解永久荷载标准值计算如下

解永久荷载标准值计算如下
解永久荷载标准值计算如下

某办公楼楼面采用预应力混凝土七孔板,安全等级定为二级。板长3.3m,计算跨度3.18m,板宽0.9m,板自重2.04KN/m2,后浇混凝土层厚40mm,板底抹灰层厚20mm,可变荷载取15.KN/m2,准永久值系数为0.4。试计算按承载能力极限状态和正常使用状态设计时的截面弯矩设计值。

解:永久荷载标准值计算如下:

自重g1= 2.04 KN/m2

40mm后浇层g2= 25 x 0.04=1 KN/m2

20mm板底抹灰层g3=20 x 0.02=0.4 KN/m2

g=g1+g2+g3=3.44KN/m2

沿板长每沿米均布荷载标准值为:

0.9 x 3.44=3.1 KN/m

可变荷载每沿米标准值为:

0.9 x 1.5=1.35 KN/m

简支板在均布荷载作用下的弯矩为:

M=(1/8)ql2

荷载效应系数为:

(1/8)l2=(1/8)x 3.182=1.26

因只有一种可变荷载,所以

M=γ0(γG C G G K+γQ1C Q1Q1K)

取γ0=1.0,γG=1.2,γQ1=1.4,C G= C Q1=1.26,G K=3.1,Q1K=1.35。

得:

按承载能力极限状态设计时,按可变荷载效应控制的组合弯矩设计值为:

M=1.0 x(1.2 x 1.26 x 3.1+1.4 x 1.26 x 1.35)=7.07KNm

按荷载使用极限状态设计时弯矩设计值

按荷载的标准组合时为:

M=1.26x3.1+1.26x1.35=5.61KNm

按荷载的准永久组合时为:

M=1.26x3.1+0.4x1.26x1.35=4.59KNm

常用荷载取值

1.2 正常使用活荷载标准值(KN/m2): (1)住宅、宿舍取2.0;其走廊、楼梯、门厅取2.0; (2)办公、教室取2.0;其走廊、楼梯、门厅取2.5; (3)食堂、餐厅取2.5;其走廊、楼梯、门厅取2.5; (4)一般阳台取2.5; (6)卫生间取2.0~2.5(按荷载规范);设浴缸、座厕的卫生间取4.0; (7)住宅厨房取2.0,中小型厨房取4.0,大型厨房取8.0(超重设备另行计算); (9)商店、展览厅、娱乐室取3.5;其走廊、楼梯、门厅取3.5; (10)大型餐厅、宴会厅、酒吧、舞厅、健身房、舞台取4.0; (11)礼堂、剧场、影院、有固定坐位的看台、公共洗衣房取3.0; (12)小汽车通道及停车库取4.0;

输入:无覆土的双向板(板跨≥2.7m):板、次梁取28,主梁取20;覆土厚度≥0.5m 的双向板(板跨≥2.7m):板取≤28, 梁参考院部《消防车等效荷载取值 计算表》; (14)书库、档案库取5.0; (15)密集柜书库取12.0; (16)大型宾馆洗衣房取7.5; (17)微机房取3.0;大中型电子计算机房取≥5.0,或按实际; (18)电梯机房、通风机房取7.0;通风机平台取6(≤5号风机)或8(8号风机); (20)水泵房、变配电房、发电机房、银行金库及票据仓库取10.0; (21)管道转换层取4.0; (22)电梯井道下有人到达房间的顶板取5.0。 1.3 屋面活荷载标准值(KN/m2): (1)上人屋面取2.0; (2)不上人屋面取0.5;

强构造措施或按积水深度采用。 (4)地下室顶板施工荷载一般取10.0,塔楼内顶板一般不少于5.0;高低层相邻的屋面,低屋面应考虑施工荷载不少于4.0;其分项系数取1.0。 注:当利用顶板上的覆土层荷重代替施工荷载时,必须在图上注明覆土层须待上部主体结2.4 楼(屋)面附加恒荷载标准值(KN/m2): 例如:板面层附加恒载取值:(公建另定) 根据建筑楼面作法,楼层面层荷载: 1.1 KN/m2 板底: 0.4 KN/m2 合计楼层面层恒载: 1.5 KN/m2 上人屋面及露台(板顶+板底): 2.5 KN/m2 (平屋面建筑找坡距离较大时,应核算找坡附加荷载,该情况在公建比较常见) 屋面起坡30°时 q 恒放大1.15 屋面起坡40°时 q 恒放大1.31 屋面起坡45°时 q 恒放大1.41

钢筋强度的标准值和设计值的概念有何区别

钢筋强度的标准值和设计值 钢筋的强度标准值应具有不小于95%的保证率是什么意思 为了结构或构件安全需要满足一定的强度保证率,原材料的强度不可能都是同一的强度,有的可能高点,有的低点,假设设计值是210兆帕的话,在100根钢筋里面,有95跟强度在210之上,只有5根低于210,这就是满足95%保证率的要求。你想想如果这100跟里面只有一半的钢筋达到了210,这批钢材你敢用吗如果要求100%肯定又不太现实成本太大。像其他的混凝土之类的所有材料都是需要满足一定的强度保证率的 受拉钢筋设计时是按屈服强度设计都是以屈服强度为标准定的,屈服强度不分受拉和受压,屈服强度都是一样比如Q235的钢筋,设计值就是235,标准值就是210,Q335的钢筋,设计值是335,标准值就是30标准值主要是计算承载力的,设计值是用来验算结构或构件的挠度和裂缝宽度的。。。 荷载和材料强度的标准值是通过试验取得统计数据后,根据其概率分布,并结合工程经验,取其中的某一分位值(不一定是最大值)确定的。 设计值是在标准值的基础上乘以一个分项系数确定的(在国标《建筑结构可靠度设计统一标准》GB50068-2001中有说明)。 如荷载的设计值等于荷载的标准值乘荷载分项系数。这在荷载规范中已有明确规定,永久荷载的分项系数为或;可变荷载为或; 材料强度的设计值等于材料强度的标准值乘材料强度的分项系数。在现行各结构设计规范中虽没有给出材料强度的分项系数,而是直接给出了材料强度的设计值,但你如果仔细研究是不难发现标准值和设计值之间的系数关系的。材料强度的分项系数一般都小于1。 各种分项系数在某种意义上可以理解为是一种安全系数。 “为什么在承载能力极限状态设计时材料强度与荷载要取用设计值而在进行正常使用极限状态计算时材料强度与荷载要取用标准值”这个问题可以这样简单地理解: 现行建筑结构设计规范编制所遵循遵的原则是:“技术先进、经济合理、安全适用、确保质量”。在承载能力极限状态设计时材料强度与荷载要取用设计值,其安全系数大些,确保了安全;而在进行正常使用极限状态计算时材料强度与荷载要取用标准值,其安全系数虽然小些,但对使用要求也是能够满足的,它更可以体现经济合理。 以上只是个人的一些理解,仅供参考吧。如果你想对这个问题做进一步深入的探讨,建议你看一下《建筑结构可靠度设计统一标准》GB50068-2001和《建筑结构荷载规范》GB50009-2001这两个规范及它们的条文说明。 钢2

