变分法简介
变分法原理
变分法原理变分法是一种用于求解泛函和微分方程问题的数学方法。
它通过对一个函数进行微小的变化,并计算出在这个微小变化下泛函的变化量,从而得到泛函的极值。
变分法在物理学和工程学等领域有广泛的应用,如优化问题、经典力学中的作用量原理以及量子力学中的路径积分等。
要理解变分法的原理,首先需要了解泛函的概念。
泛函是一种将函数映射到实数集上的函数,例如能量泛函、作用泛函等。
对于一个给定的泛函,我们希望找到使其取得最大或最小值的函数。
而变分法就是一种通过对函数进行微小变化,从而使得泛函的变化量趋于零的方法。
以最简单的泛函问题为例,考虑一个函数y(某)在区间[a,b]上的泛函J,即J[y(某)],例如J[y]=∫(a到b)F(某,y,y')d某,其中F是已知的函数,y'表示导数。
我们的目标是找到函数y(某),使得泛函J[y(某)]取得极值。
为了寻找这样的函数,我们引入一个变分函数δy(某),它表示函数y(某)关于自变量某的微小变化量。
于是,我们可以将函数y(某)写成y(某)+εδy(某),其中ε是一个小的实数。
然后,将变分函数代入泛函中得到J[y(某)+εδy(某)]。
将J[y(某)+εδy(某)]展开成泛函J[y(某)]关于ε的幂级数,取一阶项,得到J[y(某)+εδy(某)]≈J[y(某)]+ε∫(a到b)(∂F/∂y)δyd某+ε∫(a到b)(∂F/∂y')δy'd某。
由于δy(某)是任意的,我们要使得泛函J[y(某)+εδy(某)]的变化量趋于零,只需使得∂F/∂y- d/d某(∂F/∂y')=0,即Euler-Lagrange方程。
根据Euler-Lagrange方程解出δy(某),再令δy(某)的边界条件为零,即δy(a)=δy(b)=0。
这样,我们就可以得到函数y(某)的特解。
总结起来,变分法的原理是将函数表示为原函数与微小变化的函数之和,将其代入泛函中展开,并取一阶项,最后通过求解Euler-Lagrange 方程得到特解。
数学分析中的变分法与变分不等式
数学分析中的变分法与变分不等式数学分析是研究数学对象的性质和结构的一门学科,而变分法是数学分析中的一种重要的工具。
在数学分析中,变分法的应用涉及到很多领域,包括微积分、偏微分方程和泛函分析等。
首先,我们来了解一下变分法的基本概念。
在数学分析中,变分法是一种通过对函数的微小变化进行讨论来解决极值问题的方法。
它的的核心思想是找到一个函数使得对于所有的微小变化,函数的变化量都取得极值。
通常,变分法的问题可以归约到求解一类特殊的微分方程,称为欧拉-拉格朗日方程。
欧拉-拉格朗日方程是变分法中的一个重要结果。
它表示对于一个给定的函数的变分问题,该函数的解必须满足一组微分方程。
具体来说,对于欧拉-拉格朗日方程的求解,我们需要构造一个满足给定边界条件的函数,并且该函数应满足欧拉-拉格朗日方程的要求。
通过求解这个方程,我们就可以得到原始问题的解。
变分法的应用范围很广泛,其中一个重要的应用是在物理学中。
在物理学中,变分法可以用于描述自然界中的最小作用量原理。
最小作用量原理认为,自然界中真实的物理过程总是沿着使作用量取极小值的路径进行的。
通过应用变分法,我们可以推导出很多重要的物理定律,如拉普拉斯方程和哈密顿-雅可比方程等。
除了变分法,变分不等式也是数学分析中的一个重要概念。
变分不等式是一类特殊的不等式,它们涉及到函数和其变分量之间的关系。
在数学分析中,变分不等式的研究对于理解最优控制、最优运输等实际问题具有重要意义。
变分不等式的研究方法与变分法有一定的类似之处,都是通过对函数的微小变化进行研究来得到结论。
然而,变分不等式的求解通常更加困难,需要借助更加深入的数学理论和技巧。
在数学分析中,变分法和变分不等式是两个相互关联的概念。
通过对函数的变分进行讨论,我们可以得到欧拉-拉格朗日方程和其他重要的微分方程,同时也可以推导出一些重要的不等式。
变分法和变分不等式的应用贯穿于数学分析的各个分支,并且在实际问题的研究中具有重要的作用。
变分原理与变分法
变分原理与变分法变分原理是数学物理中的一种基本原理,用于描述自然界中的物理现象。
它是物理学中的最小作用量原理的数学表述。
变分原理与变分法密切相关,是变分法的基础。
变分原理是由欧拉-拉格朗日提出的,并以他们的名字命名。
它表明,自然界的真实运动是使作用量取极值的路径。
作用量是在一个过程中所有可能路径上对拉格朗日量(描述系统运动的函数)进行积分得到的。
换句话说,作用量是描述系统整体运动的一个量度。
在物理学中,拉格朗日函数常常由系统的动能和势能构成。
通过对动能和势能的定义,我们可以得到描述系统运动的拉格朗日方程。
拉格朗日方程是变分原理的数学表达式,它通过求解一组微分方程来描述系统的运动。
变分法是一种数学方法,用于求解泛函问题。
泛函是一个函数的函数,通常是由一个区间上的函数组成的。
在变分法中,我们通过将泛函写成一族函数的积分形式,并求解使得泛函取极值的函数。
这就涉及到求取泛函的变分(即导数)。
变分法的基本思想是将泛函中的函数进行微小的变化,然后求取这个变化对泛函的影响。
这个变化就是变分,通常用符号δ表示。
然后通过对泛函进行导数运算,得到变分后的泛函表达式。
最后,将变分的泛函表达式置于极值条件下,即求取变分后的泛函为零的解,就可以求得泛函的最优解。
在物理学中,变分法常常用于求解极值问题,如最小作用量问题、哈密顿原理以及量子力学中的路径积分等。
它为我们提供了一种强大的工具,用于描述和预测自然界中的物理现象。
总结起来,变分原理是描述自然界中物理现象的最小作用量原理的数学表述,而变分法是求解泛函问题的一种数学方法。
它们相互依存,变分原理提供了变分法的理论基础,而变分法为我们提供了一种强大的工具,用于求解各种物理问题。
