a =-12(舍),所以e =c a =12.故选B.答案:B二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.椭圆x 264+y 248=1的焦点为F 1,F 2,点P 在椭圆上,若|PF 1|=10,则S △PF 1F 2=________.解析:由已知:a 2=64,b 2=48,c 2=16, 又因为P 在椭圆上,所以|PF 1|+|PF 2|=16. 因为|PF 1|=10,所以|PF 2|=6.因为|F 1F 2|=2c =8,所以△PF 1F 2为直角三角形, 且∠PF 2F 1=90°,所以S △PF 1F 2=12×6×8=24.答案:2414.若函数f (x )=kx 3+3(k -1)x 2-k 2+1在区间(0,4)上是减函数,则k 的取值X 围是________.解析:f ′(x )=3kx 2+6(k -1)x .当k <0时,f ′(x )<0在区间(0,4)上恒成立, 即f (x )在区间(0,4)上是减函数,故k <0满足题意.当k ≥0时,则由题意,知⎩⎪⎨⎪⎧k ≥0,f ′(4)≤0,解得0≤k ≤13.综上,k 的取值X 围是k ≤13.答案:⎝⎛⎦⎥⎤-∞,13 15.设F 1,F 2是椭圆x 23+y 24=1的两个焦点,P 是椭圆上一点,且|PF 1|-|PF 2|=1,则cos∠F 1PF 2=________.解析:椭圆焦点在y 轴上,a 2=4,b 2=3,c =1,又P 在椭圆上,所以|PF 1|+|PF 2|=4,又|PF 1|-|PF 2|=1,所以|PF 1|=52,|PF 2|=32,又|F 1F 2|=2c =2,所以cos ∠F 1PF 2=⎝ ⎛⎭⎪⎫522+⎝ ⎛⎭⎪⎫322-42×52×32=35. 答案:3516.在下列结论中:①“p 且q ”为真是“p 或q ”为真的充分不必要条件; ②“p 且q ”为假是“p 或q ”为真的充分不必要条件; ③“p 或q ”为真是“¬p ”为假的必要不充分条件; ④“¬p ”为真是“p 且q ”为假的必要不充分条件. 正确的结论为________(填序号).解析:①中p 且q 为真⇒p ,q 都为真⇒p 或q 为真,p 或q 为真p 且q 为真;②中p且q 为假p 或q 为真;③中p 或q 为真⇒p ,q 至少有一个为真¬p 为假,¬p 为假⇒p 为真⇒p 或q 为真;④中p 且q 为假¬p 为真.答案:①③三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知命题p :f (x )=x +a x在区间[1,+∞)上是增函数;命题q :g (x )=x 3+ax 2+3x +1在R 上有极值.若命题“p ∨q ”为真命题,某某数a 的取值X 围.解:因为f (x )=x +a x在区间[1,+∞)上是增函数, 则f ′(x )=1-a x2≥0在[1,+∞)上恒成立, 即a ≤x 2在[1,+∞)上恒成立, 所以a ≤(x 2)min ,所以a ≤1. 所以命题p 为真时:A ={a |a ≤1}.要使得g (x )=x 3+ax 2+3x +1在R 上有极值, 则g ′(x )=3x 2+2ax +3=0有两个不相等的实数解,Δ=4a 2-4×3×3>0,解得a <-3或a >3.所以命题q 为真时:B ={a |a <-3或a >3}. 因为命题“p ∨q ”为真命题, 所以p 真或q 真或p 、q 都为真. 因为A ∪B ={a |a ≤1或a >3}.所以所某某数a 的取值X 围为(-∞,1]∪(3,+∞).18.(本小题满分12分)如图,已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的左顶点为A (-2,0),且点⎝ ⎛⎭⎪⎫-1,32在椭圆上,F 1,F 2分别是椭圆的左、右焦点,过点A 作斜率为k (k >0)的直线交椭圆E 于另一点B ,直线BF 2交椭圆E 于点C .(1)求椭圆E 的标准方程; (2)若F 1C ⊥AB ,求k 的值.解:(1)由题意得⎩⎪⎨⎪⎧a =2,a 2=b 2+c 2,1a 2+94b 2=1,解得⎩⎨⎧a =2,b =3,c =1,所以椭圆E 的标准方程为x 24+y 23=1.(2)设直线AB 的方程l AB 为y =k (x +2),由⎩⎪⎨⎪⎧y =k (x +2),x 24+y 23=1,得(3+4k 2)x 2+16k 2x +16k 2-12=0,所以x A ·x B =-2x B =16k 2-123+4k2,所以x B =-8k 2+63+4k 2,所以y B =k (x B +2)=12k3+4k 2,所以B ⎝ ⎛⎭⎪⎫-8k 2+63+4k 2,12k 3+4k 2.若k =12,则B ⎝ ⎛⎭⎪⎫1,32,所以C ⎝ ⎛⎭⎪⎫1,-32,又F 1(-1,0),所以kCF 1=-34,所以F 1C 与AB 不垂直,所以k ≠12.因为F 2(1,0),kBF 2=4k 1-4k 2,kCF 1=-1k AB =-1k , 所以直线BF 2的方程lBF 2为y =4k1-4k2(x -1), 直线CF 1的方程lCF 1为y =-1k(x +1),由⎩⎪⎨⎪⎧y =4k 1-4k 2(x -1),y =-1k (x +1),解得⎩⎪⎨⎪⎧x =8k 2-1,y =-8k ,所以C (8k 2-1,-8k ).又点C 在椭圆上,则(8k 2-1)24+(-8k )23=1,即(24k 2-1)(8k 2+9)=0,解得k 2=124.因为k >0,所以k =612. 19.(本小题满分12分)设函数f (x )=-x (x -a )2(x ∈R),其中a ∈R 且a ≠0,求函数f (x )的极大值和极小值.解:f ′(x )=-(3x -a )(x -a ), 令f ′(x )=0,解得x =a 或x =a3.现分两种情况讨论如下:(1)若a >a3,即a >0,则x ∈⎝⎛⎭⎪⎫-∞,a 3时,f ′(x )<0;x ∈⎝ ⎛⎭⎪⎫a 3,a 时,f ′(x )>0;x ∈(a ,+∞)时,f ′(x )<0. 因此,函数f (x )在x =a 3处取得极小值-427a 3,在x =a 处取得极大值0.(2)若a <a3,即a <0,则x ∈(-∞,a )时,f ′(x )<0;x ∈⎝⎛⎭⎪⎫a ,a 3时,f ′(x )>0; x ∈⎝ ⎛⎭⎪⎫a 3,+∞时,f ′(x )<0. 因此,函数f (x )在x =a 3处取得极大值-427a 3,在x =a 处取得极小值0.20.(本小题满分12分)设椭圆的中心是坐标原点,长轴在x 轴上,离心率e =32,已知点P ⎝ ⎛⎭⎪⎫0,32到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上到点P 的距离等于7的点的坐标.解:设所求椭圆方程为x 2a 2+y 2b 2=1(a >b >0),由e =c a =a 2-b 2a =32,得a =2b .①设椭圆上任一点M 的坐标为(x ,y ),点M 到点P 的距离为d ,则x 2=a 2-a 2y 2b2,且d 2=x 2+⎝ ⎛⎭⎪⎫y -322=a 2-a 2b 2y 2+⎝ ⎛⎭⎪⎫y -322=-3y 2-3y +4b 2+94=-3⎝ ⎛⎭⎪⎫y +122+4b 2+3,其中-b ≤y ≤b .如果b <12,则当y =-b 时,d 2取得最大值,即有(7)2=⎝ ⎛⎭⎪⎫b +322, 解得b =7-32>12与b <12矛盾.如果b ≥12,则当y =-12时,d 2取得最大值,即有(7)2=4b 2+3.②由①②可得b =1,a =2. 所求椭圆方程为x 24+y 2=1.由y =-12可得椭圆上到点P 的距离等于7的点的坐标为⎝ ⎛⎭⎪⎫-3,-12和⎝ ⎛⎭⎪⎫3,-12. 21.(本小题满分12分)直线y =ax +1与双曲线3x 2-y 2=1相交于A ,B 两点,是否存在这样的实数a ,使A ,B 关于直线l :y =2x 对称?若存在,求出a 的值;若不存在,请说明理由.解:不存在.理由如下:设存在实数a ,使A ,B 关于直线l :y =2x 对称,并设A (x 1,y 1),B (x 2,y 2),则AB 中点坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22.依题设有y 1+y 22=2·x 1+x 22,即y 1+y 2=2(x 1+x 2),①又A ,B 在直线y =ax +1上,所以y 1=ax 1+1,y 2=ax 2+1, 所以y 1+y 2=a (x 1+x 2)+2,② 由①②,得2(x 1+x 2)=a (x 1+x 2)+2. 即(2-a )(x 1+x 2)=2.③联立⎩⎪⎨⎪⎧y =ax +1,3x 2-y 2=1得(3-a 2)x 2-2ax -2=0, 所以x 1+x 2=2a 3-a 2.④把④代入③,得(2-a )·2a 3-a 2=2,解得a =32, 所以k AB =32,而k l =2,所以k AB ·k l =32×2=3≠-1.故不存在满足题意的实数a .22.(本小题满分12分)请设计一个包装盒,如图所示,ABCD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E ,F 在AB 上,是被切去的等腰直角三角形斜边的两个端点,设AE =FB =x cm.(1)若广告商要求包装盒侧面积S (单位:cm 2)最大,试求此时x 的值;(2)若厂商要求包装盒容积V (单位:cm 3)最大,试求此时x 的值,并求出此时包装盒的高与底面边长的比值.解:(1)S =4×2x ·60-2x 2=240x -8x 2(0<x <30),所以S ′=240-16x .令S ′=0,则x =15. 当0<x <15时,S ′>0,S 递增; 当15<x <30时,S ′<0,S 递减. 所以当x =15时,S 取最大值.所以,当x =15 cm 时,包装盒侧面积最大. (2)V =(2x )2·22(60-2x )=22x 2(30-x )(0<x <30), 所以V ′=62x (20-x ).令V ′=0,得x =0(舍去)或x =20.当0<x <20时,V ′>0;当20<x <30时,V ′<0. 所以,当x =20时,V 最大.此时,包装盒的高与底面边长的比值为22(60-2x )2x =12.。

高中数学模块综合检测(含解析)新人教A版选修1-1(最新整理)

高中数学模块综合检测(含解析)新人教A版选修1-1(最新整理)

高中数学模块综合检测(含解析)新人教A版选修1-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学模块综合检测(含解析)新人教A版选修1-1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学模块综合检测(含解析)新人教A版选修1-1的全部内容。

模块综合检测(时间120分钟满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“∃x0∈R,2x0-3〉1"的否定是( )A.∃x0∈R,2x0-3≤1 B.∀x∈R,2x-3〉1C.∀x∈R,2x-3≤1 D.∃x0∈R,2x0-3〉1解析:选C 由特称命题的否定的定义即知.2.设f(x)=x ln x,若f′(x0)=2,则x0的值为()A.e2B.eC.错误!D.ln 2解析:选B 由f(x)=x ln x,得f′(x)=ln x+1. 根据题意知ln x0+1=2,所以ln x0=1,因此x0=e。

3.抛物线y=ax2的准线方程是y=2,则a的值为()A。

错误!B.-错误!C.8 D.-8解析:选B 由y=ax2得x2=错误!y,∴错误!=-8,∴a=-错误!.4.下列说法中正确的是( )A.一个命题的逆命题为真,则它的逆否命题一定为真B.“a〉b”与“a+c〉b+c”不等价C.“a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0"D.一个命题的否命题为真,则它的逆命题一定为真解析:选D 否命题和逆命题互为逆否命题,有着一致的真假性,故选D.5。

