多元回归分析:估计问题.ppt
合集下载
第9章多元线性回归-PPT精品文档
9.1 9.2 9.3 9.4 9.5 多元线性回归模型 拟合优度和显著性检验 多重共线性及其处理 利用回归方程进行预测 虚拟自变量的回归
统计学
STATISTICS (第三版)
学习目标
多元线性回归模型、回归方程与估计的回 归方程 回归方程的拟合优度与显著性检验 多重共线性问题及其处理 利用回归方程进行预测 虚拟自变量的回归 用Excel和SPSS进行回归分析
统 计 学
(第三版)
2019
作者 贾俊平
统计学
STATISTICS (第三版)
统计名言
上好的模型选择可遵循一个称为奥 克姆剃刀(Occam’s Razor)的基本原 理:最好的科学模型往往最简单, 且能解释所观察到的事实。
——William Navidi
9-2 2019年8月
第 9 章 多元线性回归
b1,b假定其他变量不变,当 xi 每变 动一个单位时,y 的平均变动值
9 - 10
2019年8月
统计学
STATISTICS (第三版)
估计的多元线性回归的方程
(estimated multiple linear regression equation)
9 - 11 2019年8月
9.1 多元线性回归模型 9.1.2 参数的最小二乘估计
统计学
STATISTICS (第三版)
参数的最小二乘估计
1. 使因变量的观察值与估计值之间的离差平方和 ˆ ,b ˆ ,b ˆ ,, b ˆ 。即 达到最小来求得 b 0 1 2 k
2 2 ˆ ,b ˆ ,b ˆ ,, b ˆ ) (y y ˆ Q( b ) e i i i 最小 0 1 2 k i 1 i 1 n n
统计学
STATISTICS (第三版)
学习目标
多元线性回归模型、回归方程与估计的回 归方程 回归方程的拟合优度与显著性检验 多重共线性问题及其处理 利用回归方程进行预测 虚拟自变量的回归 用Excel和SPSS进行回归分析
统 计 学
(第三版)
2019
作者 贾俊平
统计学
STATISTICS (第三版)
统计名言
上好的模型选择可遵循一个称为奥 克姆剃刀(Occam’s Razor)的基本原 理:最好的科学模型往往最简单, 且能解释所观察到的事实。
——William Navidi
9-2 2019年8月
第 9 章 多元线性回归
b1,b假定其他变量不变,当 xi 每变 动一个单位时,y 的平均变动值
9 - 10
2019年8月
统计学
STATISTICS (第三版)
估计的多元线性回归的方程
(estimated multiple linear regression equation)
9 - 11 2019年8月
9.1 多元线性回归模型 9.1.2 参数的最小二乘估计
统计学
STATISTICS (第三版)
参数的最小二乘估计
1. 使因变量的观察值与估计值之间的离差平方和 ˆ ,b ˆ ,b ˆ ,, b ˆ 。即 达到最小来求得 b 0 1 2 k
2 2 ˆ ,b ˆ ,b ˆ ,, b ˆ ) (y y ˆ Q( b ) e i i i 最小 0 1 2 k i 1 i 1 n n
课件:复回归分析
表示所有未包含到模型中来的
和 2 被称为偏回归系数
(partial regression coefficients)。
在经典线性回归模型(CLRM)的框架下,我们对 (3.1.1)作如下假定:
ui的均值为零,即:
E(ui | X1i , X2i ) 0
无序列相关:
对每一个i (3.1.2)
cov(ui,u j ) 0
化。换一句话说,1 给出X1的单位变化对Y均值的“直
接”或“净”影响(净在不染有X2的影响值的“直接”或“净”影响,净 在不沾有X1的影响。
如何分离出X1对Y的“真实”或净影响呢?