活荷载取值完整

3.1.2 活荷载 活荷载:又称可变荷载,在结构使用期间内,荷载的大小随时间的推移而变化、或其变化与其平均值相比较不可以忽略。如楼面活荷载、屋面活荷载、积灰荷载、吊车荷载、雪荷载、风荷载、安装检修荷载等。 3.1.2.1 楼面活荷载 (1)民用建筑楼面活荷载取值 ①楼面活荷载取值 楼面活荷载取值与建筑物房间的使用性质、使用功能有关,按照《荷载规范》4.1.1查用,表3.1.5为常用房间楼面活荷载数值参考表。 表3.1.5 常用建筑楼面活荷载标准值(kN/m2)及其组合值、频遇值和准永久值系数 续表3.1.5

②楼面梁设计时活荷载的折减系数 《荷载规范》4.1.2明确,在设计楼面梁时,表3.1.5中的楼面活荷载在下列情况下应乘以规定的折减系数: 第1项中第①项:当楼面梁从属面积超过25m2时,折减系数为0.9; 第1项中第②项~第7项:当楼面梁从属面积超过50m2时,折减系数为0.9; 第8项,对单向板楼盖的次梁和槽型板的纵肋,折减系数为0.8;对单向板楼盖的主梁,折减系数为0.8;对双向板楼盖的梁,折减系数为0.8; 第9项~第12项:采用与所属房屋类别相同的折减系数。 注:楼面梁从属面积,为梁两侧各延伸二分之一梁间距范围内的实际面积。 ③墙、柱及基础设计时活荷载的折减系数 《荷载规范》4.1.2明确,在设计墙、柱及基础时,表3.1.5中的楼面活荷载在下列情况下应乘以规定的折减系数: 第1项中第①项:按照表3.1.6规定采用; 第1项中第②项~第7项:采用与其楼面梁相同的折减系数; 第8项,对单向板楼盖:折减系数为0.5;对双向板楼盖和无梁楼盖,折减系数为0.8; 第9项~第12项:采用与所属房屋类别相同的折减系数。 表3.1.6 活荷载按楼层的折减系数

9、2.6风荷载标准值计算

2.6风荷载标准值计算 作用在屋面梁和楼面梁节点处的集中风荷载标准值: 为了简化计算起见,通常将计算单元范围内外墙面的分布风荷载,化为等量的作用于楼面集中风荷载,计算公式如下: 0)(/2k z z i j W w h h B βμ=+ 式中: 基本风压200.5/kN m w =;结构基本周期1(0.06~0.09)0.24~0.36n s s T ==,取 10.30.25s s T =>考虑风振影响。作用在屋面梁和楼面梁节点处的集中风荷载标准值 为:w=βz ·μs ·μz ·ωo ,对于矩形平面μs =1.3;μz 可査荷载规范底层柱高取h=4.3+0.45=4.75m 。计算过程如下表中所示W k =β z μ s μz 0ω. 。0ωT 12 =0.5 ×0.32 =0.045, 由于地面粗糙度为C 类,0ωT 12 应乘以0.62,得0.0279查表ξ=1.15 ;H/B=16.45 /82.5=0.20 查表V=0.40。 (1)各楼层位置处的zi β值计算结果zi β=1+ξVZ/H z μ 表2.6-1 (2)各楼层位置处的风荷载标准值Fi= Ai zi βμs z μωo 表2.6-2

水平风荷载作用下框架内力分析 1) 柱端弯矩 如图2.6-2 h y V M )(1上-= 图2.6-2柱端弯矩计算图 2)梁端弯矩:根据结点平衡求出 对于边柱如图2.6-3 下上i i i M M M += 3)对于中柱如图:2.4-3 Vyh M =下

按两端线刚度分配 右左左 下上左) (i i i M M M i i i ++= 图2.6-3 梁端弯矩计算 4)水平荷载引起的梁端剪力、柱轴力 如图2.6-4所示: 梁端剪力: l M M V i i 右 左+= 柱轴力:边柱 ∑==N i R R V N 1 中柱 ∑=-=N i R R R V V N )(21 图2.6-4 梁端剪力计算 1/1轴框架各柱的杆端弯矩、梁端弯矩计算过程见下表2.6-3表2.6-4 表2.6-3 表2.6-4 梁端弯矩剪力 右 左右 下上右) (i i i M M M i i i ++=

常用活荷载取值参考

地下室小型汽车停车库:4KN/㎡ 地下室顶板施工活荷载:10KN/㎡(未计覆土) 消防车折标等效均布荷载标准值:20KN/㎡ 屋面花园:3KN/㎡ 上人屋面:2KN/㎡ 裙房层面施工活荷载:4KN/㎡ 电梯机房:7KN/㎡ 空调机房:8N/㎡ 发电机房、变配电房:10N/㎡ 住宅:厅、厨房、卫生间、幼儿园:2KN/㎡;阳台:2.5KN/㎡ 会所:3.5N/㎡ 活荷载如何选取: 1,活动的人较少, 2.0 2,活动的人较多且有设备, 2.5 3,活动的人很多且有较重设备, 3.0 4,活动的人很集中,有时很挤或有较重设备, 3.5 5,活动的性质很剧烈, 4.0 6,储存物品的仓库, 5.0 7,有大型的机械设备, 6.0-7.5 普通瓷砖楼面:80厚4kn/m2 90厚4.2kn/m2 100厚4.5kn/m2 120厚 5.05kn/m2 地暖楼面:80厚4.8kn/m2 90厚5.1kn/m2 100厚5.1kn/m2 120厚5.8kn/m2 工业建筑楼面,操作荷载对板面一般取2.0KN/M2 对堆料较多的车间,取2.5KN/M2 如果在某个时期有成品,半成品堆放的特别严重时,取4.0KN/M2 会所一般房间取2.5,活动的人较多的房间取3.0比较合适。 还有比较特殊的建筑如医院的医技楼和住院楼,设备的种类多,这类房间的活荷载取值就需要按等效换算来确定。 公共卫生间8。0 住宅有120隔墙的我取3.0 楼面活荷载:(KN/M2) 设不冲按摩式浴缺的卫生间 4 有分隔的蹲而公共卫生间(包括填料、隔墙) 8或按实际 阶梯教室 3 微机电子计算机房 3 大中型电子计算机房 >5或按实际 银行金库及标据仓库 10 制冷机房 8 水泵房 10 变配电房 10