高中数学 模块综合测试(一)(含解析)新人教A版高二选修1-1数学试题

高中数学 模块综合测试(一)(含解析)新人教A版高二选修1-1数学试题

选修1-1模块综合测试(一)(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.若命题p :∀x∈R,2x 2+1>0,则¬p 是( ) A .∀x ∈R,2x 2+1≤0 B .∃x ∈R,2x 2+1>0 C .∃x ∈R,2x 2+1<0 D .∃x ∈R,2x 2+1≤0 解析:¬p :∃x ∈R,2x 2+1≤0. 答案:D2.不等式x -1x>0成立的一个充分不必要条件是( )A. -1<x <0或x >1B. x <-1或0<x <1C. x >-1D. x >1解析:本题主要考查充要条件的概念、简单的不等式的解法.画出直线y =x 与双曲线y =1x 的图象,两图象的交点为(1,1)、(-1,-1),依图知x -1x>0⇔-1<x <0或x >1 (*),显然x >1⇒(*);但(*)x >1,故选D.答案:D3.[2014·某某模拟]命题“若a >b ,则a +1>b ”的逆否命题是( ) A .若a +1≤b ,则a >b B .若a +1<b ,则a >b C .若a +1≤b ,则a ≤b D .若a +1<b ,则a <b解析:“若a >b ,则a +1>b ”的逆否命题为“若a +1≤b ,则a ≤b ”,故选C. 答案:C4.[2014·某某省日照一中模考]下列命题中,为真命题的是( ) A. ∀x ∈R ,x 2-x -1>0B. ∀α,β∈R ,sin(α+β)<sin α+sin βC. 函数y =2sin(x +π5)的图象的一条对称轴是x =45πD. 若“∃x 0∈R ,x 20-ax 0+1≤0”为假命题,则a 的取值X 围为(-2,2)解析:本题主要考查命题的判定及其相关知识的理解.因为x 2-x -1=(x -12)2-54,所以A 错误;当α=β=0时,有sin(α+β)=sin α+sin β,所以B 错误;当x =4π5时,y =0,故C 错误;因为“∃x 0∈R ,x 20-ax 0+1≤0”为假命题,所以“∀x ∈R ,x 2-ax +1>0”为真命题,即Δ<0,即a 2-4<0,解得-2<a <2,即a 的取值X 围为(-2,2).故选D.答案:D5.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .12解析:设椭圆的另一焦点为F ,由椭圆的定义知 |BA |+|BF |=23,且|CF |+|AC |=23, 所以△ABC 的周长=|BA |+|BC |+|AC | =|BA |+|BF |+|CF |+|AC |=4 3. 答案:C6.过点(2,-2)与双曲线x 2-2y 2=2有公共渐近线的双曲线方程为( ) A.x 22-y 24=1 B.x 24-y 22=1 C.y 24-x 22=1 D. y 22-x 24=1解析:与双曲线x 22-y 2=1有公共渐近线方程的双曲线方程可设为x 22-y 2=λ,由过点(2,-2),可解得λ=-2. 所以所求的双曲线方程为y 22-x 24=1.答案:D7.若双曲线x 2a 2-y 2b2=1(a >0,b >0)的右支上到原点和右焦点距离相等的点有两个,则双曲线离心率的取值X 围是( )A .e > 2B .1<e < 2C .e >2D .1<e <2解析:由题意,以原点及右焦点为端点的线段的垂直平分线必与右支交于两个点,故c2>a ,∴c a>2.答案:C8.把一个周长为12 cm 的长方形围成一个圆柱,当圆柱的体积最大时,该圆柱的底面周长与高的比为( )A. 1∶πB. 2∶πC. 1∶2D. 2∶1解析:设圆柱高为x ,底面半径为r ,则r =6-x 2π,圆柱体积V =π(6-x 2π)2x =14π(x 3-12x 2+36x )(0<x <6),V ′=34π(x -2)(x -6). 当x =2时,V 最大.此时底面周长为6-x =4, (6-x )∶x =4∶2=2∶1. 答案:D9.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线与抛物线y =x 2+1相切,则该双曲线的离心率等于( )A. 3 B .2 C. 5D. 6解析:双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±b ax ,因为y =x 2+1与渐近线相切,故x2+1±bax =0只有一个实根,∴b 2a 2-4=0,∴c 2-a 2a 2=4, ∴c 2a2=5,∴e = 5. 答案:C10.[2014·某某五校联考]设函数f (x )=e x(sin x -cos x )(0≤x ≤2012π),则函数f (x )的各极小值之和为( )A. -e 2π1-e2012π1-e 2πB. -e 2π1-e1006π1-eπC. -e 2π1-e1006π1-e2πD. -e 2π1-e2010π1-e2π解析:f ′(x )=(e x)′(sin x -cos x )+e x(sin x -cos x )′=2e xsin x ,若f ′(x )<0,则x ∈(π+2k π,2π+2k π),k ∈Z ;若f ′(x )>0,则x ∈(2π+2k π,3π+2k π),k ∈Z .所以当x =2π+2k π,k ∈Z 时,f (x )取得极小值,其极小值为f (2π+2k π)=e2k π+2π[sin(2π+2k π)-cos(2π+2k π)]=e2k π+2π×(0-1)=-e2k π+2π,k ∈Z .因为0≤x ≤2012π,又在两个端点的函数值不是极小值,所以k ∈[0,1004],所以函数f (x )的各极小值构成以-e 2π为首项,以e 2π为公比的等比数列,共有1005项,故函数f (x )的各极小值之和为S 1005=-e 2π-e 4π-…-e2010π=e2π1-e2010π1-e2π.答案:D11.已知抛物线C :y 2=8x 的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且|AK |=2|AF |,则△AFK 的面积为( )A .4B .8C .16D .32解析:∵抛物线C :y 2=8x 的焦点为F (2,0),准线为x =-2,∴K (-2,0). 设A (x 0,y 0),如下图所示,过点A 向准线作垂线,垂足为B ,则B (-2,y 0).∵|AK |=2|AF |,又|AF |=|AB |=x 0-(-2)=x 0+2, ∴由|BK |2=|AK |2-|AB |2,得y 20=(x 0+2)2, 即8x 0=(x 0+2)2,解得x 0=2,y 0=±4.∴△AFK 的面积为12|KF |·|y 0|=12×4×4=8,故选B.答案:B12.[2013·某某高考]如图,F 1、F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A. 2B. 3C. 32D.62解析:本题考查椭圆、双曲线的定义和简单的几何性质.设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0) ①,点A 的坐标为(x 0,y 0).由题意a 2+b 2=3=c 2②,|OA |=|OF 1|=3,∴⎩⎪⎨⎪⎧x 20+y 20=3x 20+4y 20=4,解得x 20=83,y 20=13,又点A 在双曲线C 2上,代入①得,83b 2-13a 2=a 2b2③,联立②③解得a =2,所以e =c a =62,故选D. 答案:D二、填空题(本大题共4小题,每小题5分,共20分)13.函数y =13ax 3-12ax 2(a ≠0)在区间(0,1)上是增函数,则实数a 的取值X 围是________.解析:y ′=ax 2-ax =ax (x -1),∵x ∈(0,1),y ′>0,∴a <0. 答案:a <014.已知命题p :∃x ∈R ,x 2+2ax +a ≤0,若命题p 是假命题,则实数a 的取值X 围是__________.解析:p 是假命题,则¬p 为真命题,¬p 为:∀x ∈R ,x 2+2ax +a >0,所以有Δ=4a 2-4a <0,即0<a <1.答案:(0,1)15.[2014·某某质检]已知a ∈R ,若实数x ,y 满足y =-x 2+3ln x ,则(a -x )2+(a +2-y )2的最小值是________.解析:(a -x )2+(a +2-y )2≥x -a +a +2-y22=x +x 2-3ln x +222.设g (x )=x+x 2-3ln x (x >0),则g ′(x )=1+2x -3x=2x +3x -1x,易知g (x )在(0,1)上为减函数,在(1,+∞)上为增函数,故g (x )≥g (1)=2,(a -x )2+(a +2-y )2≥2+222=8.答案:816.[2013·某某省某某一中月考]F 1、F 2分别是双曲线x 216-y 29=1的左、右焦点,P 为双曲线右支上一点,I 是△PF 1F 2的内心,且S △IPF 2=S △IPF 1-λS △IF 1F 2,则λ=________.解析:本题主要考查双曲线定义及标准方程的应用.设△PF 1F 2内切圆的半径为r ,则S △IPF 2=S △IPF 1-λS △IF 1F 2⇒12×|PF 2|×r =12×|PF 1|×r -12λ×|F 1F 2|×r ⇒|PF 1|-|PF 2|=λ|F 1F 2|,根据双曲线的标准方程知2a =λ·2c ,∴λ=a c =45.答案:45三、解答题(本大题共6小题,共70分)17.(10分)已知全集U =R ,非空集合A ={x |x -2x -3<0},B ={x |(x -a )(x -a 2-2)<0}.命题p :x ∈A ,命题q :x ∈B .(1)当a =12时,p 是q 的什么条件?(2)若q 是p 的必要条件,某某数a 的取值X 围. 解:(1)A ={x |x -2x -3<0}={x |2<x <3}, 当a =12时,B ={x |12<x <94},故p 是q 的既不充分也不必要条件.(2)若q 是p 的必要条件,即p ⇒q ,可知A ⊆B , 由a 2+2>a ,故B ={a |a <x <a 2+2},∴⎩⎪⎨⎪⎧a ≤2a 2+2≥3,解得a ≤-1或1≤a ≤2.18.(12分)已知c >0,设p :y =c x为减函数;q :函数f (x )=x +1x >1c 在x ∈[12,2]上恒成立,若“p ∨q ”为真命题,“p ∧q ”为假命题,求c 的取值X 围.解:由y =c x为减函数,得0<c <1.当x ∈[12,2]时,由不等式x +1x ≥2(x =1时取等号)知:f (x )=x +1x 在[12,2]上的最小值为2,若q 真,则1c <2,即c >12.若p 真q 假,则0<c <1且c ≤12,所以0<c ≤12.若p 假q 真,则c ≥1且c >12,所以c ≥1.综上:c ∈(0,12]∪[1,+∞).19.(12分)[2014·海淀期末]已知函数f (x )=(x +a )e x,其中a 为常数. (1)若函数f (x )是区间[-3,+∞)上的增函数,某某数a 的取值X 围; (2)若f (x )≥e 2在x ∈[0,2]时恒成立,某某数a 的取值X 围. 解:(1)f ′(x )=(x +a +1)e x,x ∈R .因为函数f (x )是区间[-3,+∞)上的增函数,所以f ′(x )≥0,即x +a +1≥0在[-3,+∞)上恒成立. 因为y =x +a +1是增函数,所以满足题意只需-3+a +1≥0,即a ≥2. (2)令f ′(x )=0,解得x =-a -1,f (x ),f ′(x )的变化情况如下:f (0)≥e 2,解得a ≥e 2,所以此时a ≥e 2;②当0<-a -1<2,即-3<a <-1时,f (x )在[0,2]上的最小值为f (-a -1), 若满足题意只需f (-a -1)≥e 2,求解可得此不等式无解, 所以a 不存在;③当-a -1≥2,即a ≤-3时,f (x )在[0,2]上的最小值为f (2),若满足题意只需f (2)≥e 2,解得a ≥-1,所以此时a 不存在.综上讨论,所某某数a 的取值X 围为[e 2,+∞).20.(12分)已知椭圆x 29+y 25=1,F 1、F 2分别是椭圆的左、右焦点,点A (1,1)为椭圆内一点,点P 为椭圆上一点.求|PA |+|PF 1|的最大值.解:由椭圆的定义知|PF 1|+|PF 2|=2a =6, 所以|PF 1|=6-|PF 2|,这样|PA |+|PF 1|=6+|PA |-|PF 2|.求|PA |+|PF 1|的最大值问题转化为6+|PA |-|PF 2|的最大值问题, 即求|PA |-|PF 2|的最大值问题, 如图在△PAF 2中,两边之差小于第三边,即|PA |-|PF 2|<|AF 2|,连接AF 2并延长交椭圆于P ′点时, 此时|P ′A |-|P ′F 2|=|AF 2|达到最大值, 易求|AF 2|=2,这样|PA |-|PF 2|的最大值为2, 故|PA |+|PF 1|的最大值为6+ 2.21.(12分)已知椭圆M 的对称轴为坐标轴,且抛物线x 2=-42y 的焦点是椭圆M 的一个焦点,又点A (1,2)在椭圆M 上.(1)求椭圆M 的方程;(2)已知直线l 的方向向量为(1,2),若直线l 与椭圆M 交于B 、C 两点,求△ABC 面积的最大值.解:(1)由已知抛物线的焦点为(0,-2),故设椭圆方程为y 2a 2+x 2a 2-2=1.将点A (1,2)代入方程得2a 2+1a 2-2=1,整理得a 4-5a 2+4=0,解得a 2=4或a 2=1(舍去). 故所求椭圆方程为y 24+x 22=1.(2)设直线BC 的方程为y =2x +m , 设B (x 1,y 1),C (x 2,y 2),代入椭圆方程并化简得4x 2+22mx +m 2-4=0, 由Δ=8m 2-16(m 2-4)=8(8-m 2)>0, 可得m 2<8.由x 1+x 2=-22m ,x 1x 2=m 2-44,故|BC |=3|x 1-x 2|=3×16-2m22.又点A 到BC 的距离为d =|m |3,故S △ABC =12|BC |·d =m216-2m24≤142×2m 2+16-2m22= 2.因此△ABC 面积的最大值为 2.22.(12分)[2014·某某质检]已知函数f (x )=x -1+ae x (a ∈R ,e 为自然对数的底数).(1)若曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值; (2)求函数f (x )的极值;(3)当a =1时,若直线l :y =kx -1与曲线y =f (x )没有公共点,求k 的最大值. 解:(1)由f (x )=x -1+a e x ,得f ′(x )=1-aex ,又曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,所以f ′(1)=0,即1-ae =0,解之得a =e.(2)f ′(x )=1-aex ,①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值. ②当a >0时,令f ′(x )=0,得e x=a ,x =ln a .当x ∈(-∞,ln a )时,f ′(x )<0;当x ∈(ln a ,+∞)时,f ′(x )>0, 所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增, 故f (x )在x =ln a 处取得极小值,且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =ln a 处取得极小值ln a ,无极大值.(3)当a =1时,f (x )=x -1+1e x .令g (x )=f (x )-(kx -1)=(1-k )x +1ex ,则直线l :y =kx -1与曲线y =f (x )没有公共点,等价于方程g (x )=0在R 上没有实数解.当k >1时,g (0)=1>0,g (1k -1)=-1+1e 1k -1<0, 又函数g (x )的图象在定义域R 上连续,由零点存在定理,可知g (x )=0至少有一实数解,与“方程g (x )=0在R 上没有实数解”矛盾,故k ≤1.当k =1时,g (x )=1e x >0,知方程g (x )=0在R 上没有实数解.所以k 的最大值为1.。

人教A版高中数学(选修1-1)单元测试-第二章

人教A版高中数学(选修1-1)单元测试-第二章

2—=1上的一点M 到焦点F 1的距离为2, N 是MF 1的中点,O 为原点,则|0N|等于二•填空题:本大题共 4小题,每小题6分,共24分。

2 26•椭圆5x ky -5的一个焦点是(0,2),那么k 二 7.椭圆的焦点在y 轴上,一个焦点到长轴的两端点的距离之比是 1 : 4,短轴长为8,则椭圆的标准方程是 __________________ .2 2 &已知点(0, 1)在椭圆5 + m = 1内,贝y m 的取值范围是 ______________________________________________ .W I I I2 29 •椭圆 + 2m = 1的准线平行于x 轴,则m 的取值范围是 __________________寸3m + 1 2m第二章圆锥曲线与方程单元测试A 组题(共100分) 一•选择题:本大题共 5题,每小题7分,共35分。

