数理逻辑介绍
(完整版)数理逻辑简介
![(完整版)数理逻辑简介](https://img.taocdn.com/s3/m/103cae43551810a6f52486d9.png)
(4) 请把门关上! (5) x 是有理数。 (6) 地球外的星球上也有人。
例1、判断下列句子中哪些是命题。 (7) 明天有课吗?
(8) 本语句是假的。 (9) 小明和小林都是三好生。
(10) 小明和小林是好朋友。 判断一个语句是否为命题,首先看是否为陈
述句,再看其真值是否唯一。 命题常项,命题变项均用 p, q, r, 表示。
原语句化为 p (q r) s 。
第二节 命题公式及分类
内容:命题公式,重言式,矛盾式,可满足公式。 重点:(1) 掌握命题公式的定义及公式的真值表。
(2) 掌握重言式和矛盾式的定义及使用真 值表进行判断。
一、命题公式 通俗地说,命题公式是由命题常项,命题变项,
联结词,括号等组成的字符串。
是否重言式 。
例1、判断 A, B两公式是否等值。 (1) A ( p q),B p q
解:作真值表如下:
例1、判断 A, B两公式是否等值。 (2) A p q ,B ( p q) (q p)
解:作真值表如下:
二、重要等值式。
1、交换律 A B B A ,A B B A
(1) ( p q) ( p q)
(2) ( p q) p q q p
(3) ( p q) q
(4) ( p p) q (5) p ( p q)
例4、给定命题公式如下,请判断哪些是重言式, 哪些是矛盾式,哪些是可满足式?
(6) p q p p
(7) ( p q) ( p q)
设 p :我上街, q :我去书店看看,
r :我很累。
原语句化为 r ( p q)(或 (r p) q)。
(5) 小丽是计算机系的学生,她生于1982或1983年, 她是三好生。 设 p :小丽是计算机系的学生, q :小丽生于1982年, r :小丽生于1983年, s :小丽是三好生。
数理逻辑基本概念解析
![数理逻辑基本概念解析](https://img.taocdn.com/s3/m/1b7e74660622192e453610661ed9ad51f01d54fb.png)
数理逻辑基本概念解析数理逻辑是数学与哲学的交叉领域,它研究的是关于真理、推理和证明的基本概念和原则。
数理逻辑可以帮助我们理解和分析语言中的逻辑结构,从而使我们能够进行正确的推理和论证。
本文将对数理逻辑的基本概念进行解析,包括命题、谓词、量词、推理、证明等。
一、命题命题是陈述性的句子,它要么是真的,要么是假的。
命题可以用句子来表示,比如“今天是晴天”。
命题在数理逻辑中是基本的要素,我们可以对命题进行逻辑运算,比如取反、合取、析取等。
二、谓词谓词是带有一个或多个变量的命题函数,它依赖于特定的对象和参数。
谓词可以用来描述特定的性质或关系,比如“x是奇数”、“x大于y”。
通过引入谓词,我们可以更加精确地描述对象之间的关系,从而进行更加复杂的推理。
三、量词量词用来描述命题的数量存在与否。
在数理逻辑中,常见的量词有全称量词和存在量词。
全称量词表示命题对于所有的个体都成立,比如“对于任意的x,都有P(x)成立”。
存在量词表示命题对于至少一个个体成立,比如“存在一个x,使得P(x)成立”。
量词的引入使我们能够推理和论证一些关于对象的普遍性或存在性的命题。
四、推理推理是通过一系列逻辑步骤从已知的命题中得出新命题的过程。
在数理逻辑中,常用的推理形式有直接推理、假设推理、演绎推理等。
推理过程中需要遵循一定的推理规则和原则,比如充足条件、必然条件等。
五、证明证明是通过逻辑推理建立命题真实性或有效性的过程。
证明包括直接证明、间接证明、归谬证明等形式。
证明的过程需要严谨的逻辑思维和正确的推理方法。
数理逻辑为我们提供了一套形式化的证明系统,使我们能够清晰地展示证明过程,从而确保推理的准确性和有效性。
通过对数理逻辑的基本概念的解析,我们可以更好地理解和应用逻辑推理。
数理逻辑为我们提供了一种思维工具,帮助我们分析和解决问题,从而推动了科学和哲学的发展。
在实际生活中,数理逻辑的应用广泛存在于数学、计算机科学、人工智能等领域。
掌握数理逻辑的基本概念对于我们的学习和思维能力的提升具有重要的意义。
数学的数理逻辑
![数学的数理逻辑](https://img.taocdn.com/s3/m/dff214cf951ea76e58fafab069dc5022aaea4613.png)
数学的数理逻辑数理逻辑是数学中研究符号表达式或语言的规则和性质的学科,也称数理基础。
可以说,数理逻辑是数学的根基,没有它,就没有现代数学的发展和成就。
数理逻辑的研究对象是符号逻辑和模型论。
符号逻辑是研究逻辑符号语言的学科,模型论是研究有限和无限结构的学科。
数理逻辑在数学、计算机科学和哲学中都有广泛的应用。
数理逻辑的发展历程可以追溯到二十世纪初。
在此之前,人们常常用自然语言表示数学思想,难以表达精确的概念和推理。
数理逻辑的出现,使得人们能够用形式化的语言来描述数学结构,实现了严格的证明和推断。
同时,数理逻辑也为计算机科学的发展提供了基础。
数理逻辑中最为基本的概念是命题和命题连接词。
命题是不能被真假二选一的陈述句,例如“1+1=2”、“地球是圆的”等等,而“明天会下雨”、“他很高”则不是命题。
命题连接词是将两个或多个命题结合在一起的词,例如“否定”、“合取”、“析取”等等。
其中,“否定”将原命题的真假取反,如“不是所有人都喜欢运动”;“合取”表示两个或多个命题同时成立,如“他喜欢打篮球且他喜欢游泳”;“析取”表示其中一个或多个命题成立,如“他喜欢打篮球或者他喜欢游泳”。
通过对命题和命题连接词的定义,我们可以将复杂的数学问题化简为简单的命题,进而实现推理、证明和计算。
另外,数理逻辑中也有基于公理系统和推理规则的证明方法。
在这种方法中,我们首先确认一组公理或者基本公理,在此基础上应用逻辑规则,逐步推导得出所需要的结论。
这种证明方法具有形式化精确、严谨可靠的特点。
假设我们需要证明一个命题P是真的,但是我们并不知道P是否真,于是我们构造一个新命题,假设它是假的,这个假设我们记作非P。
然后我们再次构造一个新的命题Q,它与非P等价,即非Q与P等价。
对于命题Q,我们可以再次构造一个新命题,也就是非Q,它与P等价。
如果我们能够证明非Q是假的,也就是证明了Q是真的,这意味着非P不成立,所以P必须是真的。
数理逻辑有着广泛而深刻的应用。
数理逻辑讲义
![数理逻辑讲义](https://img.taocdn.com/s3/m/636c6b63ddccda38376baf57.png)
数理逻辑的一般介绍我们在中学时代就能进行一些证明了, 但并非所有的人都能回答到底什么是证明. 大概来说, 所谓的证明就是把认为某一断言是正确的理由明确地表述出来. 在这一过程中, 我们通常都需要把一些人们已接受的命题作为讨论的基础. 在此基础上, 如果我们能够把该断言推导出来, 该断言就是被认为是被证明了, 因而也就会被人们接受. 于是, 一个很自然的问题就是: 推导究竟为何物? 这个问题就属于逻辑的范畴.逻辑研究推理, 而数理逻辑则研究数学中所用的推理. 由于这种推理在计算机科学中有许多有广泛的应用, 数理逻辑也就成为计算机科学的重要基础之一.很明显, 我们不能够证明一切命题. 如上所述, 当我们证明某一断言(结论) 的时候需要一些其它的命题(前提)作为推理的基础. 我们还可以要求对这些前提进行证明. 如果一直这样要求下去, 或迟或早, 我们会遇这样的情况: 我们进行了“循环” 证明, 即把要证明的命题作为前提来使用, 或者我们无法再作任何证明, 因为没有更为明显的命题可以用来作为前提了.这样,我们就必须不用证明而接受某些命题,我们把这类命题称为“公理”; 其它由这些公理而证明的命题则被称为“定理”.所谓的命题, 直观上是关于某些概念之间的关系. 因而, 我们要求公理是那些根据概念可以明显地接受的命题. 由概念,公理和定理所组成的全体就是公理系统.以上对公理系统的描述要求我们知道公理系统的确切含义. 然而, 从推理的角度来说, 我们并不需要如此. 让我们来看下面的例子:(1).每个学生都是人,(2).王平是学生, (3).王平是人.我们可以由(1) 和(2)推导出(3), 也就是说,如果(1) 和(2)是正确的, 我们就可以断定(3)是正确的. 在这个推理过程中我们并不需要知道“王平”, “学生”, “人” 的含义如何, 把它们换成任何其它的名词, 这一推理都成立. 使(3) 成为(1) 和(2) 的逻辑推论是依据这样的事实: 如果(1)和(2)为真, 则(3)为真. 换句话说, 我们从命题的形式上就可以判断某一推理是否在逻辑上成立, 而无需考虑它的实际含义. 所以我们在研究逻辑的时候往往只需要进行形式的考察就行了, 不必考虑其含义.当我们对某一类研究对象指定了一个公理系统时, 这个公理系统所表示的含义就确定了. 但是在很多情况下, 我们会发现这个公理系统也适合于其它的一些对象. 于是当代数学建立了许多公理系统框架(如各种代数结构). 在这种公理系统框架中, 真正重要的并不是各种公理系统所表达的特定含义的不同, 而是它们的系统构造方面的区别. 这就告诉我们, 在对公理系统进行研究时, 仅对公理系统的形式进行考察是有实际意义的, 在某些情况下这种形式上的考察可以使我们的研究更具有一般性.基于如上认识以及其它的一些考虑(如从计算机科学的角度进行研究等), 我们将对公理系统的语法部分和语义部分进行分别研究. 公理系统的语义部分研究公理系统的含义, 它属于"模型论" 的研究范围, 我们将在今后作一些初步的介绍. 现在,我们对公理系统的语法部分进行粗略的描述.公理系统的语法部分称为形式系统. 它由语言, 公理和推理规则这样三个部分组成.任何推理必须在一定的语言环境中进行, 所以形式系统首先需要有它的语言. 自然语言(如英语, 中文等)具有很丰富的表达能力, 但通常会产生二义性. 例如"是" 在自然语言中可以表示“恒等” (如: 我们的英语老师是张卫国.), “属于” (如: 王小平是学生.), “包含” (如: 学生是人.) 等不同的含义. 