变分原理与变分法的理论和应用涉及数学、物理、工程等多个领域,对于理解和研究复杂的物理现象具有重要的意义。
变分法
tf
t0
M (t )(t )dt 0 。则在 [t 0 , t f ] 内, M (t ) 0 。
(用反证法容易证明,略) 。 二、无约束条件的泛函极值 求泛函 J
tf
t0
(t ), t ]dt (1)的极值,一般是用泛函极值的必要条件去寻找 F[ x(t ), x
一条曲线 x(t ) ,使给定的二阶连续可微函数 F 沿该曲线的积分达到极值。常称这条曲线为 极值曲线(或轨线) ,记为 x (t ) 。 1.端点固定的情况 设容许曲线 x(t ) 满足边界条件 x(t 0 ) x0 , x(t f ) x f ,且二次可微。 首先计算(1)式的变分:
t t f dt f 。寻找端点变动情况的必要条件,可仿照前面端点固定发问进行推导,即有
0 J
t f dt
t0
x , t ]dt | 0 F[ x x, x
t f dt
t0
)dt | 0 F ( x x, x x , t f dt f )dt f | 0(t t f dt f ) ( Fxx Fx x
tf x , t ] 0 dt J [ x(t ) x(t )] 0 F[ x x, x t0 tf
J
ห้องสมุดไป่ตู้
, t )x Fx , t )x ]dt [ Fx ( x, x ( x, x
t0
(2)
对上式右端第二项做分布积分,并利用 x(t 0 ) x(t f ) 0 ,有
件,有 J
tf
[ Fx
它是这类最简泛函取极值的必要条件。 最简泛函取极值的必要条件可以推广到多元泛函的情 况,如二元泛函
变分原理与变分法
变分原理与变分法一、变分原理的基本概念变分原理是针对泛函的一种表述方式。
所谓泛函是指一类函数的函数,这类函数可以是数学上的对象,也可以是物理上的对象。
变分原理是以泛函的极值问题为基础,通过对泛函进行变分计算,求取泛函的极值。
在变分原理中,被考虑的对象是泛函数而不是函数。
二、变分原理的基本原理三、变分法的基本步骤变分法是通过对泛函的变分计算来解决极值问题。
它的基本步骤如下:1.建立泛函:根据具体的问题,建立一个泛函表达式,其中包含了待求函数及其导数。
2.变分计算:对建立的泛函进行变分计算,即对泛函中的待求函数及其导数进行变动,求出泛函的变分表达式。
3.边界条件:根据具体问题的边界条件,对变分表达式进行求解,得到泛函的变分解。
4.极值问题:根据泛函的变分解,通过进一步的计算确定泛函的极值。
四、变分原理和变分法的应用1.物理学中的应用:变分原理和变分法在物理学中有广泛的应用。
例如,拉格朗日方程和哈密顿方程可以通过变分原理推导出来。
此外,在量子力学和场论中,变分法也被用于求解相应的泛函积分方程。
2.工程学中的应用:在工程学中,变分原理和变分法常用于求解最优化问题。
例如,在结构力学中,通过变分法可以求解出构件的最优形状和尺寸。
在控制理论中,变分法可以用于求解最优控制问题。
3.数学学科中的应用:变分原理和变分法在数学学科中也有重要的应用。
例如,在函数极值问题中,变分法可以用于求解一类非线性偏微分方程的临界点。
总之,变分原理与变分法是一种强有力的数学工具,具有广泛的应用领域。
通过应用变分原理和变分法,可以更好地解决求极值问题,进而推导出物理方程、最优设计和数学方程等相关问题的解。
因此,深入理解变分原理和变分法对于数学、物理、工程等学科的研究和应用具有重要的意义。
理论力学7 变分法
轨道的变化 导致宏观量S 的变化,其数值远大于 , 由此导致偏离经典轨道的所有轨道对几率的贡献为0。 对经典轨道 S = 0,因此, cos(DS / ) 经典轨道附近很小邻域内 的轨道对几率的贡献是 互相加强的。 由此得到经典粒子 q(t)- q(c)(t) 是沿经典轨道运动的结论。 这与Hamilton原理得到的结论完全相同。 对微观粒子,虽然偏离经典轨道时S ≠ 0, 但微观量S 的大小一般可以与 相比, 从而导致偏离经典的轨道对几率仍然有明显的贡献。
16
在A点发射一个粒子, 如果在B点测到该粒子的几率为P, Feynman路径积分的理论认为, P 不是粒子沿某一条特定路径的几率,q (t) (c) 而是所有可能的路径的几率的叠加, 2 即: A
B
P
all q ( t )
e
iS [ q ( t )]/
,
= h / 2 , h 是Planck常数, 这里, 其量纲与作用量(或角动量)相同, 用SI单位,其大小约为10-34,非常小。 如果体系是一个经典粒子,当粒子运动的轨道不是经典 轨道时,由于S ≠ 0,
8
对稳定值:
F [ x] =
=
t2 t1
t2
t1
eg , t )dt f ( x, x , t )dt f (x e g, x
t1
t2
e1
f f e dt g g d f = g g , x 1 dt x dt x
t1
t2
19
修正的Hamilton原理:对理想、完整、广义有势体系, 从 t1 ; q1 ( t1 ) , … , q s ( t 1 ) ; p 1 ( t 1 ) , … , p s ( t 1 ) 到 t2 ;q1 ( t2 ) ,… , qs ( t2 ) ; p1 ( t2 ) ,… , ps ( t2 ), 真实运动使作用量I 取稳定值。 令: f (q, q ; p, p , t) = q a pa H (q, p, t ), 则I 取稳定值的充要条件是: d f f = , a = 1 ,2 ,… , s . a qa dt q
课件_ch01变分法简介_v1
第三个变分问题:等周问题
在满足 x (s 0 ) = x (s1 ), y(s 0 ) = y(s1 ) 和条件
L(x (s ), y(s )) =
ò
s2
s1