在每小题给出的四个选项中, 项是符合题目要求的。

1已知坐标满足方程 F(x,y)=O 的点都在曲线C 上,那么 (A )(B ) (C ) (D ) 只有曲线C 上的点的坐标都适合方程 凡坐标不适合 F(x,y)=O 的点都不在 在曲线C 上的点的坐标不一定都适合 不在曲线C 上的点的坐标有些适合F(x,y)=0 C 上 F(x,y ) =0 F(x,y ) =0,有些不合适 F(x,y ) =0 2•至俩坐标轴的距离相等的点的轨迹方程是 (A ) x - y= 0 3•已知椭圆方程为 (B) x + y=0 2m ^= 1,焦点在 (C ) |x|=|y| (D) y=|x|x 轴上,则其焦距等于 (A) 2 8- m 2(B) 2 2 2 - | m|(C ) 2 ,m 2- 8( D ) 2 | m| - 2 22x4.已知椭圆 -25(A) 2(B)4(C ) 8(D) 325.已知F 是椭 2x ~2 a= 1(a>b>0)的左焦点,P 是椭圆上的一点,PF 丄x 轴,OP // AB(O 为原点), 则该椭圆的离(A)■- 2 2(B)(C )(D)三•解答题:本大题共3小题,共41分,解答题应写出文字说明、证明过程或演算步骤。

人教A版高中数学选修1-1优化练习:综合检测_含解析

人教A版高中数学选修1-1优化练习:综合检测_含解析

综合检测时间:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“若a >b ,则a +1>b ”的逆否命题是( ) A .若a +1≤b ,则a >b B .若a +1<b ,则a >b C .若a +1≤b ,则a ≤bD .若a +1<b ,则a <b解析:“若a >b ,则a +1>b ”的逆否命题为“若a +1≤b ,则a ≤b ”,故选C. 答案:C2.函数y =(x -a )(x -b )在x =a 处的导数为( )A .abB .-a (a -b )C .0D .a -b 解析:∵y =x 2-(a +b )x +ab ,∴y ′=2x -(a +b ), ∴y ′|x =a =2a -(a +b)=a -b.答案:D3.过点P(1,-3)的抛物线的标准方程为( ) A .x 2=13y 或x 2=-13yB .x 2=13yC .y 2=-9x 或x 2=13yD .x 2=-13y 或y 2=9x解析:P (1,-3)在第四象限,所以抛物线只能开口向右或向下,设方程为y 2=2px (p >0)或x 2=-2py (p >0)代入P (1,-3)得y 2=9x 或x 2=-13y .答案:D4.已知函数f (x )=x 3-3x 2-9x ,则函数f (x )的单调递增区间是( ) A .(3,9) B .(-∞,-1),(3,+∞) C .(-1,3)D .(-∞,3),(9,+∞)解析:∵f (x )=x 3-3x 2-9x ,∴f ′(x )=3x 2-6x -9=3(x 2-2x -3). 令f ′(x )>0知x >3或x <-1. 答案:B5.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =43x ,则该双曲线的离心率为( )A.53B.43C.54D.32 解析:由题意得b a =43,e 2=a 2+b 2a 2=1+b 2a 2=1+169=259.答案:A6.设a ,b ,c 均为正实数,则“a >b ”是“ac >bc ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:根据充分性和必要性的概念判断.因为a ,b ,c 是正实数,所以a >b 等价于ac >bc ,即“a >b ”是“ac >bc ”的充要条件,故选C.答案:C7.已知命题p :∃x ∈(-∞,0),2x <3x ;命题q :∀x ∈R ,f (x )=x 3-x 2+6的极大值为6,则下面选项中真命题是( ) A .(綈p )∧(綈q ) B .(綈p )∨(綈q ) C .p ∨(綈q )D .p ∧q解析:由2x <3x 得(23)x <1,当x <0时,(23)x >1,所以命题p 为假命题.綈p 为真,选B.答案:B8.已知曲线y =x 4+ax 2+1在点(-1,a +2)处切线的斜率为8,则a =( ) A .9 B .6 C .-9D .-6解析:y ′=4x 3+2ax ,由导数的几何意义知在点(-1,a +2)处的切线斜率k =y ′|x =-1=-4-2a =8,解得a =-6. 答案:D9.双曲线x 2a 2-y 2b 2=1与椭圆x 2m 2+y 2b 2=1(a >0,m >b >0)的离心率互为倒数,那么以a ,b ,m 为边长的三角形一定是( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .等腰三角形 解析:双曲线的离心率e 21=a 2+b 2a2,椭圆的离心率e 22=m 2-b 2m 2,由已知e 21e 22=1,即a 2+b 2a2×m 2-b 2m 2=1,化简,得a 2+b 2=m 2. 答案:C10.已知f(x)的导函数f′(x)图象如图所示,那么f(x)的图象最有可能是图中的()解析:∵x∈(-∞,-2)时,f′(x)<0,∴f(x)为减函数;同理f(x)在(-2,0)上为增函数,(0,+∞)上为减函数.答案:A11.已知函数y=f(x),数列{a n}的通项公式是a n=f(n)(n∈N*),那么“函数y=f(x)在[1,+∞)上单调递增”是“数列{a n}是递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当函数y=f(x)在[1,+∞)上单调递增,“数列{a n}是递增数列”一定成立.当函数y=f(x)在[1,2]上先减后增,且f(1)<f(2)时,数列{a n}也可以单调递增,因此“函数y=f(x)在[1,+∞)上单调递增”是“数列{a n}是递增数列”的充分不必要条件,故选A.答案:A12.双曲线x2a2-y2b2=1(a>0,b>0)的两个焦点为F1,F2,若P为其上一点,且|PF1|=2|PF2|,则双曲线离心率的取值范围为()A.(1,3) B.(1,3]C.(3,+∞) D.[3,+∞)解析:由双曲线的定义得|PF1|-|PF2|=|PF2|=2a,|PF1|=2|PF2|=4a,∵|PF1|+|PF2|≥|F1F2|,∴6a ≥2c ,ca≤3,故双曲线离心率的取值范围是(1,3],选B. 答案:B二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中的横线上)13.函数f (x )=x 3-3a 2x +2a (a >0)的极大值为正数,极小值为负数,则a 的取值范围是________.解析:∵f ′(x )=3x 2-3a 2 =3(x -a )(x +a )(a >0),∴f ′(x )>0时,得:x >a 或x <-a , f ′(x )<0时,得-a <x <a .∴当x =a 时,f (x )有极小值,x =-a 时,f (x )有极大值. 由题意得:⎩⎪⎨⎪⎧a 3-3a 3+2a <0,-a 3+3a 3+2a >0,a >0,解得a >1.答案:(1,+∞)14.若命题“∃x ∈R ,使得x 2+(1-a )x +1<0”是真命题,则实数a 的取值范围是________. 解析:由题意可知,Δ=(1-a )2-4>0, 解得a <-1或a >3.答案:(-∞,-1)∪(3,+∞)15.过抛物线C :y 2=4x 的焦点F 作直线l 交抛物线C 于A ,B 两点,若A 到抛物线准线的距离为4,则|AB |=________.解析:设A (x A ,y A ),B (x B ,y B ),∵y 2=4x ,∴抛物线准线为x =-1,F (1,0),又A 到抛物线准线的距离为4,∴x A +1=4,∴x A =3,∵x A x B =p 24=1,∴x B =13,∴|AB |=x A +x B +p =3+13+2=163.答案:16316. 已知双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为________.解析:由双曲线的方程可知a =1,c =2, ∴||PF 1|-|PF 2||=2a =2, ∴|PF 1|2-2|PF 1||PF 2|+|PF 2|2=4, ∵PF 1⊥PF 2,∴|PF 1|2+|PF 2|2=(2c )2=8, ∴2|PF 1||PF 2|=4,∴(|PF 1|+|PF 2|)2=8+4=12, ∴|PF 1|+|PF 2|=2 3. 答案:2 3三、解答题(本大题共有6小题,共74分,解答应写出文字说明、证明过程或演算步骤) 17.(12分)已知c >0,设命题p :函数y =c x 为减函数.命题q :当x ∈⎣⎡⎦⎤12,2时,函数f (x )=x +1x >1c 恒成立.如果p 或q 为真命题,p 且q 为假命题,求c 的取值范围.解析:由命题p 为真知,0<c <1, 由命题q 为真知,2≤x +1x ≤52,要使此式恒成立,需1c <2,即c >12,若p 或q 为真命题,p 且q 为假命题, 则p 、q 中必有一真一假, 当p 真q 假时, c 的取值范围是0<c ≤12;当p 假q 真时,c 的取值范围是c ≥1.综上可知,c 的取值范围是⎩⎨⎧⎭⎬⎫c ⎪⎪0<c ≤12或c ≥1. 18.(12分)已知函数f (x )=x 3+ax 2+bx +c (x ∈[-1,2]),且函数f (x )在x =1和x =-23处都取得极值. (1)求a ,b 的值;(2)求函数f (x )的单调递增区间.解析:(1)∵f (x )=x 3+ax 2+bx +c ,∴f ′(x )=3x 2+2ax +b .由题易知,⎩⎪⎨⎪⎧f ′⎝⎛⎭⎫-23=0,f ′(1)=0,解得⎩⎪⎨⎪⎧a =-12,b =-2.(2)由(1)知,f ′(x )=3x 2-x -2=(3x +2)(x -1), ∵当x ∈⎣⎡⎭⎫-1,-23时,f ′(x )>0;当x ∈⎝⎛⎭⎫-23,1时,f ′(x )<0; 当x ∈(1,2]时,f ′(x )>0.∴f (x )的单调递增区间为⎣⎡⎭⎫-1,-23和(1,2]. 19.(12分)已知直线l 经过抛物线y 2=6x 的焦点F ,且与抛物线相交于A 、B 两点. (1)若直线l 的倾斜角为60°,求|AB |的值;(2)若|AB |=9,求线段AB 的中点M 到准线的距离.解析:(1)因为直线l 的倾斜角为60°,如图.所以其斜率k =tan 60°=3,又F (32,0).所以直线l 的方程为y =3(x -32).联立⎩⎪⎨⎪⎧y 2=6x ,y =3(x -32)消去y 得x 2-5x +94=0.若设A (x 1,y 1), B (x 2,y 2).则x 1+x 2=5, 而|AB |=|AF |+|BF |=x 1+p 2+x 2+p2=x 1+x 2+p .∴|AB |=5+3=8.(2)设A (x 1,y 1),B (x 2,y 2),由抛物线定义知|AB |=|AF |+|BF |=x 1+p 2+x 2+p2=x 1+x 2+p =x 1+x 2+3,所以x 1+x 2=6,于是线段AB 的中点M 的横坐标是3,又准线方程是x =-32,所以M 到准线的距离等于3+32=92.20.(12分)已知函数f (x )=f ′(1)e ·e x -f (0)·x +12x 2(e 是自然对数的底数).(1)求函数f (x )的解析式和单调区间;(2)若函数g (x )=12x 2+a 与函数f (x )的图象在区间[-1,2]上恰有两个不同的交点,求实数a 的取值范围.解析:(1)由已知得f ′(x )=f ′(1)ee x-f (0)+x , 令x =1,得f ′(1)=f ′(1)-f (0)+1, 即f (0)=1.又f (0)=f ′(1)e,所以f ′(1)=e.从而f (x )=e x -x +12x 2.显然f ′(x )=e x -1+x 在R 上单调递增且f ′(0)=0, 故当x ∈(-∞,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0. ∴f (x )的单调递减区间是(-∞,0), 单调递增区间是(0,+∞). (2)由f (x )=g (x )得a =e x -x . 令h (x )=e x -x ,则h ′(x )=e x -1. 由h ′(x )=0得x =0.所以当x ∈(-1,0)时,h ′(x )<0; 当x ∈(0,2)时,h ′(x )>0.∴h (x )在(-1,0)上单调递减,在(0,2)上单调递增. 又h (0)=1,h (-1)=1+1e,h (2)=e 2-2且h (-1)<h (2).∴两个图象恰有两个不同的交点时,实数a 的取值范围是⎝⎛⎦⎤1,1+1e . 21.( 13分)如图,已知中心在原点O ,焦点在x 轴上的椭圆C 的离心率为32,点A ,B 分别是椭圆C 的长轴、短轴的端点,点O 到直线AB 的距离为655.(1)求椭圆C 的标准方程;(2)已知点E (3,0),设点P ,Q 是椭圆C 上的两个动点,满足EP ⊥EQ ,求EP →·QP →的取值范围. 解析:(1)由离心率e =c a =32,得b a =1-e 2=12.∴a =2b .① ∵原点O 到直线AB 的距离为655,直线AB 的方程为bx -ay +ab =0,∴ab a 2+b 2=655.②将①代入②,得b 2=9,∴a 2=36. 则椭圆C 的标准方程为x 236+y 29=1.(2)∵EP ⊥EQ ,∴EP →·EQ →=0, ∴EP →·QP →=EP →·(EP →-EQ →)=EP →2设P (x ,y ),则y 2=9-x 24,∴EP →·QP →=EP →2=(x -3)2+y 2 =x 2-6x +9+9-x 24.=34(x -4)2+6. ∵-6≤x ≤6.∴6≤34(x -4)2+6≤81,则EP →·QP →的取值范围为[6,81].22.(13分)在一定面积的水域中养殖某种鱼类,每个网箱的产量p 是网箱个数x 的一次函数,如果放置4个网箱,则每个网箱的产量为16吨;如果放置7个网箱,则每个网箱的产量为10吨,由于该水域面积限制,最多只能放置10个网箱. (1)试问放置多少个网箱时,总产量Q 最高?(2)若鱼的市场价为m 万元/吨,养殖的总成本为(5ln x +1)万元. ①当m =0.25时,应放置多少个网箱才能使总收益y 最大? ②当m ≥0.25时,求使得收益y 最高的所有可能的x 值组成的集合.解析:(1)设p =ax +b ,由已知得⎩⎪⎨⎪⎧ 16=4a +b ,10=7a +b ,所以⎩⎪⎨⎪⎧a =-2,b =24,所以p =-2x +24,所以Q=px =(-2x +24)x =-2(x -6)2+72(x ∈N *,x ≤10),所以当x =6时,f (x )最大,即放置6个网箱时,可使总产量达到最大.(2)总收益为y =f (x )=(-2x 2+24x )m -(5ln x +1)(x ∈N *,x ≤10),①当m =0.25时,f (x )=(-2x 2+24x )×14-(5ln x +1)=-12x 2+6x -5ln x -1,所以f ′(x )=-(x -1)(x -5)x,当1<x <5时,f ′(x )>0,当5<x <10时,f ′(x )<0,所以x =5时,函数取得极大值,也是最大值.所以应放置5个网箱才能使总收益y 最大; ②当m ≥0.25时,f (x )=(-2x 2+24x )m -(5ln x +1), 所以f ′(x )=-4mx 2+24mx -5x,令f ′(x )=0,即-4mx 2+24mx -5=0,因为m ≥0.25,所以Δ=16m (36m -5)>0,方程-4mx 2+24mx -5=0的两根分别为x 1=3-9-54m,x 2=3+9-54m,因为m ≥0.25,所以x 1≤1.5≤x 2<6,所以当x ∈(1,x 2)时,f ′(x )>0,当x 2<x <10时,f ′(x )<0,所以x =x 2时,函数取得极大值,也是最大值.所以使得收益y 最高的所有可能的x 值组成的集合为{5,6}.。