同时, 我们还希望公理系统的语言结构能尽可能地反映它的语义并能有效地进行推理. 因而, 我们通常在形式系统中使用人工设计的形式语言.1设A 是一个任给的集合. 我们把A 称为字母表, 把A 中的元素称为符号. 我们把有穷的符号序列称为A的表达式. 一个以A 为其字母表的语言是A 的表达式集合的一个子集, 我们把这个子集中的元素称为公式. 因为我们希望这个语言能够表达我们所研究的对象, 我们要求公式能反映某些事实. 虽然理论上以A 为其字母表的语言可以是A 的表达式集合的任何子集, 我们将只讨论那些能将公式和其它表达式有效地区分开的语言. 我们将用L(F)表示公理系统F 的语言.形式系统的第二个部分是它的公理. 我们对公理的唯一要求是它们必须是该公理系统语言中的公式.最后, 为了进行推理我们需要推理规则. 每个推理规则确保某个公式(结论) 可由其它一些公式(前提) 推导出来.给定公理系统F, 我们可以把F 中的定理定义如下:1). F 的公理是F 的定理;2). 如果F 的某一推理规则的前提都是定理, 则该推理规则的结论也是定理;3). 只有1)和2)所述的是定理.这种定义方式和自然数的定义方式相类似, 称为广义递归定义. 它和通常的定义方式在形式上有所区别. 为了说明它的合理性, 我们对F的定理进行进一步的描述. 设S0 是F 的公理集. 根据1), S0 中的元素是定理. 设S1 是公式集, 它的元素都是F 的某一推理规则的结论, 而该推理规则的前提都是S0 中的元素. 根据2), S1 中元素是定理. 设S2 是公式集,它的元素都是F 的某一推理规则的结论, 而该推理规则的前提都是S0 或S1 中的元素. 根据2), S2 中元素是定理. 如此下去, 我们得到S2 ,S3 ,.... 最后, 设S N 是公式集, 它的元素都是F 的某一推理规则的结论, 而该推理规则的前提都是S0 或S1 ,...S N中的元素. 根据2), S N 中元素是定理并且我们得到了F中的所有定理. 我们将经常使用这种定义方式. 为了书写方便, 在今后的广义递归定义中我们将不再把类似3)的条款列出.如此定义的F 中定理为我们提供了一种证明方法. 当要证明F 中的定理都具有某一性质P 时, 我们可以采用下述步骤:1). 证明F 的公理都具有性质P;2). 证明如果F 的每个推理规则的所有前提具有性质P, 则它的结论具有性质P.这种证明方法称为施归纳于F的定理. 一般说来, 如果集合C 是由广义递归定义的, 我们可用类似的方法证明C中的元素都具有性质P. 这种证明方法称为施归纳于C中的元素. 2)中的前提称为归纳假设.现在我们就可以定义什么是证明了. 所谓F 中的一个证明是一个有穷的F 的公式序列, 该序列中的每一个公式要么是公理, 要么F 的某个推理规则以该序列中前面的公式所为前提而推导出的结论. 如果A 是证明P 的最后的公式, 则称P 是A 的证明.定理公式A 是F 的定理当且仅当A 在F 中有证明.证明首先根据定理的定义可以看出任何证明中的任何公式都是定理, 所以如果A 有证明, 则A 是定理. 我们施归纳于F 的定理来证明其逆亦真. 如果A 是公理, 则A 本身就是A 的证明. 如果A 是由F 的某一推理规则以B1 ,...,B n 为前提推导而得的结论, 由归纳假设, B1 ,...,B n 都有证明. 我们把这些证明按顺序列出来即可得到A 的一个证明. 证完今后, 我们将用 F .... 表示"....是F 的定理".一阶理论2今后, 我们将主要讨论一类特殊的公理系统. 这类公理系统称为一阶理论. 一阶理论是一种逻辑推理系统, 它具有很强的表达能力和推理能力, 并且在数学, 计算机科学及许多其它的科学领域中有广泛的应用. 事实上, 目前使用的大多数计算机语言和数学理论都是一阶理论.如前所述, 一阶理论的第一个部分是它的语言. 我们把一阶理论的语言称为一阶语言. 如同其它的形式语言一样, 一阶语言应包括一个符号表和一些能使我们把公式和其它表达式区分开的语法规则.首先, 我们定义一阶语言的符号表, 它由三类功能不同的符号组成. 它们是:a) 变元x,y,z,...;b) n元函数符号f,g,..., 及n元谓词符号p,q,...;c) 联结词符号和量词符号⌝,∨和∃.为了今后的方便, 我们假定一阶语言的变元是按一定顺序排列的, 并且我们把这种排列顺序称为字母顺序. 我们称0 元函数符号是常元符号. 注意: 一个任给的一阶理论并没有要求必须有函数符号: 一个一阶理论可能没有函数符号, 可能有有穷多个函数符号, 也可能有无穷多的函数符号. 我们要求任何一阶理论必须包括一个二元谓词符号, 并用"=" 来表示它. 和函数符号一样, 一个给定的一阶语言可能有有穷或无穷多个(甚至没有) 其它的谓词符号. 函数符号和除=外的谓词符号称为非逻辑符号, 而其它的符号称为逻辑符号.在定义公式之前, 我们必须先定义"项":(1.1) 定义在一阶语言中, 项是由下述广义递归方式定义的:a) 变元是项;b) 如果u1 ,...,u n 是项, f是n元函数符号, 则fu1 ...u n 是项.然后, 我们定义公式如下:(1.2) 定义在一阶语言中, 公式是由下述广义递归方式定义的:a) 如果u1 ,...,u n 是项, p是n元谓词符号, 则pu1 ...u n 是(原子) 公式,b) 如果u,v 是公式, x 是变元, 则⌝u, ∨uv 和∃xu是公式.如前所述, 相应于公式的定义, 我们有一种广义归纳的证明方法. 我们将把这种证明方法称为施归纳于长度. 有时我们还用施归纳于高度的证明方法, 而所谓的高度是公式中含有⌝,∨,和∃的数量.如果一个表达式b包括另一个表达式a, 则称第二个表达式a在第一个表达式b中出现, 即如果u,v,w 是表达式, 则v在uvw 中出现. 这里, 我们不仅要求a的符号都包括在b中, 而且要求这些符号的排列顺序和a一样并且中间不插有任何其它的符号. 我们把b包括a的次数称为a在b中出现的次数.接下来, 我们要讨论关于一阶语言的一些性质. 这种讨论不仅可以使我们加深对一阶语言的认识, 同时还能帮助我们理解其它的形式系统. 首先要考虑的是唯一可读性问题, 也就是说, 我们将要证明一阶语言中的任何公式不可能有不同的形式. 这一性质说明一阶语言在结构上是不会产生二义性的. 为了简化书写, 我们把公式和项统称为合式表达式. 于是, 根据定义可以知道所有的合式表达式都具有uv1 ...v n 的形式, 其中u 是n 元(函数或谓词) 符号, v1 ,...,v n 是合式表达式.我们说两个表达式u和v是可比较的, 如果存在一个表达式w (w 可以是空表达式) 使u=vw. 显然, 如果uv和u'v'是可比较的, 则u 和u'是可比较的; 如果uv和uv' 是可比较的, 则v 和v'是可比较的.3(1.3) 引理如果u1 ,...,u n ,u'1 ,...,u'n 是合式表达式(u1 和u'1 都不是空表达式), 而且u1 ...u n 和u'1 ...u'n 是可比较的,则对于一切i=1,...,n, u i =u'i .证明施归纳于u1 ...u n 的长度k.如果k=1, 则u1 ...u n 只有一个符号. 所以, n=1. 于是u1 ...u n =u1 且u'1 ...u'n =u'1 . 由于u1 和u'1 都是合式表达式, 它们只可能是变元或常元符号. 由于它们是可比较的, 所以u1 =u'1 .假定当k〈m时引理成立, 并设k=m.由于u1 是合式表达式, 我们可以把它写成vv1 ...v s , 其中v 是s 元符号, v1 ,...,v s 是合式表达式. 由上, u'1 和u1 是可比较的, v 也是u'1 的第一个符号. 于是, 由于u'1 是合式表达式, 它具有vv'1 ...v's 的形式. 由上所述的性质, v1 ...v s 和v'1 ...v's 是可比较的. 由于|v1 ...v s |<|u1 |≤|u1 ...u n |, 根据归纳假设, 对于一切j=1,...,s, v j =v'j , 所以, u1 =u'1 . 由此而得, u2 ...u n 和u'2 ...u'n 是可比较的, 且|u2 ...u n |<|u1 ...u n |, 所以, 由归纳假设, 对于一切i=2,...,n, u i =u'i .于是, 引理得证#(1.4) 唯一可读性定理每一个合式表达只能以唯一的方式写成uv1 ...v n 的形式, 其中, u 是n 元符号, v1 ,...,v n 是合式表达式.证明设w,w'是同一个合式表达式书写形式, 我们必须证明它们的结构是相同的. 首先, 它们必须都有相同的第一个符号,这样, u和n就唯一确定了, 从而, w=uv1...v n 且w'=uv'1...v'n, 其中v i ,v'j 是合式表达式(i,j=1,...,n). 我们还需证明对一切i=1,...,n, v i=v'i. 因为w 和w'是同一个表达式, 因而是可比较的. 于是, 根据引理(1.3), 对于一切i=1,...,n, v i=v'i #下面的定理说明如果一个合式表达式不可能由两个(或更多) 合式表达式的某些部分组成.(1.5) 引理合式表达式u中的任何符号w都是u中某一合式表达式的第一个符号.证明施归纳于u的长度k. 如果k=1, 则u是变元或常元符号. 于是任何在u中出现的符号就是u本身, 从而引理成立.假定当k<m时引理成立, 并设k=m.设u 是vv1 ...v n , 其中v是n元符号, v1 ,...,v n 是合式表达式. 如果w是v, 则它是u的第一个符号. 否则, 存在i=1,...,n, 使w 在v i 中出现. 由于|v i |<|u|, 根据归纳假设, w 是v i 中的某一合式表达式的第一个符号, 当然也是u中的某一合式表达式的第一个符号. 证完. #(1.6) 出现定理设u是n元符号, v1 ,...,v n 是合式表达式. 如果一个合式表达式v在uv1 ...v n 出现, 而且v不是整个uv1 ...v n , 则v在某一v i 出现.证明如果v的第一个符号就是定理中的u, 则v=uv'1 ...v'n , 其中v'1 ,...,v'n 是合式表达式, 且由定理条件, u和v是可比较的. 