扣件式钢管脚手架风荷载标准值计算

扣件式钢管脚手架风荷载标准值计算 在编制扣件式钢管脚手架安全施工组织设计时,作用于脚手架的水平风荷载,往往是计算的难点之一。我们依据《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)(以下简称《脚手架规范》)和国家现行《建筑结构荷载规范》(GBJ9-87)(以下简称《荷载规范》)的有关规定,对风荷载的计算参数进行分析,找出规律性的内涵,以便准确地计算,确保施工安全。 脚手架规范第4.2.3条规定:作用于脚手架的水平风荷载标准值,应按下式计算: ωk=0.7μzμsω0 式中ωk——风荷载标准值(kN/m2) μz——风压高度变化系数; μs——脚手架风荷载体型系数 ·ω0——基本风压(kN/m2)。 计算风荷载标准值除修正系数外,还有三个参数,现分析归纳如下: 一、基本风压ω0及修正系数 基本风压ω0应按荷载规范“全国基本风压分布图”的规定采用。 荷载规范规定:风荷载标准值ωk=βzμzμsω0,即风荷载标准值中还应乘以风振系数βz,以考虑风压脉动对高层建筑结构的影响。脚手架规范编制时,考虑到脚手架附着在主体结构上,故取βz=1。

荷载规范规定的基本风压是根据重现期为30年确定的,而脚手架使用期较短,遇到强劲风的概率相对要小得多,基本风压ω0乘以0.7修正系数是参考英国脚手架标准计算确定的。 二、风压高度变化系数μz 荷载规范规定:风压高度变化系数,应根据地面粗糙度类别按《荷载规范》采用。 地面粗糙度可分为A、B、C三类 A类指近海海面、海岛、海岸、湖岸及沙漠地区; B类指田野、乡村、丛林、丘陵及房屋比较烯疏的中、小城镇和大城市郊区 C类指有密集建筑群的在城市市区。 选用风压高度变化系数,应注意以下两种情况: 1.立杆稳定计算,应取离地面5m高度计算风压高度变化系数。经计算,风荷载虽然在脚手架顶部最大,但此处脚手架结构所产生的轴压力很小,综合计算值最小;5m高度处组合风荷载产生计算值虽较小,但脚手架自重产生的轴压力接近最大,综合计算值最大。根据以上分析,立杆稳定性计算部位为底部。 2.连墙件计算,应取脚手架上部计算风压高度变化系数。连墙件的轴向力设计值与风压高度变化系数成正比函数关系,即架体升高,风压高度变化系数增大,连墙作轴向力设计值随之增大,架体顶部达到最大。连墙件稳定承载力及扣件抗滑承载力验算,应取连墙件最大轴向力设计值。 三、风荷载体型系数μs 风荷载体型系数按《脚手架规范》4.2.4规定计算。

常用荷载取值

1.1 风荷载: 1.2 正常使用活荷载标准值(KN/m2): (1)住宅、宿舍取2.0;其走廊、楼梯、门厅取2.0; (2)办公、教室取2.0;其走廊、楼梯、门厅取2.5; (3)食堂、餐厅取2.5;其走廊、楼梯、门厅取2.5; (4)一般阳台取2.5; (5)人流可能密集的走廊/楼梯/门厅/阳台、高层住宅群间连廊/平台取3.5; (6)卫生间取2.0~2.5(按荷载规范);设浴缸、座厕的卫生间取4.0; (7)住宅厨房取2.0,中小型厨房取4.0,大型厨房取8.0(超重设备另行计算); (8)多功能厅、阶梯教室有固定坐位取3.0;无固定坐位取3.5; (9)商店、展览厅、娱乐室取3.5;其走廊、楼梯、门厅取3.5; (10)大型餐厅、宴会厅、酒吧、舞厅、健身房、舞台取4.0; (11)礼堂、剧场、影院、有固定坐位的看台、公共洗衣房取3.0; (12)小汽车通道及停车库取4.0; (13)消防车通道:单向板取35.0;双向板楼盖、无梁楼盖取20.0; 注:消防车超过300KN时,应按结构等效原则,换算为等效均布荷载。结构荷载 输入:无覆土的双向板(板跨≥2.7m):板、次梁取28,主梁取20;覆土厚度≥0.5m 的双向板(板跨≥2.7m):板取≤28, 梁参考院部《消防车等效荷载取值 计算表》; (14)书库、档案库取5.0; (15)密集柜书库取12.0; (16)大型宾馆洗衣房取7.5; (17)微机房取3.0;大中型电子计算机房取≥5.0,或按实际; (18)电梯机房、通风机房取7.0;通风机平台取6(≤5号风机)或8(8号风机); (19)制冷机房、宾馆储藏室、布草间、公共卫生间(包括填料隔墙)取8.0; (20)水泵房、变配电房、发电机房、银行金库及票据仓库取10.0; (21)管道转换层取4.0; (22)电梯井道下有人到达房间的顶板取5.0。 1.3 屋面活荷载标准值(KN/m2): (1)上人屋面取2.0; (2)不上人屋面取0.5; (3)屋顶花园取3.0(不包括花圃土石材料); 注:施工或维修荷载较大时,屋面活荷载应按实际情况采用;因排水不畅、堵塞等,应加强构造措施或按积水深度采用。 (4)地下室顶板施工荷载一般取10.0,塔楼内顶板一般不少于5.0;高低层相邻的屋面,低屋面应考虑施工荷载不少于4.0;其分项系数取1.0。 注:当利用顶板上的覆土层荷重代替施工荷载时,必须在图上注明覆土层须待上部主体结2.4 楼(屋)面附加恒荷载标准值(KN/m2): (1)楼面:一般楼地面视楼地面做法而定,建筑另有要求或有回填层时按实际计算确定; 例如:板面层附加恒载取值:(公建另定) 根据建筑楼面作法,楼层面层荷载: 1.1 KN/m2 板底: 0.4 KN/m2 合计楼层面层恒载: 1.5 KN/m2 上人屋面及露台(板顶+板底): 2.5 KN/m2

