第一册反函数

合集下载

反函数知识点大一

反函数知识点大一

反函数知识点大一反函数是高等数学中的一个重要概念,它与原函数紧密相关,是理解微积分和函数性质的基础。

本文将介绍反函数的定义、性质以及在求导和解方程中的应用。

一、反函数的定义在函数的基本概念中,我们知道函数是一种对应关系,每一个自变量对应一个唯一的因变量。

而反函数则是对这种对应关系进行逆转。

具体而言,对于函数f(x),如果存在一个函数g(y),使得当y=f(x)时,有x=g(y),则称g(y)为f(x)的反函数。

二、反函数的性质1. 原函数与反函数的复合恒等如果f(x)和g(y)是互为反函数的函数对,那么f(g(y))=y和g(f(x))=x对任意y和x成立。

这意味着原函数和反函数的复合等于自变量或因变量本身。

2. 反函数的定义域与值域互换对于函数f(x)及其反函数g(y),f(x)的定义域等于g(y)的值域,而f(x)的值域等于g(y)的定义域。

即对于任意x在f(x)的定义域,都存在唯一的y使得f(x)=y,同样对于任意y在g(y)的定义域,都存在唯一的x使得g(y)=x。

3. 原函数和反函数的图像关于y=x对称如果函数f(x)有反函数g(y),那么f(x)和g(y)的图像关于直线y=x对称,即在平面直角坐标系中,它们的图像通过对称变换重合。

三、反函数的求导对于函数f(x)及其反函数g(y),如果f(x)在某区间内连续且可导,并且f'(x)≠0,则反函数g(y)在对应的区间内也连续且可导,并且有g'(y)=1/f'(x)。

这一性质在求导计算和函数性质分析中非常实用,可以简化问题的求解过程。

四、解方程中的应用反函数在解方程中有广泛的应用。

如果方程f(x)=c有唯一实根,则可通过求f(x)的反函数g(y),将方程转化为y=c,从而得到x=g(c)的解。

这种方法在实际问题中常用于求解复杂方程的根,简化计算步骤,提高求解的准确性。

总结:反函数是数学中的重要概念,与原函数密切相关。

高一数学反函数的概念

高一数学反函数的概念

4.5反函数的概念一、教学内容分析“反函数”是《高中代数》第一册的重要内容.这一节课与函数的基本概念有着紧密的联系,通过对这一节课的学习,既可以让学生接受、理解反函数的概念并学会反函数的求法,又可使学生加深对函数基本概念的理解,还为今后反三角函数的教学做好准备,起到承上启下的重要作用. 二、教学目标设计(1)理解反函数的概念,并能判定一个函数是否存在反函数;(2)掌握求反函数的基本步骤,并能理解原函数和反函数之间的内在联系;(3)通过反函数概念的引入;函数及其反函数图像特征的主动探索,初步学会自主地学习、独立地探究问题;掌握观察、比较、分析、归纳等数学试验研究的方法;体验探索中挫折的艰辛与成功的快乐,激发学习热情.三、教学重点与难点:反函数的概念及求法;反函数的图像特征;反函数定义域的确定. 四、教学流程设计五、教学过程设计 1、设置情境,引出概念引例:在两种温度度量制摄氏度(C)和华氏度(F)相互转化时会发现,有时两人选用相同的数据,如下表,所建立的函数关系和作出的图像完全不同,这是为什么呢?教师点拨:指导学生观察上面两个函数的异同,引出反函数的定义.介绍反函数的记号)(1x fy ;了解)(1x f表示反函数的符号,1f表示对应法则.2、 探索研究,深化概念 ①探求反函数成立的条件.例1(1)2x y (R x )的反函数是 (2)2x y (0 x )的反函数是 (3)2x y (0 x )的反函数是 学生活动:讨论函数反函数成立的条件(理论根据为函数的定义):对值域A 中任意一个y 值,在定义域D 中总有唯一确定的x 值与它对应,即x 与y 必须一一对应. ②探求求反函数的方法.(课本例题) 例2.求下列函数的反函数:(1)24 x y (2)13x y (3))0(12x x y(4))21,(2413x R x x x y[说明]:学生分四组完成,教师巡视,把典型错误及正确解法投影. 学生活动:探求求反函数的方法. (1) 变形:解方程,)(x f y 得)(1y fx ; (2) 互换:互换y x ,的位置,得)(1x fy ;(3)写出定义域:注明反函数的定义域.③观察反函数的图像,探讨互为反函数的两个函数的关系.例3:在同一坐标下,画出例2中的函数及其反函数的图像.(在几何画板中显示)教师点拨:指导学生观察函数及其反函数的图像,结合反函数的定义,探讨函数及其反函数之间的关系.学生活动:探讨互为反函数的两个函数的关系. ①从函数角度看:若函数)(x f y 有反函数)(1x fy ,则)(1x fy 的反函数是)(x f y ,即)(x f y 和)(1x fy 互为反函数.反函数的定义域与值域恰好是原函数的值域与定义域.②从函数图像看:原函数和反函数图像关于x y 对称.③从单调性来看:原函数和反函数均为单调函数,他们具有相同的单调性. 3、例题分析,巩固方法: (1)课本练习4.5 (2)补充练习:1、给出下列几个函数:①)21(12x x y ;②)2(2)1(4x x x y ③)(23R x x y ④)0()2( x x x y 其中不存在反函数的函数序号是 ②、④2、若指数函数)(x f y 的反函数的图像经过点(2,-1),则此指数函数为 ( A )(A ) xy )21( (B )x y 2 (C )xy 3 (D)x y 103、设)1(22)( x x x f ,则)(1x f( D )(A )在(), 上是增函数 (B )在(), 上是减函数 (C )在),0[ 上是减函数 (D)在(]0, 上是增函数4、若函数)(x f 是函数 10222 x x y 的反函数,则)(x f 的图像为 ( B )A B C D5、)21( 22x x x y 反函数是 ( B )(A ))11( 112 x x y (B ))10( 112 x x y (C ))11( 112 x x y(D ))10( 112 x x y6、若)0( a b ax y 有反函数且它的反函数就是b ax y 本身,求b a ,应满足的条件.解:由b ax y ,得b y ax .由0 a ,知ab y a x1. 所以函数b ax y 的反函数为a by a x1. 由于函数b ax y 的反函数aby a x 1就是函数b ax y 本身,即有xxxyyyya a 1,且b ab. 于是,解得1 a ,0 b 或1 a ,b 为任意实数.教师点拨:提出两个问题:①什么样的一次函数,它的反函数正好是它本身?②除了一次函数外,是否还存在其它函数,满足反函数就是它本身?(11),0(x x y k x k y 等) 4、课堂小结①反函数的概念及求法; ②函数及其反函数的关系; 5、作业布置 练习册4.5 A 组 六、教学设计说明1.反函数概念比较抽象,不能简单地从形式上来定义. 在教学时先通过实例根据自变量和应变量的不同,得到两个函数关系式和图像完全不同的函数.在此基础上指出这两个函数互为反函数,这样使学生对反函数有一个初步的认识.2.在此基础上,引出反函数的一般概念,使得较抽象的概念能被学生逐步理解.然后再进一步强调函数),)((A y D x x f y 的反函数存在的条件——“对值域A 中任意一个y 值,在定义域D 中总有唯一确定的x 值与它对应”.3.通过学生对课本例题的练习,发现学生在解题过程中存在的问题.通过对课堂练习的点评,让学生了解并总结出求反函数的步骤. 同时让学生认识到若函数)(x f y 有反函数)(1x fy ,则)(1x fy 的反函数是)(x f y ,即)(x f y 和)(1x fy 互为反函数,并了解反函数的定义域与值域恰好是原函数的值域与定义域.4.通过几何画板在同一坐标下演示课本例题的函数及其反函数的图像,让学生掌握y x ,互换的几何意义,了解原函数和反函数图像关于x y 对称,从而巩固对反函数概念的理解.小学二(2)班班规一、 安全方面1、 每天课间不能追逐打闹。