高中数学人教A版选修1-1章末综合测评1含答案

高中数学人教A版选修1-1章末综合测评1含答案

章末综合测评(一)常用逻辑用语(时间120分钟,总分值150分)一、选择题(本大题共12小题,每题5分,共60分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的)1.“经过两条相交直线有且只有一个平面〞是()A.全称命题B.特称命题C.p∨q形式D.p∧q形式【解析】此命题暗含了“任意〞两字,即经过任意两条相交直线有且只有一个平面.【答案】 A2.(20xx·湖南高考)设x∈R,那么“x>1”是“x3>1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】由于函数f(x)=x3在R上为增函数,所以当x>1时,x3>1成立,反过来,当x3>1时,x>1也成立.因此“x>1〞是“x3>1”的充要条件,应选C.【答案】 C3.(20xx·湖北高考)命题“∀x∈R,x2≠x〞的否认是()A.∀x∉R,x2≠x B.∀x∈R,x2=xC.∃x∉R,x2≠x D.∃x∈R,x2=x【解析】全称命题的否认,需要把全称量词改为特称量词,并否认结论.【答案】 D4.全称命题“∀x ∈Z,2x +1是整数〞的逆命题是( )A .假设2x +1是整数,那么x ∈ZB .假设2x +1是奇数,那么x ∈ZC .假设2x +1是偶数,那么x ∈ZD .假设2x +1能被3整除,那么x ∈Z【解析】 易知逆命题为:假设2x +1是整数,那么x ∈Z .【答案】 A5.命题p :对任意x ∈R ,总有|x |≥0;q :x =1是方程x +2=0的根.那么以下命题为真命题的是( )A .p ∧¬qB .¬p ∧qC .¬p ∧¬qD .p ∧q【解析】 命题p 为真命题,命题q 为假命题,所以命题¬q 为真命题,所以p ∧¬q 为真命题,应选A.【答案】 A6.(20xx·皖南八校联考)命题“全等三角形的面积一定都相等〞的否认是( )A .全等三角形的面积不一定都相等B .不全等三角形的面积不一定都相等C .存在两个不全等三角形的面积相等D .存在两个全等三角形的面积不相等【解析】 命题是省略量词的全称命题.易知选D.【答案】 D7.原命题为“假设a n +a n +12<a n ,n ∈N +,那么{a n }为递减数列〞,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的选项是( )A .真,真,真B .假,假,真C .真,真,假D .假,假,假【解析】 从原命题的真假入手,由于a n +a n +12<a n ⇔a n +1<a n ⇔{a n }为递减数列,即原命题和逆命题均为真命题,又原命题与逆否命题同真同假,那么逆命题、否命题和逆否命题均为真命题,选A.【答案】 A8.给定两个命题p ,q .假设¬p 是q 的必要而不充分条件,那么p 是¬q 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【解析】 q ⇒¬p 等价于p ⇒¬q ,¬pD ⇒/ q 等价于¬qD ⇒/ p .故p 是¬q 的充分而不必要条件.【答案】 A9.一元二次方程ax 2+4x +3=0(a ≠0)有一个正根和一个负根的充分不必要条件是( )A .a <0B .a >0C .a <-1D .a >1【解析】 一元二次方程ax 2+4x +3=0(a ≠0)有一个正根和一个负根⇔3a <0,解得a <0,故a <-1是它的一个充分不必要条件.【答案】 C10.设集合U ={(x ,y )|x ∈R ,y ∈R },A ={(x ,y )|2x -y +m >0},B ={(x ,y )|x +y -n ≤0},那么点P (2,3)∈A ∩(∁U B )的充要条件是( )【导学号:26160027】A .m >-1,n <5B .m <-1,n <5C .m >-1,n >5D .m <-1,n >5【解析】 ∵P (2,3)∈A ∩(∁U B ),∴满足⎩⎪⎨⎪⎧ 2×2-3+m >0,2+3-n >0,故⎩⎪⎨⎪⎧m >-1,n <5. 【答案】 A11.以下命题中为真命题的是( )A .∃x 0∈R ,e x 0≤0B .∀x ∈R,2x >x 2C .a +b =0的充要条件是a b =-1D .a >1,b >1是ab >1的充分条件【解析】 对于∀x ∈R ,都有e x >0,应选项A 是假命题;当x =2时,2x =x 2,应选项B 是假命题;当a b =-1时,有a +b =0,但当a +b =0时,如a =0,b =0时,a b 无意义,应选项C 是假命题;当a >1,b >1时,必有ab >1,但当ab >1时,未必有a >1,b >1,如当a =-1,b =-2时,ab >1,但a 不大于1,b 不大于1,故a >1,b >1是ab >1的充分条件,选项D 是真命题.【答案】 D12.以下命题中真命题的个数为( )①命题“假设x =y ,那么sin x =sin y 〞的逆否命题为真命题;②设α,β∈⎝ ⎛⎭⎪⎫-π2,π2,那么“α<β 〞是“tan α<tan β 〞的充要条件;③命题“自然数是整数〞是真命题;④命题“∀x ∈R ,x 2+x +1<0”的否认是“∃x 0∈R ,x 20+x 0+1<0.〞A .1B .2C .3D .4【解析】 ①命题“假设x =y ,那么sin x =sin y 〞为真命题,所以其逆否命题为真命题;②因为x ∈⎝ ⎛⎭⎪⎫-π2,π2 时,正切函数y =tan x 是增函数,所以当α,β∈⎝ ⎛⎭⎪⎫-π2,π2时,α<β⇔tan α<tan β,所以“α<β〞是“tan α<tan β〞的充要条件,即②是真命题;③命题“自然数是整数〞是全称命题,省略了“所有的〞,故③是真命题;④命题“∀x ∈R ,x 2+x +1<0”的否认是“∃x 0∈R ,x 20+x 0+1≥0”,故④是假命题.【答案】 C二、填空题(本大题共4小题,每题5分,共20分,将答案填在题中的横线上)13.设p :x >2或x <23;q :x >2或x <-1,那么¬p 是¬q 的________条件.【解析】 ¬p :23≤x ≤2.¬q :-1≤x ≤2.¬p ⇒¬q ,但¬qD ⇒/ ¬p .∴¬p 是¬q 的充分不必要条件.【答案】 充分不必要14.假设命题“对于任意实数x ,都有x 2+ax -4a >0且x 2-2ax +1>0”是假命题,那么实数a 的取值范围是________.【解析】 假设对于任意实数x ,都有x 2+ax -4a >0,那么Δ=a 2+16a <0,即-16<a <0;假设对于任意实数x ,都有x 2-2ax +1>0,那么Δ=4a 2-4<0,即-1<a <1,故命题“对于任意实数x ,都有x 2+ax-4a >0且x 2-2ax +1>0”是真命题时,有a ∈(-1,0).而命题“对于任意实数 x ,都有x 2+ax -4a >0且x 2-2ax +1>0”是假命题,故a ∈(-∞,-1]∪[0,+∞).【答案】 (-∞,-1]∪[0,+∞)15.给出以下四个命题:①“假设xy =1,那么x ,y 互为倒数〞的逆命题;②“相似三角形的周长相等〞的否命题;③“假设b ≤-1,那么关于x 的方程x 2-2bx +b 2+b =0有实数根〞的逆否命题;④假设sin α+cos α>1,那么α必定是锐角.其中是真命题的有________.(请把所有真命题的序号都填上).【解析】 ②可利用逆命题与否命题同真假来判断,易知“相似三角形的周长相等〞的逆命题为假,故其否命题为假.④中α应为第一象限角.【答案】 ①③16.p :-4<x -a <4,q :(x -2)(3-x )>0,假设¬p 是¬q 的充分条件,那么实数a 的取值范围是________.【解析】 p :a -4<x <a +4,q :2<x <3,∵¬p 是¬q 的充分条件(即¬p ⇒¬q ),∴q ⇒p ,∴⎩⎪⎨⎪⎧a -4≤2,a +4≥3,∴-1≤a ≤6. 【答案】 [-1,6]三、解答题(本大题共6小题,共70分.解容许写出文字说明,证明过程或演算步骤)17.(本小题总分值10分)指出以下命题的构成形式,并写出构成它的命题:(1)36是6与18的倍数;(2)方程x2+3x-4=0的根是x=±1;(3)不等式x2-x-12>0的解集是{x|x>4或x<-3}.【解】(1)这个命题是p∧q的形式,其中p:36是6的倍数;q:36是18的倍数.(2)这个命题是p∨q的形式,其中p:方程x2+3x-4=0的根是x =1;q:方程x2+3x-4=0的根是x=-1.(3)这个命题是p∨q的形式,其中p:不等式x2-x-12>0的解集是{x|x>4};q:不等式x2-x-12>0的解集是{x|x<-3}.18.(本小题总分值12分)写出以下命题的逆命题、否命题、逆否命题,并判断其真假.(1)全等三角形一定相似;(2)末位数字是零的自然数能被5整除.【解】(1)逆命题:假设两个三角形相似,那么它们一定全等,为假命题;否命题:假设两个三角形不全等,那么它们一定不相似,为假命题;逆否命题:假设两个三角形不相似,那么它们一定不全等,为真命题.(2)逆命题:假设一个自然数能被5整除,那么它的末位数字是零,为假命题;否命题:假设一个自然数的末位数字不是零,那么它不能被5整除,为假命题;逆否命题:假设一个自然数不能被5整除,那么它的末位数字不是零,为真命题.19.(本小题总分值12分)写出以下命题的否认并判断真假:(1)所有自然数的平方是正数;(2)任何实数x都是方程5x-12=0的根;(3)∀x∈R,x2-3x+3>0;(4)有些质数不是奇数.【解】(1)所有自然数的平方是正数,假命题;否认:有些自然数的平方不是正数,真命题.(2)任何实数x都是方程5x-12=0的根,假命题;否认:∃x0∈R,5x0-12≠0,真命题.(3)∀x∈R,x2-3x+3>0,真命题;否认:∃x0∈R,x20-3x0+3≤0,假命题.(4)有些质数不是奇数,真命题;否认:所有的质数都是奇数,假命题.20.(本小题总分值12分)(2016·汕头高二检测)设p:“∃x0∈R,x20-ax0+1=0”,q:“函数y=x2-2ax+a2+1在x∈[0,+∞)上的值域为[1,+∞)〞,假设“p∨q〞是假命题,务实数a的取值范围.【解】由x20-ax0+1=0有实根,得Δ=a2-4≥0⇒a≥2或a≤-2.因为命题p为真命题的范围是a≥2或a≤-2.由函数y=x2-2ax+a2+1在x∈[0,+∞)上的值域为[1,+∞),得a≥0.因此命题q为真命题的范围是a≥0.根据p∨q为假命题知:p,q均是假命题,p为假命题对应的范围是-2<a<2,q为假命题对应的范围是a<0.这样得到二者均为假命题的范围就是⎩⎨⎧-2<a <2,a <0⇒-2<a <0. 21.(本小题总分值12分)(2016·惠州高二检测)设命题p :实数x 满足x 2-4ax +3a 2<0,其中a >0;命题q :实数x 满足x 2-5x +6≤0.(1)假设a =1,且p ∧q 为真,务实数x 的取值范围;(2)假设p 是q 成立的必要不充分条件,务实数a 的取值范围.【解】 (1)由x 2-4ax +3a 2<0,得(x -3a )·(x -a )<0,又a >0,所以a <x <3a ,当a =1时,1<x <3,即p 为真命题时,实数x 的取值范围是1<x <3,由x 2-5x +6≤0得2≤x ≤3,所以q 为真时,实数x 的取值范围是2≤x ≤3.假设p ∧q 为真,那么2≤x <3,所以实数x 的取值范围是[2,3).(2)设A ={x |a <x <3a },B ={x |2≤x ≤3},由题意可知q 是p 的充分不必要条件,那么B A ,所以⎩⎨⎧0<a <2,3a >3⇒1<a <2,所以实数a 的取值范围是(1,2). 22.(本小题总分值12分)二次函数f (x )=ax 2+x ,对任意x ∈[0,1],|f (x )|≤1恒成立,试务实数a 的取值范围. 【导学号:26160028】【解】 由f (x )=ax 2+x 是二次函数,知a ≠0.|f (x )|≤1⇔-1≤f (x )≤1⇔-1≤ax 2+x ≤1,x ∈[0,1],①当x =0,a ≠0时,①式显然成立;当x ∈(0,1]时,①式化为-1x 2-1x ≤a ≤1x 2-1x ,当x ∈(0,1]时恒成立.设t =1x ,那么t ∈[1,+∞),所以-t 2-t ≤a ≤t 2-t .令f (t )=-t 2-t =-⎝ ⎛⎭⎪⎫t +122+14,t ∈[1,+∞), 所以f (t )max =-2.令g (t )=t 2-t =⎝ ⎛⎭⎪⎫t -122-14,t ∈[1,+∞), 所以g (t )min =0.所以只需-2≤a ≤0.综上所述,实数a 的取值范围是[-2,0).。