于是根据引理(1.3), 对于一切i=1,...,n, v i =v'i , 即v=uv1 ...v n . 矛盾.现假定v的第一个符号在某一v i 中出现. 根据引理(1.5), 该符号是某一合式表达式v'的第一个符号. 显然, v和v'是可比较的, 因而由引理(1.3), v=v', 即v在v i 中出现.4#为了方便起见, 我们今后将用大写字母A,B,...表示公式, 用f,g,...表示函数符号, 用p,q,...表示谓词符号, 用x,y,...表示变元, 用a,b,...表示常元符号.现在我们定义两类性质不同的变元, 即自由变元和约束变元.(1.7) 定义a) 如果x 在原子公式中出现, 则x是自由变元;b) 如果x是A 和B 中的自由变元, 且y 不是x, 则x 是⌝A, ∨AB和∃yA中的自由变元.a') x 是∃xA中的约束变元;b') 如果x是A 或B 中的约束变元, 则x 是⌝A, ∨AB和∃yA中的约束变元.注意: x可以在A 中既是自由变元又是约束变元.我们将用u[x/a]表示在表达式u 中将所有的自由变元x换成项a而得的表达式. 设A 是公式, 在很多情况下, A[x/a]关于a 所表示的含义与A 关于x所表示的含义是一样的, 但并非总是如此. 例如, 若A 是∃y=x2y, 而a 是y+1, 则A 是说x 是偶数, 但A[x/a]却不是说y+1是偶数. 这表明并非所有的代入都会保持原有的含义. 于是我们有下述定义:(1.8) 定义 a 被称为是在A 中可代入x的, 如果i) 如果A是原子公式,则a 是在A中可代入x 的;ii) 如果a 在B中可代入x 且对于a 中的任何变元y, ∃yB不含有自由变元x,则a 是在∃yB中可代入x 的;iii) 如果a 在A, B中可代入x, 则a 在⌝A和A∨B中是可代入x 的.今后, 当使用A[x/a] 时, 我们总是假定a是在A 中可代入x的. 类似地, 我们将用u[x1/ a1 ,...,x n/ a n ]表示在表达式u 中将所有的自由变元x1 ,...,x n 分别换成项a1 ,...,a n 而得的表达式, 同时还假定它们都是可代入的.在我们的一阶语言定义中项和公式的写法对于证明和理论分析比较方便, 但和通常的阅读方式不一致. 为了克服这一弱点, 我们引进一些定义符号:(A∨B) 定义为∨AB; (A→B) 定义为(⌝A∨B); (A&B) 定义为⌝(A→⌝B);(A↔B) 定义为((A→B)&(B→A)); ∀xA 定义为⌝∃x⌝A.注意: 定义符号只是为了方便而引进的记号, 它们不是语言中的符号. 当我们计算公式的长度时, 必须把它们换成原来的符号. 同样, 当用施归纳于长度或高度进行证明时也不能把它们作为符号来处理. 今后, 我们将在展示公式时用定义符号, 而在证明时用定义(1.1) 和(1.2).我们称:⌝A 为 A 的否定; A∨B 为 A 和B 的析取(A 或者B); A&B 为 A 和B 的合取(A并且B);A→B 为 A 蕴含B; A↔B 为A等价于B; ∃xA 为关于x的存在量词(存在x 使得A);∀xA 为关于x的全称量词(对一切x 使得A).作业:1) 施归纳于长度证明如果u是公式(项), x 是变元, a是项, 则u[x/a]是公式(项).2) 证明如果uv和vv'是合式表达式, 则v和v'中必有一个是空表达式.一阶理论的逻辑公理和规则形式系统的公理和规则可以分为两类: 逻辑公理和逻辑规则, 非逻辑公理和非逻辑规则. 逻辑公理和逻辑规则指的是那些所有形式系统都有的公理, 而非逻辑公理和非逻辑规则仅在5某些特定的形式系统中才有. 但是, 当形式系统足够丰富时,我们并不需要非逻辑规则. 假定在一个形式系统F 中有一条非逻辑规则使我们可以由B1 ,...,B n 推导出A, 只要F 有足够多的逻辑规则, 我们只需要在F 中加进一条公理B1 →...→B n →A (这里, B1 →...→B n →A表示B1 →(...→(B n →A)...).)就不再需要那条非逻辑规则了. 因此, 我们今后假定我们的形式系统中没有非逻辑规则. 今后我们将把逻辑规则简称为规则. 由于我们仅对形式系统进行一般讨论, 我们的兴趣主要是那些逻辑公理和规则.下面是逻辑公理:1) 命题公理: ⌝A∨A;2) 代入公理: A[x/a]→∃xA;3) 恒等公理: x=x;4) 等式公理: x1 =y1 →...→x n =y n →fx1 ...x n =fy1 ...y n ;或x1 =y1 →...→x n =y n →px1 ...x n →py1 ...y n .注意: 以上并不是仅有四条公理, 而是四类公理. 如命题公理并非一条公理, 而是对于任何公式A 我们有一条命题公理. 所以, 以上的公理实际上是公理模式.以下是规则:1) 扩展规则: 如果A, 则B∨A;2) 收缩规则: 如果A∨A, 则A;3) 结合规则: 如果A∨(B∨C), 则(A∨B)∨C;4) 切割规则: 如果A∨B且⌝A∨C, 则B∨C;5) ∃-引入规则: 如果A→B且x 不是B 中的自由变元, 则∃xA→B.如同上面的公理, 这些规则也不是五条规则, 而是五个规则模式.现在, 我们定义一阶理论如下:(1.9) 定义一个一阶理论T (简称理论T)是具有如下特征的形式系统:1) T 的语言L(T)是一阶语言;2) T 的公理是以上列出的四组公理和一些其它的非逻辑公理;3) T 的规则是以上列出的五组规则.由于一阶理论的逻辑符号, 逻辑公理和规则已经确定, 一阶理论之间的区别在于它们的非逻辑符号和非逻辑公理. 因此, 当我们希望讨论某一具体的一阶理论时只需要把它的非逻辑符号和非逻辑公理指明就行了.例.1) 数论NN 的非逻辑符号为: 常元0, 一元函数符号S, 二元函数符号+和*, 和二元谓词符号<. N 的非逻辑公理为:N1 Sx≠0; N2 Sx=Sy→x=y; N3 x+0=x; N4 x+Sy=S(x+y); N5 x*0=0;N6 x*Sy=(x*y)+x; N7 ⌝(x<0); N8 x<Sy↔x<y∨x=y; N9 x<y∨x=y∨y<x.2) 群GG 只有一个非逻辑符号, 即二元函数符号*. G 的非逻辑公理为:G1 (x*y)*z=x*(y*z); G2 ∃x(∀y(x*y=y)&∀y∃z(z*y=x)).根据我们在第一节所述, 一阶理论T 的定理可以定义为:1) 每一条命题公理, 代入公理, 恒等公理, 等式公理和非逻辑公理是定理;2) 如果A 是定理, 则A∨B是定理;3) 如果A∨A是定理, 则A 是定理;64) 如果A∨(B∨C) 是定理, 则(A∨B)∨C 是定理;5) 如果A∨B和⌝A∨C是定理, 则B∨C是定理;6) 如果A→B是定理且x 不是B 中的自由变元, 则∃xA→B是定理.与此对应, 我们可以用如下广义归纳法证明一阶理论T 中的定理都具有某一性质P:1) 每一条命题公理, 代入公理, 恒等公理, 等式公理和非逻辑公理具有性质P;2) 如果A 具有性质P, 则A∨B具有性质P;3) 如果A∨A具有性质P, 则A 具有性质P;4) 如果A∨(B∨C) 具有性质P, 则(A∨B)∨C 具有性质P;5) 如果A∨B和⌝A∨C具有性质P, 则B∨C具有性质P;6) 如果A→B具有性质P且x 不是B 中的自由变元, 则∃xA→B具有性质P.下面我们证明一阶理论的逻辑公理是相互独立的.(1.10) 定理一阶理论的逻辑公理和规则是互相独立的.证明当我们希望证明某一命题A 是独立于某个命题集Γ和规则集Δ时, 我们需要找到一个性质P 使A 不具有性质P, 而Γ中的每一命题具有性质P 且Δ中的每一规则保持性质P (即如果该规则的前提具有性质P, 则其结论具有性质P); 当我们希望证明某一规则R 是独立于Γ和Δ时, 我们需要找到一个性质P 使R 不保持性质P, 而Γ中的每一命题具有性质P 且Δ中的每一规则保持性质P. 这样就可以断言: 在由Γ为其公理集, Δ为其规则集的形式系统中, 每一定理都具有性质P. 由于A不具有性质P (或R 不保持性质P), 所以, A (或R)是不可能由Γ和Δ来证明的. 这样, A(或R)就独立于Γ和Δ了. 我们将根据这个思想来证明本定理.1) 对于命题公理. 定义f 如下:f(A)=T 若 A 是原子公式; f(⌝A)=F; f(A∨B)=f(B); f(∃xA)=T.可以证明: f(⌝⌝(x=x)∨⌝(x=x))=F, 而且对于任何可由其它的逻辑公理和规则证明的命题A, f(A)=T.2) 对于代入公理. 定义f 如下:f(A)=1 若A 是原子公式; f(⌝A)=1 如果f(A)=0, f(⌝A)=0 若f(A)=1;f(A∨B)=max{f(A),f(B)}; f(∃xA)=0.可以证明: f((x=x)→∃x(x=x))=0, 而且对于任何可由其它的逻辑公理和规则证明的命题A, f(A)=1.3) 对于恒等公理. 定义f 如下:f(A)=0 若A是原子公式; f(⌝A)=1 如果f(A)=0, f(⌝A)=0 若f(A)=1; f(A∨B)=max{f(A)},f(B); f(∃xA)=f(A).可以证明: f((x=x))=0, 而且对于任何可由其它的逻辑公理和规则证明的命题A, f(A)=1.4) 对于等式公理. 首先在L(T)中加进常元e1 ,e2 和e3 而得L'. 然后定义f 如下:f(e i =e j )=1 iff i≤j; f(⌝A)=1 如果f(A)=0, f(⌝A)=0 若f(A)=1; f(A∨B)=max{f(A),f(B)}; f(∃xA)=T iff 存在i 使f(A[x/e i ])=T .可以证明: f((x=y→x=z→x=x→y=z))=0, 而且对于任何可由其它的逻辑公理和规则证明的命题A, f(A[x/e i ])=1, 其中, x是A 中的自由变元.5) 对于扩展规则. 定义f 如下:f(A)=1 若 A 是原子公式; f(⌝A)=1 如果f(A)=0, 否则, f(A)=0; f(A∨B)=1 如果f(A)=f(⌝B), 否则f(A∨B)=0; f(∃xA)=f(A).可以证明: f((x=x∨(⌝(x=x)∨x=x)))=0, 而且对于任何可由其它的逻辑公理和规则证明的命题A, f(A)=1.6) 对于收缩规则. 