ædx (s )ö ædy(s )ö ÷ ÷ ç ÷ ÷ 1+ç + ds = constant (a) ç ç ÷ ÷ ç ç ÷ ÷ ds ds è ø è ø
注 1:有两个可以选取的函数 x = x (s ), y = y(s ) 注 2:也是边界已定的变分, x (s 0 ) = x (s1 ), y(s 0 ) = y(s1 ) 注 3: y = y(x ), z = z (x ) 之间必须满足的条件(a)也是一个泛函
1.2
变分的基本概念
变分原理 variational principle: 把一个物理学问题 (或其他学科的问 题)用变分法化为求泛函极值(或驻值)的问题。 如果建立了一个新的变分原理,它解除了原有的某问题变分原理的 某些约束条件,就称为该问题的广义变分原理;如果解除了所有的约束 条件,就称为无条件广义变分原理,或称为完全的广义变分原理。 1964 年,钱伟长教授明确提出了引进拉格朗日成子( Lagrange multiplier)把有约束条件的变分原理化为较少(或没有)约束条件的变 分原理的方法。 日本的鹫津一郎教授、中国科学院院士钱伟长教授和刘高联教授等 都是这方面的世界级大师。
这里假定 y(x ) 是在某一函数类(容许函数)中任意的改变。
2 微分与变分
所谓很小的改变量系指变量函数 y(x ) 与 y1(x ) 的接近程度。 当 dy = y1(x ) - y(x ) 的模很小 时,称 y(x ) 与 y1(x ) 有零阶接近度。当下面诸模都很小时
数学中的变分法与最优化
数学中的变分法与最优化在数学中,变分法和最优化是两个相关而又独立的概念。
变分法是一种通过求解函数的变分问题来研究函数的性质和优化方法的数学工具,而最优化则是通过寻找函数的最优解来解决实际问题的方法。
本文将分别介绍变分法和最优化,并探讨它们在数学中的应用。
一、变分法变分法是研究函数变化的一种数学方法,它通过将函数的小变化转化为函数的极限变化来研究函数的性质。
变分法的基本思想是,在给定的边界条件下,求解一个函数的极小值或极大值问题。
这个问题可以通过求解一个变分问题来实现。
以最简单的变分问题为例:求解一个函数的极小值。
假设我们有一个函数y=f(x),同时给定起点和终点上的边界条件y(a)=A 和y(b)=B。
变分问题就是要找到一个函数y=f(x),使得在满足边界条件的情况下,其对应的积分值最小。
为了解决变分问题,我们引入了一个新的函数,称为变分函数。
变分函数是原函数加上一个微小的扰动函数,即y=f(x)+εφ(x),其中ε是一个趋近于零的常数,φ(x)是一个光滑函数。
通过对变分函数求导,并利用边界条件,我们可以得到一个关于φ(x)的方程,称为欧拉-拉格朗日方程。
通过求解这个方程,就可以得到变分问题的解。
变分法在物理学、工程学和经济学等领域有广泛的应用。
例如,在物理学中,变分法可以用来求解最小作用量原理问题,从而得到质点的运动方程;在工程学中,变分法可以用来解决材料的弹性力学问题;在经济学中,变分法可以用来求解最优生产方案的问题。
二、最优化最优化是一种寻找函数的最优解的方法。
最优化可以分为无约束最优化和约束最优化两种情况。
无约束最优化是指在没有任何限制条件下,寻找函数的最大值或最小值。
约束最优化则是在给定一些条件下,寻找函数的最大值或最小值。
无约束最优化问题的求解可以通过求解目标函数的导数为零的方程来实现。
该方程的解对应于函数的极值点。
根据导数的符号可以判断是极大值还是极小值。
有时候我们还需要通过二阶导数的信息来确定极值的性质。
变分法基础 老大中
变分法基础老大中变分法是数学和物理学中一种重要的数值计算方法,它在许多领域中都有广泛的应用。
本文将介绍变分法的背景和重要性。
变分法源于数学中的变分计算问题,最早起源于的变分问题。
它是一种求函数最值的方法,旨在寻找函数的极值点或稳定点。
变分法的发展历程经过了数学家们的不断研究和推导,逐渐形成了现代变分法的基础理论。
在物理学中,变分法广泛应用于解决各种力学和场的问题。
通过将物理问题转化为最值问题,可以用变分法来求解微分方程和泛函方程,从而获得物理系统的稳定解、极值解或最优解。
变分法在力学、电磁学、量子力学等领域起到了重要的作用。
在工程学中,变分法常用于优化设计问题和界面问题的求解。
通过对设计参数进行变分,可求解出具有最优性能的工程结构或系统。
变分法的应用可以降低系统的能耗、提高系统的效率,并优化系统与环境的交互效果。
总之,变分法作为一种重要的数值计算方法,在数学、物理学和工程学中都有着广泛的应用和重要的意义。
通过变分法的运用,可以获得优化问题的解析解或近似解,为各个领域的研究和实践提供有力的支持和指导。
泛函泛函是一个函数的集合,其中每个函数都将一个输入映射到一个输出。
在变分法中,我们将研究泛函的性质和优化问题。
变分变分是指对函数的微小变化。
在变分法中,我们将通过对函数进行变分来研究泛函的性质和优化问题。
变分法公式变分法公式是一种用于求解泛函优化问题的数学工具。
它涉及将变分应用于泛函,并通过求解变分问题来得到泛函的极值。
变分法公式可以表示为:对于给定的泛函J[y],寻找函数y 使得J[y]取极值应用变分运算符,通过对函数y 进行变分,得到变分问题求解变分问题,得到泛函J[y]的极值函数y变分法是一种数学方法,广泛应用于不同领域,包括物理学和工程学。
下面列举了一些变分法在这些领域中的应用示例:物理学量子力学:变分法可以用于求解量子系统的基态能量和波函数形式。
经典力学:变分法可以用于求解约束系统的最小作用量路径。
(完整版)变分法简介(简单明了易懂)