人教版《数学》第一册教案——4.8.2 反函数的性质

人教版《数学》第一册教案——4.8.2 反函数的性质
新授内容
(1)反函数 的定义域(值域)是直接函数 的值域(定义域).
(2)可以证明: 函数 与其反函数 图象关于直线 对称.
例2 设函数 与函数 的图象关于直线 对称, 求 的解析式.
解: 因为 与函数 的图象关于直线 对称, 所以 是 的反函数.
由 , 得
,
所以 .
15分
练习
P79课后题2
21分
作业
课时教案
课题
4.8.2反函数的性质
课时
1
课型
新授课
教学目的
学习反函数的性质,使80%以上学生能够熟练掌握
重点
反函数的性质
难点反函数的性质来自关键通过教师实例讲解与学生练习相结合来突破难点
教具资料
直尺、模型
学生准备用品
笔、本
教学环节
教学内容
教育教学调控
组织教学
师生问好,查出缺席
1分
复习
反函数的定义及求法
2分
练习册4.8
小结
本节学习了反函数的性质, 要求同学熟练掌握.
1分

高一数学反函数课件(2019年新版)

高一数学反函数课件(2019年新版)

可复也;武安君终辞不肯行 破泗水守薛西 宾客阗门;”楚王曰:“有说乎 逮吴反 周宣王伐鲁 帝喾崩 旱;”曰:“可得闻乎 更命其邑曰当利公主 ”中行说曰:“匈奴明以战攻为事 子共王审立 初置东郡 既饶争时 独错在 执郑之祭仲 屈平疾王听之不聪也 婴以御史大夫受诏将车骑
别追项籍至东城 楚围雍氏 君子以谦退为礼 使彊弩都尉路博德筑居延泽上 子何不去 千岁松根也 助赵灭中山 其维 宣公与郑人会西城 规陂池 帝舜为有虞 臧荼破国 伍子胥奔吴 周幽王无道 不见侵犯 ’魏弃与国而合於秦 蛇分径空 大抵贤圣发愤之所为作也 ”死十馀日 玄王启商 公子
一也 其时不和;博望侯留迟後期 一岁中至太中大夫 且以一璧之故逆彊秦之驩 太史公曰:学者多言无鬼神 礼之中流也 力战 罢无能 荆轲者 文侯曰:“敢问如何 子宣侯立 是以来责 於人之罪无所忘;以安刘氏 其次利道之 齐王与合军高密 邯郸传舍吏子李同说平原君曰:“君不忧
赵亡邪 仁者有乎;好为淫乐长夜之饮 祭月以羊彘特 相中山 乐极则忧 当是之时 即各以其私学议之 使匈奴 楚王欲盟 经营乎其内 在兔丝之下 郑君谨修守御备 楚大臣患之 号为奉春君 卑下宾客 且匈奴畔其主而降汉 ”滕公曰“出就舍 十六年 石父为人佞巧善谀好利 又使重服久临
汉 毋敢夜行 其明年冬 或走或格 及昭公卒 於是太子犯法 谋曰:“重耳在外 然尚书独载尧以来;今反者已有天下之半矣 使人使匈奴 不得其二 固恃大臣诸侯 常山宪王舜 步兵转者踵军数十万 以灭项籍 遂拔赵 王使游孙、伯服请滑 删拾春秋 与时转货赀 王以为不亡乎 其便一也 封
功臣 廉颇一为楚将 汹涌滂晞 齐桓公以兵破蔡 上下驩欣 ”李斯曰:“固也 秦亡 欲因此过为奏请诛错 则是不忠而惑主也 纵爱身 家居数岁 去病死 丞相李斯曰:“五帝不相复 於是叔孙氏先堕郈 王人是议 有世家言 诸侯恣行 何不肉袒为辟阳侯言於帝 知其无能为也 各不终其身 文章

人教版高中数学必修一教案 :1.3反函数

人教版高中数学必修一教案 :1.3反函数

反函数——课堂教学设计一、[教材依据]全日制普通高级中学教科书数学(人教版)第一册(上)第二章《函数》第四节“反函数”第一课时。

二、[教材分析][设计思路]1、体验教学的原则:重视学生的亲身体验与感悟,使学生具有对于知识生成、发展、形成及应用过程的体验和感悟。

本节课力求体现二期课改的思路,以学生发展为本。

整节课的概念、例题与练习都以学生讨论、探究、归纳为主,教师引导为辅。

使学生在形成概念、发展规律、获取知识和理解内化的数学学习过程中,在数学应用和实践的过程中发展数学能力和一般能力,学会数学学习和应用的基本方法,逐步增强学生的研习能力、批判思维能力、自学能力和交流合作能力,培养学生勇于探索的精神。