定义f 如下:7f(A)=T 若 A 是原子公式; f(⌝A)=f(∃xA)=F; f(A∨B)=T.可以证明: f(⌝⌝(x=x))=F, 而且对于任何可由其它的逻辑公理和规则证明的命题A, f(A)=T.7) 对于结合规则. 定义f 如下:f(A)=0 若 A 是原子公式; f(⌝A)=1-f(A); f(A∨B)=f(A)*f(B)*(1-f(A)-f(B)); f(∃xA)=f(A).可以证明: f(⌝(⌝(x=x)∨⌝(x=x)))>0, 而且对于任何可由其它的逻辑公理和规则证明的命题A, f(A)=0.8) 对于切割规则. 定义f 如下:f(A)=1 若 A 是原子公式; f(⌝A)=1 如果f(A)=0或A是原子公式, 否则f(⌝A)=0; f(A∨B)=max{f(A),f(B)}; f(∃xA)=f(A).可以证明: f(⌝⌝(x=x)))=0, 而且对于任何可由其它的逻辑公理和规则证明的命题A, f(A)=1.9) 对于E-引入规则. 定义f 如下:f(A)=1 若A是原子公式; f(⌝A)=1 如果f(A)=0, f(⌝A)=0 若f(A)=1; f(A∨B)=max{f(A),f(B)}; f(∃xA)=T.可以证明: f(∃y⌝(x=x)→⌝(x=x))=0, 而且对于任何可由其它的逻辑公理和规则证明的命题A, f(A)=1.结构和模型现在我们讨论一阶理论的语义部分. 为此我们先引进一些集论的记号: 集合或类是把一些我们想要研究的对象汇集在一起, 从而我们可以把它看作是一个整体. 如果A 和B 是集合, 一个由A 到B 的映射 F (记作F: A→B)是一个A 和B 之间的对应, 在这个对应中A 中的每一个元素a 都对应着一个唯一的B中元素 b (称为F在a 上的值, 记作F(b) ). 我们把n个A 中元素按一定顺序排列而得的序列称为A 的一个n 元组, 并用(a1,...,a n )表示由A 中元素a1,...,a n 按此顺序排列的n 元组. 把由A 的所有n 元组成的集合记为A n, 然后把由A n 到B的映射称为由A 到B 的n元函数. 我们把A n 的子集称为A 上的n 元谓词. 如果P是A 上的n 元谓词, 则P(a1 ,...,a n )表示(a1 ,...,a n )∈P.真值函数根据我们对公式和项的定义, 我们可以先用函数符号和谓词符号以及变元构造一些简单的公式, 然后用联结词得到比较复杂的公式, 如"A 并且B" 等等. 我们用符号"&" 表示"并且", 即若A 和B 是公式, "A&B" 表示"A 和B同时成立".于是一个很自然的问题是怎样知道A&B 的真假? 这里, A&B 的一个很重要的特征是: 只需要知道A 和B 的真假就能确定A&B 的真假, 而不必知道A 和B 的具体含义. 为了表示这一特征, 我们引进真值. 真值是两个不同的字母T 和F, 而且当公式A 为真时, 我们用T 表示其真值; 当公式A 为假时, 我们用F 表示其真值. 于是, A&B 的真值就由A 和B 的真值确定了.有了真值的概念, 我们就可以定义真值函数了. 所谓的真值函数是由真值集T,F 到真值集T,F 的函数. 由此, 我们可以把以上的讨论叙述为: 存在二元真值函数H& 使得: 若a 和b 分别是A 和B 的真值, 则H& (a,b) 是A&B 的真值. 我们定义H& 为:H& (T,T)=T, H& (T,F)=H& (F,T)=H& (F,F)=F.我们用"∨" 表示"或者", 并定义H∨如下:8H∨(F,F)=F, H∨(T,F)=H∨(F,T)=H∨(T,T)=T.于是当a 和b 分别是A 和B 的真值时, H∨(a,b)就是A∨B的真值.我们用"→" 表示"如果...则...", 并定义H→如下:H→(T,F)=F, H→(F,F)=H→(F,T)=H→(T,T)=T.于是当a 和b 分别是A 和B 的真值时, H→(a,b)就是A→B的真值.我们用"↔" 表示"当且仅当", 并定义H↔如下:H↔(F,T)=H↔(T,F)=F, H↔(F,F)=H↔(T,T)=T.于是当a 和b 分别是A 和B 的真值时, H↔(a,b)就是A↔B的真值.我们用"⌝" 表示"非", 并定义H⌝如下:H⌝(F)=T, H⌝(T)=F.于是当a 是A 的真值时, H⌝(a)就是⌝A的真值.容易证明, &,→, 和↔可由⌝和∨定义. 事实上所有的真值函数都可以由⌝和∨定义.作业1. 证明: 任何真值函数f(a1 ,...,a n )都可以由H⌝和H∨定义.2. 设H d , H s 是真值函数, 其定义为:H d (a,b)=T 当且仅当a=b=F; H s (a,b)=F 当且仅当a=b=T.证明: 任何真值函数f(a1 ,...,a n )都可以由H d (或H s )定义.结构现在我们讨论一阶语言的语义部分(称为它的结构). 所谓一个语言的语义, 当然是表示该语言中所指称的对象范围和每一个词和句子所表达的含义. 一阶语言的语义也是如此. 如前定义, 一阶语言中的符号有函数符号和谓词符号, 这些都应在它的语义中有具体的含义. 把这些组合起来, 我们就可以得到如下定义:(1.11) 定义称三元组M=〈|M|,F,P〉是一个结构,如果:1) |M|是一个非空集合,它称为是L 的论域, |M| 中的元素称为是M 的个体;2) F是|M|上的函数集合;3) P是|M|上的谓词集合.定义设L是一阶语言,M是一个结构。
数理逻辑总结
![数理逻辑总结](https://img.taocdn.com/s3/m/f18a5c7b777f5acfa1c7aa00b52acfc789eb9f83.png)
数理逻辑总结数理逻辑总结一、概念数理逻辑(mathematical logic)是一门根据数学的思维模式和方法在表述语言和推理思维上进行分析和作用的逻辑学课程。
它是一门用来研究和分析与计算机科学有关的严谨思维和验证的逻辑学科。
数理逻辑从宏观意义上讲,是指用符号抽象的方法来描述,定义,表示和理解各种基础数学系统的知识,以及这些系统中定理的证明等。
二、历史数理逻辑(mathematical logic)由古典逻辑演化而来,它最早由古希腊的哲学家亚里士多德(Aristotle)创立,但是由于他的古典逻辑只涉及到了辩论中的质问和概括推理,并未涉及到像数学中的严谨性,所以不能科学地处理逻辑问题。
直到二十世纪中期,数理逻辑才发展到其现在的状态。
首先,德国数学家彼得拉多斯(Petr Lusitr)提出了系统性的作为符号逻辑学的主要著作被称为《符号逻辑学》。
随后,德国数学家卡尔·贝尔(Carl Brel)提出了一种新的逻辑秩序,用以把命题逻辑系统中的各个命题放置于命题结构之中,称为贝尔结构,他也提出了用来支持贝尔结构的证明系统。
在二十世纪五十年代,英国数学家霍华德·劳夫(Howard Lawford)引入了前言逻辑系统,并从多种角度改进了古典逻辑,使其变成一种非常完善的数学系统。
三、特点数理逻辑有它独特的特点,其一是抽象性。
数理逻辑采用抽象方法,把问题表达为一系列标准的符号,然后用逻辑证明的方法求解。
抽象的好处是可以把问题简化,可以有效地发现和解决复杂的问题。
其次,数理逻辑有其严谨性。
数理逻辑用符号语言来描述和表达问题,采用公理-定理的方法证明结果,使得结果更加准确可靠。
最后,它有其实用性。
数理逻辑可以被看作是一种被证明准确可靠的结构性思维规范,它可以用于描述,定义,表示,理解多种数学系统,以及证明系统中的定理,实际上也被广泛应用于计算机科学领域,极大地推动了计算机技术的发展。
四、应用数理逻辑在计算机科学中有着重要的应用。
数理逻辑(Mathematical Logic)
![数理逻辑(Mathematical Logic)](https://img.taocdn.com/s3/m/f7d26ede6394dd88d0d233d4b14e852458fb3966.png)
数理逻辑(MathematicalLogic)数理逻辑(Mathematical logic)是用数学方法研究诸如推理的有效性、证明的真实性、数学的真理性和计算的可行性等这类现象中的逻辑问题的一门学问。
其研究对象是对证明和计算这两个直观概念进行符号化以后的形式系统。
数理逻辑是数学基础的一个不可缺少的组成部分。
数理逻辑的研究范围是逻辑中可被数学模式化的部分。
以前称为符号逻辑(相对于哲学逻辑),又称元数学,后者的使用现已局限于证明论的某些方面。
历史背景“数理逻辑”的名称由皮亚诺首先给出,又称为符号逻辑。
数理逻辑在本质上依然是亚里士多德的逻辑学,但从记号学的观点来讲,它是用抽象代数来记述的。
某些哲学倾向浓厚的数学家对用符号或代数方法来处理形式逻辑作过一些尝试,比如说莱布尼兹和朗伯(Johann Heinrich Lambert);但他们的工作鲜为人知,后继无人。
直到19世纪中叶,乔治·布尔和其后的奥古斯都·德·摩根才提出了一种处理逻辑问题的系统性的数学方法(当然不是定量性的)。
亚里士多德以来的传统逻辑得到改革和完成,由此也得到了研究数学基本概念的合适工具。
虽然这并不意味着1900年至1925年间的有关数学基础的争论已有了定论,但这“新”逻辑在很大程度上澄清了有关数学的哲学问题。
在整个20世纪里,逻辑中的大量工作已经集中于逻辑系统的形式化以及在研究逻辑系统的完全性和协调性的问题上。
本身这种逻辑系统的形式化的研究就是采用数学逻辑的方法.传统的逻辑研究(参见逻辑论题列表)较偏重于“论证的形式”,而当代数理逻辑的态度也许可以被总结为对于内容的组合研究。
它同时包括“语法”(例如,从一形式语言把一个文字串传送给一编译器程序,从而转写为机器指令)和“语义”(在模型论中构造特定模型或全部模型的集合)。
数理逻辑的重要著作有戈特洛布·弗雷格(Gottlob Frege)的《概念文字》(Begriffsschrift)、伯特兰·罗素的《数学原理》(Principia Mathematica)等。
数学的数理逻辑
![数学的数理逻辑](https://img.taocdn.com/s3/m/8e42d22c9a6648d7c1c708a1284ac850ad02048b.png)
