贝叶斯统计ch5贝叶斯决策共42页

合集下载

第五章贝叶斯决策PPT资料44页

第五章贝叶斯决策PPT资料44页
个样本,参数 的先验分布为共轭先验分
布 N(0, 2),其中 2 已知,损失函数为
L(,x)10,,
求参数 的贝叶斯估计
例5.6 在新的止痛剂的市场占有率 的估计问题中
已给出损失函数 L(,x) 2( ,) 0, 1
药厂厂长对市场占有率 无任何先验信息。在市场
调查中,在n个购买止痛剂的顾客中有x个人买了新
我们约定,若已知
(1)有一个可观察的随机变量X,其密度函数 p(x )依赖于未知
参数 ,且 。
(2)在参数空间 上有一个先验分布
(3)有一个行动集 {a}。
在对 做点估计时,一般取;在对 做区间估计
时,行动a就是一个区间,的一切可能的区间构成行动 集 ;在对 作假设检验时,只有两个行动:接受和拒
一.平方损失函数下的贝叶斯估计
定理5.1 在平方损失函数L (,x) ( )下2 ,的贝叶 斯估计为后验均值,即 BxE(x)
定理5.2在加权平方损失函数 L ( ,x ) ( )2下,
的贝叶斯估计为
Bx
Ex Ex
定理5.3 在参数向量 (1,2,,k) 的场合下,对
多元二次损失函数 L(,)()Q()Q ,为正定矩
的止痛剂,试在后验风险准则下对 作出贝叶斯估
计。
例5.7 设样本x只能来自密度函数 p0 (x)或 p1(x)
中的一个,为了研究该样本到底来自哪个分布,
我们来考虑如下简单假设的检验问题:
H 0:x来 p 0(自 x), H 1:x来 p 1(自 x)
损失函数用矩阵表示如下:
L
0 1
1 0
5.3 常用损失函数下的贝叶斯估计
个样本,其中 已知。
试在平方损失函数下寻求 1 的贝叶斯估计。