第一步:Y仅对X2回归:
Yi b1 b02 X2i uˆ1i
(3.3.1)
ei2 ˆ0
2
(Yi ˆ0 ˆ1X1i ˆ2 X 2i )(1) 0
这就是
ei 0
4.残差 ei 与 X1i 和 X 2i 都不相关,就是
ei X1i ei X2i 0
这也是求解OLS估计量的副产品:
ei2 ˆ1
2
(Yi ˆ0 ˆ1X1i ˆ2 X 2i )( X1i ) 0
r012表示X
2保持不变下的Y
和X
的偏相关系数:
1
r012
r01 r02r12 (1 r022 )(1 r122 )
(3.5.2)
r02.1表示X
1保持不变下的Y
和X
的偏相关系数:
2
r02.1
r02 r01r12 (1 r012 )(1 r122 )
(3.5.3)
r120表示Y
保持不变下的X1和X
OLS估计量的特点: ①可以从方程(3.4.7)和(3.4.8)中的一个通过x1和x2
多因变量的多元线性回归课件
多因变量的多元线性回归课件
contents
目录
• 引言 • 多因变量的多元线性回归模型 • 多因变量的多元线性回归的评估指标 • 多因变量的多元线性回归的实例分析 • 多因变量的多元线性回归的优缺点与改
进方向 • 多因变量的多元线性回归在实际应用中
的注意事项
01
引言
多元线性回归的定义与背景
多元线性回归的定义
模型选择
根据实际问题和数据特点,选择合适的多元线性回归模型,如普通多元线性回 归、岭回归、Lasso回归等。
评估指标选择
选择合适的评估指标对模型进行评估,如均方误差(MSE)、均方根误差( RMSE)、决定系数(R^2)等。
模型解释与应用场景
模型解释
对选定的多元线性回归模型进行详细解释,包括模型的假设条件、参数意义、适 用范围等方面。
改进方向
验证假设
在应用多元线性回归之前,需要对假设条件 进行验证,确保满足条件。
引入其他模型
如果多元线性回归不适用,可以考虑引入其 他模型,如支持向量机、神经网络等。
降维处理
如果自变量数量过多,可以考虑进行降维处 理,减少计算复杂度。
数据预处理
对数据进行预处理,如缺失值填充、异常值 处理等,以提高回归结果的准确性。
岭回归
当自变量之间存在多重共 线性时,可以使用岭回归 来估计模型的参数。
模型的假设检验
01
02
03
04
线性性检验
检验自变量和因变量之间是否 存在线性关系。
共线性检验
检验自变量之间是否存在多重 共线性。
异方差性检验
正态性检验
检验误差项是否具有相同的方 差。
检验误差项是否服从正态分布。
contents
目录
• 引言 • 多因变量的多元线性回归模型 • 多因变量的多元线性回归的评估指标 • 多因变量的多元线性回归的实例分析 • 多因变量的多元线性回归的优缺点与改
进方向 • 多因变量的多元线性回归在实际应用中
的注意事项
01
引言
多元线性回归的定义与背景
多元线性回归的定义
模型选择
根据实际问题和数据特点,选择合适的多元线性回归模型,如普通多元线性回 归、岭回归、Lasso回归等。
评估指标选择
选择合适的评估指标对模型进行评估,如均方误差(MSE)、均方根误差( RMSE)、决定系数(R^2)等。
模型解释与应用场景
模型解释
对选定的多元线性回归模型进行详细解释,包括模型的假设条件、参数意义、适 用范围等方面。
改进方向
验证假设
在应用多元线性回归之前,需要对假设条件 进行验证,确保满足条件。
引入其他模型
如果多元线性回归不适用,可以考虑引入其 他模型,如支持向量机、神经网络等。
降维处理
如果自变量数量过多,可以考虑进行降维处 理,减少计算复杂度。
数据预处理
对数据进行预处理,如缺失值填充、异常值 处理等,以提高回归结果的准确性。
岭回归
当自变量之间存在多重共 线性时,可以使用岭回归 来估计模型的参数。
模型的假设检验
01
02
03
04
线性性检验
检验自变量和因变量之间是否 存在线性关系。
共线性检验
检验自变量之间是否存在多重 共线性。
异方差性检验
正态性检验
检验误差项是否具有相同的方 差。
检验误差项是否服从正态分布。
《多元Logistic回归》课件
交叉验证是一种评估模型泛化能力的手段,通过将数据集 分成训练集和验证集,反复训练和验证模型,以获得更可 靠的评估结果。常用的交叉验证方法有k-fold交叉验证、 留出交叉验证等。
03
多元Logistic回归的实现步 骤
数据预处理:特征选择、缺失值处理等
特征选择
选择与目标变量相关的特征,去除无关 或冗余特征,提高模型的预测性能。