§1 变分法简介作为数学的一个分支,变分法的诞生,是现实世界许多现象不断探索的结果,人们可以追寻到这样一个轨迹:约翰·伯努利(Johann Bernoulli ,1667-1748)1696年向全欧洲数学家挑战,提出一个难题:“设在垂直平面内有任意两点,一个质点受地心引力的作用,自较高点下滑至较低点,不计摩擦,问沿着什么曲线下滑,时间最短?”这就是著名的“最速降线”问题(The Brachistochrone Problem )。
它的难处在于和普通的极大极小值求法不同,它是要求出一个未知函数(曲线),来满足所给的条件。
这问题的新颖和别出心裁引起了很大兴趣,罗比塔(Guillaume Francois Antonie de l'Hospital 1661-1704)、雅可比·伯努利(Jacob Bernoulli 1654-1705)、莱布尼茨(Gottfried Wilhelm Leibniz,1646-1716)和牛顿(Isaac Newton1642—1727)都得到了解答。
约翰的解法比较漂亮,而雅可布的解法虽然麻烦与费劲,却更为一般化。
后来欧拉(Euler Lonhard ,1707~1783)和拉格朗日(Lagrange, Joseph Louis ,1736-1813)发明了这一类问题的普遍解法,从而确立了数学的一个新分支——变分学。
有趣的是,在1690年约翰·伯努利的哥哥雅可比·伯努利曾提出著名的悬链线问题 (The Hanging Chain Problem)向数学界征求答案,即,固定项链的两端,在重力场中让它自然垂下,问项链的曲线方程是什么。
在大自然中,除了悬垂的项链外,我們还可以观察到吊桥上方的悬垂钢索,挂着水珠的蜘蛛网,以及两根电线杆之间所架设的电线,这些都是悬链线(catenary )。
伽利略(Galileo, 1564~1643)比贝努利更早注意到悬链线,他猜测悬链线是抛物线,从外表看的确象,但实际上不是。
变分法简介剖析课件
• 引言 • 变分法的基本概念 • 变分法的应用领域 • 变分法的实际案例解析 • 变分法的求解方法 • 变分法的未来展望
目录
Part
01
引言
主题介绍
什么是变分法
变分法是数学的一个重要分支,主要 研究函数的变分问题,即函数在某个 特定条件下的变化量。
变分法在数学中的地位
变分法的应用领域
近似解。
适用范围
适用于简单的问题,如一维问 题或某些特定形状的二维问题
。
优点
简单直观,易于理解。
缺点
对于复杂问题,可能需要大量 的计算资源和时间。
有限元素法
有限元素法
将变分问题转化为有限元方程组 ,通过求解该方程组得到近似解 。
缺点
计算量大,需要较高的计算资源 和时间。
适用范围
适用于各种形状和维度的复杂问 题。
变分法广泛应用于物理学、工程学、 经济学等领域,如最小作用原理、弹 性力学、经济学中的最优控制问题等 。
变分法在数学中占有重要地位,是解 决优化问题、微分方程和积分方程等 问题的有力工具。
课程目标
掌握变分法的基本概念和原理
01
通过本ቤተ መጻሕፍቲ ባይዱ程的学习,学生应掌握变分法的基本概念和原理,了
解变分的计算方法和性质。
们可以求解出这些路径的具体形式和性质。
工程学
在工程学中,变分法被用于解决结构优化、控制工程、流体动力学等领域的问题。
在工程学中,变分法被广泛应用于结构优化、控制工程和流体动力学等领域。在结构优化中,变分法可以帮助我们找到最优 的结构设计,使得结构的性能达到最优。在控制工程中,变分法可以帮助我们找到最优的控制策略,使得系统的性能达到最 优。在流体动力学中,变分法可以帮助我们找到最优的流体流动路径,使得流体的流动效率达到最优。
变分法简介
变分原理 欧拉-拉格朗日方程 使最简泛函
J [ y( x)] F ( x, y, y' )dx
0 x1
取极值且满足固定边界条件
y( x0 ) y0 , y( x1 ) y1 的极值曲线y应满足必要条件
d Fy Fy ' 0 dx
的解,式中F为x,y,y'的已知函数并有二阶连续 偏导数
变分法简介
姜鲁 5080109215
变分法
变分法是17世纪末开始发展起来的数学分析的一 个分支,它是研究依赖于某些未知函数的积分型 泛函极值的一门科学。简言之,求泛函极值的方 法称为变分法。求泛函极值3年发表了变分法的首篇论文《论极 大极小的某些问题》。欧拉于1744年发表的著作 《寻求具有某种极大或极小性质的曲线的技巧》 标志着变分法这门科学的诞生。变分法一词由拉 格朗日于1755年8月给欧拉的一封信中首次提出, 他当时称为变分方法(the method of variation), 而欧拉则在1756年的一篇论文中提出了变分法 (the calculus of variation)一词。变分法这门学科 的命名由此而来。
变分
对于任意x∈[x0,x1],可取函数y(x)与另一可取函 数y0(x)之差y(x)-y0(x)称为函数y(x)在y0(x)处的变 分或函数的变分,记作δy。
泛函的宗量y(x)与另一宗量y0(x)之差y(x)-y0(x)称 为宗量y(x)在y0(x)处的变分。
变分与微分的区别
变分原理
定理
若泛函J[y(x)]在y=y(x)上达到极值,则它在y=y(x) 上的变分δJ等于零。
最速降线问题的解
由欧拉方程首次积分
经过代换、简化、积分,并带入边界条件,得:
变分法的原理和应用
变分法的原理和应用1. 变分法的原理简述变分法是数学分析中一种重要的方法,它主要用于求解泛函极值问题。
泛函是一类函数,其自变量是函数而非常数或向量。
变分法将泛函问题转化为一个变分问题,通过寻找泛函对应的变分函数,使得泛函在该函数上取得极值。
变分法的原理基于变分运算和极值原理。
变分运算是对函数进行微小变化的一种数学操作,以求出极值条件。
极值原理是基于变分运算,通过变分函数使得泛函在该函数上取得极值。
2. 变分法的应用领域变分法具有广泛的应用领域,主要包括:2.1 物理学中的应用变分法在物理学中有许多应用,尤其在研究物理系统的最小作用量原理中起到重要作用。