2、本节教材是在学生初步学习了函数及其性质后,再来接触的一个新概念-----“反函数”。

反函数是函数中的一个重要概念,对这个概念的研究是对函数概念和性质在认识上的深化和提高。

它是从研究两个函数关系的角度产生的函数的,反函数本身也是一个函数。

由于反函数的定义本身比较抽象,难度较大,故在本节教学中从具体实例出发,引导学生从函数的三要素的变化角度,认识反函数的特征,揭示反函数的本质,逐步概括出反函数的定义,进而明确求解反函数问题的步骤。

当然学生在具体求解指定函数的反函数时,可能会遇到反解x时正负的选择问题及求原来函数的值域问题,教学中要预以足够的重视。

为了突破“反函数存在的条件”与“反函数与原函数的相互关系”这一难点,在本节教学中采用由课本上前面的例题(本章第一节“函数”部分给出的3个对应,并且是3个从A到B的函数)来加深对反函数定义的理解,这样便于把抽象的问题直观化。

反函数概念的建立,对研究原函数的性质有着重要作用,对将要学习研究的“指数函数”与“对数函数”等函数之间图象与性质的关系也起着重要作用。

三、[教学目标]1、知识与技能目标:(1)、理解反函数的概念 (2)、会求一些简单函数的反函数。

2、过程与方法目标:通过师生的共同讨论,弄清反函数的概念,探索与原函数的相互关系,会求一些简单函数的反函数。

高一数学反函数的定义PPT课件

高一数学反函数的定义PPT课件
A
例.求下列函数的反函数:
(1)y3x1(xR)(;2)yx31(xR); (3)yx1(x0)(;4)y2x3(xR,且 x1)
x1
解:(1)由 y3x1解得 xy: 1, 3
互换 x,y得 经反函 y数 x1(为 xR): . 3
(2) 由 yx31解得 x3: y1,
互换 x,y得反函数 y3为 x1: (xR).
反函数(第一课时)
函数的定义
如果在某个变化过程中有两个变量X和Y,并且 对于X在某个范围内的每一个确定的值,按照某个对 应法则,Y都有唯一确定的值和它对应,那么Y就是X的
函数,X就叫做自变量,X的取值范围称为函数的定义 域,和X的值对应的Y的值叫做函数值,函数值的集合 叫做函数的值域。
记为: y=f(x)
(3) 由 y x1解得 x(: y1)2,
互换 x,y得反函数y为 (x: 1)2(x 1).
(4) 由 y2x3解得 x: y3,
x1
y2
互换 x,y得反函数 y为 x3:(xR,且 x2). x2
课堂练习:
P. 61----62. Ex.1 ---- 4. P. 65 习题六 2.(口答)
同样,在(2)中,也把新函数 xy2 1 称为原函数
yg(x)x1, 的反函数,记为:x g (1 y) y2 1.
改写为: y g 1(x) x2 1(x 0).
反函数的一般定义参见课本P.60第二段。
反函数与原函数的关系:
表达式: 定义域: 值域:
原函数
y=f(x) A C
反函数
y=f –1(x) C
的值和它对应,故x是__y__的函数。
原函数:
表达式: y x1
定义域: [-1,) 值域: [0,+)

第一册反函数

第一册反函数

第一册反函数教学目标1。

使学生了解反函数的概念;2。

使学生会求一些简单函数的反函数;3。

培养学生用辩证的观点观察、分析解决问题的能力。

教学重点1。

反函数的概念;2。

反函数的求法。

教学难点反函数的概念。

教学方法师生共同讨论教具装备幻灯片2张第一张:反函数的定义、记法、习惯记法。

(记作A);第二张:本课时作业中的预习内容及提纲。

教学过程(I)讲授新课(检查预习情况)师:这节课我们来学习反函数(板书课题)§2。

4。

1 反函数的概念。

同学们已经进行了预习,对反函数的概念有了初步的了解,谁来复述一下反函数的定义、记法、习惯记法?生:(略)(学生回答之后,打出幻灯片A)。

师:反函数的定义着重强调两点:(1)根据y= f(x)中x与y的关系,用y把x表示出来,得到x=φ(y);(2)对于y在c中的任一个值,通过x=φ(y),x 在A中都有惟一的值和它对应。

师:应该注意习惯记法是由记法改写过来的。

师:由反函数的定义,同学们考虑一下,怎样的映射确定的函数才有反函数呢?生:一一映射确定的函数才有反函数。

(学生作答后,教师板书,若学生答不来,教师再予以必要的启示)。

师:在y= f(x)中与y= f -1(y)中的x、y,所表示的量相同。

(前者中的x与后者中的x都属于同一个集合,y也是如此),但地位不同(前者x是自变量,y是函数值;后者y是自变量,x是函数值。

)在y= f(x)中与y= f –1(x)中的x都是自变量,y 都是函数值,即x、y在两式中所处的地位相同,但表示的量不同(前者中的x是后者中的y,前者中的y是后者中的x。

)由此,请同学们谈一下,函数y= f(x)与它的反函数y= f –1(x)两者之间,定义域、值域存在什么关系呢?生:(学生作答,教师板书)函数的定义域,值域分别是它的反函数的值域、定义域。

师:从反函数的概念可知:函数y= f (x)与y= f –1(x)互为反函数。

从反函数的概念我们还可以知道,求函数的反函数的方法步骤为:(1)由y= f (x)解出x= f –1(y),即把x用y表示出;(2)将x= f –1(y)改写成y= f –1(x),即对调x= f –1(y)中的x、y。

人教版高中数学必修第一册反函数4

人教版高中数学必修第一册反函数4

【课题】:ξ2.4 反函数(第一课时)【教材分析】:反函数是研究两个函数的相互关系的一项重要内容,学生掌握了反函数的知识,有助于进一步了解函数的概念,获得比较系统的函数知识,并为以后学习互为反函数的指数函数与对数函数以及三角函数与反三角函数奠定了基础.某函数的反函数,本身也是一个函数(从映射的角度可知,函数y=f(x)是定义域集合A到值域C的映射,它的反函数y=f-1(x)是集合C到集合A的映射),反函数的概念的建立,对研究原函数的性质有着重要作用。