多元Logistic回归与一元Logistic回归的区别
一元Logistic回归只涉及一个自变量,而多元 Logistic回归涉及多个自变量。
多元Logistic回归能够同时处理多个特征,更准确 地描述数据的复杂关系,提高预测精度。
多元Logistic回归需要更多的数据和计算资源,因 为需要迭代计算每个特征与因变量言 • 多元Logistic回归的原理 • 多元Logistic回归的实现步骤 • 多元Logistic回归的优缺点 • 多元Logistic回归的案例分析 • 总结与展望
01
引言
多元Logistic回归的定义
多元Logistic回归是一种用于处理分 类问题的统计方法,它通过将多个自 变量与因变量之间的关系转换为概率 形式,从而对因变量进行预测。
结果。
它能够提供每个类别的预测概率 ,这在某些情况下非常有用,例 如在医学诊断中确定疾病的风险
。
多元Logistic回归在处理分类问 题时具有较高的预测精度和稳定
性。
缺点
多元Logistic回归对数据的分布 假设较为严格,通常要求数据 呈正态分布或近似正态分布。
它还假设自变量与因变量之间 存在线性关系,这在某些情况 下可能不成立,导致模型的预
案例三:用户点击率预测
总结词
用户点击率预测是多元Logistic回归在互联 网广告领域的典型应用,通过分析用户行为 和广告特征,预测用户是否会点击广告。
第4章多元线性回归分析
4.2.1回归系数估计
结论
4.2 多元线性回归模型参数估计
结论1: OLS估计的一致性 ˆj 如果回归模型误差项满足假设1和假设2,OLS估计 为一致估计,即
ˆ , j 0, 1, 2, , k p limn j j
结论2: OLS估计的无偏性 如果回归模型误差项满足假设1和假设2,OLS估计 ˆj 为无偏估计: ˆ ) , j 0, 1, , k E( j j
4.9 自变量共线性 重要概念Biblioteka 4.1 多元线性回归模型设定
模型设定:
假设1(零条件均值:zero conditonal mean)
给定解释变量,误差项条件数学期望为0,即
E(u | X1 , X 2 ,, X k ) 0
Y 0 1 X1 2 X 2 k X k u
4.8 假设条件的放松
4.8.1 假设条件的放松(一)—非正态分 布误差项 4.8.2 假设条件的放松(二)—异方差 4.8.3 假设条件的放松(三)—非随机抽 样和序列相关 4.8.4 假设条件的放松(四)—内生性
4.8 假设条件的放松
4.8.1 假设条件的放松(一)—非正态分 布误差项
• 去掉假设5不影响OLS估计的一致性、无偏性和渐 近正态性。 • 不能采用t-检验来进行参数的显著性检验,也不能 用F检验进行整体模型检验。 • 大样本情况下,t统计量往往服从标准正态分布 (在原假设下)。
…
xk ( X k1 , X k 2 ,, X kn )
假设2’(样本无共线性:no colinearity)
不存在不全为零的一组数 c0 , c1,, ck使得
c0 c1x1 xk 0
4.2 多元线性回归模型参数估计
1 多元线性回归分析
1. 自变量筛选的标准与原则 2. 自变量筛选的常用方法
1、自变量筛选的标准与原则
① 残差平方和SSE缩小与确定系数增大 ② 残差均方缩小与调整确定系数增大 ③ Cp统计量
2、自变量筛选的常用方法
① 所有可能自变量子集选择 ② Forward:前进法(向前选择法) ③ Backward:后退法(向后剔除法) ④ Stepwise:逐步回归法
♦ 是选择变量的有效方法。
前进法、后退法、逐步回归法的侧重点不
同。
当自变量之间不存在简单线性相关关系时,三种方法计算结果 是一致的。 当自变量之间存在简单线性相关关系时,前进法侧重于向模型 中引入单独作用较强的变量,后退法侧重于引入联合作用较强 的变量,逐步回归法则介于两者之间。
注意:剔除变量的标准(0.1)应 大于或等于引入变量的标准 (0.05)。
ANOVA b
Model
Sum of Squares
1
Regression 133.711
Residual Total
88.841 222.552
df Mean Square
4
33.428
22
4.038
26
F 8.278
Sig. .000a
a.Predictors: (Constant), 糖化血红蛋白, 甘油三酯, 胰岛素, 总胆固醇
总变异 23 0.08123
R2=0.06396/0.08123=0.7874