例如,光的传播可以通过费马原理来描述,通过对路径进行变分运算求得光线的轨迹。
变分法还可以用于研究量子力学中的马克思方程和薛定谔方程,以及经典力学中的拉格朗日方程和哈密顿方程。
2.2 工程学中的应用在工程学中,变分法广泛应用于结构力学、流体力学、热传导等领域。
例如,在结构力学中,变分法可以用于计算结构的位移和应力分布,以及优化设计。
在流体力学中,变分法可以用于求解流体的速度和压力分布,以及优化流体系统的设计。
在热传导中,变分法可以用于求解热传导方程的稳态和非稳态解。
2.3 经济学中的应用变分法在经济学中的应用也比较广泛,主要用于优化问题的求解。
经济学中的很多问题可以转化为泛函极值问题,例如最大化效用函数、最小化成本函数等。
变分法可以通过求解泛函的极值,得到经济系统的最优决策。
2.4 其他领域的应用除了物理学、工程学和经济学外,变分法还在其他领域得到了广泛应用。
例如,在计算机图形学中,变分法可以用于图像变形和图像分割等问题的求解。
在机器学习中,变分法可以用于求解概率图模型的参数估计。
在数学建模中,变分法可以用于求解偏微分方程的边界值问题。
3. 变分法的基本步骤变分法的求解过程通常包括以下几个步骤:3.1 高斯法首先,利用高斯法将泛函问题转化为极值问题。
(完整版)变分法简介(简单明了易懂)
§1 变分法简介作为数学的一个分支,变分法的诞生,是现实世界许多现象不断探索的结果,人们可以追寻到这样一个轨迹:约翰·伯努利(Johann Bernoulli ,1667-1748)1696年向全欧洲数学家挑战,提出一个难题:“设在垂直平面内有任意两点,一个质点受地心引力的作用,自较高点下滑至较低点,不计摩擦,问沿着什么曲线下滑,时间最短?”这就是著名的“最速降线”问题(The Brachistochrone Problem )。
它的难处在于和普通的极大极小值求法不同,它是要求出一个未知函数(曲线),来满足所给的条件。
这问题的新颖和别出心裁引起了很大兴趣,罗比塔(Guillaume Francois Antonie de l'Hospital 1661-1704)、雅可比·伯努利(Jacob Bernoulli 1654-1705)、莱布尼茨(Gottfried Wilhelm Leibniz,1646-1716)和牛顿(Isaac Newton1642—1727)都得到了解答。
约翰的解法比较漂亮,而雅可布的解法虽然麻烦与费劲,却更为一般化。
后来欧拉(Euler Lonhard ,1707~1783)和拉格朗日(Lagrange, Joseph Louis ,1736-1813)发明了这一类问题的普遍解法,从而确立了数学的一个新分支——变分学。
有趣的是,在1690年约翰·伯努利的哥哥雅可比·伯努利曾提出著名的悬链线问题 (The Hanging Chain Problem)向数学界征求答案,即,固定项链的两端,在重力场中让它自然垂下,问项链的曲线方程是什么。
在大自然中,除了悬垂的项链外,我們还可以观察到吊桥上方的悬垂钢索,挂着水珠的蜘蛛网,以及两根电线杆之间所架设的电线,这些都是悬链线(catenary )。
伽利略(Galileo, 1564~1643)比贝努利更早注意到悬链线,他猜测悬链线是抛物线,从外表看的确象,但实际上不是。
变分法
变分法综述1.变分法1.1.变分法起源变分法是17世纪末发展起来的一门数学分支,主要是古典变分法,它理论完整,在力学、光学、物理学、摩擦学、经济学、宇航理论、信息论和自动控制论等诸多方面有广泛应用。
20世纪中叶发展起来的有限元法,其数学基础之一就是变分法。
[1]变分法是处理泛函的数学领域,和处理函数的普通微积分相对。
譬如,这样的泛函可以通过未知函数的积分和它的导数来构造。
变分法最终寻求的是极值函数:它们使得泛函取得极大或极小值。
有些曲线上的经典问题采用这种形式表达:一个例子是最速降线,在重力作用下一个粒子沿着该路径可以在最短时间从点A 到达不直接在它底下的一点B 。
在所有从A 到B 的曲线中必须极小化代表下降时间的表达式。
变分法的关键定理是欧拉-拉格朗日方程。
它对应于泛函的临界点。
在寻找函数的极大和极小值时,在一个解附近的微小变化的分析给出一阶的一个近似。
它不能分辨是找到了最大值或者最小值(或者都不是)。
变分法在理论物理中非常重要:在拉格朗日力学中,以及在最小作用量原理在量子力学的应用中。
变分法提供了有限元方法的数学基础,它是求解边界值问题的强力工具。
它们也在材料学中研究材料平衡中大量使用。
而在纯数学中的例子有,黎曼在调和函数中使用狄力克雷原理。
最优控制的理论是变分法的一个推广。
[2]同样的材料可以出现在不同的标题中,例如希尔伯特空间技术,摩尔斯理论,或者辛几何。
变分一词用于所有极值泛函问题。
微分几何中的测地线的研究是很显然的变分性质的领域。
极小曲面(肥皂泡)上也有很多研究工作,称为Plateau 问题。
1.2变分问题类型固定边界的变分问题,可动边界的变分问题,条件极值变分问题和参数形式的变分问题。
[3](1)古典变分问题举例 例1:最速降线或捷线问题(Brachistorone or curve of Steepest descent )问题。
这是历史上出的第一个变分法问题,1696年约翰·伯努利提出的。
MATLAB中的变分法及其应用
MATLAB中的变分法及其应用MATLAB 中的变分法及其应用一、引言MATLAB 是一种强大的数学软件,广泛应用于科学计算、工程建模、数据分析等领域。
在数学建模与优化的研究中,变分法是一种重要的数学工具,可以用来求解函数的极值问题。
本文将介绍MATLAB中的变分法及其应用。
二、变分法简介1. 变分法概述变分法是一种通过寻找函数的变分来求解函数极值的方法。