统计学中的贝叶斯统计和决策理论

统计学中的贝叶斯统计和决策理论

统计学中的贝叶斯统计和决策理论统计学是研究数据收集、分析和解释的学科,而贝叶斯统计和决策理论是统计学中的两个重要分支。

贝叶斯统计理论是一种基于贝叶斯定理的统计推断方法,而决策理论则关注如何在面对风险或不确定性时做出最佳决策。

一、贝叶斯统计1. 贝叶斯理论的基本思想贝叶斯统计理论是以英国数学家Thomas Bayes的名字命名的,其基本思想是通过先验知识和新收集的数据来进行参数估计。

与传统频率统计不同,贝叶斯统计将概率看作是描述人们对不确定性的信念,通过更新这些信念来进行推理。

2. 先验概率和后验概率在贝叶斯统计中,先验概率是在考虑新数据之前已经拥有的关于参数的概率分布。

随着新数据的不断积累,我们可以更新先验概率,得到后验概率,从而更加准确地估计参数的值。

3. 贝叶斯公式贝叶斯公式是贝叶斯统计的核心公式。

根据贝叶斯公式,我们可以计算参数的后验概率,从而基于数据来更新我们对参数的估计。

4. 贝叶斯推断的优点和应用贝叶斯统计有一些独特的优点。

首先,它允许我们将先验知识与数据结合,从而得到更加准确的推断。

此外,贝叶斯统计还可以通过使用先验概率来处理缺乏数据的情况。

贝叶斯统计在各个领域中都有广泛的应用,包括医学诊断、金融风险评估和机器学习等。

二、决策理论1. 决策理论的基本概念决策理论是研究在面对不确定性和风险时如何做出最佳决策的学科。

决策问题涉及到选择行动和评估不同行动的后果。

决策理论包括概率理论、效用理论和风险管理等概念。

2. 概率理论在决策中的应用概率理论是决策理论中的一项重要概念,它用于描述事件发生的可能性。

决策者可以使用概率理论来估计不同决策的结果,并在不确定性下做出合理的决策。

3. 效用理论和决策权衡效用理论是决策理论中的另一个关键概念,它描述了个体对不同结果的偏好程度。

根据效用理论,决策者可以根据结果的效用来评估不同决策的价值,并选择效用最大化的决策。

4. 风险管理和决策优化决策理论还涉及到风险管理和决策优化。

统计学中的贝叶斯统计与决策理论

统计学中的贝叶斯统计与决策理论

统计学中的贝叶斯统计与决策理论统计学中的贝叶斯统计学是一种基于贝叶斯公式和概率论原理的统计推断方法。

它与传统的频率主义统计学方法相比,具有许多独特的优势。

本文将介绍贝叶斯统计学的基本原理、应用领域以及与决策理论的关系。

一、贝叶斯统计学的基本原理贝叶斯统计学是由英国数学家托马斯·贝叶斯提出的,它基于概率论的贝叶斯公式:P(A|B) = P(B|A) * P(A) / P(B),其中P(A|B)表示在给定B发生的条件下A发生的概率,P(B|A)表示在给定A发生的条件下B 发生的概率,P(A)和P(B)分别表示A和B分别发生的概率。

贝叶斯统计学的基本原理是根据已有的先验知识和新的观测数据,通过不断更新概率分布来得出对未知参数的后验概率分布。

通过贝叶斯公式,可以将观测数据与已有知识相结合,得出对未知参数的概率分布,从而进行推断和预测。

二、贝叶斯统计学的应用领域贝叶斯统计学广泛应用于各个领域,包括医学、金融、生物学、工程学等。

其应用主要体现在以下几个方面:1. 参数估计:贝叶斯统计学通过考虑先验信息,对参数进行估计。

与传统的频率主义统计学方法相比,贝叶斯统计学能够更好地利用已有的知识,提供更准确的参数估计。

2. 假设检验:贝叶斯统计学提供了一种新的方法来进行假设检验。

通过计算后验概率与先验概率的比值,可以得到对不同假设的相对支持程度,从而在决策时提供更全面的信息。

3. 预测分析:贝叶斯统计学通过更新概率分布,可以对未来的事件进行预测。

这使得贝叶斯统计学在金融风险预测、天气预报等领域有着广泛的应用。

三、贝叶斯统计学与决策理论的关系贝叶斯统计学与决策理论密切相关。

决策理论主要研究如何在不确定情况下做出最优决策。

而贝叶斯统计学可以为决策提供一个统一的框架,通过计算不同决策的后验概率,从而选择概率最大的决策。

在贝叶斯决策理论中,需要考虑多个可能的决策结果以及每个决策结果的概率。

通过使用贝叶斯统计学中的贝叶斯公式,可以将观测数据与已有知识相结合,计算每个决策结果的后验概率,从而选择概率最大的决策。

贝叶斯统计决策

贝叶斯统计决策

叶斯统计决策理论是指综合运用决策科学的基础理论和决策的各种科学方法对投资进行分析决策。

其应用决策科学的一般原理和决策分析的方法研究投资方案的比选问题,从多方面考虑投资效果,并进行科学的分析,从而对投资方案作出决策。

涉及到投资效果的各种评价、评价标准、费用(效益分析)等问题。

投资决策效果的评价问题首要的是对投资效果的含义有正确理解,并进行正确评价。

贝叶斯统计中的两个基本概念是先验分布和后验分布。

①先验分布。

总体分布参数θ的一个概率分布。

贝叶斯学派的根本观点,是认为在关于总体分布参数θ的任何统计推断问题中,除了使用样本所提供的信息外,还必须规定一个先验分布,它是在进行统计推断时不可缺少的一个要素。

他们认为先验分布不必有客观的依据,可以部分地或完全地基于主观信念。

②后验分布。

根据样本分布和未知参数的先验分布,用概率论中求条件概率分布的方法,求出的在样本已知下,未知参数的条件分布。

因为这个分布是在抽样以后才得到的,故称为后验分布。

贝叶斯推断方法的关键是任何推断都必须且只须根据后验分布,而不能再涉及样本分布。

贝叶斯统计(Bayesian statistics),推断统计理论的一种。

英国学者贝叶斯在1763年发表的论文《有关机遇问题求解的短论》中提出。

依据获得样本(Xl,X2,…,Xn)之后θ的后验分布π(θ|X1,X2,…,Xn)对总体参数θ作出估计和推断。

它不是由样本分布作出推断。

其理论基础是先验概率和后验分布,即在事件概率时,除样本提供的后验信息外,还会凭借自己主观已有的先验信息来估计事件的概率。

而以R.A.费希尔为首的经典统计理论对事件概率的解释是频率解释,即通过抽取样本,由样本计算出事件的频率,而样本提供的信息完全是客观的,一切推断的结论或决策不允许加入任何主观的先验的信息。