确定系数的取值范围为0≤R2≤1。直接反映了 回归方程中所有自变量解释了反应变量总变异 的百分比。其值越接近于1,表示回归模型的拟 合效果越好。
3、调整的确定系数
调整的R2:记为
R2 = R 2 k(1 R2 )
1、自变量筛选的标准与原则
① 残差平方和SSE缩小与确定系数增大 ② 残差均方缩小与调整确定系数增大 ③ Cp统计量
2、自变量筛选的常用方法
① 所有可能自变量子集选择 ② Forward:前进法(向前选择法) ③ Backward:后退法(向后剔除法) ④ Stepwise:逐步回归法
♦ 是选择变量的有效方法。
前进法、后退法、逐步回归法的侧重点不
同。
当自变量之间不存在简单线性相关关系时,三种方法计算结果 是一致的。 当自变量之间存在简单线性相关关系时,前进法侧重于向模型 中引入单独作用较强的变量,后退法侧重于引入联合作用较强 的变量,逐步回归法则介于两者之间。
注意:剔除变量的标准(0.1)应 大于或等于引入变量的标准 (0.05)。
ANOVA b
Model
Sum of Squares
1
Regression 133.711
Residual Total
88.841 222.552
df Mean Square
4
33.428
22
4.038
26
F 8.278
Sig. .000a
a.Predictors: (Constant), 糖化血红蛋白, 甘油三酯, 胰岛素, 总胆固醇
总变异 23 0.08123
R2=0.06396/0.08123=0.7874
确定系数的取值范围为0≤R2≤1。直接反映了 回归方程中所有自变量解释了反应变量总变异 的百分比。其值越接近于1,表示回归模型的拟 合效果越好。
3、调整的确定系数
调整的R2:记为
R2 = R 2 k(1 R2 )
第八讲多元线性回归分析-精选文档
ˆ Y 5 . 9433 0 . 1424 X 0 . 3515 X 0 . 2706 X 0 . 63 X 1 2 3 4
三、假设检验及其评价
(一)对回归方程
1. 方差分析法: H 0, 0 : 1 2 m
H ( = 1 , 2 , , m ) 不 全 为 0 , 1:各 j j
总胆固醇 (mmol/L) X1
5.68 3.79 6.02 4.85 4.60 6.05 4.90 7.08 3.85 4.65 4.59 4.29 7.97 6.19 6.13 5.71 6.40 6.06 5.09 6.13 5.78 5.43 6.50 7.98 11.54 5.84 3.84
2 2 ˆ b X b X ) 01 1 2 2 m m
求偏导数
原
理
最小二乘法
l11b1 l12b2 l1mbm l1Y l b l b l b l 21 1 22 2 2m m 2Y lm1b1 lm2b2 lmmbm lmY
Y 0 1 X 1 2 X 2 m X m e
Éɱ í ÉÉÉÉɱ ÉÉ Y ÉÉÉ ü Éɱ í ÉÉ× É± ÉÉ
X1 , X 2 ,, X m ÉÉÉÉÉÉ
é ÉÉɱ í É É ÉÉ ü × É 0 ÉÉÉÉÉ 1 , 2 ,, m ÉÉÉÉ ± Éɱ ÉÉɱ ÉÉ ±É X j ÉÉÉ ò ÉÉÉÉÉÉÉ ± Y ÉÉÉ ù ± É ÉÉÉ e ÉÉÉ m É× É± ÉÉÉ Y É °É ì É ó ÉÉÉ ú É ó É É ¨ÉÉÉ É
甘油三脂 (mmol/L) X2
1.90 1.64 3.56 1.07 2.32 0.64 8.50 3.00 2.11 0.63 1.97 1.97 1.93 1.18 2.06 1.78 2.40 3.67 1.03 1.71 3.36 1.13 6.21 7.92 10.89 0.92 1.20
多元回归分析:估计
更多关于R2
考虑从一个解释变量开始,然后加入第二个。 OLS性质:最小化残差平方和。 如果OLS恰好使第二个解释变量系数取零,那
么不管回归是否加入此解释变量,SSR相同。 如果OLS使此解释变量取任何非零系数,那么
加入此变量之后,SSR降低了。 实际操作中,被估计系数精确取零是极其罕见
的,所以,当加入一个新解释变量后,一般来 说,SSR会降低。
那么所有系数的OLS估计量都有偏。
4
更一般的情形
假设总体模型
• 满足假定MLR.1~MLR.4。但我们遗漏了 变量x3,并估计了模型
• 假设X2和X3无关, X1和X3相关。 • 是β1的一个有偏估计量,但 是否有偏
?