【教学内容】:本节的主要内容是反函数的概念、求反函数的方法步骤以及原函数与它的反函数定义域和值域之间的关系。

【教学目标】:(1)知识目标:理解反函数的定义,知道函数)fy∈x=的反函数的表示方法;会)((Ax求某些简单函数的反函数。

(2)能力目标:通过本节课的教学,加强培养学生的数学思想,借助比较原函数与反函数之间的关系,从中渗透“对比”、“由特殊到一般”、“化归”等数学思想。

(3)情感目标:提高学生用辩证的观点分析解决问题的意识。

【重点难点】:本节的教学重点是反函数的概念的形;教学难点是掌握反函数的求法.课本上给出的反函数的定义比较长,也比较抽象,学生阅读理解起来会感到有困难,因此重点自然应放在概念的理解上,而且概念中的描述实际上就是求反函数的过程,使得求反函数问题也有法可依,可以帮助学生体会求反函数步骤的合理性.求反函数虽有明确的步骤,主要是解一个方程和求一个值域,但解的方程的类型各不相同,求解时怎样根据条件进行解的取舍,是学生遇到的难题,同时求函数值域也是多数同学感到困难的课题,所以求反函数就成为本节的一个难点.【教学设想】:(1)提出问题,体现老师为主导,学生为主体的原则,整个教学过程为:提出问题→探索→解决问题→比较→得出结论.(2)教法上以引导式为主,启发式教学为辅,在教学中启发、诱导贯穿于始终。

【教学用具】:投影仪、多媒体计算机等.【教学过程】:123xAÅÅÅ结论:着必然的联系:①它们的对应法则是互逆的;② 它们的定义域和值域相反:定义域,而前者的定义域是后者的值域我们称这样的每一对函数为“互为反函数”2¡±¡´ËÅ【解题小结】112í±3¡2ìËòË解:令又ÅÅ。

高一数学反函数的概念

高一数学反函数的概念

4.5反函数的概念一、教学内容分析“反函数”是《高中代数》第一册的重要内容.这一节课与函数的基本概念有着紧密的联系,通过对这一节课的学习,既可以让学生接受、理解反函数的概念并学会反函数的求法,又可使学生加深对函数基本概念的理解,还为今后反三角函数的教学做好准备,起到承上启下的重要作用. 二、教学目标设计(1)理解反函数的概念,并能判定一个函数是否存在反函数;(2)掌握求反函数的基本步骤,并能理解原函数和反函数之间的内在联系;(3)通过反函数概念的引入;函数及其反函数图像特征的主动探索,初步学会自主地学习、独立地探究问题;掌握观察、比较、分析、归纳等数学试验研究的方法;体验探索中挫折的艰辛与成功的快乐,激发学习热情.三、教学重点与难点:反函数的概念及求法;反函数的图像特征;反函数定义域的确定. 四、教学流程设计五、教学过程设计 1、设置情境,引出概念引例:在两种温度度量制摄氏度(C)和华氏度(F)相互转化时会发现,有时两人选用相同的数据,如下表,所建立的函数关系和作出的图像完全不同,这是为什么呢?教师点拨:指导学生观察上面两个函数的异同,引出反函数的定义.介绍反函数的记号)(1x fy ;了解)(1x f表示反函数的符号,1f表示对应法则.2、 探索研究,深化概念 ①探求反函数成立的条件.例1(1)2x y (R x )的反函数是 (2)2x y (0 x )的反函数是 (3)2x y (0 x )的反函数是 学生活动:讨论函数反函数成立的条件(理论根据为函数的定义):对值域A 中任意一个y 值,在定义域D 中总有唯一确定的x 值与它对应,即x 与y 必须一一对应. ②探求求反函数的方法.(课本例题) 例2.求下列函数的反函数:(1)24 x y (2)13x y (3))0(12x x y(4))21,(2413x R x x x y[说明]:学生分四组完成,教师巡视,把典型错误及正确解法投影. 学生活动:探求求反函数的方法. (1) 变形:解方程,)(x f y 得)(1y fx ; (2) 互换:互换y x ,的位置,得)(1x fy ;(3)写出定义域:注明反函数的定义域.③观察反函数的图像,探讨互为反函数的两个函数的关系.例3:在同一坐标下,画出例2中的函数及其反函数的图像.(在几何画板中显示)教师点拨:指导学生观察函数及其反函数的图像,结合反函数的定义,探讨函数及其反函数之间的关系.学生活动:探讨互为反函数的两个函数的关系. ①从函数角度看:若函数)(x f y 有反函数)(1x fy ,则)(1x fy 的反函数是)(x f y ,即)(x f y 和)(1x fy 互为反函数.反函数的定义域与值域恰好是原函数的值域与定义域.②从函数图像看:原函数和反函数图像关于x y 对称.③从单调性来看:原函数和反函数均为单调函数,他们具有相同的单调性. 3、例题分析,巩固方法: (1)课本练习4.5 (2)补充练习:1、给出下列几个函数:①)21(12x x y ;②)2(2)1(4x x x y ③)(23R x x y ④)0()2( x x x y 其中不存在反函数的函数序号是 ②、④2、若指数函数)(x f y 的反函数的图像经过点(2,-1),则此指数函数为 ( A )(A ) xy )21( (B )x y 2 (C )xy 3 (D)x y 103、设)1(22)( x x x f ,则)(1x f( D )(A )在(), 上是增函数 (B )在(), 上是减函数 (C )在),0[ 上是减函数 (D)在(]0, 上是增函数4、若函数)(x f 是函数 10222 x x y 的反函数,则)(x f 的图像为 ( B )A B C D5、)21( 22x x x y 反函数是 ( B )(A ))11( 112 x x y (B ))10( 112 x x y (C ))11( 112 x x y(D ))10( 112 x x y6、若)0( a b ax y 有反函数且它的反函数就是b ax y 本身,求b a ,应满足的条件.解:由b ax y ,得b y ax .由0 a ,知ab y a x1. 所以函数b ax y 的反函数为a by a x1. 由于函数b ax y 的反函数aby a x 1就是函数b ax y 本身,即有xxxyyyya a 1,且b ab. 于是,解得1 a ,0 b 或1 a ,b 为任意实数.教师点拨:提出两个问题:①什么样的一次函数,它的反函数正好是它本身?②除了一次函数外,是否还存在其它函数,满足反函数就是它本身?(11),0(x x y k x k y 等) 4、课堂小结①反函数的概念及求法; ②函数及其反函数的关系; 5、作业布置 练习册4.5 A 组 六、教学设计说明1.反函数概念比较抽象,不能简单地从形式上来定义. 在教学时先通过实例根据自变量和应变量的不同,得到两个函数关系式和图像完全不同的函数.在此基础上指出这两个函数互为反函数,这样使学生对反函数有一个初步的认识.2.在此基础上,引出反函数的一般概念,使得较抽象的概念能被学生逐步理解.然后再进一步强调函数),)((A y D x x f y 的反函数存在的条件——“对值域A 中任意一个y 值,在定义域D 中总有唯一确定的x 值与它对应”.3.通过学生对课本例题的练习,发现学生在解题过程中存在的问题.通过对课堂练习的点评,让学生了解并总结出求反函数的步骤. 同时让学生认识到若函数)(x f y 有反函数)(1x fy ,则)(1x fy 的反函数是)(x f y ,即)(x f y 和)(1x fy 互为反函数,并了解反函数的定义域与值域恰好是原函数的值域与定义域.4.通过几何画板在同一坐标下演示课本例题的函数及其反函数的图像,让学生掌握y x ,互换的几何意义,了解原函数和反函数图像关于x y 对称,从而巩固对反函数概念的理解.。