数学的数理逻辑数学是人类智慧的结晶,是一门令人又爱又恨的学科。
它的美妙之处不仅在于数学公式、定理的推导,更体现在数理逻辑的严密性和精确性上。
数理逻辑是数学的基石,通过逻辑推理和符号运算,帮助我们理解、表达并解决各种数学问题。
本文将深入探讨数学的数理逻辑及其应用。
一、数理逻辑的基础数理逻辑是研究命题、谓词和推理规则的学科,它通过严谨的符号化方法,纯粹地探讨命题之间的逻辑关系。
数理逻辑的基础是命题逻辑和谓词逻辑。
1. 命题逻辑命题逻辑是研究命题和推理规则的数理逻辑分支。
命题是陈述性句子,要么是真,要么是假。
通过逻辑操作符(如非、与、或、蕴含等),可以对命题进行组合,并推导出新的结论。
命题逻辑是数理逻辑的起点,为其他相关逻辑学科提供了坚实的理论基础。
2. 谓词逻辑谓词逻辑是研究谓词、量词和推理规则的数理逻辑分支。
谓词是陈述性函数,它包含变量和常量,并且可以是真或假的。
通过量词和逻辑操作符,可以对谓词进行组合,从而进行推理。
谓词逻辑拓展了命题逻辑的范畴,并能够更加准确地描述数学问题。
二、数理逻辑的应用数理逻辑在数学的各个领域中都有广泛的应用,从数论到代数、几何,甚至物理、计算机科学等。
1. 数论中的应用在数论中,数理逻辑帮助我们证明数学中的重要定理和猜想。
例如,费马大定理的证明就运用了数理逻辑的方法。
通过命题逻辑和谓词逻辑,可以推导出各种数论命题的真假,并最终得到定理的证明。
2. 代数和几何中的应用在代数和几何中,数理逻辑可以帮助我们构建严密的证明体系,推导各种重要结果。
对于代数方程式和几何问题,数理逻辑提供了切实可行的逻辑推理方法,使我们能够正确地解决问题。
3. 物理和计算机科学中的应用在物理学和计算机科学中,数理逻辑起到了重要的作用。
通过建立逻辑模型,可以对物理现象进行描述和解释。
在计算机科学中,数理逻辑是计算机程序设计和算法研究的基础,它帮助我们确保程序的正确性和有效性。
三、数理逻辑的重要性数理逻辑对于培养人们的逻辑思维能力和分析问题的能力起到了重要的作用。
数理逻辑
![数理逻辑](https://img.taocdn.com/s3/m/5fead669a45177232f60a2c7.png)
数理逻辑又称符号逻辑、理论逻辑。
它是数学的一个分支,是用数学方法研究逻辑或形式逻辑的学科。
其研究对象是对证明和计算这两个直观概念进行符号化以后的形式系统。
数理逻辑是数学基础的一个不可缺少的组成部分。
虽然名称中有逻辑两字,但并不属于单纯逻辑学范畴。
所谓数学方法就是指数学采用的一般方法,包括使用符号和公式,已有的数学成果和方法,特别是使用形式的公理方法。
用数学的方法研究逻辑的系统思想一般追溯到莱布尼茨,他认为经典的传统逻辑必须改造和发展,是之更为精确和便于演算。
后人基本是沿着莱布尼茨的思想进行工作的。
简而言之,数理逻辑就是精确化、数学化的形式逻辑。
它是现代计算机技术的基础。
新的时代将是数学大发展的时代,而数理逻辑在其中将会起到很关键的作用。
逻辑是探索、阐述和确立有效推理原则的学科,最早由古希腊学者亚里士多德创建的。
用数学的方法研究关于推理、证明等问题的学科就叫做数理逻辑。
也叫做符号逻辑。
数理逻辑的产生利用计算的方法来代替人们思维中的逻辑推理过程,这种想法早在十七世纪就有人提出过。
莱布尼茨就曾经设想过能不能创造一种“通用的科学语言”,可以把推理过程象数学一样利用公式来进行计算,从而得出正确的结论。
由于当时的社会条件,他的想法并没有实现。
但是它的思想却是现代数理逻辑部分内容的萌芽,从这个意义上讲,莱布尼茨可以说是数理逻辑的先驱。
1847年,英国数学家布尔发表了《逻辑的数学分析》,建立了“布尔代数”,并创造一套符号系统,利用符号来表示逻辑中的各种概念。
布尔建立了一系列的运算法则,利用代数的方法研究逻辑问题,初步奠定了数理逻辑的基础。
十九世纪末二十世纪初,数理逻辑有了比较大的发展,1884年,德国数学家弗雷格出版了《数论的基础》一书,在书中引入量词的符号,使得数理逻辑的符号系统更加完备。
对建立这门学科做出贡献的,还有美国人皮尔斯,他也在著作中引入了逻辑符号。
从而使现代数理逻辑最基本的理论基础逐步形成,成为一门独立的学科。
数理逻辑与集合论
![数理逻辑与集合论](https://img.taocdn.com/s3/m/b114368fa0c7aa00b52acfc789eb172ded6399fd.png)
数理逻辑与集合论数理逻辑是一个研究符号和符号之间推理关系的数学分支,它被应用于解决问题、证明定理以及分析和构造复杂系统。
而集合论是数学中研究集合、元素和他们之间关系的学科。
本文将介绍数理逻辑与集合论的基本概念、原理和应用。
一、数理逻辑的基本概念数理逻辑包括命题逻辑、一阶逻辑和模态逻辑等。
在命题逻辑中,命题是指可以判断为真或假的陈述;而命题之间的逻辑连接词包括与、或、非等。
一阶逻辑引入了个体变量和谓词,用于表示存在、全称量化等概念。
模态逻辑则探讨了可能性和必然性的概念。
二、集合论的基本概念集合是指具有某种特定性质的对象的总体。
集合论中的基本概念包括元素、子集、并集、交集和差集等。
元素是集合中的个体,子集是指一个集合中的所有元素都是另一个集合中的元素。
并集是指由所有给定集合中的元素所构成的集合,交集是指同时属于所有给定集合的元素所构成的集合,差集是指属于第一个集合且不属于第二个集合的元素所构成的集合等。
三、数理逻辑与集合论的关系数理逻辑和集合论密切相关。
在数理逻辑中,使用集合论的概念来表示逻辑命题的真值集合。
而集合论则通过命题逻辑中的符号来描述和研究集合之间的关系,例如命题的交集、并集等。
数理逻辑和集合论的结合为我们提供了一种有效的工具来推理、证明和分析数学问题。
四、数理逻辑与集合论的应用数理逻辑和集合论在数学、计算机科学、语义学以及人工智能等领域有广泛的应用。
在数学中,逻辑和集合论为证明定理、研究函数和关系提供了基础。
在计算机科学中,数理逻辑和集合论被用于描述和分析算法的正确性和性能。
在语义学中,逻辑语义和集合论被用于解释自然语言的含义和逻辑结构。
在人工智能中,数理逻辑和集合论为智能推理和知识表示提供了基础。
总结:数理逻辑和集合论是数学中的两个重要分支,它们相互依赖且互为补充。
数理逻辑通过符号和推理关系来研究命题的真值,而集合论则研究集合、元素和它们之间的关系。
这两个学科在数学、计算机科学、语义学和人工智能等领域具有广泛的应用。
(完整版)数理逻辑知识点总结
![(完整版)数理逻辑知识点总结](https://img.taocdn.com/s3/m/27d4ab3053ea551810a6f524ccbff121dc36c558.png)
(完整版)数理逻辑知识点总结什么是数理逻辑?数理逻辑是一门研究命题、命题之间关系以及推理规律的学科。
它运用数学的方法来研究逻辑的基本概念和原理,用符号表示和描述逻辑概念,以及通过推理规则对命题进行推导。
命题与逻辑连接词1. 命题是陈述性语句,例如,“今天是晴天”。
在逻辑中,常用字母p、q、r等表示命题。
2. 逻辑连接词是用来构建复合命题的词语,例如,“与”、“或”、“非”等。
常用的逻辑连接词有:- “与”(合取):表示两个命题同时为真;- “或”(析取):表示两个命题中至少有一个为真;- “非”(否定):表示对命题的否定。
命题逻辑的推理规则1. 合取分配律(并):(p ∧ q) ∧ r = p ∧ (q ∧ r)2. 析取分配律(或):(p ∨ q) ∨ r = p ∨ (q ∨ r)3. 合取律(并):p ∧ p = p4. 析取律(或):p ∨ p = p5. 否定律:¬(¬p) = p6. De Morgan定律:- ¬(p ∧ q) = ¬p ∨ ¬q- ¬(p ∨ q) = ¬p ∧ ¬q命题的等价性1. 蕴含:p → q 表示当p为真时,q也为真;2. 等价:p ↔ q 表示当p与q同时为真或同时为假时成立。
命题逻辑的证明方法1. 直接证明法:直接证明命题的真假;2. 反证法:假设命题为假,推导出矛盾,得出命题为真;3. 归谬法:假设命题为真,推导出矛盾,得出命题为假;4. 数学归纳法:通过证明基础情形和推导情形的真假来证明命题。
数理逻辑的应用数理逻辑在计算机科学、数学推理、形式语言学和人工智能等领域有广泛的应用。
它能够帮助我们分析问题、进行推理以及验证和证明复杂的命题。
在算法设计、数据库查询优化、自然语言处理等方面发挥着重要作用。
以上是关于数理逻辑的基本知识点总结,希望能对您有所帮助。
数理逻辑总结
![数理逻辑总结](https://img.taocdn.com/s3/m/0f9ded7b842458fb770bf78a6529647d2728342f.png)
数理逻辑总结
概述
数理逻辑是数学与逻辑学的一种结合,它以数学的方法研究逻辑的结构,探讨逻辑的内容和其它抽象结构之间的联系。
它是数学分支学科和基础学科之一,是研究逻辑学的基本理论。
概念
数理逻辑研究的对象是逻辑的基本概念,其中主要包括以下几个概念:
一、谓词逻辑
谓词逻辑是一种表达主观看法的逻辑,它表示谓词(如“苹果是红色的”)在封闭系统中的真假状态,可以用一种形式化表示。
二、图论
图论是一门应用数学思想对图形进行描述分析的学科,用来描述现实中的图形关系,图形的构成,图形以及图形上的点,边和面等。
三、模型理论
模型理论是研究形式语言和模型的学科,用来分析和构造特定模型的有效方法,还涉及其它各种复杂系统的表达。
四、证明论
证明论是一种对真假性证明进行分析的学科,研究关于真假的证明的规则,分析如何从已知的真实性来推出新的真实性,以及有关如何构建不同种类的逻辑证明的方法。
发展
数理逻辑是一门新兴的学科,自20世纪50年代以来不断发展,在整个20世纪都取得了重大突破。
数理逻辑有多种应用,包括计算机科学,逻辑计算机,物理学,经济学,人工智能等。
大学数学数理逻辑
![大学数学数理逻辑](https://img.taocdn.com/s3/m/d6274e26cbaedd3383c4bb4cf7ec4afe04a1b1b7.png)
大学数学数理逻辑数理逻辑是大学数学中的一门重要学科,它研究命题、论证和推理的规律和方法。
数理逻辑在数学、计算机科学、哲学等领域有着广泛的应用。