荷载设计值标准值区别

荷载设计值标准值区别 荷载代表值:设计中用以验算极限状态所用的荷载量值,例如标准值、组合值、频遇值、准永久值。 组合值:对可变荷载,使组合后的荷载效应在设计基准期内的超越概率,能与该荷载单独出现时的相应概率趋于一致的荷载值。 频遇值:对可变荷载,在设计基准期内,其超越的总时间为规定的较小比率或超越频率为规定频率的荷载值。 准永久值:对可变荷载,在设计基准期内,其超越的总时间约为设计基准期一半的荷载值。 设计值:荷载代表值与荷载分项系数的乘积。 标准值:荷载的基本代表值,为设计基准期内最大荷载统计分布的特征值(例如均值、众值、中值、或某个分位值)。此概念在建筑地基规范、桩基规范、砼设计规范中经常出现,且以前的国家和地方规范使用中有点混乱,好多人都分不清设计值和标准值的具体使用方法,往往根据自己的意愿取用。我们知道任何荷载都有不同程度的变异性,但在设计中,不可能直接引用反映荷载变异性的各种统计参数,通过复杂的概率运算进行具体的设计,因此在设计时除了采用能便于设计者使用的设计表达式外,对荷载仍应赋予一个规定的量值,即荷载代表值,荷载可根据不同的设计要求规定不同的代表值,以使之能更确切地反映它在设计中的特点。荷载规范中给出4种代表值:标准值、组合值、频遇值、准永久值。对永久荷载应该用标准值作为代表值,

对可变荷载应根据设计要求用标准值、组合值、频遇值、准永久值作为代表值。荷载标准值是荷载的基本代表值,其他代表值都可以在标准值的基础上乘以相应的系数后得出。 由于荷载本身的随机性,因而使用期间的最大荷载亦是随机变量,可以用其统计分布来描述,按照《建筑结构可靠度设计统一标准》(GB50068-2001)的规定,标准值由设计基准期内最大荷载概率分布的某个分位值来确定(但未具体规定分位值,此为数理统计概念,可以简单理解为符合正态分布),设计基准期统一为50年。当对荷载有足够的资料而有可能对其统计分布作出合理的估计时,取分位值作为荷载的代表值,原则上可取分布的特征值。目前并非所有的荷载都能取得充分的的资料,根据工程实践协议一个公称值(Nominal value)作为代表值,以上两种方式确定的代表值统称为荷载标准值。 荷载标准值和设计值的关系: 荷载代表值乘以荷载分项系数后的值,称为荷载设计值。 在设计中,只是在按承载力极限状态计算荷载效应组合设计值的公式中引用了荷载分项系数。因此,只有在按承载力极限状态设计时才需要考虑荷载分项系数和设计值。 在按正常使用极限状态设计中,当考虑荷载标准组合时,恒载和活荷载都用标准值;当考虑荷载频遇组合和准永久组合时,恒载用标准值,活荷载用频遇值和准永久值或只用准永久值。 那么荷载代表值和标准值什么关系呢?

活荷载标准值

常使用活荷载标准值(KN/m2): (1)住宅、宿舍取 2.0 ;其走廊、楼梯、门厅取 2.0; (2)办公、教室取 2.0 ;其走廊、楼梯、门厅取 2.5; (3)食堂、餐厅取 2.5 ;其走廊、楼梯、门厅取 2.5; (4)一般阳台取 2.5 ; (5)人流可能密集的走廊/楼梯/门厅/ 阳台、高层住宅群间连廊/ 平台取 3.5 ; (6)卫生间取 2.0~2.5 (按荷载规范);设浴缸、座厕的卫生间取 4.0; (7)住宅厨房取 2.0 ,中小型厨房取 4.0 ,大型厨房取8.0 (超重设备另行计算); (8)多功能厅、阶梯教室有固定坐位取 3.0 ;无固定坐位取 3.5 ; (9)商店、展览厅、娱乐室取 3.5 ;其走廊、楼梯、门厅取 3.5 ; (10)大型餐厅、宴会厅、酒吧、舞厅、健身房、舞台取 4.0 ;(11)礼堂、剧场、影院、有固定坐位的看台、公共洗衣房取 3.0 ; (12)小汽车通道及停车库取 4.0 ; (13)消防车通道:单向板取35.0 ;双向板楼盖、无梁楼盖取20.0;注:消防车超过300KN时,应按结构等效原则,换算为等效均布荷载。结构荷载输入:无覆土的双向板(板跨≥ 2.7m):

板、次梁取28,主梁取20;覆土厚度≥0.5m 的双向板(板跨≥2.7m):板取≤28, 梁参考院部《消防车等效荷载取值计算表》;(14)书库、档案库取 5.0 ; (15)密集柜书库取12.0 ; (16)大型宾馆洗衣房取7.5 ; (17)微机房取 3.0 ;大中型电子计算机房取≥ 5.0 ,或按实际;(18)电梯机房、通风机房取7.0 ;通风机平台取6(≤5 号风机)或8(8 号风机); (19)制冷机房、宾馆储藏室、布草间、公共卫生间(包括填料隔墙)取8.0 ; (20)水泵房、变配电房、发电机房、银行金库及票据仓库取10.0; (21)管道转换层取 4.0 ; (22)电梯井道下有人到达房间的顶板取 5.0 。 屋面活荷载标准值(KN/m2):【荷载规范-4.3.1 强条、技术措施- 荷载篇】 (1)上人屋面取 2.0 ; (2)不上人屋面取0.5 ; (3)屋顶花园取 3.0 (不包括花圃土石材料);注:施工或维修荷载较大时,屋面活荷载应按实际情况采用;因排水不畅、堵塞等,应加强构造措施或按积水深度采用。