更一般的情形
此时,我们通常假设X1和X2无关。
当X1和X2无关时,可以证明:
差项u的条件方差都是一样的。
▪ 如果这个假定不成立,我们说模型存在异方
差性。
OLS估计量的方差(续)
用x表示(x1, x2,…xk)
假定Var(u|x) = s2,也就意味着Var(y| x) = s2
假定MLR.1-5共同被称为高斯-马尔可夫假定 (Gauss-Markov assumptions)
效应) OLS的性质 什么时候简单回归和多元回归的估计值
相同 OLS的无偏性
多元回归分析:估计(2) Multiple Regression Analysis: Estimation
(2)
y = b0 + b1x1 + b2x2 + . . . bkxk + u
1
本章大纲
使用多元回归的动因 普通最小二乘法的操作和解释 OLS估计量的期望值 OLS估计量的方差 OLS的有效性:高斯-马尔科夫定理
课件-数理统计与多元统计 第五章 回归分析 5.3-5误差方差的估计
9
lxy ( xi x)( yi y) 2995 i 1
9
9
lxx ( xi x)2 6000, l yy ( yi y)2 1533.38
i 1
i 1
bˆ0
y bˆ1 x
11.6,bˆ1
l xy l xx
0.499167
即得经验回归方程: yˆ 11.6 0.499167x
被估计的回归方程所解释的变差数量,即当
自变量个数增加时,会使预测误差变小,从
而减少SSE,此时SSR变大,R2会变大,可 能因此而高估R2造成误读。因此实际中常用 修正的复决定系数(adjusted multiple cofficient of determinnation) :
Ra2
1
(1
R2 )( n
xi/0C
0
10
20
30
40
yi/mg 14.0 17.5 21.2 26.1 29.2
xi/0C
50
60
70
80
yi/mg 33.3 40.0 48.0 54.8
试估计回归参数b0,b1, σ2,给出经验回归方程:
yˆ bˆ0 bˆ1x
12
解:由数据计算:
1 9
19
x 9 i1 xi 40, y 9 i1 yi 31.56667
H0 : b1 b2 L bp 0 的假设检验步骤:
i) 提出假设: H0 : b1 b2 L bp 0
ii)给定显著性水平α=?,样本容量n=?,p=?
iii) 选择检验统计量,当H0真时:
F SSR / p ~ F ( p, n p 1) SSE / (n p 1)
iv) H0的拒绝域为:
数学建模——回归分析模型 ppt课件
有最小值:
n n i 1 i 1
i
2 2 ( y a bx ) i i i
ppt课件
ˆx ˆi a ˆ b y i
6
数学建模——回归分析模型
一元线性回归模型—— a, b, 2估计
n ( xi x )( yi y ) ˆ i 1 b n ( xi x )2 i 1 ˆ ˆ y bx a
数学建模——回归分析模型
Keep focused Follow me —Jiang
ppt课件
1
数学建模——回归分析模型
• • • • • 回归分析概述 几类回归分析模型比较 一元线性回归模型 多元线性回归模型 注意点
ppt课件
2
数学建模——回归分析模型
回归分析 名词解释:回归分析是确定两种或两种以上变数 间相互赖的定量关系的一种统计分析方法。 解决问题:用于趋势预测、因果分析、优化问题 等。 几类常用的回归模型:
可决系数(判定系数) R 2 为:
可决系数越靠近1,模型对数据的拟合程度越好。 ppt课件 通常可决 系数大于0.80即判定通过检验。 模型检验还有很多方法,以后会逐步接触
15
2 e ESS RSS i R2 1 1 TSS TSS (Yi Y )2
数学建模——回归分析模型
2 i i 1
残差平 方和
13
数学建模——回归分析模型