本文将从数理逻辑的基本概念、命题逻辑和谓词逻辑等方面进行论述,以帮助读者更好地理解和应用数理逻辑。
一、数理逻辑的概念和基本原理数理逻辑,又称形式逻辑,是一种通过形式化的符号系统来研究命题、论证和推理的学科。
它主要关注推理的正确性和有效性,旨在分析命题之间的逻辑关系,并通过推理规则来推断新的结论。
数理逻辑的基本原理包括命题、谓词、量词和推理规则等。
命题是陈述句,可以为真或者假,其真值可以通过逻辑运算进行组合。
谓词是对对象进行描述的函数,通过给定一个或多个对象来判断一个命题的真值。
量词用来量化命题中的变量,包括全称量词和存在量词。
推理规则是根据数理逻辑的规则进行合乎逻辑的推理步骤,如假言推理、略化推理等。
二、命题逻辑命题逻辑是数理逻辑的一个重要分支,它研究命题之间的逻辑关系。
命题逻辑主要包括命题的联结词、真值表和等价演算等。
1. 命题的联结词命题的联结词包括合取(∧)、析取(∨)、蕴含(→)和否定(¬)等,分别表示与、或、蕴含和非的关系。
通过这些联结词,可以对多个命题进行逻辑运算,得到一个新的命题。
2. 真值表真值表是用来列出所有可能的取值情况,并给出联结词的运算结果。
通过真值表,可以判断联结词的真值和命题之间的逻辑关系。
3. 等价演算等价演算是通过代换规则和等价关系,将逻辑表达式转化为等价的形式。
常用的等价演算规则包括分配律、德摩根律等,它们使得逻辑表达式的推导更加简化和便捷。
三、谓词逻辑谓词逻辑是数理逻辑的另一个重要分支,它引入了谓词和量词的概念,用于更精确地描述和推理命题。
谓词逻辑主要包括谓词符号、量词和量词的运用等。
1. 谓词符号谓词符号是用来描述对象的属性或者关系的符号,它通常代表一个函数,通过给定一个或多个参数来判断命题的真值。
谓词符号包括等于(=)、大于(>)等,通过它们可以对对象进行进一步的描述和区分。
数理逻辑
![数理逻辑](https://img.taocdn.com/s3/m/736720c3da38376baf1fae12.png)
GET操作的活性 GET操作的活性特征是其只有在从队列取出一个值之后才 能终止。即,如果队列为空,则该操作将一直等到某个值被放进队列,然后 再取出这个值。
enter(GET)﹁empty(cur_queue)(exit(GET)(getval*cur_queue= cur_queue)) ; enter(GET) empty(cur_queue) (enter(GET)▷ exit(PUT)); empty(cur_queue) enter(PUT)
模态逻辑
主观与客观 VO
主观模态指人的认识 客观模态指事物本身 中的确定性和不确定 的存在样式,情况和 性 趋势等
逻辑与非逻辑 逻辑之外的模态物 逻辑模态指逻辑上 理模态、哲学模态、 的必然性和可能性 生物模态
模态逻辑的延伸
时态逻辑 “可能”解释为“将来某个时刻” “必然”解释为“所有时刻”
信念逻辑
在数据库技术中的应用
基于点的时间元素,又称为时间点
基于区间的时间元素
• 用户自定义时间
• 有效时间 • 事务时间
在程序设计语言中的应用
例3 著名的n皇后问题是:是否可以将n(n为正整数)个皇后放
在棋盘上,使得每行每列都有且仅有一个皇后,并且每条对角线
上如果有皇后且仅有一个。 解答:可以用数理逻辑中的命题逻辑来描述皇后问题,为此
队列及其操作
谓词enter(PUT)、enter(GET) 谓词exit(GET)、exit(PUT) 相应操作的开始 相应操作的终止
活性 PUT操作的活性(用符号“*”表示在队列末尾插入后继元素)PUT操作的活 性就是要求其能够终止。元素putval 的插入只能在不引起溢出的情况下才能 进行。
数理逻辑教程
![数理逻辑教程](https://img.taocdn.com/s3/m/ee2e86165627a5e9856a561252d380eb629423dd.png)
数理逻辑教程数理逻辑是一门复杂而又有趣的学科,它既是哲学又是数学,属于学术思想和数学分析的独特组合。
近几十年来,数理逻辑得到了广泛的应用,它不仅用于哲学论文的写作,而且用于计算机编程,特别是程序设计。
本文将为您介绍数理逻辑的基本概念,以及其如何帮助您更好地理解和使用它。
一、数理逻辑的定义数理逻辑(Mathematical Logic)是一门研究逻辑的学科,它结合了哲学中的逻辑思维和数学中的形式化系统。
它的目的是将哲学中的概念与数学中的精确性结合起来,以更好地理解和使用逻辑推理。
数理逻辑的基本概念是逻辑推理,它是通过分析一系列前提,以推出一系列结论的方法。
二、数理逻辑的历史数理逻辑的发展可以追溯到古希腊时期。
当时,古希腊哲学家们,如柏拉图和亚里士多德,通过推理和论证来解释世界上发生的事情。
在中世纪,哲学家和数学家们继续研究逻辑,他们发现逻辑推理可以用来证明或否定一个命题的真实性。
到19世纪,英国数学家约翰·华生等人开始将逻辑与数学结合起来,形成了现代数理逻辑学。
三、数理逻辑的基本概念数理逻辑是一门复杂的学科,它涉及到许多基本概念,如定理、公理、演绎法、归纳法等。
其中,定理是一种用逻辑推理证明的命题,是一个被推论出来的结论;公理是构成定理的基本命题,也就是前提;演绎法是一种从公理中推断出结论的方法,也就是由具体到抽象的过程;而归纳法则是由一般性的结论推断出具体的命题的方法,也就是由抽象到具体的过程。
四、数理逻辑的应用数理逻辑的应用非常广泛,既可以用于哲学论文的写作,也可以用于程序设计。
例如,在程序设计中,数理逻辑可以用来帮助程序员更好地理解和使用程序控制和程序语言。
此外,数理逻辑还可以用于语言学、认知科学、计算机科学等领域,可以帮助我们更好地理解和使用这些学科。
五、数理逻辑的学习学习数理逻辑也许是一个挑战,因为它涉及到许多复杂的概念。
但要学习数理逻辑,首先要熟悉它的基本概念,如定理、公理、演绎法、归纳法等。
数学的数理逻辑分支
![数学的数理逻辑分支](https://img.taocdn.com/s3/m/f3a6c5bfbb0d4a7302768e9951e79b89680268c0.png)
数学的数理逻辑分支数理逻辑是数学的一个重要分支,它研究逻辑思维和推理的基本规律,在解决问题和证明定理中起到了关键作用。
本文将从数理逻辑的定义、历史和应用等几个方面进行探讨,以全面展示数理逻辑在数学领域的重要性。
一、数理逻辑的定义数理逻辑是研究命题、推理和证明的数学分支。
它主要包括命题逻辑、一阶谓词逻辑和模型论等相关内容。
数理逻辑通过形式化的方法来研究推理和证明的规则,以符号化的方式表达命题和推理过程。
二、数理逻辑的历史数理逻辑的起源可以追溯到古希腊时代的亚里士多德。
他在《篇章》中提出了演绎推理的基本规则,奠定了逻辑学的基础。
随着时间的推移,逻辑学逐渐发展为一个独立的学科,并且在数学研究中发挥着越来越重要的作用。
19世纪末到20世纪初,数理逻辑得到了重大的发展。
哥德尔的不完备性定理揭示了数学系统的局限性,给数理逻辑带来了巨大的冲击和启示。
同时,罗素和怀特海等逻辑学家开创了数理逻辑的公理化方法,使得逻辑推理得以在形式化的框架下进行研究。
三、数理逻辑的应用数理逻辑在数学研究中扮演着重要的角色。
它为数学家提供了一种形式化的推理工具,使得数学证明可以更加准确和严谨。
通过应用数理逻辑的方法,数学家可以构建更复杂的数学系统,并在其中进行精确的论证。
此外,数理逻辑在计算机科学领域也有广泛的应用。
计算机程序设计需要精确的逻辑思维和推理能力,而数理逻辑为程序员提供了相应的思维工具。
通过数理逻辑的分析和证明,可以验证程序的正确性和可靠性,提高计算机系统的安全性。
四、数理逻辑的发展前景随着科技的不断进步和应用的拓展,数理逻辑在各个领域的发展前景非常广阔。
在人工智能领域,数理逻辑被应用于知识表示和推理,实现机器的自动推理和决策能力。
在通信和密码学领域,数理逻辑被用于设计和分析加密算法,保障信息的安全。
在金融和经济学领域,数理逻辑被用于建立和分析数学模型,预测和解释市场的变化。
总之,数理逻辑作为数学的数学分支,具有重要的理论和应用价值。
(完整版)数理逻辑知识点总结
![(完整版)数理逻辑知识点总结](https://img.taocdn.com/s3/m/e54c779327fff705cc1755270722192e453658e1.png)
(完整版)数理逻辑知识点总结
1. 命题逻辑
命题逻辑是研究命题之间的逻辑关系的数理逻辑分支。
以下是
一些重要的知识点:
- 命题:表示一个陈述或主张,可以是真或假。
- 真值表:用来列出命题的所有可能的真值组合。
- 逻辑运算符:包括非、与、或、条件、双条件运算符,用于
连接命题和构建复合命题。
- 析取范式和合取范式:将复合命题化简为仅使用或和与的形式。
- 等价式:表示两个命题具有相同真值的逻辑等式。
- 推理法则:如假言推理、拒取推理等,用于推导出新的命题。
2. 谓词逻辑
谓词逻辑是研究带有变量的陈述的逻辑。
以下是一些重要的知
识点:
- 谓词:带有变量的陈述,可以是真或假。
- 量词:包括全称量词和存在量词,用于约束变量的取值范围。
- 集合论:涉及集合的概念和运算,如并、交、补运算。
- 等价式和蕴含式:类似于命题逻辑中的等价式和推理法则,
但针对谓词逻辑的带有变量的陈述。
3. 非经典逻辑
非经典逻辑是指那些违背经典逻辑法则的逻辑系统。
以下是一
些常见的非经典逻辑:
- 模糊逻辑:处理模糊概念的逻辑系统,将命题的真值从严格
的真或假扩展到连续的真假之间。
- 异质逻辑:处理具有多个真值的逻辑系统,如三值逻辑、多
值逻辑等。
- 归纳逻辑:推理从特殊到一般的逻辑系统,用于从观察到的
个别事实中推断出一般规律。
- 模态逻辑:处理可能性和必然性的逻辑系统,用于描述可能
的世界和必然的真理。
以上是数理逻辑的部分知识点总结,希望对您有所帮助。
第五章 数理逻辑
![第五章 数理逻辑](https://img.taocdn.com/s3/m/711b009a915f804d2a16c189.png)
(1)
(2)
我们常把重言式记作1,把矛盾式记作0
定义4、设A,B是命题公式,若A B是重言式,则称A与B等值的,
记作
, 读作A与B等值.