风荷载标准值计算方法

按老版本规范风荷载标准值计算方法: 1.1风荷载标准值的计算方法 幕墙属于外围护构件,按建筑结构荷载规范(GB50009-2001 2006年版)计算: w k =β gz μ z μ s1 w ……7.1.1-2[GB50009-2001 2006年版] 上式中: w k :作用在幕墙上的风荷载标准值(MPa); Z:计算点标高:15.6m; β gz :瞬时风压的阵风系数; 根据不同场地类型,按以下公式计算(高度不足5m按5m计算): β gz =K(1+2μ f ) 其中K为地面粗糙度调整系数,μ f 为脉动系数 A类场地:β gz =0.92×(1+2μ f ) 其中:μ f =0.387×(Z/10)-0.12 B类场地:β gz =0.89×(1+2μ f ) 其中:μ f =0.5(Z/10)-0.16 C类场地:β gz =0.85×(1+2μ f ) 其中:μ f =0.734(Z/10)-0.22 D类场地:β gz =0.80×(1+2μ f ) 其中:μ f =1.2248(Z/10)-0.3 对于B类地形,15.6m高度处瞬时风压的阵风系数: β gz =0.89×(1+2×(0.5(Z/10)-0.16))=1.7189 μ z :风压高度变化系数; 根据不同场地类型,按以下公式计算: A类场地:μ z =1.379×(Z/10)0.24 当Z>300m时,取Z=300m,当Z<5m时,取Z=5m; B类场地:μ z =(Z/10)0.32 当Z>350m时,取Z=350m,当Z<10m时,取Z=10m; C类场地:μ z =0.616×(Z/10)0.44 当Z>400m时,取Z=400m,当Z<15m时,取Z=15m; D类场地:μ z =0.318×(Z/10)0.60 当Z>450m时,取Z=450m,当Z<30m时,取Z=30m; 对于B类地形,15.6m高度处风压高度变化系数: μ z =1.000×(Z/10)0.32=1.1529 μ s1 :局部风压体型系数; 按《建筑结构荷载规范》GB50009-2001(2006年版)第7.3.3条:验算围护 构件及其连接的强度时,可按下列规定采用局部风压体型系数μ s1 : 一、外表面 1. 正压区按表7.3.1采用; 2. 负压区 -对墙面,取-1.0 -对墙角边,取-1.8 二、内表面 对封闭式建筑物,按表面风压的正负情况取-0.2或0.2。 本计算点为大面位置。 按JGJ102-2003第5.3.2条文说明:风荷载在建筑物表面分布是不均匀的,在檐口附近、边角部位较大。根据风洞试验结果和国外的有关资料,在上述区域风吸力系数可取-1.8,其余墙面可考虑-1.0,由于围护结构有开启的可能,所以

风荷载标准值

风荷载标准值 关于风荷载计算 风荷载是高层建筑主要侧向荷载之一,结构抗风分析(包括荷载,力,位移,加速度等)是高层建筑设计 计算的重要因素。 脉动风和稳定风 风荷载在建筑物表面是不均匀的,它具有静力作用(长周期哦部分)和动力作用(短周期部分)的双重特 点,静力作用成为稳定风,动力部分就是我们经常接触的脉动风。脉动风的作用就是引起高层建筑的振动 (简称风振)。 以顺风向这一单一角度来分析风载,我们又常常称静力稳定风为平均风,称动力脉动风为阵风。平均风对 结构的作用相当于静力,只要知道平均风的数值,就可以按结构力学的方法来计算构件力。阵风对结构的 作用是动力的,结构在脉动风的作用下将产生风振。 注意:不管在何种风向下,只要是在结构计算风荷载的理论当中,脉动风一定是一种随机荷载,所以分析 脉动风对结构的动力作用,不能采用一般确定性的结构动力分析方法,而应以随机振动理论和概率统计法 为依据。 从风振的性质看顺风向和横风向风力 顺风向风力分为平均风和阵风。平均风相当于静力,不引起振动。阵风相当于动力,引起振动但是引 起的是一种随机振动。也就是说顺风向风力除了静风就是脉动风,根本就没有周期性风力会引起周期性风 振,绝对没有,起码从结构计算风载的理论上顺风向的风力不存在周期性风力。 横风向,既有周期性振动又有随机振动。换句话说就是既有周期性风力又有脉动风。反映在荷载上,它可能是周期性荷载,也可能是随机性荷载,随着雷诺数的大小而定。 有的计算方法 根据现有的研究成果,风对结构作用的计算,分为以下三个不同的方面: (1)对于顺风向的平均风,采用静力计算方法 (2)对于顺风向的脉动风,或横风向脉动风,则应按随机振动理论计算 (3)对于横风向的周期性风力,或引起扭转振动的外扭矩,通常作为稳定性荷载,对结构进行动力计算 风荷载标准值的表达可有两种形式,其一为平均风压加上由脉 动风引起导致结构风振的等效风压;另一种为平均风压乘以风振系数。由于在结构的风振计算中,一般往往是第1振型起主要作

常用荷载统计

三、荷载计算 2.永久荷载标准值取值(kN/㎡) 1)200mm厚楼板一层: 50mm面层 1.0 kN/m2 200厚砼板 5.00kN/m2

板底粉刷 0.50kN/m2 恒载合计 6.50kN/m2 恒载合计 6.50kN/m2 2)180mm厚楼板四层: 20mm 面层 0.4kN/m2 180厚砼板 4.50kN/m2 板底粉刷 0.30kN/m2 恒载合计 5.20kN/m2 3)100mm厚楼板(厨房): 20mm 面层 0.4kN/m2 1.5厚防水涂料 0.02kN/m2 40mm细石混凝土找平层 0.77kN/m2 100厚砼板 2.50kN/m2 板底粉刷 0.30kN/m2 恒载合计 4.00kN/m2 4)100mm厚楼板(卫生间): 10mm 地砖 0.25kN/m2 1.5厚水泥砂浆 0.375kN/m2 40mm细石混凝土找平层 0.77kN/m2 100厚砼板 2.50kN/m2 板底粉刷 0.3kN/m2 恒载合计 4.20kN/m2 5)120mm厚楼板(公共部位): 45mm面层 0.9kN/m2 120厚砼板 3.00kN/m2 板底粉刷 0.30kN/m2 恒载合计 4.2kN/m2