以对神童出现的概率P的估计为例。

按经典统计的做法,完全由样本提供的信息(即后验信息)来估计,认为参数p是一个“值”。

贝叶斯统计的做法是,除样本提供的后验信息外,人类的经验对p 有了一个了解,如p可能取pl与户p2,且取p1的机会很大,取p2机会很小。

第2章_贝叶斯决策

第2章_贝叶斯决策

R1
R1
21 p 1 p x 1 dx 22 p 2 p x 2 dx
R2
R2
11 p 1 (1 p x 1 dx) 21 p 1 p x 1 dx 12 (1 p 1 ) p x 2 dx
R2
R2
R1
22(1 p 1 )(1 p x 2 dx)
R1
最小最大决策准则
Neyman-Pearson准则
❖ 对两分类问题,错误率可以写为:
Pe p x R1, x 2 p x R2, x 1
p x | 2 p2 dx p x | 1 p1 dx
R1
R2
p x | 2 dx p2 p x | 1 dx p1
R1
R2
p2 e p2 p1 e p1
策即为最小风险贝叶斯决策
最小风险准则
最小风险准则
❖ 对于贝叶斯最小风险决策,如果损失函数为“01损失”,即取如下的形式:
i wj
0, 1,
for i j ; i, j 1,
for i j
,c
那么,条件风险为:
c
R i x i j P j x P j x 1 P i x
❖ 贝叶斯决策的两个要求
各个类别的总体概率分布 (先验概率和类条件概 率密度) 是已知的
要决策分类的类别数是一定的
引言
❖ 在连续情况下,假设对要识别的物理对象有d种特征
观察量x1,x2,…xd,这些特征的所有可能的取值范围 构成了d维特征空间。
❖ 称向量 x x1, x2, , xd T x Rd 为d维特征向量。
p 2 p 1
似然比公式
最小错误率准则
❖ 特例1:
最小错误率准则

贝叶斯决策理论课件

贝叶斯决策理论课件
R R x | xpxdx
期望风险R反映对整个特征空间上所有x的取 值采取相应的决策(x)所带来的平均风险。
条件风险R(i|x)只是反映对某一观察值x,
采取决策i时,所有类别状态下带来风险的 平均值。
显然,我们要求采取的一系列决策行动(x) 使期望风险R最小。
如果在采取每一个决策或行动时,都使其条件 风险最小,则对给定的观察值x作出决策时,其 期望风险也必然最小。这样的决策就是最小风 险贝叶斯决策。其规则为:
p(x 1)P(1)dx p(x 2 )P(2 )dx
R2
R1
P(1)P1(e) P(2 )P2 (e)
对应图中黄色和 橘红色区域面积
px
|
1
dx
px
|
2
dx
R2
R1
对多类决策(假设有c类),很容易写出相应的最小 错误率贝叶斯决策规则:
形式一:
如果P( x) max P( x),则x
它是在c个类别状态中任取某个状态j时,采
用决策i的风险(i|j)相对于后验概率 P(j/x)的条件期望。
▪ 观察值x是随机向量,不同的观察值x,采取 决策i时,其条件风险的大小是不同的。所 以,究竟采取哪一种决策将随x的取值而定。
▪ 决策看成随机向量x的函数,记为(x), 它 也是一个随机变量。我们可以定义期望风险R:
(i
,
j
)
0 1
i j i j
i, j 1, 2, , c
此时的条件风险为:
c
c
R(i x) (i , j )P( j x) P( j x)
j1
j1
i j
表示对x采取决策i的条件错误概率
所以在0-1损失函数时,使