例4 判断下列各组公式是否等值
(1)
(2)
对于命题公式A,B,C,有下列性质
(1)自反性:
;(2) 对称性:若
,则
(3) 传递性:若
且
c
• 重要的等值式,希望同学们牢记
的充分必要条件是
例8、证明
第三节:对偶与范式
• 一、对偶
• 定义1、在仅含有
的命题公式A中,将∧,∨分别换成∨,∧,
若A中有1或0亦互相取代,所得公式 称作A的对偶.
• 显然A也是 的对偶.
• 例1、试写出下列公式的对偶
(1)
(2)
• 定理1、设A与 是互为对偶的两个公式,所有的命题变元为
•则
•或
成的表,称为命题公式A的真值表.
例2、试求下列公式的真值表
(1)
(2)
(3)
定义3、设A是一个命题公式:
(1)若A在它的各种指派下取值均为真,则称A是重言式或永真式.
(2)若A在它的各种指派下取值均为假,则称A是矛盾式或永假式.
(3)若A不是矛盾式,则称A是可满足式.
例3、用真值表判断下列公式的类型
PQ P
00
第二节 命题公式及公式的等值和蕴含关系
• 我们知道,不含任何联结词的命题称为原子命题,至少包含一个联结 词的命题称作复合命题.原子命题的真值是唯一的,所以也称原子命题 为 命题常项或命题常元.真值可以变化的陈述句称作命题变元或命题 变项(如x+y≥0)
• 一、命题公式 • 由命题变元,联结词和圆括号按一定规则组成的符号串称作合式公式. • 定义1、命题公式是由下列规则产生的符号串: • (1)单一的命题变元本身是一个合式公式. • (2)如果A是合式公式,则 A是合式公式. • (3)如果A和B是合式公式,则A B, A v B, A B,A B都是合式公式. • (4)只有有限次地应用(1),(2),(3),所产生的符号串才是
数理逻辑的基本原理与应用
![数理逻辑的基本原理与应用](https://img.taocdn.com/s3/m/5f43df073868011ca300a6c30c2259010202f3f9.png)
数理逻辑的基本原理与应用数理逻辑是研究符号推理的一种科学,它以数学方法为基础,通过形式化的方法研究符号的组合关系和推理规律,以达到精确地描述、分析和推演各种事物的目的。
本文将介绍数理逻辑的基本原理、基础概念以及在实际应用中的一些例子。
一、基本原理1. 符号逻辑符号逻辑是指用符号来表示推理过程和结果的方法。
在符号逻辑中,将各种存在的概念和关系都用符号来表示,使推理的过程变得形式化和规范化,从而保证推理的正确性和可靠性。
2. 命题逻辑命题逻辑是最基础的数理逻辑,它研究各种命题之间的关系。
在命题逻辑中,每个命题都用变量来表示,例如P代表“今天天气晴朗”,Q代表“明天下雨”。
命题逻辑中的逻辑符号包括否定、合取、析取、蕴含、等价等。
3. 谓词逻辑谓词逻辑研究命题中涉及到的个体和属性之间的关系。
在谓词逻辑中,用限定词和谓词来表示个体和属性,例如“每个人都有一个名字”这个命题可以表示为∀x,∃y,person(x)→has_name(x,y),其中∀表示“每个”,∃表示“存在”,person(x)表示“x是人”,has_name(x,y)表示“x有一个名字y”。
4. 模态逻辑模态逻辑是研究各种命题的可能性和必然性等模态概念的逻辑。
在模态逻辑中,引入可能性和必然性等概念的逻辑符号,例如“可能”、“必然”等。
二、基础概念1. 命题命题是陈述语句中可以明确真假的句子,例如“上海是中国的一座城市”,“1+1=3”等。
命题可以用符号表示,例如P表示“上海是中国的一座城市”。
2. 联结词联结词是用来连接命题的逻辑符号,例如“非(not)”、“与(and)”、“或(or)”、“蕴含(imply)”等。
3. 符号和解释符号和解释是数理逻辑中非常重要的概念,符号是用来代表命题和联结词的符号,而解释是对这些符号进行解释的规则。
例如“甲是女士”这个命题可以用P表示,其解释为“其中甲是人,且甲是女性”。
4. 推理推理是数理逻辑的核心内容,它是指通过已有的命题推出新的命题。
数理逻辑的名词解释
![数理逻辑的名词解释](https://img.taocdn.com/s3/m/36c6512fae1ffc4ffe4733687e21af45b207fe12.png)
数理逻辑的名词解释数理逻辑是一门研究命题、推理、证明、数学系统和计算问题等的学科。
它旨在通过严密的符号化语言、形式化的证明方法和符号运算规则,揭示和分析逻辑规律,并在数学、计算机科学、哲学和语言学等领域中得到广泛应用。
1. 数理逻辑的基本概念与起源数理逻辑的基础概念包括“命题”、“推理”、“谓词”、“量词”等。
命题是陈述性语句,可以判断为真或假;推理是基于已知的命题通过一定的规则得出新的命题;谓词是一种带有占位符的命题,可以通过具体的值对其进行替换;量词表示命题在某一范围内的真假情况。
数理逻辑的起源可追溯至公元前4世纪的古希腊,当时亚里士多德提出了一套用于推理和论证的逻辑规则。
随着数学的进一步发展,逻辑也开始成为独立的学科,并逐渐形成现代数理逻辑。
2. 数理逻辑的主要分支数理逻辑可以细分为多个分支,其中主要包括命题逻辑、一阶谓词逻辑、模型论、证明论、递归论和模糊逻辑等。
命题逻辑是数理逻辑的基础,研究命题的连接关系和推理规则,以符号化的方式表达和分析命题之间的逻辑关系。
一阶谓词逻辑则引入了谓词和量词的概念,可以描述具有更丰富结构的命题和关系。
模型论研究如何将逻辑语言与实际世界建立起联系,通过模型理论来研究逻辑系统的语义(意义)特征和可满足性等性质。
而证明论研究的是关于逻辑系统的证明和证明方法,包括证明的形式化、证明系统的公理化以及可靠性等问题。
递归论探索可计算性和计算复杂性的问题,其中涉及到递归函数、图灵机等概念。
模糊逻辑则处理具有模糊性质的命题,将真值从传统的只有真和假的二元逻辑拓展到介于真和假之间的连续区域。
3. 数理逻辑的应用领域数理逻辑在数学、计算机科学、哲学和语言学等领域中有广泛的应用。
在数学中,数理逻辑提供了一种形式化的语言和证明规则,可以准确地描述和证明数学命题。
它不仅为数学的内在逻辑提供了基础,还推动了数学的发展和推理能力的提升。
在计算机科学中,数理逻辑为计算机的设计和程序验证提供了理论基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数理逻辑介绍1.若干哲学观点分析哲学也称为语言哲学和逻辑哲学,开始于德国数学家弗雷格对于自然语言的逻辑分析工作,后被奥地利哲学家维特根斯坦发扬光大,使得近代哲学研究成功转型为语言分析,并成为现代哲学研究的主流。
学习分析哲学有利于澄清我们对于一些常用概念的认识。
以下所列条目是基于本人的理解和独立思考而提出的观点,欢迎批评、指正。
认知对象:客观世界中存在的事物,这是第一认知对象。
人们在认知过程中所形成的抽象概念是第二认知对象。
概念是人们头脑中的观念,所反映的是对象的相似性(similarity)和不变性(invariance),也称为模式(mode),包括结构模式、行为模式和关系模式。
这些抽象模式称为概念的内涵(intension)或者所指(referent)。
概念是人们对于客观对象进行抽象所得的观念。
一旦形成就拥有不依赖于客观对象的独立存在性。
例如,“圆”这个概念来自于客观事物,又超越和独立于客观事物,有自己确定的内涵。
因此,概念不是客观事物的附属,而是思维世界中的独立存在。
柏拉图(Plato)称之为理念(idea),并且认为理念是独立于物质世界的另一种存在。
概念是没有真假对错之分的,它是一个模式,按照该模式可以对现实对象进行归类。
例如,我们可以用圆这个概念对事物进行归类,将所有近似圆形的事物归为一类。
同类事物具有相同的性质,相同的性质具有相同的作用。
因此,对事物进行归类有利于我们有效地认识和应用事物。
当然,我们的认知并不满足于获得一些概念,还会继续探索这些概念的属性和相互作用,等等。
因此,概念是人类认知的结果,也是进一步认知的对象。
命题:在思维中将某对象归于某模式,即认为某对象具有某性质或者模式,这种思维中的归属联系就是命题。
因此,命题也是人们头脑中的一种观念,不过,命题与概念不同,它不是一种模式,不是由客观对象身上升华而成的模式,而仅仅是将一个给定对象与某概念进行联接,将对象归于这个概念所划定的类。
如果说概念是进行思维概括操作的结果,那么命题可以说是简单的思维联接操作的结果。
因此,命题是有真假对错之分的。
如果命题所指代的归属关系是客观存在的,则该命题为真(true),否则为假(false)。