高中数学人教A版选修1-1模块综合检测及答案

高中数学人教A版选修1-1模块综合检测及答案

高中数学人教A 版选修1-1模块综合检测(A)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.命题“若A ⊆B ,则A =B ”与其逆命题、否命题、逆否命题这四个命题中,真命题的个数是( )A .0B .2C .3D .42.已知命题p :若x 2+y 2=0 (x ,y ∈R ),则x ,y 全为0;命题q :若a >b ,则1a <1b .给出下列四个复合命题:①p 且q ;②p 或q ;③綈p ;④綈q .其中真命题的个数是( )A .1B .2C .3D .43.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为( ) A.x 216+y 212=1 B.x 212+y 216=1 C.x 216+y 24=1 D.x 24+y 216=14.已知a >0,则x 0满足关于x 的方程ax =b 的充要条件是( )A .∃x ∈R ,12ax 2-bx ≥12ax 20-bx 0B .∃x ∈R ,12ax 2-bx ≤12ax 20-bx 0C .∀x ∈R ,12ax 2-bx ≥12ax 20-bx 0D .∀x ∈R ,12ax 2-bx ≤12ax 20-bx 05.已知椭圆x 2a 2+y 2b 2=1 (a >b >0),M 为椭圆上一动点,F 1为椭圆的左焦点,则线段MF 1的中点P 的轨迹是( )A .椭圆B .圆C .双曲线的一支D .线段6.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )A .[0,π4)B .[π4,π2)C .(π2,3π4]D .[3π4,π) 7.已知a >0,函数f (x )=x 3-ax 在区间[1,+∞)上是单调递增函数,则a 的最大值是( ) A .1 B .3 C .9 D .不存在8.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如果x 1+x 2=6,那么|AB |等于( )A .10B .8C .6D .49.中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为( )A. 6B. 5C.62D.5210.若当x =2时,函数f (x )=ax 3-bx +4有极值-43,则函数的解析式为( )A .f (x )=3x 3-4x +4B .f (x )=13x 2+4 C .f (x )=3x 3+4x +4 D .f (x )=13x 3-4x +411.设O 为坐标原点,F 1、F 2是x 2a 2-y 2b 2=1(a >0,b >0)的焦点,若在双曲线上存在点P ,满足∠F 1PF 2=60°,|OP |=7a ,则该双曲线的渐近线方程为( )A .x ±3y =0 B.3x ±y =0 C .x ±2y =0 D.2x ±y =012.若函数f (x )=x 2+ax (a ∈R ),则下列结论正确的是( ) A .∀a ∈R ,f (x )在(0,+∞)上是增函数 B .∀a ∈R ,f (x )在(0,+∞)上是减函数 C .∃a ∈R ,f (x )是偶函数 D .∃a ∈R ,f (x )是奇函数 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题(本大题共4小题,每小题5分,共20分)13.已知p (x ):x 2+2x -m >0,如果p (1)是假命题,p (2)是真命题,那么实数m 的取值范 围是 ________________________________________________________________.14.已知双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点与抛物线y 2=16x 的焦点相同,则双曲线的方程为________________________________________________________________________.15.若AB 是过椭圆x 2a 2+y 2b 2=1 (a >b >0)中心的一条弦,M 是椭圆上任意一点,且AM 、BM 与坐标轴不平行,k AM 、k BM 分别表示直线AM 、BM 的斜率,则k AM ·k BM =________.16.已知f (x )=x 3+3x 2+a (a 为常数)在[-3,3]上有最小值3,那么在[-3,3]上f (x )的最大值是________.三、解答题(本大题共6小题,共70分)17.(10分)已知p :2x 2-9x +a <0,q :⎩⎪⎨⎪⎧x 2-4x +3<0x 2-6x +8<0,且綈q 是綈p 的必要条件,求实数a 的取值范围.18.(12分)设P 为椭圆x 2100+y 264=1上一点,F 1、F 2是其焦点,若∠F 1PF 2=π3,求△F 1PF 2的面积.19.(12分)已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足|MN →||MP→|+MN →·NP →=0,求动点P (x ,y )的轨迹方程.20.(12分)已知函数f (x )=ax 2-43ax +b ,f (1)=2,f ′(1)=1. (1)求f (x )的解析式;(2)求f (x )在(1,2)处的切线方程.21.(12分)已知直线y =ax +1与双曲线3x 2-y 2=1交于A ,B 两点. (1)求a 的取值范围;(2)若以AB 为直径的圆过坐标原点,求实数a 的值.22.(12分)已知函数f (x )=ln x -ax +1-ax -1(a ∈R ).(1)当a =-1时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)当a ≤12时,讨论f (x )的单调性.答案1.B [原命题为假,故其逆否命题为假;其逆命题为真,故其否命题为真;故共有2个真命题.]2.B [命题p 为真,命题q 为假,故p ∨q 真,綈q 真.]3.D [双曲线x 24-y 212=-1,即y 212-x 24=1的焦点为(0,±4),顶点为(0,±23).所以对椭圆y 2a 2+x 2b 2=1而言,a 2=16,c 2=12.∴b 2=4,因此方程为y 216+x 24=1.]4.C [由于a >0,令函数y =12ax 2-bx =12a (x -b a )2-b 22a ,此时函数对应的图象开口向上,当x =b a 时,取得最小值-b 22a ,而x 0满足关于x 的方程ax =b ,那么x 0=b a ,y min =12ax 20-bx 0=-b 22a ,那么对于任意的x ∈R ,都有y =12ax 2-bx ≥-b 22a =12ax 20-bx 0.]5.A [∵P 为MF 1中点,O 为F 1F 2的中点,∴|OP |=12|MF 2|,又|MF 1|+|MF 2|=2a ,∴|PF 1|+|PO |=12|MF 1|+12|MF 2|=a .∴P 的轨迹是以F 1,O 为焦点的椭圆.]6.D [∵y =4e x +1,∴y ′=-4e x (e x +1)2.令e x +1=t ,则e x =t -1且t >1,∴y ′=-4t +4t 2=4t 2-4t .再令1t =m ,则0<m <1,∴y ′=4m 2-4m =4(m -12)2-1,m ∈(0,1). 容易求得-1≤y ′<0,∴-1≤tan α<0,得34π≤α<π.]7.B [因为函数f (x )在区间[1,+∞)上单调递增,所以有f ′(x )≥0,x ∈[1,+∞),即3x 2-a ≥0在区间[1,+∞)上恒成立,所以a ≤3x 2.因为x ∈[1,+∞)时,3x 2≥3,从而a ≤3.] 8.B [由抛物线的定义, 得|AB |=x 1+x 2+p =6+2=8.]9.D [由题意知,过点(4,-2)的渐近线方程为y =-b a x ,∴-2=-ba ×4,∴a =2b ,设b =k ,则a =2k ,c =5k ,∴e =c a =5k 2k =52.] 10.D [因为f (x )=ax 3-bx +4, 所以f ′(x )=3ax 2-b .由题意得⎩⎪⎨⎪⎧f ′(2)=12a -b =0f (2)=8a -2b +4=-43,解得⎩⎪⎨⎪⎧a =13b =4,故所求函数解析式为f (x )=13x 3-4x +4.]11.D [如图所示,∵O 是F 1F 2的中点,PF 1→+PF 2→=2PO →,∴(PF 1→+PF 2→)2=(2PO →)2.即 |PF 1→|2+|PF 2→|2+2|PF 1→|·|PF 2→|·cos 60°=4|PO →|2. 又∵|PO |=7a ,∴ |PF 1→|2+|PF 2→|2+|PF 1→||PF 2→|=28a 2. ① 又由双曲线定义得|PF 1|-|PF 2|=2a , ∴(|PF 1|-|PF 2|)2=4a 2.即|PF 1|2+|PF 2|2-2|PF 1||PF 2|=4a 2. ② 由①-②得|PF 1|·|PF 2|=8a 2, ∴|PF 1|2+|PF 2|2=20a 2.在△F 1PF 2中,由余弦定理得cos 60°=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|, ∴8a 2=20a 2-4c 2.即c 2=3a 2. 又∵c 2=a 2+b 2,∴b 2=2a 2. 即b 2a 2=2,ba = 2.∴双曲线的渐近线方程为2x ±y =0.]12.C [f ′(x )=2x -ax 2,故只有当a ≤0时,f (x )在(0,+∞)上才是增函数,因此A 、B 不对,当a =0时,f (x )=x 2是偶函数,因此C 对,D 不对.]13.[3,8)解析 因为p (1)是假命题,所以1+2-m ≤0, 即m ≥3.又因为p (2)是真命题,所以4+4-m >0, 即m <8.故实数m 的取值范围是3≤m <8. 14.x 24-y 212=1解析 由双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的一条渐近线方程为y =3x 得ba =3,∴b =3a . ∵抛物线y 2=16x 的焦点为F (4,0),∴c =4. 又∵c 2=a 2+b 2,∴16=a 2+(3a )2, ∴a 2=4,b 2=12.∴所求双曲线的方程为x 24-y 212=1.15.-b 2a 2解析 设A (x 1,y 1),M (x 0,y 0), 则B (-x 1,-y 1),则k AM ·k BM =y 0-y 1x 0-x 1·y 0+y 1x 0+x 1=y 20-y 21x 20-x 21=⎝⎛⎭⎫-b 2a 2x 20+b 2-⎝⎛⎭⎫-b 2a 2x 21+b 2x 20-x 21=-b 2a 2. 16.57解析 f ′(x )=3x 2+6x ,令f ′(x )=0, 得x =0或x =-2.又∵f (0)=a ,f (-3)=a , f (-2)=a +4,f (3)=54+a ,∴f (x )的最小值为a ,最大值为54+a . 由题可知a =3,∴f (x )的最大值为57.17.解 由⎩⎪⎨⎪⎧x 2-4x +3<0x 2-6x +8<0,得⎩⎨⎧1<x <32<x <4,即2<x <3.∴q :2<x <3.设A ={x |2x 2-9x +a <0},B ={x |2<x <3}, ∵綈p ⇒綈q ,∴q ⇒p ,∴B ⊆A . 即2<x <3满足不等式2x 2-9x +a <0. 设f (x )=2x 2-9x +a ,要使2<x <3满足不等式2x 2-9x +a <0, 需⎩⎪⎨⎪⎧ f (2)≤0f (3)≤0,即⎩⎪⎨⎪⎧8-18+a ≤018-27+a ≤0. ∴a ≤9.故所求实数a 的取值范围是{a |a ≤9}. 18.解 如图所示,设|PF 1|=m ,|PF 2|=n ,则S △F 1PF 2=12mn sin π3=34mn .由椭圆的定义知 |PF 1|+|PF 2|=20,即m +n =20. ① 又由余弦定理,得|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos π3 =|F 1F 2|2,即m 2+n 2-mn =122. ②由①2-②,得mn =2563.∴S △F 1PF 2=643 3.19.解 设 P =(x ,y ),则 MN →=(4,0),MP →=(x +2,y ), NP →=(x -2,y ).∴ |MN →|=4,|MP →|=(x +2)2+y 2, MN →·NP →=4(x -2),代入 |MN →|·|MP →|+MN →·NP →=0, 得4(x +2)2+y 2+4(x -2)=0, 即(x +2)2+y 2=2-x , 化简整理,得y 2=-8x .故动点P (x ,y )的轨迹方程为y 2=-8x .20.解 (1)f ′(x )=2ax -43a ,由已知得⎩⎨⎧f ′(1)=2a -43a =1f (1)=a -43a +b =2,解得⎩⎨⎧a =32b =52,∴f (x )=32x 2-2x +52.(2)函数f (x )在(1,2)处的切线方程为 y -2=x -1,即x -y +1=0.21.解 (1)由⎩⎪⎨⎪⎧y =ax +1,3x 2-y 2=1消去y ,得(3-a 2)x 2-2ax -2=0.依题意得⎩⎪⎨⎪⎧3-a 2≠0,Δ>0,即-6<a <6且a ≠±3.(2)设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=2a3-a 2,x 1x 2=-23-a 2.∵以AB 为直径的圆过原点,∴OA ⊥OB ,∴x 1x 2+y 1y 2=0,即x 1x 2+(ax 1+1)(ax 2+1)=0, 即(a 2+1)x 1x 2+a (x 1+x 2)+1=0.∴(a 2+1)·-23-a 2+a ·2a3-a 2+1=0, ∴a =±1,满足(1)所求的取值范围. 故a =±1.22.解 (1)当a =-1时,f (x )=ln x +x +2x -1, x ∈(0,+∞),所以f ′(x )=x 2+x -2x 2,x ∈(0,+∞), 因此f ′(2)=1,即曲线y =f (x )在点(2,f (2))处的切线斜率为1. 又f (2)=ln 2+2,所以曲线y =f (x )在点(2,f (2))处的切线方程为 y -(ln 2+2)=x -2,即x -y +ln 2=0.(2)因为f (x )=ln x -ax +1-ax -1,所以f ′(x )=1x -a +a -1x 2=-ax 2-x +1-a x 2,x ∈(0,+∞). 