变分法的核心思想是对待求函数进行微小变化,并通过极值条件来确定最优解。
变分法常用于求解泛函的极值问题,广泛应用于物理学、工程学等学科。
2. 变分法基本原理变分法的基本原理是要寻找一个满足边界条件的函数,使得满足给定函数间关系的泛函取得极值。
通过调整边界条件或给定函数的变分,可以得到满足极值条件的函数。
三、MATLAB中的变分法求解1. 函数变分MATLAB 中可以使用符号计算工具箱进行函数的变分计算。
首先,使用sym 函数定义待求函数及其变量。
然后,使用diff函数计算函数的变分。
最后,将计算结果代入极值条件方程,求解得到最优解。
2. 泛函极值问题的求解MATLAB 中可以通过构建泛函函数,并使用函数极值求解工具箱进行泛函的极值求解。
首先,使用sym函数定义待求泛函及其变量。
然后,使用dsolve函数求解泛函的极值条件方程。
最后,将得到的方程代入求解函数,求得极值解。
四、变分法的应用举例1. 力学问题变分法在力学问题中有着广泛的应用。
例如,在弹性力学中,可以通过变分法求解弹性体的位移场和应力场分布问题。
通过应变能泛函的极值条件,可以得到弹性体的运动方程和边界条件。
2. 电磁学问题在电磁学问题中,变分法可以用来求解电场和磁场的分布问题。
例如,在电磁场的边值问题中,可以通过最小作用量原理和变分法求解电场和磁场的波动方程和边界条件。
3. 流体力学问题在流体力学中,变分法可以用来求解流体的运动方程和边界条件。
例如,在流体的稳定性分析中,可以通过变分法求解流体的速度场和压力场分布问题。
理论力学7 变分法.
第七章力学中的变分方法本章主要内容§1、Hamilton原理§2、正则变换§3、Hamilton-Jacobi方程§4、从质点组到连续体系§1、Hamilton原理1、变分法2、Hamilton原理的表述3、修正的Hamilton原理真实运动使作用量S 取稳定值。
引入Hamilton 作用量(A ction, I ntegral):这里的q a 对应前面的x a ,L 对应前面的f 。
21[()](,,),(:1,2,,)t t S q t L q q t dt q s a a = 2、Hamilton 原理的表述Hamilton 原理:对理想、完整、广义有势体系,从t 1 ,q 1 (t 1),… ,q s (t 1)到t 2 ,q 1(t 2),…,q s (t 2)此外,还可以进一步推广到不可数的连续标号情形,用来研究电磁场、引力场、量子力学、量子场等等。
(2)理想、完整等条件的普遍应用。
因为最基本的相互作用体系都相当于Nowton力学中的理想、完整体系。
此外,Hamilton原理也可以推广到非理想、非完整体系。
Hamilton原理可以直接推广到无限多个自由度的体系,象经典场和量子场等,也可以看作Feynman路径积分的经典极限。
由此,我们把Hamilton原理作为第一原理,把拉氏方程当作Hamilton原理推论。
并不影响Hamilton原理(4)虽然Landau等人最小作用量原理,但在原理中,只要求真实运动的作用量是稳定值,不一定是最小值。
具体计算表明,通常的非相对论力学问题的真实运动是极小,相对论自由质点运动的作用量的绝对值是极大。
(3)从Hamilton原理理解L 可以任意添加和去掉的附加项:(,'(,,),,)/,()L q q du q t d t t L q q t = 2211(),()'[{}{},[()]],()S q t u q t t S q t t u q t = ∴因此'[()][()]0q S S q t t ==∴由L ’和L 写出的拉氏方程必定同时成立。
变分法的基本思想
变分法的基本思想
变分法是一种非常有用的数学方法,它通常用于构建一个函数的一个变化版本,以期求解某个问题。
它依赖于原函数的变分,通过与原函数的近似度对变分的大小进行比较来优化原函数。
变分法在分析数学中应用非常广泛,它可以用来确定某个未知函数的正确形式,或者用来估计函数的极值。
此外,变分法还可以用来求解特殊的微分方程,特别是非线性非定常的微分方程。
变分法的原理是用一个广义函数来逼近并优化另一个函数的极值,因此,变分
法可以求解那些无法用普通数学方法求解的问题。
在金融领域,变分法可以用来解决最优投资配置问题,在人工智能领域,变分法可以用于求解复杂的逻辑谜题,在认知研究领域,变分法也可以用来探索人类语言和行为背后的隐藏机制等等。
变分法是一种非常具有创新性和强大技术性能的数学工具,也是一种计算复杂
度非常低的方法。
它可以使函数更容易被精确地估算及表示,有更多可利用的交互性强、代价低的技术。
其应用的范围也非常普遍,可以应用于日常生活中的很多娱乐项目中,比如说游戏和大家喜欢的歌曲等,都可以用变分法来创造更精彩的作品。
变分法的基本原理
变分法的基本原理
变分法是一个数学和物理学中的基本原理,用于解决求极值的问题。
它的基本思想是将要求解的函数表示为一个参数化的函数形式,然后根据极值的必要条件,通过对函数进行变分操作,得到一个关于未知参数的方程,进而求解该方程来确定极值。
具体来说,假设我们要求解一个函数f(x),其中x是一个变量,而f(x)是一个依赖于x的函数。
我们将f(x)写成x的函数形式:f(x) = F[x(x)],其中F[x(x)]是一个关于函数x的函数。
现在,
我们希望找到使函数f(x)取得极值的函数x(x),即要找到满足
条件δf(x) = 0的函数x(x)。
在变分法中,我们引入一个待定函数z(x)作为近似解,称为变
分函数。
我们可以写成x(x) = z(x) + εη(x),其中ε是一个无穷
小量,η是一个任意函数。
将近似解代入到δf(x) = 0的表达式中,并保留到一阶无穷小量,得到一个关于η(x)的方程。