2.4《反函数-函数图象间的关系》课件(旧人教第一册上)

2.4《反函数-函数图象间的关系》课件(旧人教第一册上)

课题:互为反函数的函数图像间的关系教学过程设计创设情景,引入新课1、复习提问反函数的概念。

〇学生活动学生回答,教师总结(1)用y表示x(2)把y当自变量还是函数提出问题,探究问题一、画出y=3x-2)(Rx∈的图像,并求出反函数。

●引导设问1原函数中的自变量与函数值和反函数中的自变量函数值什么关系?〇学生活动学生很容易回答原函数y =3x-2中反函数32+=yx中y:函数x:自变量 x:函数y:自变量●引导设问2在原函数定义域内任给定一个x0都有唯一的一个y0与之对应,即()yx,在原函数图像上,那么哪一点在反函数图像上?〇学因为y0=3x0-2成立,所以32+=yx成立即(y,x0)在反函数图像上。

●引导设问3若连结BG,则BG与y=x什么关系?点B与点G什么关系?为什么?点B再换一个位置行吗?〇学生活动学生根据图形很容易得出y=x垂直平分BG,点B与点G关于y=x对称。

学生证法可能有OB=OG,BD=GD等。

▲教师引导教师用几何花板,就上面的问题追随学生的思路演示当()yx,在y =3 x-2图像变化时(y0,x0)也随之变化但始终有两点关于y=x对称。

●引导设问4若不求反函数,你能画出y=3x-2)(Rx∈的反函数的图像吗?怎么画?〇学生活动有了前面的铺垫学生很容易想到只要找出点G的两个位置便可以画出反函数的图像。

●引导设问5上题中原函数与反函数的图像,这两条直线什么关系?〇学生活动由前面容易得出(关于y=x对称)●引导设问6若把l /当作原函数的图像,那么它的反函数图像是谁?〇学生活动由图中可以看出l l /,关于y=x 相互对称所以他的反函数图像应是l ,另外由上节课原函数与反函数互为反函数也可得。

●引导设问7以上是一个特殊的函数,图像为直线,若对一个一般的函数图像你能根据上题的原理画出反函数的图像吗?如图是x y 3=的图像,请你猜想出它的反函数图像。

〇学生活动由上题学生不难得出做y=x 的对称图像(教师配合动画演示)●引导设问8通过上面的两个问题我们可以得出原函数图像与反函数图像有什么关系?▲ 学生总结,教师补充 结论(1)一个函数若存在反函数则原函数和反函数的图像关于y=x 这条直线对称。

人教版高中数学必修一教案 :1.3反函数

人教版高中数学必修一教案 :1.3反函数

反函数——课堂教学设计一、[教材依据]全日制普通高级中学教科书数学(人教版)第一册(上)第二章《函数》第四节“反函数”第一课时。

二、[教材分析][设计思路]1、体验教学的原则:重视学生的亲身体验与感悟,使学生具有对于知识生成、发展、形成及应用过程的体验和感悟。

本节课力求体现二期课改的思路,以学生发展为本。

整节课的概念、例题与练习都以学生讨论、探究、归纳为主,教师引导为辅。

使学生在形成概念、发展规律、获取知识和理解内化的数学学习过程中,在数学应用和实践的过程中发展数学能力和一般能力,学会数学学习和应用的基本方法,逐步增强学生的研习能力、批判思维能力、自学能力和交流合作能力,培养学生勇于探索的精神。

2、本节教材是在学生初步学习了函数及其性质后,再来接触的一个新概念-----“反函数”。

反函数是函数中的一个重要概念,对这个概念的研究是对函数概念和性质在认识上的深化和提高。

它是从研究两个函数关系的角度产生的函数的,反函数本身也是一个函数。

由于反函数的定义本身比较抽象,难度较大,故在本节教学中从具体实例出发,引导学生从函数的三要素的变化角度,认识反函数的特征,揭示反函数的本质,逐步概括出反函数的定义,进而明确求解反函数问题的步骤。

当然学生在具体求解指定函数的反函数时,可能会遇到反解x时正负的选择问题及求原来函数的值域问题,教学中要预以足够的重视。

为了突破“反函数存在的条件”与“反函数与原函数的相互关系”这一难点,在本节教学中采用由课本上前面的例题(本章第一节“函数”部分给出的3个对应,并且是3个从A到B的函数)来加深对反函数定义的理解,这样便于把抽象的问题直观化。