贝叶斯决策分析课件

贝叶斯决策分析课件
试销,能使该企业新产品开发决策取得较 好的经济效益;若试销费用不超过2.99万元, 则不应进行试销。
❖若试销结果是该产品需求量大或一般,则 应该选择方案a1,即引进大型设备;
❖若调查结果是该产品需求量小,则应该选 择方案a3,即引进小型设备。
§5.2 贝叶斯决策信息的价值
从前面的分析看出,利用补充信息来修正 先验概率,可以使决策的准确度提高,从 而提高决策的科学性和效益性。因此,信 息本身是有价值的—能带来收益。
则:
E (a1)=1.1(万元),E (a2)=0
记验前分析的最大期望收益值为E1,有:
E1=max{E (a1),E (a2)} =1.1
因此验前分析后的决策为:生产该新产品。
即:
aopt= a1
E1为不作市场调查的期望收益。
2、预验分析:由全概率公式
n
pHi p(Hi / j ) p( j )
但获得的情报越多,花费也更多。
因此有一个获取补充信息是否有利的问题: 收益与成本的比较。
问题:如何衡量信息的价值?
§5.2 贝叶斯决策信息的价值
5.2.1 完全信息的价值(EVPI) 完全情报:指能够提供状态变量真实情况的
补充信息。即在获得补充情报后就完全消除 了风险情况,风险决策就转化为确定型决策。 1.完全信息值
有关的概率公式
则离对散任情一况随机事件H,有全概率公式:
设 足pH有 :完备n事p件(H组/{ θj )j} p((j=j )1 , 2 , … ( p, (n)j ), 满0) j 1
有关的概率公式
贝叶斯公式:
p i / H
p(H
/i ) p(i )
p(H )
p(H /i ) p(i )

决策分析贝叶斯决策

决策分析贝叶斯决策

天数
3 9 15 3
频率
0.1 0.3 0.5 0.1
由这些资料可以确定未来任何一天的销售量(即自 然状态)的概率分布。
2
先验分布例子: 用某一段时间内每批产品所包含的不合格品数目,来估
计该产品不合格品率的概率分布; 用过去历年秋季广州市火灾的次数,来估计明年秋季火
灾次数的概率分布。
3.主观的先验分布
=2000×0.3+0×0.7=600(元)
故决策方案δ 1(x)的贝叶斯风险为 B(δ 1)= P(θ 1, δ 1) P(θ =θ 1)+ P(θ 2, δ 1) P(θ =θ 2) =300×1/2+600×1/2=450(元)
决策方案δ 2(x)的贝叶斯风险 R(θ1, δ 2(合)) =R(θ1, a2) =1500 R(θ1, δ 2(不)) =R(θ1, a1) =0 R(θ2, δ 2(合)) =R(θ2, a2) =0 R(θ2, δ 2(不)) =R(θ2, a1) =2000
P2


0.160.5
0.432
0.160.5 0.210.5
P2
|
合.不

P合.不|
P合.不|2 P2 1P1 P合.不|
2
P2


0.210.5
0.568
0.160.5 0.210.5
因此,应判断此时设备不正常
11
情况5:可以抽出的两件产品皆为不合格品,即X=“不·不”,
21
若抽取两件产品来补充情报信息,这时决策方案共有 八个,分别记为δ1,δ2,δ3,δ4,δ5,δ6,δ7,δ8,各个决 策方案的风险值和贝叶斯风险见表5-4:
表5-4 状态θ

《贝叶斯决策理论》PPT课件

《贝叶斯决策理论》PPT课件
常表示为
p (x )~ N (, )
多元正态分布的性质
等密度点的轨迹是超椭球面
R 1
R 2
R 22 (12 22) p(x2)dx
R 1
P ( 1)(11 22) (21 11) p(x 1)dx (12 22) p(x2)dx
R 2
R 1
一旦R 1 和 R 2 确定,风险 R 就是先验概率 P (1 ) 的线性函数,可表
示为
RabP(1)
a22(1222) p(x2)dx
R 11P(1x)12P(2 x)p(x)dx
R1
21P(1x)22P(2 x)p(x)dx
R2
R11P(1)p(x1)12P(2)p(x2)dx
R 1
21P(1)p(x1)22P(2)p(x2)dx
R2
P (2 ) 1 P (1 ) p ( x 1 ) d x p ( x 1 ) d x 1
2.3 正态分布时的统计决策
贝叶斯分类器的结构可由条件概率密度 和先验概率来决定
最受青睐的密度函数——正态分布,也称 高斯分布
合理性:中心极限定理表明,在相当一般的 条件下,当独立随机变量的个数增加时,其 和的分布趋于正态分布
简易性
2.3.1 正态分布的定义及性质
单变量正态分布由两个参数完全确定,即 均值和方差
模式识别的目的就是要确定某一个给定 的模式样本属于哪一类
可以通过对被识别对象的多次观察和测
量,构成特征向量,并将其作为某一个
判决规则的输入,按此规则来对样本进 行分类
作为统计判别问题的模式分类
在获取模式的观测值时,有些事物具有 确定的因果关系,即在一定的条件下, 它必然会发生或必然不发生
例如识别一块模板是不是直角三角形,只要 凭“三条直线边闭合连线和一个直角”这个 特征,测量它是否有三条直线边的闭合连线 并有一个直角,就完全可以确定它是不是直 角三角形