然后,我们要求满足边界条件的η(x),以唯一确定满足条件δf(x) = 0
的近似解z(x)。
最后,我们解决这个方程,得到满足条件δf(x) = 0的函数z(x),即原始问题的近似解。
然后,我们可以通过适当的数值计算或者分析来确定z(x)的特征和性质,从而得到原始问题的极值解
或最优解。
总的来说,变分法通过引入一个待定函数作为近似解,将原问题转化为求解方程的问题。
通过对近似解进行变分操作,得到一个关于未知参数的方程,并通过解决这个方程来确定极值解。
这种方法在数学和物理学的许多领域中都有广泛的应用,包括优化问题、微分方程、泛函分析等。
理解变分法-概述说明以及解释
理解变分法-概述说明以及解释1.引言1.1 概述在数学和物理学领域中,变分法是一种重要的数学工具和方法,用于解决极值问题。
变分法通过构建一个泛函,对其中的函数进行变分,来求解函数在给定条件下使得泛函取得极值的问题。
变分法的核心思想是在一个函数空间中寻找函数的极值点,这使得它在科学和工程领域中具有广泛的应用。
在现代物理学中,变分法被广泛应用于解决复杂的动力学问题。
例如,在经典力学中,变分法可以用于推导出作用量原理,从而得到运动方程。
在量子力学中,变分法则可以用于计算量子态的能量最小值,从而研究原子结构和分子动力学。
在工程领域中,变分法也被广泛应用于结构力学、热传导等领域。
通过变分法,工程师可以求解各种复杂的边值问题,优化结构设计,提高工程效率。
总的来说,变分法是一种强大的数学工具,它在解决各种科学和工程问题中都发挥着重要作用。
本文将通过深入探讨变分法的基本原理及其在物理学和工程领域的应用,来帮助读者更好地理解和应用这一方法。
1.2 文章结构文章结构部分将介绍整篇文章的组织架构和内容安排。
首先,我们将从引言部分入手,包括概述、文章结构和目的。
在引言中,我们将简单介绍变分法的概念和背景,以及本文的目的和重要性。
随后,我们将进入正文部分,主要讨论变分法的基本原理、在物理学中的应用以及在工程领域中的应用。
这一部分将详细阐述变分法的基本概念和数学原理,并举例说明在不同领域中如何应用变分法来解决问题以及取得成就。
最后,我们将进行结论部分的总结,强调变分法在各个领域中的重要性和价值,并展望未来变分法的发展方向和应用前景。
通过本文的阐述,读者将对变分法有更深入的理解,并认识到其在科学研究和工程实践中的重要作用。
1.3 目的本文的主要目的是帮助读者更深入地理解变分法的基本原理以及在物理学和工程领域中的应用。
通过对变分法的概念进行解释和举例,我们将阐明其在不同领域中的重要性和实际应用,希望能够帮助读者更好地理解这一重要的数学工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西南交通大学峨眉校区基础部 2009—2012年
泛函的极值
【泛函极值的必要条件】
【定理 1】 使 J [ y] a F ( x, y, y)dx 取得极值的函数 y=y(x)且满足固定边界条件
y(a) y0 , y(b) y1
b
Variational Methods
d F 0 dx y
所以,立即就可以得到它的首次积分:
(1.3)
F 常量C 。 y
【2】泛函中的 F F ( y, y) 不显含 x 可以证明,
F d F d F F d F F F y F y y y y y y dx y dx y dx y y y y
f ( x , y, z ) 0
(2)
由高等数学知识知道,曲线(1)的长度为
L
x1
x0
1 y2 ( x) z2 ( x)dx
(3)
这样,短程线问题可归结为在满足约束条件(2)在,寻求过 A、B 两点的方程(1) ,使得积分(3)取得最小值。
短程线的变分问题称为约束极值问题或条件极值问题。
x x(t ), y y(t ) , (t0 t t1 )
(1)
其中,函数 x(t ), y(t ) 连续可微,且 x(t0 ) x(t1 ) , y(t0 ) y(t1 ) 。再设闭曲线的长度是 L,即
L
t1
0
x2 (t ) y2 (t )dt
(2)
根据格林公式,这条曲线所围成的面积是
1 y 2 y 2 c1 2 gy 2 gy (1 y2 )
令c
1 ,将上式化简,得到 2 gc12
y
y(1 y2 ) c
c c c sin 2 (1 cos 2 ) 2 1 y 2
令 y cot ,则方程化为
又因
dx
dy c sin 2 d c sin cos d c (1 cos 2 )d y cot cot
泛函关系的建立举例
用且初速度为零的质点从 A 点到 B 点沿这条曲线运动时所需时间最短。
Variational Methods
【例 2】 【最速降线或捷线问题】 (历史上的第一个变分法问题,1696 年约翰.伯努利在给雅各布.伯努利的公开信中提
出)设 A、B 是铅直平面上不在同一铅直线上的两点,在所有连接 A、B 的平面曲线中,求出一条曲线,使仅受重力作
的曲线就称为短程线或测地线。
【解】 : 设这条曲线的方程可以写成
y y( x), z z( x) ,( x0 xk x1 )
(1)
式中, y ( x ), z ( x ) 为连续可微函数。因为曲线在曲面 f ( x, y, z ) 0 上,所以 y ( x ), z ( x ) 应该满足约束条件
西南交通大学峨眉校区基础部 2009—2012年
泛函的概念
Variational Methods
本讲涉及的泛函关系
在此我们只限于用积分定义的泛函: 【1】 一元函数 y(x),z(x)
J [ y] F ( x, y, y)dx
x0
x1
(0.1) (0.2) (0.3)
J [ y] F ( x, y, y, y)dx
西南交通大学峨眉校区基础部 2009—2012年