令g (x )=ax 2-x +1-a ,x ∈(0,+∞).①当a =0时,g (x )=-x +1,x ∈(0,+∞), 所以当x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减;当x ∈(1,+∞)时,g (x )<0,此时f ′(x )>0,函数f (x )单调递增. ②当a ≠0时,由f ′(x )=0,即ax 2-x +1-a =0,解得x 1=1,x 2=1a -1. a .当a =12时,x 1=x 2,g (x )≥0恒成立,此时f ′(x )≤0,函数f (x )在(0,+∞)上单调递减.b .当0<a <12时,1a -1>1, x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减;x ∈⎝⎛⎭⎫1,1a -1时,g (x )<0, 此时f ′(x )>0,函数f (x )单调递增;x ∈⎝⎛⎭⎫1a -1,+∞时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减.c .当a <0时,由于1a -1<0. x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减; x ∈(1,+∞)时,g (x )<0,此时f ′(x )>0,函数f (x )单调递增. 综上所述:当a ≤0时,函数f (x )在(0,1)上单调递减, 在(1,+∞)上单调递增;当a =12时,函数f (x )在(0,+∞)上单调递减;当0<a <12时,函数f (x )在(0,1)上单调递减,在⎝⎛⎭⎫1,1a -1上单调递增,在⎝⎛⎭⎫1a -1,+∞上单调递减.模块综合检测(B)(时间:120分钟 满分:150分)一、选择题(本大题12小题,每小题5分,共60分)1.已知命题“p :x ≥4或x ≤0”,命题“q :x ∈Z ”,如果“p 且q ”与“非q ”同时为假命题,则满足条件的x 为( )A .{x |x ≥3或x ≤-1,x ∉Z }B .{x |-1≤x ≤3,x ∉Z }C .{-1,0,1,2,3}D .{1,2,3}2.“a >0”是“|a |>0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.已知2x +y =0是双曲线x 2-λy 2=1的一条渐近线,则双曲线的离心率是( ) A. 2 B. 3 C. 5 D .24.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为( ) A.x 24-y 212=1 B.x 212-y 24=1 C.x 210-y 26=1 D.x 26-y 210=15.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .126.过点(2,-2)与双曲线x 2-2y 2=2有公共渐近线的双曲线方程为( ) A.x 22-y 24=1 B.x 24-y 22=1 C.y 24-x 22=1 D.y 22-x 24=17.曲线y =x 3-3x 2+1在点(1,-1)处的切线方程为( ) A .y =3x -4 B .y =-3x +2 C .y =-4x +3 D .y =4x -5 8.函数f (x )=x 2-2ln x 的单调递减区间是( )A .(0,1]B .[1,+∞)C .(-∞,-1],(0,1)D .[-1,0),(0,1] 9.已知椭圆x 2+2y 2=4,则以(1,1)为中点的弦的长度为( ) A .3 2 B .2 3C.303D.32 610.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a 等于( )A .2 B.12 C .-12 D .-211.若函数y =f (x )的导函数在区间[a ,b ]上是增函数,则函数y =f (x )在区间[a ,b ]上的图象可能是( )12.已知函数f (x )的导函数f ′(x )=4x 3-4x ,且f (x )的图象过点(0,-5),当函数f (x )取得极小值-6时,x 的值应为( )A .0B .-1C .±1D .1题号1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题(本大题共4小题,每小题5分,共20分)13.已知双曲线x 2-y 23=1,那么它的焦点到渐近线的距离为________.14.点P 是曲线y =x 2-ln x 上任意一点,则P 到直线y =x -2的距离的最小值是________. 15.给出如下三种说法:①四个实数a ,b ,c ,d 依次成等比数列的必要而不充分条件是ad =bc . ②命题“若x ≥3且y ≥2,则x -y ≥1”为假命题. ③若p ∧q 为假命题,则p ,q 均为假命题. 其中正确说法的序号为________.16.双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的两个焦点F 1、F 2,若P 为双曲线上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为________.三、解答题(本大题共6小题,共70分)17.(10分)命题p :方程x 2+mx +1=0有两个不等的负实数根,命题q :方程4x 2+4(m -2)x +1=0无实数根.若“p 或q ”为真命题,“p 且q ”为假命题,求m 的取值范围.18.(12分)F 1,F 2是椭圆的两个焦点,Q 是椭圆上任意一点,从任一焦点向△F 1QF 2中的∠F 1QF 2的外角平分线引垂线,垂足为P ,求点P 的轨迹.19.(12分)若r (x ):sin x +cos x >m ,s (x ):x 2+mx +1>0.已知∀x ∈R ,r (x )为假命题且s (x )为真命题,求实数m 的取值范围.20.(12分)已知椭圆x2a2+y2b2=1 (a>b>0)的一个顶点为A(0,1),离心率为22,过点B(0,-2)及左焦点F1的直线交椭圆于C,D两点,右焦点设为F2.(1)求椭圆的方程;(2)求△CDF2的面积.21.(12分)已知函数f(x)=x3+bx2+cx+d的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为6x-y+7=0.(1)求函数y=f(x)的解析式;(2)求函数y=f(x)的单调区间.22.(12分)已知f(x)=23x3-2ax2-3x (a∈R),(1)若f(x)在区间(-1,1)上为减函数,求实数a的取值范围;(2)试讨论y=f(x)在(-1,1)内的极值点的个数.答案1.D2.A [因为|a |>0⇔a >0或a <0,所以a >0⇒|a |>0,但|a |>0 ⇒a >0,所以“a >0”是“|a |>0”的充分不必要条件.]3.C4.A [由题意知c =4,焦点在x 轴上,又e =c a =2,∴a =2,∴b 2=c 2-a 2=42-22=12,∴双曲线方程为x 24-y 212=1.]5.C [设椭圆的另一焦点为F ,由椭圆的定义知|BA |+|BF |=23,且|CF |+|AC |=23,所以△ABC 的周长=|BA |+|BC |+|AC |=|BA |+|BF |+|CF |+|AC |=4 3.]6.D [与双曲线x 22-y 2=1有公共渐近线方程的双曲线方程可设为x 22-y 2=λ,由过点(2,-2),可解得λ=-2.所以所求的双曲线方程为y 22-x 24=1.]7.B [y ′=3x 2-6x ,∴k =y ′|x =1=-3,∴切线方程为y +1=-3(x -1),∴y =-3x +2.]8.A [由题意知x >0,若f ′(x )=2x -2x =2(x 2-1)x ≤0,则0<x ≤1,即函数f (x )的递减区间是(0,1].]9.C [令直线l 与椭圆交于A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧ x 21+2y 21=4 ①x 22+2y 22=4 ②①-②得:(x 1+x 2)(x 1-x 2)+2(y 1+y 2)(y 1-y 2)=0,即2(x 1-x 2)+4(y 1-y 2)=0,∴k l =-12,∴l 的方程:x +2y -3=0,由⎩⎪⎨⎪⎧x +2y -3=0x 2+2y 2-4=0,得6y 2-12y +5=0. ∴y 1+y 2=2,y 1y 2=56.∴|AB |=⎝⎛⎭⎫1+1k 2(y 1-y 2)2=303.] 10.D [y =x +1x -1, ∴y ′|x =3=-2(x -1)2|x =3=-12. 又∵-a ×⎝⎛⎭⎫-12=-1,∴a =-2.] 11.A [依题意,f ′(x )在[a ,b ]上是增函数,则在函数f (x )的图象上,各点的切线的斜率随着x 的增大而增大,观察四个选项中的图象,只有A 满足.]12.C [f (x )=x 4-2x 2+c .因为过点(0,-5),所以c =-5.由f ′(x )=4x (x 2-1),得f (x )有三个极值点,列表判断±1均为极小值点,且f (1)=f (-1)=-6.] 13. 3 解析 焦点(±2,0),渐近线:y =±3x ,焦点到渐近线的距离为23(3)2+1= 3. 14. 2解析 先设出曲线上一点,求出过该点的切线的斜率,由已知直线,求出该点的坐标,再由点到直线的距离公式求距离.设曲线上一点的横坐标为x 0 (x 0>0),则经过该点的切线的斜率为k =2x 0-1x 0,根据题意得,2x 0-1x 0=1,∴x 0=1或x 0=-12,又∵x 0>0,∴x 0=1,此时y 0=1,∴切点的坐标为(1,1),最小距离为|1-1-2|2= 2. 15.①②解析 对①,a ,b ,c ,d 成等比数列,则ad =bc ,反之不一定,故①正确;对②,令x =5,y =6,则x -y =-1,所以该命题为假命题,故②正确;对③,p ∧q 假时,p ,q 至少有一个为假命题,故③错误.16.(1,3]解析 设|PF 2|=m ,则2a =||PF 1|-|PF 2||=m ,2c =|F 1F 2|≤|PF 1|+|PF 2|=3m .∴e =c a =2c 2a ≤3,又e >1,∴离心率的取值范围为(1,3].17.解 命题p :方程x 2+mx +1=0有两个不等的负实根⇔⎩⎪⎨⎪⎧ Δ=m 2-4>0m >0⇔m >2. 命题q :方程4x 2+4(m -2)x +1=0无实根⇔Δ′=16(m -2)2-16=16(m 2-4m +3)<0⇔1<m <3.∵“p 或q ”为真,“p 且q ”为假,∴p 为真、q 为假或p 为假、q 为真,则⎩⎪⎨⎪⎧ m >2m ≤1或m ≥3或⎩⎪⎨⎪⎧m ≤21<m <3, 解得m ≥3或1<m ≤2.18.解 设椭圆的方程为x 2a 2+y 2b 2=1 (a >b >0),F 1,F 2是它的两个焦点,Q 为椭圆上任意一点,QP 是△F 1QF 2中的∠F 1QF 2的外角平分线(如图),连结PO ,过F 2作F 2P ⊥QP 于P 并延长交F 1Q 的延长线于H ,则P 是F 2H 的中点,且|F 2Q |=|QH |,因此|PO |=12|F 1H |=12(|F 1Q |+|QH |)=12(|F 1Q |+|F 2Q |)=a ,∴点P 的轨迹是以原点为圆心,以椭圆半长轴长为半径的圆(除掉两点即椭圆与x 轴的交点).19.解 由于sin x +cos x =2sin ⎝⎛⎭⎫x +π4∈[-2,2], ∀x ∈R ,r (x )为假命题即sin x +cos x >m 恒不成立.∴m ≥ 2. ①又对∀x ∈R ,s (x )为真命题.∴x 2+mx +1>0对x ∈R 恒成立.则Δ=m 2-4<0,即-2<m <2. ②故∀x ∈R ,r (x )为假命题,且s (x )为真命题, 应有2≤m <2.20.解 (1)由题意知b =1,e =c a =22,又∵a 2=b 2+c 2,∴a 2=2.∴椭圆方程为x 22+y 2=1.(2)∵F 1(-1,0),∴直线BF 1的方程为y =-2x -2,由⎩⎪⎨⎪⎧y =-2x -2x 22+y 2=1,得9x 2+16x +6=0. ∵Δ=162-4×9×6=40>0,∴直线与椭圆有两个公共点,设为C (x 1,y 1),D (x 2,y 2), 则⎩⎨⎧ x 1+x 2=-169x 1x 2=23,∴|CD |=1+(-2)2|x 1-x 2|=5·(x 1+x 2)2-4x 1x 2=5·⎝⎛⎭⎫-1692-4×23=1092, 又点F 2到直线BF 1的距离d =455,故S △CDF 2=12|CD |·d =4910.21.解 (1)由f (x )的图象经过P (0,2)知d =2,∴f (x )=x 3+bx 2+cx +2,f ′(x )=3x 2+2bx +c .由在点M (-1,f (-1))处的切线方程是6x -y +7=0,知-6-f (-1)+7=0,即f (-1)=1,f ′(-1)=6.∴⎩⎪⎨⎪⎧ 3-2b +c =6,-1+b -c +2=1,即⎩⎪⎨⎪⎧ b -c =0,2b -c =-3, 解得b =c =-3.故所求的解析式是f (x )=x 3-3x 2-3x +2.(2)f ′(x )=3x 2-6x -3,令3x 2-6x -3=0,即x 2-2x -1=0.解得x 1=1-2,x 2=1+ 2.当x <1-2或x >1+2时,f ′(x )>0.当1-2<x <1+2时,f ′(x )<0.故f (x )=x 3-3x 2-3x +2在(-∞,1-2)和(1+2,+∞)内是增函数,在(1-2,1+2)内是减函数.22.解 (1)∵f (x )=23x 3-2ax 2-3x ,∴f ′(x )=2x 2-4ax -3,∵f (x )在区间(-1,1)上为减函数,∴f ′(x )≤0在(-1,1)上恒成立;∴⎩⎪⎨⎪⎧f ′(-1)≤0f ′(1)≤0 得-14≤a ≤14. 故a 的取值范围是⎣⎡⎦⎤-14,14. (2)当a >14时,∵⎩⎨⎧ f ′(-1)=4⎝⎛⎭⎫a -14>0f ′(1)=-4⎝⎛⎭⎫a +14<0,∴存在x 0∈(-1,1),使f ′(x 0)=0,∵f ′(x )=2x 2-4ax -3开口向上,∴在(-1,x 0)内,f ′(x )>0,在(x 0,1)内,f ′(x )<0,即f (x )在(-1,x 0)内单调递增,在(x 0,1)内单调递减,∴f (x )在(-1,1)内有且仅有一个极值点,且为极大值点.