6)100mm厚楼板(卧室、公共部位): 45mm面层 0.9kN/m2 100厚砼板 2.50kN/m2 板底粉刷 0.30kN/m2 恒载合计 3.9kN/m2 7)80mm厚楼板(阳台): 20mm 面层 0.4kN/m2 1.5厚防水涂料 0.02kN/m2 40mm细石混凝土找平层 0.77kN/m2 80厚砼板 2.00kN/m2 板底粉刷 0.30kN/m2 恒载合计 3.50kN/m2 8)屋面(板厚120): 40mm细石混凝土面层 0.80kN/m2 橡胶卷材防水层 0.3kN/m2 保温层 0.3kN/m2 加气砼2%找坡(hmin=20) 0.50kN/m2 防水卷材 0.22kN/m2 2cm找平 0.50kN/m2 120厚砼板 3.00kN/m2 板底粉刷 0.18kN/m2 恒载合计 5.8kN/m2 9)墙体: 200厚加气混凝土砌块(容重6.5kN/m3 )1.98KN/m2(带双面粉刷)180厚加气混凝土砌块(容重6.5kN/m3 )1.85KN/m2(带双面粉刷)100厚加气混凝土砌块(容重6.5kN/m3 )1.33KN/m2(带双面粉刷)

承载力极限值、标准值、特征值与设计值的区别

单桩极限承载力标准值、承载力设计值、特征值单桩承载力设计值:=单桩极限承载力标准值/ 抗力分项系数(一般1.65左右)单桩承载力特征值:=静载试验确定的单桩极限承载力标准值/ 安全系数2 94桩基规范中单桩承载力有两个:单桩极限承载力标准值和单桩承载力设计值。单桩极限承载力标准值由载荷试验(破坏试验)或按94规范估算(端阻、侧阻均取极限承载力标准值),该值除以抗力分项系数(1.65、1.7,不同桩形系数稍有差别)为单桩承载力设计值,确定桩数时荷载取设计值(荷载效应基本组合),荷载设计值一般为荷载标准值(荷载效应标准组合)的1.25倍,这样荷载放大1.25倍,承载力极限值缩小1.65倍,实际上桩安全度还是2(,为了荷载与设计值对应,引入了单桩承载力设计值,在确保桩基安全度不低于2的前提下,规定桩抗力分项系数取1.65左右。所以,单桩承载力设计值是在当时特定情况下(所有规范荷载均取设计值),人为设定的指标,并没有实际意义。 02规范中地基、桩基承载力均为特征值,该值为承载力极限值的1/2(安全度为2),对应荷载标准值。同一桩基设计,分别执行两本规范,结果应该是一样的。 单桩承载力特征值×1.25=单桩承载力设计值; 单桩承载力特征值×2=单桩承载力极限值; 单桩承载力设计值×1.6=单桩承载力极限值。 “单桩承载力设计值”与“单桩承载力特征值”是两个时代的两个单桩承载力指标,没有可比性。犹如关公和秦琼。 当代的工程师忘了“单桩承载力设计值”这个没有意义的概念吧。 承载力特征值 在地基设计里,大多采用特征值,而不是设计值或标准值。实际上,这里的,同时具备了设计值和的含义。地基承载力特征值,指由载荷试验测定的地基土压力变形曲线线性变形内规定的变形所对应的压力值,其最大值为比例界限值。[1]

常见活荷载取值参考

常见活荷载取值参考 Prepared on 24 November 2020

地下室小型汽车停车库:4KN/㎡ 地下室顶板施工活荷载:10KN/㎡(未计覆土) 消防车折标等效均布荷载标准值:20KN/㎡ 屋面花园:3KN/㎡ 上人屋面:2KN/㎡ 裙房层面施工活荷载:4KN/㎡ 电梯机房:7KN/㎡ 空调机房:8N/㎡ 发电机房、变配电房:10N/㎡ 住宅:厅、厨房、卫生间、幼儿园:2KN/㎡;阳台:㎡会所:㎡ 活荷载如何选取: 1,活动的人较少, 2,活动的人较多且有设备, 3,活动的人很多且有较重设备,

4,活动的人很集中,有时很挤或有较重设备, 5,活动的性质很剧烈, 6,储存物品的仓库, 7,有大型的机械设备, 普通瓷砖楼面:80厚4kn/m2 90厚m2 100厚m2 120厚 m2 地暖楼面:80厚m2 90厚m2 100厚m2 120厚m2 工业建筑楼面,操作荷载对板面一般取M2 对堆料较多的车间,取M2 如果在某个时期有成品,半成品堆放的特别严重时,取M2 会所一般房间取,活动的人较多的房间取比较合适。 还有比较特殊的建筑如医院的医技楼和住院楼,设备的种类多,这类房间的活荷载取值就需要按等效换算来确定。 公共卫生间8。0 住宅有120隔墙的我取 楼面活荷载:(KN/M2)设不冲按摩式浴缺的卫生间 4有分隔的蹲而公共卫生间(包括填料、隔墙) 8或按实际阶梯教室 3微机电子计算机房 3大中型电子计算机房 >5或按实际银行金库及标据仓库 10制冷机房 8水泵房 10变配电

房 10发电机房 10管道转换层 4电梯井管下有人到达房间的顶板 >5通风机平台 <5号通风机 68号通风机 8 贵宾休息室 2。0科技教室 3。0多媒体教室 3。0跆拳道练习馆 4。0屋顶溜冰场 4。0器材间 5。0信息服务箢 3。0 书画教室 2。5乒乓球室 3。0琴房 2。5广播室 2。5便利店3。5道具间 3。5多功能厅3。5音乐培训室 2。5耳光室 2。5

风荷载标准值

风荷载标准值 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

风荷载标准值 关于风荷载计算 风荷载是高层建筑主要侧向荷载之一,结构抗风分析(包括荷载,内力,位移,加速度等)是高层建筑设计计算的重要因素。 脉动风和稳定风 风荷载在建筑物表面是不均匀的,它具有静力作用(长周期哦部分)和动力作用(短周期部分)的双重特点,静力作用成为稳定风,动力部分就是我们经常接触的脉动风。脉动风的作用就是引起高层建筑的振动(简称风振)。 以顺风向这一单一角度来分析风载,我们又常常称静力稳定风为平均风,称动力脉动风为阵风。平均风对结构的作用相当于静力,只要知道平均风的数值,就可以按结构力学的方法来计算构件内力。阵风对结构的作用是动力的,结构在脉动风的作用下将产生风振。 注意:不管在何种风向下,只要是在结构计算风荷载的理论当中,脉动风一定是一种随机荷载,所以分析脉动风对结构的动力作用,不能采用一般确定性的结构动力分析方法,而应以随机振动理论和概率统计法为依据。 从风振的性质看顺风向和横风向风力 顺风向风力分为平均风和阵风。平均风相当于静力,不引起振动。阵风相当于动力,引起振动但是引起的是一种随机振动。也就是说顺风向风力除了静风就是脉动风,根本就没有周期性风力会引起周期性风振,绝对没有,起码从结构计算风载的理论上顺风向的风力不存在周期性风力。