泛函关系的建立举例
变分特性直到 1744 年才由欧拉解决。
【解】 : 设闭曲线的参数方程为
Variational Methods
【例 4】 【等周问题】在平面上给定长度为 L 的所有光滑闭曲线中,求出一条能围成最大面积 的曲线。这就是它命名的由来。早在古希腊时期,人们就知道这条曲线是一个圆周。但它的
的极值曲线 y y ( x ) 应满足必要条件
F d F 0 y dx y
或 (1.2)
Fy Fxy Fyy y Fyy y 0
方程(1)中 F 是 x, y, y 的已知函数并有二阶连续偏导数, (2)称为(1)的欧拉(Euler)—拉格 朗日(Lagrange)方程。
;而如果恒有 ,则称函数 f) (| x ) ; f(x f ( x) |f(( 0 ) 0) xy ) ( x) | 。 f ( x ) 在 x0 点取极大值。 1. | y( x 2. 有时要求
f ( x ) 在点 x0 点取极值(极小或极大)的必要条件是在该点的导数为 0。 y( x ) 称为函数 y ( x ) 的变分。 这里的函数
c 的圆沿 x 轴滚动时圆周上的一点所描出的曲线中的一段。 2
西南交通大学峨眉校区基础部 2009—2012年
泛函的极值
【解】 : 现在来解决开始提出的问题。由熟知的旋转面的面积公式
Variational Methods
mgh mv mg(h y) mv
1 2 2 0 1 2
2
O A(0,0)
x
式中, v0 0 ,g 是重力加速度,故有
h v (3) B ( x , y ) 1 1
v 2 gy
y
mg
设 y y ( x ) 为质点的运动方程,质点沿着该曲线从 A 运动到 B 点。 质点的原点速度可以表示为
O A(0,0)
x
【解】 :现在来建立这个问题的数学模型。如图所示, 取 A 为平面直角坐标系的原点,x 轴置于水平位置, y 轴正向朝下。显然,最速降线应该在这个平面内。 于是 A 点的坐标就是(0,0) 。设 B 点的坐标为 ( x1 , y1 ) 。 取连接 A 和 B 的曲线方程为
y
h v
mg
西南交通大学峨眉校区基础部 2009—2012年
泛函的极值
【泛函极值的必要条件】
泛函
Variational Methods
J [ y] F ( x, y, y)dx
x0
x1
的两种常见的特殊情形。
【1】 泛函中 F F ( x, y) 不显含 y 这时的 Euler-Lagrange 方程就是
x0
x1
J[ y, z] F ( x, y, z, y, z)dx
x0
x1
其中,F 已知,且具有连续的二阶偏导数。 【2】 二元函数 u( x, y) , v ( x, y)
J [u] F ( x, y, u, ux , uy )dxdy
D
(0.4) (0.5)
J [u, v] F ( x, y, u, v, ux , v x , uy , v y )dxdy
D
其中 ux
u u v v , uy , vx ,vy 。 x y x y
西南交通大学峨眉校区基础部 2009—2012年
泛函的极值
Variational Methods
函数的极值概念 所谓 指 当 及 其 附 近 | x x0 | 时 , 恒 有 f (y x 所谓函数 “附近” ,指的是: x0 点 取 极 小 值 , 是 y函 ( x数 ) ()x在 ) 在另一个函数 y( x) x 在 x0 点
可以使用同样的方法定义泛函的极值。
泛函函数的极值概念
考虑如下泛函的极值问题
J [ y] F ( x, y, y)dx
x0
x1
(1.1)
【泛函的极值】 : “当变量函数为 y ( x ) 时, 泛函 J[y]取极小值” 的含义就是: 对于极值函数 y ( x ) 及其“附近”的变量函数 y( x) y( x) ,恒有
x c (2 sin 2 ) c2 2
积分,得
由边界条件 y (0) 0 ,得到 c2 0 。令 t 2 ,则得到捷线问题的解为
c x (t sin t ) 2 y c (1 cos t ) 2
上述方程是摆线 (也称旋轮线) 的参数方程, 其中 c 由边界条件 y( x1 ) y1 来确定。 因此, 捷线是半径为
【例 1】设在 x,y 平面上有一簇曲线 y y( x ) , x [a, b] ,其长度
L ds
C x1
x0
1 y2 dx
显然,y(x)不同,L 也不同,即 L 的数值依赖于整个函数 y(x)而改变。L 和函数 y(x)之间的 这种依赖关系,就称为泛函关系。
西南交通大学峨眉校区基础部 2009—2012年
泛函的概念
Variational Methods
函数概念 泛函的概念
【函数】所谓函数,是指给定自变量 x(定义在某个区间内)的任一数值,就有一个 y 与之 对应。y 称为 x 的函数,记为 y=f(x)。
【泛函】简单地说,泛函就是整个函数为自变量的函数。这个概念,可以看成是函数概念的推广。 【定义】 设对于(某一函数集合内的)任意一个函数 y ( x ) ,有另一个数 J[y]与之对应,则称 J[y]为 y(x)的泛 函。这里的函数集合,即泛函的定义域,通常包含要求 y(x)满足一定的边界条件,并且具有连续的二阶导数。 这样的 y(x)称为可取函数。
vHale Waihona Puke ds dt图最速降线
1 y 2
dx dt
(4)
由式(1) 、 (2)消去 v 并积分,得到质点沿曲线从 A 点滑行到 B 点所需要的时间为
T
x1
1 y2 2 gy
0
dx
(5)
显然, T 是依赖于函数 y y ( x ) 的函数, y y ( x ) 取不同的函数, T 也就有不同的值与之对应。 这样,捷线问题在数学上就归结为在满足条件 (2)的所有函数(1)中,求使得积分(5)取 最小值的函数。