当a <-14时,∵⎩⎨⎧ f ′(-1)=4⎝⎛⎭⎫a -14<0f ′(1)=-4⎝⎛⎭⎫a +14>0,∴存在x 0∈(-1,1)使f ′(x 0)=0.∵f ′(x )=2x 2-4ax -3开口向上,∴在(-1,x 0)内f ′(x )<0,在(x 0,1)内f ′(x )>0.即f (x )在(-1,x 0)内单调递减,在(x 0,1)内单调递增,∴f (x )在(-1,1)内有且仅有一个极值点,且为极小值点.当-14≤a ≤14时,由(1)知f (x )在(-1,1)内递减,没有极值点.综上,当a >14或a <-14时,f (x )在(-1,1)内的极值点的个数为1,当-14≤a ≤14时,f (x )在(-1,1)内的极值点的个数为0.模块综合检测(C)(时间:120分钟 满分:150分)一、选择题(本大题12小题,每小题5分,共60分)1.方程x =1-4y 2所表示的曲线是( )A .双曲线的一部分B .椭圆的一部分C .圆的一部分D .直线的一部分2.若抛物线的准线方程为x =-7,则抛物线的标准方程为( )A .x 2=-28yB .x 2=28yC .y 2=-28xD .y 2=28x3.双曲线x 2a 2-y 2b 2=1的两条渐近线互相垂直,那么该双曲线的离心率是( )A .2 B. 3 C. 2 D.324.用a ,b ,c 表示三条不同的直线,γ表示平面,给出下列命题:①若a ∥b ,b ∥c ,则a ∥c ;②若a ⊥b ,b ⊥c ,则a ⊥c ;③若a ∥γ,b ∥γ,则a ∥b ;④若a ⊥γ,b ⊥γ,则a ∥b .其中真命题的序号是( )A .①②B .②③C .①④D .③④5.已知a 、b 为不等于0的实数,则a b >1是a >b 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件6.若抛物线y 2=4x 的焦点是F ,准线是l ,点M (4,m )是抛物线上一点,则经过点F 、M 且与l 相切的圆一共有( )A .0个B .1个C .2个D .4个7.若双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的左、右焦点分别为F 1,F 2.线段F 1F 2被抛物线y 2=2bx 的焦点分成5∶3两段,则此双曲线的离心率为( ) A. 3 B. 6 C.233 D.263 8.已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为245,则此双曲线方程是( )A.x 212-y 24=1 B .-x 212+y 24=1C.x 24-y 212=1 D .-x 24+y 212=19.下列四个结论中正确的个数为( )①命题“若x 2<1,则-1<x <1”的逆否命题是“若x >1或x <-1,则x 2>1”;②已知p :∀x ∈R ,sin x ≤1,q :若a <b ,则am 2<bm 2,则p ∧q 为真命题;③命题“∃x ∈R ,x 2-x >0”的否定是“∀x ∈R ,x 2-x ≤0”;④“x >2”是“x 2>4”的必要不充分条件.A .0个B .1个C .2个D .3个10.设f (x )=x (ax 2+bx +c ) (a ≠0)在x =1和x =-1处有极值,则下列点中一定在x 轴上的是( )A .(a ,b )B .(a ,c )C .(b ,c )D .(a +b ,c )11.函数y =ln x x 的最大值为( )A .e -1B .eC .e 2 D.10312.已知命题P :函数y =log 0.5(x 2+2x +a )的值域为R ;命题Q :函数y =-(5-2a )x 是R 上的减函数.若P 或Q 为真命题,P 且Q 为假命题,则实数a 的取值范围是( )A .a ≤1B .a <2C .1<a <2D .a ≤1或a ≥2二、填空题(本大题共4小题,每小题5分,共20分)13.若函数f (x )=x 3+x 2+mx +1是R 上的单调函数,则m 的取值范围是________.14.一动圆圆心在抛物线x 2=8y 上,且动圆恒与直线y +2=0相切,则动圆必过定点________.15.已知F 1、F 2是椭圆C x 2a 2+y 2b 2=1 (a >b >0)的两个焦点,P 为椭圆C 上一点,PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.16.设f (x )、g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是________________________________________________________________________.三、解答题(本大题共6小题,共70分)17.(10分)已知p :x 2-12x +20<0,q :x 2-2x +1-a 2>0 (a >0).若綈q 是綈p 的充分条 件,求a 的取值范围.18.(12分)已知函数f (x )=x 3+bx 2+cx +d 在(-∞,0)上是增函数,在[0,2]上是减函数,且方程f (x )=0的一个根为2.(1)求c 的值;(2)求证:f (1)≥2.19.(12分) 如图,M 是抛物线y 2=x 上的一个定点,动弦ME 、MF 分别与x 轴交于不同的点A 、B ,且|MA |=|MB |.证明:直线EF 的斜率为定值.20.(12分)命题p :关于x 的不等式x 2+2ax +4>0,对一切x ∈R 恒成立,命题q :指数函数f (x )=(3-2a )x 是增函数,若p 或q 为真,p 且q 为假,求实数a 的取值范围.21.(12分)已知函数f (x )=ax -ln x ,若f (x )>1在区间(1,+∞)内恒成立,求实数a 的取值范围.22.(12分)如图所示,已知直线l :y =kx -2与抛物线C :x 2=-2py (p>0)交于A ,B 两点,O 为坐标原点,OA →+OB →=(-4,-12).(1)求直线l 和抛物线C 的方程;(2)抛物线上一动点P 从A 到B 运动时,求△ABP 面积的最大值.答案1.B [x =1-4y 2,∴x 2+4y 2=1 (x ≥0).即x 2+y 214=1 (x ≥0).]2.D3.C [由已知,b 2a 2=1,∴a =b ,∴c 2=2a 2,∴e =c a =2a a = 2.]4.C5.D [如取a =-3,b =-2,满足a b >1,但不满足a >b .反过来取a =1,b =-5,满足a >b ,但不满足a b >1,故答案为D.]6.D [因为点M (4,m )在抛物线y 2=4x 上,所以可求得m =±4.由于圆经过焦点F 且和准线l 相切,由抛物线的定义知圆心在抛物线上.又因为圆经过抛物线上的点M ,所以圆心在线段FM 的垂直平分线上,即圆心是线段FM 的垂直平分线与抛物线的交点,结合图形易知对于点M (4,4)和(4,-4),都各有两个交点,因此一共有4个满足条件的圆.]7.C8.B [由已知得椭圆中a =5,b =3,∴c =4,且它的焦点在y 轴上,故双曲线的焦点也应在y 轴上且为(0,4)和(0,-4),又椭圆的离心率为e =c a =45,所以双曲线的离心率为2,即c a =2,又c =4,∴它的实半轴为2,虚半轴平方为b 2=c 2-a 2=16-4=12, 则双曲线方程为y 24-x 212=1.]9.B [只有③中结论正确.]10.A11.A [令y ′=(ln x )′x -ln x ·x ′x2=1-ln x x 2=0,x =e ,当x >e 时,y ′<0;当x <e 时,y ′>0,y 极大值=f (e)=1e ,在定义域内只有一个极值,所以y max =1e .]12.C [先化简P 与Q ,建构关于a 的关系式;由函数y =log 0.5(x 2+2x +a )的值域为R 知:内层函数u (x )=x 2+2x +a 恰好取遍(0,+∞)内的所有实数⇔Δ=4-4a ≥0⇔a ≤1,即P ⇔a ≤1;同样由y =-(5-2a )x 是减函数⇔5-2a >1,即Q ⇔a <2;由P 或Q 为真,P 且Q 为假知,P 与Q 中必有一真一假.故答案为C.]13.⎣⎡⎭⎫13,+∞解析 f ′(x )=3x 2+2x +m ,依题意可知f (x )在R 上只能单调递增,所以Δ=4-12m ≤0,∴m ≥13.14.(0,2)解析 动圆一定过抛物线x 2=8y 的焦点.15.3解析 由已知,得⎩⎪⎨⎪⎧|PF 1|+|PF 2|=2a |PF 1|·|PF 2|=18, ∴|PF 1|2+|PF 2|2+36=4a 2,又|PF 1|2+|PF 2|2=4c 2,∴4a 2-4c 2=36,∴b =3.16.(-∞,-3)∪(0,3)解析 设F (x )=f (x )g (x ),由已知得,F ′(x )=f ′(x )g (x )+f (x )g ′(x ).当x <0时,F ′(x )>0,∴F (x )在(-∞,0)上为增函数.又∵f (x )为奇函数,g (x )为偶函数.∴F (-x )=f (-x )g (-x )=-f (x )g (x )=-F (x ),∴F (x )为奇函数.∴F (x )在(0,+∞)上也为增函数.又g (-3)=0,∴F (-3)=0,F (3)=0.∴f (x )g (x )<0的解集为(-∞,-3)∪(0,3).17.解 p :{x |2<x <10},q :{x |x <1-a ,或x >1+a }.由綈q ⇒綈p ,得p ⇒q ,于是1+a <2,∴0<a <1.18.(1)解 ∵f (x )在(-∞,0)上是增函数,在[0,2]上是减函数,∴f ′(0)=0.∵f ′(x )=3x 2+2bx +c ,∴f ′(0)=c =0.∴c =0.(2)证明 ∵f (2)=0,∴8+4b +2c +d =0,而c =0,∴d =-4(b +2).∵方程f ′(x )=3x 2+2bx =0的两个根分别为x 1=0,x 2=-23b ,且f (x )在[0,2]上是减函数,∴x 2=-23b ≥2,∴b ≤-3.∴f (1)=b +d +1=b -4(b +2)+1=-7-3b ≥-7+9=2.故f (1)≥2.19.证明 设M (y 20,y 0),直线ME 的斜率为k (k >0),则直线MF 的斜率为-k ,直线ME 的方程为y -y 0=k (x -y 20).由⎩⎪⎨⎪⎧ y -y 0=k (x -y 20)y 2=x 得ky 2-y +y 0(1-ky 0)=0.于是y 0·y E =y 0(1-ky 0)k. 所以y E =1-ky 0k .同理可得y F =1+ky 0-k. ∴k EF =y E -y F x E -x F =y E -y F y 2E -y 2F=1y E +y F =-12y 0(定值). 20.解 设g (x )=x 2+2ax +4,由于关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,所以函数g (x )的图象开口向上且与x 轴没有交点,故Δ=4a 2-16<0,∴-2<a <2.函数f (x )=(3-2a )x 是增函数,则有3-2a >1,即a <1.又由于p 或q 为真,p 且q 为假,可知p 和q 一真一假.①若p 真q 假,则⎩⎪⎨⎪⎧-2<a <2,a ≥1, ∴1≤a <2.②若p 假q 真,则⎩⎪⎨⎪⎧a ≤-2,或a ≥2,a <1, ∴a ≤-2.综上可知,所求实数a 的取值范围为{a |1≤a <2或a ≤-2}.21.解 由f (x )>1,得ax -ln x -1>0.即a >1+ln x x 在区间(1,+∞)内恒成立.设g (x )=1+ln x x ,则g ′(x )=-ln x x 2,∵x >1,∴g ′(x )<0.∴g (x )=1+ln x x 在区间(1,+∞)内单调递减.∴g (x )<g (1)=1,即1+ln x x <1在区间(1,+∞)内恒成立,∴a ≥1.22.解 (1)由⎩⎪⎨⎪⎧ y =kx -2,x 2=-2py ,得x 2+2pkx -4p =0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4.因为 OA →+OB →=(x 1+x 2,y 1+y 2)=(-2pk ,-2pk 2-4)=(-4,-12),所以⎩⎪⎨⎪⎧ -2pk =-4,-2pk 2-4=-12. 解得⎩⎪⎨⎪⎧p =1,k =2. 所以直线l 的方程为y =2x -2,抛物线C 的方程为x 2=-2y .(2)设P (x 0,y 0),依题意,抛物线过点P 的切线与l 平行时,△ABP 的面积最大, y ′=-x ,所以-x 0=2⇒x 0=-2,y 0=-12x 20=-2,所以P (-2,-2).此时点P 到直线l 的距离d =|2×(-2)-(-2)-2|22+(-1)2=45=455, 由⎩⎪⎨⎪⎧y =2x -2,x 2=-2y ,得x 2+4x -4=0, |AB |=1+k 2·(x 1+x 2)2-4x 1x 2=1+22·(-4)2-4×(-4)=410.∴△ABP 面积的最大值为410×4552=8 2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模块综合检测(A)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.命题“若A ⊆B ,则A =B ”与其逆命题、否命题、逆否命题这四个命题中,真命题的个数是( )A .0B .2C .3D .42.已知命题p :若x 2+y 2=0 (x ,y ∈R ),则x ,y 全为0;命题q :若a >b ,则1a <1b.给出下列四个复合命题:①p 且q ;②p 或q ;③綈p ;④綈q .其中真命题的个数是( )A .1B .2C .3D .43.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为( )A.x 216+y 212=1B.x 212+y 216=1 C.x 216+y 24=1 D.x 24+y 216=1 4.已知a >0,则x 0满足关于x 的方程ax =b 的充要条件是( )A .∃x ∈R ,12ax 2-bx ≥12ax 20-bx 0B .∃x ∈R ,12ax 2-bx ≤12ax 20-bx 0C .∀x ∈R ,12ax 2-bx ≥12ax 20-bx 0D .∀x ∈R ,12ax 2-bx ≤12ax 20-bx 05.已知椭圆x 2a 2+y 2b2=1 (a >b >0),M 为椭圆上一动点,F 1为椭圆的左焦点,则线段MF 1的中点P 的轨迹是( )A .椭圆B .圆C .双曲线的一支D .线段6.