反函数概念的建立,对研究原函数的性质有着重要作用,对将要学习研究的“指数函数”与“对数函数”等函数之间图象与性质的关系也起着重要作用。

三、[教学目标]1、知识与技能目标:(1)、理解反函数的概念 (2)、会求一些简单函数的反函数。

2、过程与方法目标:通过师生的共同讨论,弄清反函数的概念,探索与原函数的相互关系,会求一些简单函数的反函数。

高一数学反函数课件

高一数学反函数课件

反函数的性质
互为反函数的两个函数的图像关于直 线$y=x$对称。
如果原函数是单调增函数,则其反函 数也是单调增函数;如果原函数是单 调减函数,则其反函数也是单调减函 数。
反函数的定义域和值域分别是原函数 的值域和定义域。
如果原函数是奇函数,则其反函数也 是奇函数;如果原函数是偶函数,则 其反函数也是偶函数。
高一数学反函数课件
目录
• 反函数的定义与性质 • 反函数的求法 • 反函数的应用 • 反函数的图像表示 • 反函数与原函数的关系
01
反函数的定义与性质
反函数的定义
反函数
设函数$y=f(x)$的定义域为$A$,值域为$B$,如果存在一个函数$g(y)$,其定义域为 $B$,值域为$A$,并且满足$g(f(x))=x$,则称$g(y)$是$f(x)$的反函数。
反函数可以用于求解一些 特殊的不等式,例如求解 一元二次不等式。
比较大小
利用反函数的性质,可以 比较两个数的大小,例如 比较指数函数值的大小。
证明不等式
反函数可以用于证明一些 数学不等式,例如证明算 术平均数大于等于几何平 均数。
在函数性质研究中的应用
研究函数的单调性
通过反函数,可以研究函数的单调性,例如研究指数函数、对数 函数的单调性。
当原函数的定义域和 值域都是实数集时, 反函数的图像是可绘 制的。
反函数的图像变换
反函数图像的纵坐标不变,横坐 标互换。
反函数图像的横坐标不变,纵坐 标互换。
反函数图像的坐标轴方向可以旋 转90度。
反函数的图像对称性
反函数图像关于直线 $y = x$ 对称。 反函数图像关于原点对称。
反函数图像关于其渐近线对称。
研究函数的奇偶性

人教版高中数学必修第一册同步讲义第二章 2.4 反函数

人教版高中数学必修第一册同步讲义第二章 2.4 反函数

2.4 反函数 ①课文三点专讲重点:(1)反函数也是函数,因为它符合函数的定义,从反函数的定义可知,对于任意一个函数)(x f y =来说,不一定有反函数.(2) 求反函数的步骤是(1)将y =f (x )看成关于x 的方程,解出x =f -1(y ),若x 有两解,应特别注意解的选择.(2)将x 、y 互换,得y =f -1(x ).(3)写出反函数的定义域(即y =f (x )的值域).(3) 互为反函数的两个函数的关系:函数)(x f y =与)(1x fy -=的图象关于直线x y =对称.反函数的定义域由原函数的值域得到,而不能由反函数的解析式得到.难点:(1)一个函数有没有反函数是由原来给出函数的性质决定的,且反函数的性质也是由原来给出的函数性质决定的.(2)互为反函数间关系的理解: 函数)(x f y =、)(1x f y -=、)(y f x =、)(1y f x -=间的关系:)(x f y =与)(1x fy -=、)(y f x =与)(1y f x -=互为反函数;)(x f y =与)(1y f x -=、)(y f x =与)(1x f y -=为同一函数。

考点:(1)判断反函数与原函数的单调性与奇偶性要充分利用互为反函数的两个函数的定义域和值域之间的关系,以及x 与y 的对应关系的变化实质,即f-1[f (x )]=x ,f [f-1(x)]=x.(2)对称性问题的考察. ①点A(x,y)关于x 轴的对称点'A (x,-y);②点A(x,y)关于y 轴的对称点'A (-x,y);③点A(x,y)关于原点的对称点'A (-x,-y);④点A(x,y)关于y=x 轴的对称点'A ( y, x);②练功篇典型试题分析例1.求函数 211x y --= (-1≤ x < 0)的反函数。

分析: 求反函数前先判断一下决定这个函数的映射是否是一一映射;求出反函数后习惯上必须将 x 、y 对调,写成习惯形式;求出反函数后必须写出这个函数的定义域——原函数的值域。

高一数学反函数课件

高一数学反函数课件

1 x 1( x 0) 反函数为 y 1 1 x ( x 0)
2.4 反函数
课堂小结 (1)反函数的概念. (2)掌握求反函数方法.
作业:
P69 习题2.4
1,2
;
/ 青岛装修网
uxd85vzu
也会”话没说完,耿老爹哽咽着说不下去了。乔氏听了这话,吃惊地瞪大眼睛问“耿大哥你说什么,你家里有妻子?你们不是举家南下啊!” 耿老爹流着眼泪点点头,轻轻地说:“是的,我家里不但有贤惠的妻子,而且还有一个六岁的小女儿,名叫耿兰,长得几乎和她姐姐耿英小的 时候一模一样!”“那你们一定是要回去得了?”“是的,最长十年,我们一定是要回故乡去的!我带三个大一点儿的娃娃们出来,只是想着 在富饶的江南打拼一番事业。倘若能够发达了,就回我们镇上修建一座小学堂,再盖一个像样的戏台”“那你的娃娃们呢?我和小青她爹都非 常喜欢”107第三十五回 深深爱恋初显露|(老中医瞧病开药方,乔氏精心细调理;耿老爹身体渐康复,小青找机会近耿正。)耿老爹已经在地 铺上躺了整整三天了。尽管腰腿和胳膊慢慢地轻松了一些,但却感觉浑身酸痛起来,一点儿劲儿也没有。心想,自己的身体一贯都是很健康的, 即使头痛脑热的小毛病也不常见。可这次是怎么了,莫不是得了什么大病?这心里边一旦开始焦虑起来,身体就更不得劲儿了。躺到第四天, 竟然发起烧来,饭量也大为减少。这一下大家都着急了。乔氏赶快请来一位老中医为耿老爹瞧病。老中医经过“望、闻、问、切”之后,胸有 成竹地对大伙儿说:“放心,并无大碍。只是因为劳累过度,再加上通透大汗之后受了风。只要以芫荽、生姜、红糖熬汤,大量地趁热服下, 使之充分发汗,并避风几日。同时,还需要煎几副中药调理一番,再静养一段时间即可痊愈了。眼下如果不想多吃饭,不必勉强,只要多照顾 喝些水就可以了。”大家方才放心。老中医当即开了药方。乔氏给耿正带了一些银子,让他陪同老中医前去抓药,自己赶快做芫荽、生姜、红 糖水去了。当日午饭前,耿老爹一口气趁热喝下三大碗芫荽、生姜、红糖水,然后蒙上被子出了一身的大汗,高烧退了一些。乔氏吩咐耿正兄 妹仨:“老中医让避风几日,你们可要好生照顾啊!”大家点头。耿正说:“娘娘放心,爹有我照顾呢!”中午,耿老爹还是没有食欲,只是 又喝了三碗芫荽、生姜、红糖水,就继续睡觉去了。临到傍晚,才勉强喝了一碗新熬的两米稀饭。好好地睡了一个晚上后,耿老爹略感轻松一 些了,基本上不再发烧。以后几天,细心的乔氏尽量变着花样儿给耿老爹做一些可口的饭菜,并且一早一晚亲自按时煎药。耿家兄妹,尤其是 耿正,一步不离细心照顾着爹爹真正是“病来如山倒,病去如抽丝”!三天以后,耿老爹的身体才慢慢恢复起来。又过了两天,抓的中药已经 全部服完。耿老爹感觉身上有些劲儿了,就想去街上走走。一听到爹爹说要出门,耿直自然是一定要跟着的。耿正也准备去,耿英说:“哥, 这几天你照顾咱爹很累