横风向,既有周期性振动又有随机振动。换句话说就是既有周期性风力又有脉动风。反映在荷载上,它可能是周期性荷载,也可能是随机性荷载,随着雷诺数的大小而定。 有的计算方法 根据现有的研究成果,风对结构作用的计算,分为以下三个不同的方面: (1)对于顺风向的平均风,采用静力计算方法 (2)对于顺风向的脉动风,或横风向脉动风,则应按随机振动理论计算(3)对于横风向的周期性风力,或引起扭转振动的外扭矩,通常作为稳定性荷 载,对结构进行动力计算 风荷载标准值的表达可有两种形式,其一为平均风压加上由脉动风引起导致结构风振的等效风压;另一种为平均风压乘以风振系数。由于在结构的风振计算中,一般往往是第1振型起主要作用,因而我国与大多数国家相同,采用后一种表达形式,即采用风振系数βz,它综合考虑了结构在风荷载作用下的动力响应,其中包括风速随时间、空间的变异性和结构的阻尼特性等因素。 WK=βzμsμZ W0 W0基本风压 WK 风荷载标准值 βz z高度处的风振系数 μs 风荷载体型系数

最新民用建筑荷载标准值

民用建筑荷载标准值(自重): 住宅办公楼旅馆医院标准值2.0KN/m2 食堂餐厅 2.5KN/m2 礼堂剧场影院3.0KN/m2 商店车站3.5KN/m2 健身房舞厅 4.0KN/m2 书房储藏室 5.0KN/m2 KN是千牛kg是千克。1KN=1000N,1Kg=9.81N。纠正以下kn指节(用于航海). 在物理中牛顿(Newton,符号为N)是力的公制单位。它是以发现经典力学的艾萨克·牛顿(Sir Isaac Newton)命名。 般住宅就用两种级别规格的板就可以了,就是所说的一级板和二级板,一级板就是说可以承受的活荷载是1KN/M2,二级板,可以承受的活荷载是2KN/M2,西南地区已经规定了最小为四级板,即可以承受活荷载是4KN/M2。 商品楼一般是10CM的厚度,200KG/M3的承重设计,280KG/M3的安全系数还是有的,但是实际上可以承重多少就不知道了,至少我们没有听说过谁家来了10多个客人把楼板踩塌的新闻。但是有一点要注意,东西放上去不塌,不代表楼板就可以承受这种重量,长期承受超过楼板负载的重量肯定会导致楼板开裂变形的。 另外每平方米200公斤的承重是平均承重不是一点上的承重能力,不然的话一个50KG 的人单脚站立的话就该把楼板踩踏了,按照我的理解这应该是一个空间内每方米都承受200KG的重量后中心点所能够承受的最大负载。如果有比较沉重的东西,比如说浴缸、大书柜什么的只要靠承重墙摆放还是比较安全的。 PS:以上纯属个人理解,非专业 一般情况下住宅楼板板厚最小取100mm(视楼板跨度大小有可能取更厚,一般楼板板厚是取1/40的楼板跨度)。除阳台,卫生间楼面均布活荷载标准值为250KG/m^2。其他房间的楼面布活活荷载标准值均为200KG/m^2。 活荷载设计值=1.4x活荷载标准值 所指荷载为均布荷载。注意均布二字

标准值、设计值、特征值、强度代表值资料

关于标准值、设计值、特征值 2007-08-25 21:48 一、原因 与钢、混凝土、砌体等材料相比,土属于大变形材料,当荷载增加时,随着地基变形的相应增长,地基承载力也在逐渐加在,很难界定出下一个真正的“极限值”,而根据现有的理论及经验的承载力计算公式,可以得出不同的值。因此,地基极限承载力的确定,实际上没有一个通用的界定标准,也没有一个适用于一切土类的计算公式,主要依赖根据工程经验所定下的界限和相应的安全系数加以调整,考虑一个满足工程的要求的地基承载力值。它不仅与土质、土层埋藏顺序有关,而且与基础底面的形状、大小、埋深、上部结构对变形的适应程度、地下水位的升降、地区经验的差别等等有关,不能作为土的工程特性指标。 另一方面,建筑物的正常使用应满足其功能要求,常常是承载力还有潜力可挖,而变形已达到可超过正常使用的限值,也就是变表控制了承载力。 因此,根据传统习惯,地基设计所用的承载力通常是在保证地基稳定的前提下,使建筑物的变形不超过其允许值的地基承载力,即允诺承载力,其安全系数已包括在内。无论对于天然地基或桩基础的设计,原则均是如此。 随着《建筑结构设计统一标准》(GBJ68-84)施行,要求抗力计算按承载能力极限状态,采用相应于极限值的“标准值”,并将过去的总安全系数一分为二,由荷载分项系数和抗力分项系数分担,这给传统上根据经验积累、采用允许值的地基设计带来了困扰。 《建筑地基基础设计规范》(GBJ7-89)以承力的允许值作为标准值,以深宽修正后的承载力值作为设计值,引起的问题是,抗力的设计值大于标准值,与《建筑可靠度设计统一标准》(GB50068-2001)规定不符,因此本次规范进行了修订。 二、对策 《建筑结构可靠度设计统一标准》(GB50068-2001)鉴于地基设计的特殊性,将上一版“应遵守本标准的规定”修改为“宜遵守本标准规定的原则”,并加强了正常使用极限状态的研究。而《建筑结构荷载规范》(GB50009-2001)也完善了正常使用极限状态的表达式,认可了地基设计中承载力计算可采用正常使用极限状态荷载效应标准组合。 “特征值”一词,用以表示按正常使用极限状态计算时采用的地基承载力和单桩承载力的值。 三、应用 用作抗力指标的代表值有标准值和特征值。当确定岩土抗剪强度和岩石单轴抗压强度指标时用标准值;由荷载试验确定承载力时取特征值,载荷试验包括深层、浅层、岩基、单桩、锚杆等,见规范有关附录。 地基承载力特征值fak是由荷载试验直接测定或由其与原位试验相关关系间接确定和由此而累积的经验值。它相于载荷试验时地基土压力-变形曲线上线性变形段内某一规定变形所对应的压力值,其最大值不应超过该压力-变形曲线上的比例界限值。 修正后的地基承载力特征值fa是考虑了影响承载力的各项因素后,最终采用的相应于正常使用极限状态下的设计值的地基允许承载力。 单桩承载力特征值Ra是由载荷试验直接测定或由其与原位试验的相关关系间接推定和由此而累积的经验值。它相应于正常使用极限状态下允许采用单桩承载力