贝叶斯决策理论课件(PPT90页)

贝叶斯决策理论课件(PPT90页)

Some about Bayes(2)
一所学校里面有 60% 的男生,40% 的女生。男生总是穿长 裤,女生则一半穿长裤一半穿裙子。假设你走在校园中, 迎面走来一个穿长裤的学生(很不幸的是你高度近似,你 只看得见他(她)穿的是否长裤,而无法确定他(她)的 性别),你能够推断出他(她)是女生的概率是多大吗?
要决策分类的类别数是一定的
引言
在连续情况下,假设对要识别的物理对象有d种特征
观察量x1,x2,…xd,这些特征的所有可能的取值范围构 成了d维特征空间。
称向量 x x1, x2, , xd T x Rd 为d维特征向量。
假设要研究的分类问题有c个类别,类型空间表示
为:
1,2 , ,i ,c
P(B|LB)∝P(LB|B)P(B)∝0.75P(B) P(~B|LB)∝P(LB|~B)P(~B)∝0.25(1-P(B)) 而西安的出租车10辆中有9辆是绿色的,则给出了先验概率P(B)=0.1,于 是有 P(B|LB)∝0.75×0.1=0.075 P(~B|LB)∝0.25(1-P(B))=0.25×0.9=0.225 P(B|LB)=0.075/0.072+0.225=0.25 P(~B|LB)=0.225/0.072+0.225=0.75 因此肇事车辆为绿色。
Neyman-Pearson准则
问题:先验概率和损失未知
通常情况下,无法确定损失。 先验概率未知,是一个确定的值 某一种错误较另一种错误更为重要。
基本思想:
要求一类错误率控制在很小,在满足此条件的 前提下再使另一类错误率尽可能小。
用lagrange乘子法求条件极值
Neyman-Pearson准则
和绿色的区分的可靠度是75%; 假设随后你又了解到第3条信息:(3)西安的出租车10辆

第二章贝叶斯决策理论

第二章贝叶斯决策理论
1
第二章 贝叶斯决策理论
2.2 几种 常用旳决策规则
• 基于最小错误率旳贝叶斯决策 • 基于最小风险旳贝叶斯决策 • 分类器设计
2
2.2.1 基于最小错误率旳贝叶斯决策
在模式分类问题中,基于尽量降低分类旳错 误旳要求,利用概率论中旳贝叶斯公式,可得出 使错误率为最小旳分类规则,称之为基于最小错 误率旳贝叶斯决策。
11 0,
12 6
21 1,
22 0
根据例2.1旳计算成果可知后验概率为
P(1 | x) 0.818,
P(2 | x) 0.182
再按式(2-15)计算出条件风险 2 R(1 | x) 1 j P( j | x) 12P(2 | x) 1.092 j 1
R(2 | x) 21P(1 | x) 0.818 由于R(1 | x) R(2 | x)
c
c
R(i | x) (i , j )P( j | x) P( j | x)
(2 19)
j 1
j 1
ji
c
P( j
j 1
| x)
表达对x采用决策 i旳条件错误概率。
ji
26
• 所以在0-1损失函数时,使
R( k
|
x)
min
i 1,,c
R(i
|
x)
旳最小风险贝叶斯决策就等价于
c
c
j1
P( j
(i ,
j
)
10,,ii
j, j,
i, j 1,2,, c
(2 18)
25
• 式中假定对于c类只有c个决策,即不考虑“拒绝”旳
情况。式(2-18)中(i , j ) 是对于正确决策(即i=j)