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )A .[0,π4)B .[π4,π2)C .(π2,3π4]D .[3π4,π)7.已知a >0,函数f (x )=x 3-ax 在区间[1,+∞)上是单调递增函数,则a 的最大值是( ) A .1 B .3 C .9 D .不存在8.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如果x 1+x 2=6,那么|AB |等于( )A .10B .8C .6D .49.中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为( )A. 6B. 5C.62D.5210.若当x =2时,函数f (x )=ax 3-bx +4有极值-43,则函数的解析式为( )A .f (x )=3x 3-4x +4B .f (x )=13x 2+4C .f (x )=3x 3+4x +4D .f (x )=13x 3-4x +411.设O 为坐标原点,F 1、F 2是x 2a 2-y2b2=1(a >0,b >0)的焦点,若在双曲线上存在点P ,满足∠F 1PF 2=60°,|OP |=7a ,则该双曲线的渐近线方程为( )A .x ±3y =0 B.3x ±y =0 C .x ±2y =0 D.2x ±y =012.若函数f (x )=x 2+ax(a ∈R ),则下列结论正确的是( )A .∀a ∈R ,f (x )在(0,+∞)上是增函数B .∀a ∈R ,f (x )在(0,+∞)上是减函数C .∃a ∈R ,f (x )是偶函数二、填空题(本大题共4小题,每小题5分,共20分)13.已知p (x ):x 2+2x -m >0,如果p (1)是假命题,p (2)是真命题,那么实数m 的取值范围是 ________________________________________________________________.14.已知双曲线x 2a 2-y 2b2=1 (a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点与抛物线y 2=16x 的焦点相同,则双曲线的方程为________________________________________________________________________.15.若AB 是过椭圆x 2a 2+y 2b2=1 (a >b >0)中心的一条弦,M 是椭圆上任意一点,且AM 、BM 与坐标轴不平行,k AM 、k BM 分别表示直线AM 、BM 的斜率,则k AM ·k BM =________.16.已知f (x )=x 3+3x 2+a (a 为常数)在[-3,3]上有最小值3,那么在[-3,3]上f (x )的最大值是________.三、解答题(本大题共6小题,共70分)17.(10分)已知p :2x 2-9x +a <0,q :⎩⎪⎨⎪⎧x 2-4x +x 2-6x +8<0,且綈q 是綈p 的必要条件,求实数a 的取值范围.18.(12分)设P 为椭圆x 2100+y 264=1上一点,F 1、F 2是其焦点,若∠F 1PF 2=π3,求△F 1PF 2的面积.19.(12分)已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足|MN →||MP →|+MN →·NP →=0,求动点P (x ,y )的轨迹方程.20.(12分)已知函数f (x )=ax 2-43ax +b ,f (1)=2,f ′(1)=1.(1)求f (x )的解析式;(2)求f (x )在(1,2)处的切线方程.21.(12分)已知直线y =ax +1与双曲线3x 2-y 2=1交于A ,B 两点. (1)求a 的取值范围;(2)若以AB 为直径的圆过坐标原点,求实数a 的值.22.(12分)已知函数f (x )=ln x -ax +1-ax-1(a ∈R ).(1)当a =-1时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)当a ≤12时,讨论f (x )的单调性.模块综合检测(A) 答案1.B [原命题为假,故其逆否命题为假;其逆命题为真,故其否命题为真;故共有2个真命题.]2.B [命题p 为真,命题q 为假,故p ∨q 真,綈q 真.]3.D [双曲线x 24-y 212=-1,即y 212-x 24=1的焦点为(0,±4),顶点为(0,±23).所以对椭圆y 2a 2+x 2b 2=1而言,a 2=16,c 2=12.∴b 2=4,因此方程为y 216+x 24=1.]4.C [由于a >0,令函数y =12ax 2-bx =12a (x -b a )2-b22a,此时函数对应的图象开口向上,当x =b a 时,取得最小值-b 22a ,而x 0满足关于x 的方程ax =b ,那么x 0=b a ,y min =12ax 20-bx 0=-b 22a,那么对于任意的x ∈R ,都有y =12ax 2-bx ≥-b 22a =12ax 20-bx 0.]5.A [∵P 为MF 1中点,O 为F 1F 2的中点,∴|OP |=12|MF 2|,又|MF 1|+|MF 2|=2a ,∴|PF 1|+|PO |=12|MF 1|+12|MF 2|=a .∴P 的轨迹是以F 1,O 为焦点的椭圆.]6.D [∵y =4e x +1,∴y ′=-4e x (e x +1)2.令e x +1=t ,则e x =t -1且t >1,∴y ′=-4t +4t 2=4t 2-4t .再令1t=m ,则0<m <1,∴y ′=4m 2-4m =4(m -12)2-1,m ∈(0,1).容易求得-1≤y ′<0,∴-1≤tan α<0,得34π≤α<π.]7.B [因为函数f (x )在区间[1,+∞)上单调递增,所以有f ′(x )≥0,x ∈[1,+∞),即3x 2-a ≥0在区间[1,+∞)上恒成立,所以a ≤3x 2.因为x ∈[1,+∞)时,3x 2≥3,从而a ≤3.] 8.B [由抛物线的定义, 得|AB |=x 1+x 2+p =6+2=8.]9.D [由题意知,过点(4,-2)的渐近线方程为y =-b a x ,∴-2=-ba×4,∴a =2b ,设b =k ,则a =2k ,c =5k ,∴e =c a =5k 2k =52.]10.D [因为f (x )=ax 3-bx +4, 所以f ′(x )=3ax 2-b .由题意得⎩⎪⎨⎪⎧f ′(2)=12a -b =0f (2)=8a -2b +4=-43,解得⎩⎪⎨⎪⎧a =13b =4,故所求函数解析式为f (x )=13x 3-4x +4.]11.D [如图所示,∵O 是F 1F 2的中点,PF 1→+PF 2→=2PO →,∴(PF 1→+PF 2→)2=(2PO →)2.即 |PF 1→|2+|PF 2→|2+2|PF 1→|·|PF 2→|·cos 60°=4|PO →|2. 又∵|PO |=7a ,∴ |PF 1→|2+|PF 2→|2+|PF 1→||PF 2→|=28a 2. ① 又由双曲线定义得|PF 1|-|PF 2|=2a , ∴(|PF 1|-|PF 2|)2=4a 2.即|PF 1|2+|PF 2|2-2|PF 1||PF 2|=4a 2. ② 由①-②得|PF 1|·|PF 2|=8a 2, ∴|PF 1|2+|PF 2|2=20a 2.在△F 1PF 2中,由余弦定理得cos 60°=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|,∴8a 2=20a 2-4c 2.即c 2=3a 2. 又∵c 2=a 2+b 2,∴b 2=2a 2. 即b 2a 2=2,ba= 2. ∴双曲线的渐近线方程为2x ±y =0.]12.C [f ′(x )=2x -ax2,故只有当a ≤0时,f (x )在(0,+∞)上才是增函数,因此A 、B不对,当a =0时,f (x )=x 2是偶函数,因此C 对,D 不对.]13.[3,8)解析 因为p (1)是假命题,所以1+2-m ≤0, 即m ≥3.又因为p (2)是真命题,所以4+4-m >0, 即m <8.故实数m 的取值范围是3≤m <8. 14.x 24-y 212=1 解析 由双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的一条渐近线方程为y =3x 得ba=3,∴b =3a .∵抛物线y 2=16x 的焦点为F (4,0),∴c =4. 又∵c 2=a 2+b 2,∴16=a 2+(3a )2, ∴a 2=4,b 2=12.∴所求双曲线的方程为x 24-y 212=1.15.-b 2a2解析 设A (x 1,y 1),M (x 0,y 0), 则B (-x 1,-y 1),则k AM ·k BM =y 0-y 1x 0-x 1·y 0+y 1x 0+x 1=y 20-y 21x 20-x 21=⎝⎛⎭⎫-b 2a 2x 20+b 2-⎝⎛⎭⎫-b 2a 2x 21+b 2x 20-x 21=-b 2a 2. 16.57解析 f ′(x )=3x 2+6x ,令f ′(x )=0, 得x =0或x =-2.又∵f (0)=a ,f (-3)=a , f (-2)=a +4,f (3)=54+a ,∴f (x )的最小值为a ,最大值为54+a . 由题可知a =3,∴f (x )的最大值为57.17.解 由⎩⎪⎨⎪⎧x 2-4x +3<0x 2-6x +8<0,得⎩⎨⎧1<x <32<x <4,即2<x <3.∴q :2<x <3.设A ={x |2x 2-9x +a <0},B ={x |2<x <3}, ∵綈p ⇒綈q ,∴q ⇒p ,∴B ⊆A . 即2<x <3满足不等式2x 2-9x +a <0. 设f (x )=2x 2-9x +a ,要使2<x <3满足不等式2x 2-9x +a <0, 需⎩⎪⎨⎪⎧ f (2)≤0f (3)≤0,即⎩⎪⎨⎪⎧8-18+a ≤018-27+a ≤0. ∴a ≤9.故所求实数a 的取值范围是{a |a ≤9}. 18.解 如图所示,设|PF 1|=m ,|PF 2|=n ,则S △F 1PF 2=12mn sin π3=34mn . 由椭圆的定义知 |PF 1|+|PF 2|=20,即m +n =20. ① 又由余弦定理,得|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos π3=|F 1F 2|2,即m 2+n 2-mn =122. ②由①2-②,得mn =2563.∴S △F 1PF 2=6433.19.解 设 P =(x ,y ),则 MN →=(4,0),MP →=(x +2,y ), NP →=(x -2,y ).∴ |MN →|=4,|MP →|=(x +2)2+y 2, MN →·NP →=4(x -2),代入 |MN →|·|MP →|+MN →·NP →=0, 得4(x +2)2+y 2+4(x -2)=0, 即(x +2)2+y 2=2-x , 化简整理,得y 2=-8x .故动点P (x ,y )的轨迹方程为y 2=-8x .20.解 (1)f ′(x )=2ax -43a ,由已知得⎩⎨⎧f ′(1)=2a -43a =1f (1)=a -43a +b =2,解得⎩⎨⎧a =32b =52,∴f (x )=32x 2-2x +52.(2)函数f (x )在(1,2)处的切线方程为 y -2=x -1,即x -y +1=0.21.解 (1)由⎩⎪⎨⎪⎧y =ax +1,3x 2-y 2=1消去y ,得(3-a 2)x 2-2ax -2=0.依题意得⎩⎪⎨⎪⎧3-a 2≠0,Δ>0,即-6<a <6且a ≠±3.(2)设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=2a3-a 2,x 1x 2=-23-a 2.∵以AB 为直径的圆过原点,∴OA ⊥OB ,∴x 1x 2+y 1y 2=0,即x 1x 2+(ax 1+1)(ax 2+1)=0, 即(a 2+1)x 1x 2+a (x 1+x 2)+1=0.∴(a 2+1)·-23-a 2+a ·2a3-a2+1=0,∴a =±1,满足(1)所求的取值范围. 故a =±1.22.解 (1)当a =-1时,f (x )=ln x +x +2x-1,x ∈(0,+∞),所以f ′(x )=x 2+x -2x 2,x ∈(0,+∞),因此f ′(2)=1,即曲线y =f (x )在点(2,f (2))处的切线斜率为1. 又f (2)=ln 2+2,所以曲线y =f (x )在点(2,f (2))处的切线方程为 y -(ln 2+2)=x -2,即x -y +ln 2=0.(2)因为f (x )=ln x -ax +1-ax -1,所以f ′(x )=1x -a +a -1x 2=-ax 2-x +1-a x 2,x ∈(0,+∞).令g (x )=ax 2-x +1-a ,x ∈(0,+∞).①当a =0时,g (x )=-x +1,x ∈(0,+∞), 所以当x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减;当x ∈(1,+∞)时,g (x )<0,此时f ′(x )>0,函数f (x )单调递增. ②当a ≠0时,由f ′(x )=0,即ax 2-x +1-a =0,解得x 1=1,x 2=1a-1.a .当a =12时,x 1=x 2,g (x )≥0恒成立,此时f ′(x )≤0,函数f (x )在(0,+∞)上单调递减.b .当0<a <12时,1a-1>1,x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减;x ∈⎝⎛⎭⎫1,1a -1时,g (x )<0, 此时f ′(x )>0,函数f (x )单调递增;x ∈⎝⎛⎭⎫1a -1,+∞时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减.c .当a <0时,由于1a-1<0.x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减; x ∈(1,+∞)时,g (x )<0,此时f ′(x )>0,函数f (x )单调递增. 综上所述:当a ≤0时,函数f (x )在(0,1)上单调递减, 在(1,+∞)上单调递增;当a =12时,函数f (x )在(0,+∞)上单调递减;当0<a <12时,函数f (x )在(0,1)上单调递减,在⎝⎛⎭⎫1,1a -1上单调递增,在⎝⎛⎭⎫1a -1,+∞上单调递减.。

相关文档
最新文档