语言:是一个符号系统,用于表达和记录思维中的概念和命题。
语言由符号(symbol)和语法(grammar)组成。
语法是符号组成语句的规则。
语句的功能就是描述我们思维中的概念和命题。
在语言中,概念通常用一个简短的名字进行表示,称为词语(word),比较复杂的概念往往用固定词组(set phrase)表示。
一个词语所表示的概念称为词语的含义(meaning)或者语义(semanteme)。
在一个语言中,定义一个概念就是用词语和句子对概念内涵进行充分而明确地描述。
仅仅是表达一个命题的句子称为陈述句(statement),被表达的命题称为该陈述句的语义(semanteme)或者含义(meaning)。
有些感叹句、反问句其实也表达了命题,但是它们还有其它的语用表达功能,包括传递说话人的情感、意愿等等。
需要注意的是,并非任何陈述句都表达一个命题。
例如,“我正在说假话”是陈述句,但其所表达的语义不是命题。
思考:“今天是星期一”所表达的是命题吗?语句分析:弗雷格将一个句子的成分分为主词、谓词和量词等三个部分。
主词表示对象。
谓词表示对象的性质、状态和动作,相当于定语和谓语(把状语和补语视为谓语的一部分)。
量词用以表示主词所表示的对象的数量,只有两种,即全称量词和存在量词,分别表示“所有”和“存在”。
例如,“有的果子成熟了更可口”,其中量词是“有的”,主词是“果子”,谓词有两个,即“成熟了”和“更可口”。
我们将要学习的一阶逻辑是对弗雷格的这种1语言分析方法的形式化。
2.数理逻辑推理、实验和计算是人类认知活动中的三种主要途径和工具。
逻辑学(logic)研究推理规则。
推理是从已知的知识中获得其中蕴含的新知识,或者是用已知的知识论证某个判断的真假。
数理逻辑:也称为形式逻辑、符号逻辑,是关于推理的数学理论,其目的是为推理建立数学模型,使得推理和数学证明成为一种有规则的符号运算过程,从而确保推理的正确性。
3.历史在古希腊时期产生了两种逻辑学:亚里士多德的三段论逻辑(syllogistic logic)和斯多葛学派的命题逻辑(propositional logic,也称语句逻辑或句式逻辑,sentential logic)。
1)亚里士多德的三段论逻辑:这是有记载的最早的逻辑学说。
亚里士多德总结了多个推理模式,例如“Barbara模式”:1 2P Q Q R P R前提:所有是前提:所有是结论:所有是亚里士多德把这些推理模式合称syllogism。
由于这些推理模式都是由两个前提推出一个结论,故中文翻译为“三段论”。
三段论所讨论的命题结构比较简单,共有如下4种形式:SaP:所有S是P。
SeP:没有S是P。
SiP:有的S是P。
SoP:有的S不是P。
其中S和P所表示的词语分别称为主词(subject)和谓词(predicate),分别指代某一类对象。
符合上述形式之一的命题称为主谓命题(subject-predicate proposition)。
主谓命题所表达的是主词对象对于谓词对象类的隶属关系,其中“所有”和“有的”等词语的作用是量化这个隶属关系。
(注:我们这里把some翻译为“有的”,一般教材翻译为“某些”。
)注意,在一个语言中,有些词语仅指代唯一的对象,例如一些人名和地名,这些词语称为专名。
但是大部分词语所指代是某一类对象中的任何对象,是这些对象的共同名称,简称通名。
例如,在“苏格拉底是人”这句话中,“苏格拉底”是专名,“人”是通名,所以这句话所表达的命题是Sip型的,而不是SaP型的。
注意,在一个命题中的主词和谓词可以另一个命题的谓词和主词。
例如,我们可以说“有的人是苏格拉底”。
三段论的4种图式:设S,P是三段论中结论的主词和谓词。
三段论中的两个前提分别涉及P和S,前者称为大前提(major premise),后者称为小前提(minor premise)。
联系大小前提的是一个同时出现在这两前提中词语,称为中项(the middle term),暂记为M。
在大前提和小前提中,M都可以是主词,也可以是谓词。
因此,按照M在两个前提中的位置,三段论被分类为如下4个图式(figure):23在每个图式中,在主词和谓词之间分别加入4个字母a,e,i 或o ,则可得4×4×4个不同的三段论,从而4个图式共含有256个可能的三段论。
当然,这些三段论中大部分是错误的推理模式。
亚里士多德逻辑学的主要贡献在于,所给出的19条三段论中除了有两个是错误的之外包含了所有正确的三段论。
2) 斯多葛学派的命题逻辑:学派创始人是著名的诡辩家芝诺(Zeno )。
思考宇宙决定论与人类自由之间的关系。
(Seneca 主张美德是快乐的充分条件“virtue is sufficient for happiness ”,声称“对于人类来说,个人是神圣的。
”这最早的人本主义思想。
)命题逻辑考虑复合命题与其中基本命题的真假关系。
克律西普斯(Chrysippus )把命题逻辑发展成为一个形式逻辑。
到了17世纪被德国数学家莱布尼兹变为符号逻辑。
然而没有多少人了解莱布尼兹的这项工作。
到了19世纪,布尔(Boole )和德摩根(De Morgan )独立地完成了命题逻辑的符号化工作。
3) 莱布尼兹的梦想:17世纪末德国数学家莱布尼兹(Leibniz )曾梦想把推理变成一种演算(calculus ),以化解人们之间的观念冲突和争辩。
为了实现这个梦想,他认为需要发展两个工具,一个是可描述所有的命题的通用语言,一个是论证命题真假的推理演算系统。
莱布尼兹确信他可以在5年之内发展出这两个工具。
事实上,他发展了一些基础性的理论和方法,但在当时并不为人所知,对后人的研究工作没有产生影响。
4) 欧拉圆圈法:18世纪著名数学家欧拉提出了一种优雅的判断三段论有效性的方法,称为欧拉圆圈法(method of Euler circles ),见下图。
这三个圆圈分别表示结论主词S 、结论谓词P 和中间项M (所对应的类)。
两个圆圈的重叠部分表示一个类的部分成员隶属于另一类。
例:设某三段论的大前提为“所有M 是P ”,小前提为“所有S 是M ”,结论为“所有S 是P ”。
我们用欧拉圆圈法判断其有效性如下。
根据大前提可知3号和5号区域为空,根据小前提可知1号和7号区域为空。
由于3号和7号区域为空,所以S 类完全包含于P 类之中。
于是得结论,所有S 都是P 。
5) 布尔代数:在研究亚里士多德逻辑学时,19世纪爱尔兰数学家乔治布尔(George Boole )想到了一种很有创意的代数分析方法。
用变元表示类,常元1表示所有对象组成的类,0表示空类,即不含任何对象的类;设定满足几条运算定律7 3 251 64PSM的3种对于类的基本运算:并x+y、交xy、差x-y;亚里士多德三段论所处理的主谓命题表示为类的代数方程。
例如,若s是主语所指代的所有对象组成的类,p是谓语所定义的类,即所有使谓语成立的对象,则方程sp=0表示s中任何对象都不满足谓语p。
推理变成了由表示前提的方程判断表示结论的方程是否成立的代数演算。
这就是布尔首先提出的逻辑代数化方法,成功地将亚氏三段论形式化为一个代数系统。
这一转变所带来的好处是,用很少的几个代数定律就可以判断所有可能的256种三段论的对错。
事实上,用布尔的代数演算系统成功地找出了亚里士多德的19种三段论中的两个错误。
布尔(George Boole)的方法实质上是将逻辑学转化为一种代数,用代数公式表示命题,用代数运算实现推理(参考维基百科)。
1848年布尔发表了他的第一篇关于符号逻辑的论文《The Mathematical Analysis of Logic》,1854年发表了他的名著《The Laws of Thoughts》。
可以说,这些工作实现了命题逻辑的代数化。
6)第二次数学危机:17世纪下半叶,牛顿和莱布尼兹共同创立了微积分理论,该理论成为研究物理学的得力工具,解决了大量工程技术问题,大大推进了让资本主义彻底打败封建主义的工业革命。
然而其理论的严谨性也受到了人们的质疑。
微积分是关于无穷小的运算理论。
无穷小是什么?两位奠基人都没有给出明确的解释。
英国哲学家、伦敦大主教贝克莱发表文章批评牛顿的流数(现在称为导数)概念是建立在无穷小这个幽灵的基础上。
当时的法国数学家罗尔(Rolle)也说,微积分中充满了巧妙的谬论(ingenious fallacies)。
(回顾罗尔定理(1691年):可微曲线上任意两点之间一定存在一点,其导数等于过这两点的直线的斜率。