贝叶斯决策理论与统计判别方法PPT课件

贝叶斯决策理论与统计判别方法PPT课件

• P(ωi)=P(ωj)时决策面方程
WT(X-X1)=0
第32页/共55页
W=μi-μj W=μi-μj
正态分布概率模型下的最小错误率贝叶斯决策
一维特征
第33页/共55页
正态分布概率模型下的最小错误率贝叶斯决策
二维特征
第34页/共55页
正态分布概率模型下的最小错误率贝叶斯决策
三维特征
第35页/共55页
第14页/共55页
二维向量的协方差矩阵
第15页/共55页
多元正态分布
• 协方差矩阵 • 协方差矩阵并不只对正态分布有用 • 特性: 协方差矩阵是一个对称矩阵 • 特性: 协方差矩是正定的
第16页/共55页
多元正态分布的性质
• (1)参数μ与Σ对分布具有决定性
• 与单变量相似,记作p(X)~N(μ,Σ)
The action of a linear transformation on the feature space will convert an arbitrary normal distribution into another normal distribution.
第20页/共55页
正态分布概率模型下的最小错误率贝叶斯决策
第46页/共55页
正态分布概率模型下的最小错误率贝叶斯决策
• 最小距离分类器与线性分类器
• 两者都是线性分类器 • 最小距离分类器是线性分类器的一个特例 • 最小距离分类器在正态分布情况下,是按超球体分布以及先验概率相
等的前提下,才体现最小错误率的 • 只有在一定条件下,最小距离分类器同时又是最小错误率分类器 • 最小距离分类器的概念是分类器中是最常用的,因为它体现了基于最
• 前者是一个椭圆,而后者则是圆
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)根据题意求出θ的后验分布 G(n a x,n)
(2)写出后验均值 E(|x)nx n
(3)结论:由定理5.1知θ的贝叶斯估计为:
策函数类,则称
R (x)E x[L (,(x))x ],,
为决策函数 (x) 的后验风险.假如在决策函数类中
存在这样的决策函数 (x),它在D中有最小的风险,

R(x)mR in (x)
D
则称(x)为后验风险准则下的最优决策函数,或
称贝叶斯决策,或贝叶斯解,或贝叶斯估计。
注: (1)定义中的条件:给定的贝叶斯决策问题
2
二、贝叶斯决策问题
先验信息和抽样信息都用的决策问题称为贝叶斯 决策问题。若以下条件已知,则我们认为一个贝叶斯 决策问题给定了。
(1) X~p(x), (2) ~()
(3) {a}
(4) 定义在 A上的二元函数 L(,a)称为损失函数
3
三、贝叶斯决策的优缺点
1.优点主要表现在: (1)贝叶斯决策充分利用各种信息,使决策结果更加科学化; (2)能对调查结果的可能性加以数量化的评价; (3)贝叶斯决策巧妙地将调查结果和先验知识有机地结合起来; (4)贝叶斯决策过程可以不断地使用,使决策结果逐步完善. 2.缺点: (1)贝叶斯决策所需要的数据多,分析计算也比较复杂,如果 解决的问题比较复杂时,这个矛盾就更加突出; (2)在决策的过程中,有些数据必须要使用主观概率,有些人 不是很相信,这也妨碍了贝叶斯决策方法的推广和使用. O
贝叶斯估计为后验均值向量:
E(1 | x)
B(x) E(| x)
E(k | x)
12
例的一4 设个样x 本(.x若1, θ,的xn先)是验来分自布泊用松其分共布轭P(先X验分x)布x!x e
G(α,λ),即 () 1e,0 ()
其中参数α与λ已知.求平方损失函数下θ的贝叶斯估 计.
解:解题过程分为以下三步:
(4)找出最佳行动,即确定拒绝域.
*(
x)
0,
1,
p1(x) 0 p0(x) 1 p1(x) 0 p0(x) 1 10
第三节 常用损失函数下的贝叶斯估计
1.平方损失函数下的贝叶斯估计
定理5.1 在平方损失函数 L(,)()2下, 的贝
叶斯估计为后验均值,即
B(x)E(x)
[Pr] 在平方损失函数下,任何一个决策函数 (x)的 后验风险为E[( )2 x]2 2E( x)E(2 x)
dE[( )2 x]