民用建筑荷载标准值

1kg的物体的重力是9.8N 重力是1000牛的物体质量1000/9.8kg≈102.04kg 民用建筑荷载标准值(自重): 住宅办公楼旅馆医院标准值2.0 KN/m2 食堂餐厅2.5 KN/m2 礼堂剧场影院3.0 KN/m2 商店车站3.5 KN/m2 健身房舞厅4.0 KN/m2 书房储藏室5.0 KN/m2 KN是千牛kg是千克。1KN=1000N,1Kg=9.81N。纠正以下kn指节(用于航海). 在物理中牛顿(Newton,符号为N)是力的公制单位。它是以发现经典力学的艾萨克·牛顿(Sir Isaac Newton)命名。 般住宅就用两种级别规格的板就可以了,就是所说的一级板和二级板,一级板就是说可以承受的活荷载是1KN/M2,二级板,可以承受的活荷载是2KN/M2,西南地区已经规定了最小为四级板,即可以承受活荷载是4KN/M2。 商品楼一般是10CM的厚度,200KG/M3的承重设计,280KG/M3的安全系数还是有的,但是实际上可以承重多少就不知道了,至少我们没有听说过谁家来了10多个客人把楼板踩塌的新闻。但是有一点要注意,东西放上去不塌,不代表楼板就可以承受这种重量,长期承受超过楼板负载的重量肯定会导致楼板开裂变形的。 另外每平方米200公斤的承重是平均承重不是一点上的承重能力,不然的话一个50KG 的人单脚站立的话就该把楼板踩踏了,按照我的理解这应该是一个空间内每方米都承受200KG的重量后中心点所能够承受的最大负载。如果有比较沉重的东西,比如说浴缸、大书柜什么的只要靠承重墙摆放还是比较安全的。 PS:以上纯属个人理解,非专业 一般情况下住宅楼板板厚最小取100mm(视楼板跨度大小有可能取更厚,一般楼板板厚是取1/40 的楼板跨度)。除阳台,卫生间楼面均布活荷载标准值为250KG/m^2。其他房间的楼面布活活荷载标准值均为200KG/m^2。

风荷载计算解析

4.2风荷载 当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑所受的风荷载。 4.2.1单位面积上的风荷载标准值 建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以高层建筑结构自振特性、体型、平面尺寸、表面状况等因素 有关。 按下式计算:垂直作用于建筑物表面单位面积上的风荷载标准值式中: Wo 1.基本风压值按当地空旷平坦地面上10米高度处10分钟平均的风速观测数 据,经概率统计得出50年一遇的按公式确定。但不得小 于0.3kN/m2。值确定的风速V0(m/s) 对于特别重要或对风荷载比较敏感的高层建筑,基本风压采用100年重现期的风压值;对风荷载是否敏感主要与高层建筑的自振特性有关,目前还没有实用的标准。一般当房屋高度大于60米时,采用100年一风压。 《建筑结构荷载规范》(GB50009-2001)给出全国各个地方的设计基本风压。 2.风压高度变化系数μz 《荷载规范》把地面粗糙度分为A、B、C、D四类。 A类:指近海海面、海岸、湖岸、海岛及沙漠地区; B类:指田野、乡村、丛林、丘陵及房屋比较稀疏的城镇及城市郊区; C类:指有密集建筑群的城市市区; D类:指有密集建筑群且房屋较高的城市市区; 风荷载高度变化系数μz

地面粗糙类别 D B C A

高度(m) 1.17 1.00 0.74 0.62 5 1.38 1.00 10 0.74 0.62 1.52 1.14 15 0.74 0.62 计算公式 0.24 =1.379(z/10)A类地区1.63 1.25 0.84 0.62 20 0.32 = (z/10)B类地区1.80 30 1.42 1.00 0.62 )0.44 =0.616(z/1040 C1.92 1.56 1.13 0.73 类地区0.6 =0.318(z/10)1.25 2.03 1.67 50 0.84 D类地区0.93 1.35 2.12 60 1.77 1.02 2.20 70 1.86 1.45 1.11 1.95 1.54 2.27 80 1.19 1.62 2.02902.34 1.27 100 2.40 2.091.70 1.61 2.03 2.382.64 150 1.92 200 2.612.30 2.83 2.19 2.802.99 2502.54 2.45 3.12 3002.972.75 2.68 3502.94 3.123.12 2.91 3.123.12 4003.12 3.12 3.123.12 3.12 450 位于山峰和山坡地的高层建筑,其风压高度系数还要进行修正,可查阅《荷载规范》。 3.风载体型系数μs 风荷载体型系数是指建筑物表面实际风压与基本风压的比值,它表示不同体型建筑物表面风力的小。一般取决于建筑建筑物的平面形状等。 确定各个表面的风载体型2-4.2表P57计算主体结构的风荷载效应时风荷载体型系数可按书中 或由风洞试验确定。几种常用结构形式的风载体型系数如下图 注:“+”代表压力;“-”代表拉力。 zβ 4.风振系数z反映了风荷载的动力作用,它取决于建筑物的高宽比、基本自振周期及地面粗糙度风振系数β 基本风压。《荷载规范》规定对于基本自振周期大于0.25s的工程结构,如房屋、屋盖及各种高耸结构,及对于高度大于30m且高宽比大于1.5的高柔房屋,均应考虑风压脉动对结构发生顺风向风振的影响。其z可按下式计算:

相关文档
最新文档