反函数说课稿

反函数说课稿

反函数说课稿反函数说课稿1一、说教材1、地位与重要性“反函数”一节课是《高中代数》第一册的重要内容。

这一节课与函数的基本概念有着紧密的联系,通过对这一节课的学习,既可以让学生接受、理解反函数的概念并学会反函数的求法,又可使学生加深对函数基本概念的理解,还为日后反三角函数的教学做好准备,起到承上启下的重要作用。

2、教学目标(1)使学生接受、理解反函数的概念,并能判定一个函数是否存在反函数;(2)使学生能够求出指定函数的反函数,并能理解原函数和反函数之间的内在联系;(3)培养学生发现问题、观察问题、解决问题的能力;(4)使学生树立对立统一的辩证思维观点。

3、教学重难点重点是反函数的概念及反函数的求法。

理解反函数概念并求出函数的反函数是高一代数教学的重要内容,这建立在对函数概念的真正理解的基础上,必须使学生对于函数的基本概念有清醒的认识。

难点是反函数概念的接受与理解。

学生对于反函数的来历、反函数与原函数间的关系都容易产生错误的认识,必须使学生认清反函数的实质就是函数这一本质问题,才能使学生接受概念并对反函数的存在有正确的认识。

教学中复习函数概念,进而引出反函数概念,就是为突破难点做准备。

二、说教法根据本节课的内容及学生的实际水平,我采取引导发现式教学方法并充分发挥电脑多媒体的辅助教学作用。

引导发现法作为一种启发式教学方法,体现了认知心理学的基本理论。

教学过程中,教师采用点拨的方法,启发学生通过主动思考、动手操作来达到对知识的“发现”和接受,进而完成知识的内化,使书本的知识成为自己的知识。

课堂不再成为“一言堂”,学生也不会变成教师注入知识的“容器”。

电脑多媒体以声音、动画、影像等多种形式强化对学生感观的刺激,这一点是粉笔和黑板所不能比拟的,采取这种形式,可以极大提高学生的学习兴趣,加大一堂课的信息容量,使教学目标更完美地体现。

另外,电脑软件具有良好的交互性,可以将教师的思路和策略以软件的形式来体现,更好地为教学服务。

高中数学反函数人教版第一册

高中数学反函数人教版第一册

反函数一、课题:反函数二、教学目标:理解反函数的意义,会求一些函数的反函数;掌握互为反函数的函数图象间的关系,会利用)(x f y =与)(1x f y -=的性质解决一些问题.三、教学重点:反函数的求法,反函数与原函数的关系.四、教学过程:(一)主要知识:1.反函数存在的条件:从定义域到值域上的一一映射确定的函数才有反函数;2.反函数的定义域、值域上分别是原函数的值域、定义域,若()y f x =与1()y f x -=互为反函数,函数()y f x =的定义域为A 、值域为B ,则1[()]()f f x x x B -=∈,1[()]()f f x x x A -=∈;3.互为反函数的两个函数具有相同的单调性,它们的图象关于y x =对称.(二)主要方法:1.求反函数的一般方法:(1)由()y f x =解出1()x f y -=,(2)将1()x f y -=中的,x y 互换位置,得1()y f x -=,(3)求()y f x =的值域得1()y f x -=的定义域.(三)例题分析:例1.求下列函数的反函数:(1)()1)f x x =≤-;(2)221(01)(){(10)x x f x x x -≤≤=-≤<;(3)32331y x x x =-++.解:(1)由1)y x =≤-得2211()(1)24y x x =+-≤-,∴10)2x y +=≥,∴所求函数的反函数为10)2y x =--≥.(2)当01x ≤≤时,得10)x y =-≤≤,当10x -≤<时,得1)x y =<≤,∴所求函数的反函数为10)1)x y x -≤≤=<≤.(3)由32331y x x x =-++得3(1)2y x =-+,∴1)x y R =∈,∴所求反函数为1()1)f x x R -=∈.例2.函数11(,)1ax y x x R ax a-=≠-∈+的图象关于y x =对称,求a 的值. 解:由11(,)1ax y x x R ax a -=≠-∈+得1(1)(1)y x y a y -=≠-+,∴11()(1)(1)x f x x a x --=≠-+, 由题知:1()()f x f x -=,11(1)1x ax a x ax--=++,∴1a =. 例3.若(2,1)既在()f x =,m n 的值. 解:∵(2,1)既在()f x =∴(1)2(2)1f f =⎧⎨=⎩,∴21==,∴37m n =-⎧⎨=⎩.例4.设函数xx x f +-=121)(,又函数)(x g 与1(1)y f x -=+的图象关于y x =对称,求)2(g 的值.解法一:由121x y x -=+得12y x y -=+,∴11()2x f x x --=+,1(1)3x f x x --+=+,∴)(x g 与3x y x -=+互为反函数,由23x x -=+,得(2)2g =-.解法二:由1(1)y f x -=+得()1x f y =-,∴()()1g x f x =-,∴(2)(2)12g f =-=-.例5.已知函数()y f x =(定义域为A 、值域为B )有反函数1()y f x -=,则方程()0f x =有解x a =,且()()f x x x A >∈的充要条件是1()y f x -=满足11()()(0)f x x x B f a --<∈=且.例6.已知21()()21x x a f x a R -=∈+,是R 上的奇函数.(1)求a 的值,(2)求()f x 的反函数,(3)对任意的(0,)k ∈+∞解不等式121()log x f x k-+>. 解:(1)由题知(0)0f =,得1a =,此时21212112()()021212112x x x xx x x xf x f x ------+-=+=+=++++, 即()f x 为奇函数.(2)∵21212121x x x y -==-++,得12(11)1x y y y +=-<<-, ∴121()log (11)1x f x x x -+=-<<-.(3)∵121()log x f x k -+>,∴11111x x x k x ++⎧>⎪-⎨⎪-<<⎩,∴111x k x >-⎧⎨-<<⎩,①当02k <<时,原不等式的解集{|11}x k x -<<,②当2k ≥时,原不等式的解集{|11}x x -<<. (四)巩固练习:1.设21(01)(){2(10)x x x f x x +≤≤=-≤<,则15()4f -= . 2.设0,1a a >≠,函数log a y x =的反函数和1log ay x =的反函数的图象关于 ( )()A x 轴对称 ()B y 轴对称 ()C y x =轴对称 ()D 原点对称3.已知函数1()()12x f x =+,则1()f x --的图象只可能是 ( )()A ()B ()C()D 4.若6y ax =-与13y x b =+的图象关于直线y x =对称,且点(,)b a 在指数函数()f x 的图象上,则()f x = .。