2 2E( x) 0
d
得: E( x)
11
定理5.2 在加权平方损失函数 L(,)()()2下,
θ的贝叶斯估计为: B(x)EE[[(())||xx]]
其中λ(θ)为参数空间Θ上的正值函数.
定理5.3 在参数向量 (1,,k)的场合下,对多元二
次损失函数 L (,) ( )Q ( ),Q为正定阵, θ的
(2)定义中的先验分布允许是广义的.
7
例1 设 x(x1,,xn)是来自正态分布N(θ,1)的一个样本。又
设参数θ的先验分布为共轭先验分布N(0,τ2),其中τ2已知.而损
失试函求数参为 数0θ-的1损贝失叶函斯数估L计(。,)10,,||||
解:分三步求解:
(1)求参数θ的后验分布
(|x)Nnx i2,(n2)1,i来自0 ,i 1斯决策问题:
p0(x)0 p1(x)1
①参数空间Θ={0,1}
②行动空间A={0,1}
③先验分布:P(θ=0)=π0, P(θ=1)=π1
④损失函数:决策正确无损失, 决策错误的损失为1.则
L
0 1
1 0
(3)计算每个行动下的后验风 险:R(a=0|x)=P(θ=1|x)
R(a=1|x)=P(θ=0|x)
解:(1)求参数θ的后验分布: 结果为 Be(x+1,n-x+1)
(2) (x),计算风险函数
R(|x)0 1L(,)(|x)d20 ()(|x)d
1()(|x)d30 ()(|x)dE(|x)
(3)求最优行动使上述风险函数达到最小.令:
d(d R |x)30 (|x)d10则得:
0 (|
x)d
1 3
4
第二节 后验风险决策
1.后验风险函数
我们把损失函数 L(,a) 对后验分布 ( x) 的
期望称为后验风险,记 R (a x ) ,即
R(ax)Ex[L(,a)] i
L(i,a)(i x)
L(,a)(x)d
后验风险就是用后验分布计算的平均损失.
11
5
2.决策函数
定义5.1 在给定的贝叶斯决策问题中,从样本空间
第五章 贝叶斯决策
第一节 贝叶斯决策问题 第二节 后验风险决策 第三节 常用损失函数下的贝叶斯估计 第四节 抽样信息期望值 第五节 最佳样本量的确定 第六节 二行动线性决策问题的EVPI
1
第一节 贝叶斯决策问题
一、决策问题分类 (1)仅使用先验信息的决策问题称为无数 据(或无样本信息)的决策问题; (2)仅使用抽样信息的决策问题称为统计 决策问题; (3)先验信息和抽样信息都使用的决策问 题称为贝叶斯决策问题.
(4)数值计算:
9
例3 如何判断一个样本是来自密度函数为p0(x) 的总体还是 来自密度函数为p1(x) 的总体。
解:两个假设:
(2)求后验分布:
H 0:x来p0(自 x)H ,1:x来p 1(自 x)
问题:接受H0还是H1?
P( i |
(1)把假设检验问题转化为贝叶
x)
p0(x)0 p0(x)p10(x)p11(x)1
{x(x1,x2,,xn)} 到行动集A上的一个映照 (x)
称为该决策问题的一个决策函数, D{(x)}表示所
有从样本空间χ到A上的决策函数组成的类,称为决策 函数类.
在贝叶斯决策中我们面临的是决策函数类D,要在D 中选择决策函数 (x) ,使其风险最小.
例题分析
6
3.后验风险准则
定义 在给定的贝叶斯决策问题中 D{(x)是} 其决
(2)对于任意一个决策函数 (x)计算后验风险函数:
R(|x) L(,)(|x)d (|x)d ||
P|x(| |)1P|x(| |)
(3)求出使得上述风险函数达到最小时的决策函数:
(x)
xi
(n2)
8
例2 在市场占有率θ的估计问题中,已知损失函数为:
L(,) 2( ,),0 1
药厂厂长对市场占有率θ无任何先验信息,另外在市场调查中, 在n个购买止痛剂的顾客中有x人买了新药,试在后验风险准则下 对θ作出贝叶斯估计。
相关文档
最新文档