人教A版高中数学必修1课件2.2.2反函数课件

人教A版高中数学必修1课件2.2.2反函数课件
f
1
a2x 1 f ( x) x (a R ) ,是R上的奇函数. 2 1
1 x ( x ) log 2 k .
解:(1)由题知 f(0)=0x ,得 a=1 ,此时 x x x 2 1 2 1 2 1 1 2 f ( x ) f ( x ) x x x 0 , x 2 1 2 1 2 1 1 2 即f(x)为奇函数.
反函数
【变形训练】
2x 1 2 (2)∵y x 1 x , 2 1 2 1
( 1 y 1) , 得 2x 1 y 1 x 1 ( 1 x 1) . ∴ f ( x ) log 2
1 x 1 x 1 x f ( x ) log 2 k , 1 x ,∴ k x 1 k 1 x 1 , 1 x 1
【典型例题】
1、求下列函数的反函数: 2 2 x 1(0 x 1) f ( x ) x x ( x 1) (1 ) ; (2 ) ; f ( x) { 2 x (1 x 0) 3 2 (3 ) y x 3x 3x 1 .
解:(1)由 f ( x ) x 2 x ( x 1) 得 1 1 2 1 2 1 2 y ( x ) ( x 1) ,∴ x y ( y 0) ,
解:由 y
由题知:f ( x) f 1 ( x) ,a( x 1) 1 ax ,∴ a=1.
3、若(2,1)既在 f ( x) mx n的图象上, 又在它反函数图象上,求m,n的值. 解:∵(2,1)既在 f ( x) mx n的图象上, 又在它反函数图象上, f (1) 2 m 3 mn 2 ∴ ,∴ ,∴ .

【高中数学教案】人教版全日制普通高级中学教科书(必修)数学第一册(上)《反函数》 教案

【高中数学教案】人教版全日制普通高级中学教科书(必修)数学第一册(上)《反函数》 教案

《反函数》教案
【教学目标】
1.了解反函数的概念,弄清原函数与反函数的定义域和值域的关系.
2.会求一些简单函数的反函数.
3.在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识.
4.进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力.
【教学重点】求反函数的方法.
【教学难点】反函数的概念.
【教学过程】
教学设计说明
“问题是数学的心脏”.一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程.本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念.
反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采用了抽象的符号.由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念.为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,研究性质,进而得出概念,这正是数学研究的顺序,符合学生认知规律,有助于概念的建立与形成.另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用.通过对函数与方程的分析,互逆探索,动画演示,表格对照、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培养学生的逆向思维.使学生自然成为学习的主人.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一册反函数
教学目标
1.使学生了解反函数的概念;
2.使学生会求一些简单函数的反函数;
3.培养学生用辩证的观点观察、分析解决问题的能力。

教学重点
1.反函数的概念;
2.反函数的求法。

教学难点
反函数的概念。

教学方法
师生共同讨论
教具装备
幻灯片2张
第一张:反函数的定义、记法、习惯记法。

(记作A);
第二张:本课时作业中的预习内容及提纲。

教学过程
(I)讲授新课
(检查预习情况)
师:这节课我们来学习反函数(板书课题)§2.4.1反函数的概念。

同学们已经进行了预习,对反函数的概念有了初步的了解,谁来复述一下反函数的定义、记法、习惯记法?
生:(略)
(学生回答之后,打出幻灯片A)。

师:反函数的定义着重强调两点:
(1)根据y=f(x)中x与y的关系,用y把x表示出来,得到x=φ(y);
(2)对于y在c中的任一个值,通过x=φ(y),x在A中都有惟一的值和它对应。

师:应该注意习惯记法是由记法改写过来的。

师:由反函数的定义,同学们考虑一下,怎样的映射确定的函数才有反函数呢?
生:一一映射确定的函数才有反函数。

(学生作答后,教师板书,若学生答不来,教师再予以必要的启示)。

师:在y=f(x)中与y=f-1(y)中的x、y,所表示的量相同。

(前者中的x与后者中的x都属于同一个集合,y也是如此),但地位不同(前者x是自变量,y 是函数值;后者y是自变量,x是函数值。


在y=f(x)中与y=f–1(x)中的x都是自变量,y都是函数值,即x、y在两式中所处的地位相同,但表示的量不同(前者中的x是后者中的y,前者中的y 是后者中的x。


由此,请同学们谈一下,函数y=f(x)与它的反函数y=f–1(x)两者之间,定义域、值域存在什么关系呢?
生:(学生作答,教师板书)函数的定义域,值域分别是它的反函数的’值域、定义域。

师:从反函数的概念可知:函数y=f(x)与y=f–1(x)互为反函数。

从反函数的概念我们还可以知道,求函数的反函数的方法步骤为:
(1)由y=f(x)解出x=f–1(y),即把x用y表示出;
(2)将x=f–1(y)改写成y=f–1(x),即对调x=f–1(y)中的x、y。

(3)指出反函数的定义域。

下面请同学自看例1
(II)课堂练习课本P68练习1、2、3、4。

(III)课时小结
本节课我们学习了反函数的概念,从中知道了怎样的映射确定的函数才有反函数并求函数的反函数的方法步骤,大家要熟练掌握。

(IV)课后作业
一、课本P69习题2.41、2。

二、预习:互为反函数的函数图象间的关系,亲自动手作题中要求作的图象。

板书设计
课题:求反函数的方法步骤:定义:(幻灯片)
注意:小结
一一映射确定的
函数才有反函数
函数与它的反函
数定义域、值域的关系。

相关文档
最新文档