多元线性回归模型—— 估计 j 令上式 Q 对 j 的偏导数为零,得到正规方程组,
用线性代数的方法求解,求得值为:
ˆ ( X T X )1 X TY
ˆ 为矩阵形式,具体如下: 其中 X , Y ,
回归分析法PPT课件
现代应用
随着大数据时代的到来,回归分析法在各个领域的应用越来越广泛,同 时也面临着新的挑战和机遇。
02
线性回归分析
线性回归模型
线性回归模型
描述因变量与自变量之间线性关 系的数学模型。
模型形式
(Y = beta_0 + beta_1X_1 + beta_2X_2 + cdots + beta_pX_p + epsilon)
解释
非线性回归模型可以用于解释因变量和解释变量之间的关系,通过模型参数和图 形化展示来解释关系。
04
多元回归分析
多元回归模型
01
02
03
多元线性回归模型
描述因变量与多个自变量 之间的关系,通过最小二 乘法估计参数。
非线性回归模型
描述因变量与自变量之间 的非线性关系,通过变换 或使用其他方法实现。
教育研究
在教育学研究中,回归分析法可用于研究教育成果和教育 质量,通过分析学生成绩和教学质量等因素,提高教育水 平。
其他领域的应用案例
市场调研
在市场营销中,回归分析法可用于分析消费者行为和市场趋 势,帮助企业制定更有效的营销策略。
农业研究
在农业研究中,回归分析法可用于研究作物生长和产量影响 因素,提高农业生产效率。
线性回归模型的预测与解释
预测
使用已建立的线性回归模型预测因变量的值。
解释
通过解释模型参数的大小和符号来理解自变量对因变量的影响程度和方向。
03
非线性回归分析
非线性回归模型
线性回归模型的局限性
非线性回归模型的定义
线性回归模型在解释变量与因变量之间的 关系时可能不够准确,无法描述它们之间 的非线性关系。
随着大数据时代的到来,回归分析法在各个领域的应用越来越广泛,同 时也面临着新的挑战和机遇。
02
线性回归分析
线性回归模型
线性回归模型
描述因变量与自变量之间线性关 系的数学模型。
模型形式
(Y = beta_0 + beta_1X_1 + beta_2X_2 + cdots + beta_pX_p + epsilon)
解释
非线性回归模型可以用于解释因变量和解释变量之间的关系,通过模型参数和图 形化展示来解释关系。
04
多元回归分析
多元回归模型
01
02
03
多元线性回归模型
描述因变量与多个自变量 之间的关系,通过最小二 乘法估计参数。
非线性回归模型
描述因变量与自变量之间 的非线性关系,通过变换 或使用其他方法实现。
教育研究
在教育学研究中,回归分析法可用于研究教育成果和教育 质量,通过分析学生成绩和教学质量等因素,提高教育水 平。
其他领域的应用案例
市场调研
在市场营销中,回归分析法可用于分析消费者行为和市场趋 势,帮助企业制定更有效的营销策略。
农业研究
在农业研究中,回归分析法可用于研究作物生长和产量影响 因素,提高农业生产效率。
线性回归模型的预测与解释
预测
使用已建立的线性回归模型预测因变量的值。
解释
通过解释模型参数的大小和符号来理解自变量对因变量的影响程度和方向。
03
非线性回归分析
非线性回归模型
线性回归模型的局限性
非线性回归模型的定义
线性回归模型在解释变量与因变量之间的 关系时可能不够准确,无法描述它们之间 的非线性关系。
第七章 多元回归分析2
n i 1 2 i
当有多个自变量对因变量y无显著影响时,可以剔除多 余变量,但由于自变量间的交互作用,不能一次剔除 所有不显著变量。一般是将t值(绝对值)最小的变量 删除掉,每次只剔除1个变量 ,再对求得的新的回归方程 进行检验,直到保留的变量都对y有显著影响为止。
返回
3.拟合优度 拟合优度用于检验回归方程对样本观测值的拟
ij ii jj
简单相关系数只是一种数量表面上的相关系数,
而并非本质的东西。在多元回归分析中,偏相 关系数才真正反映因变量y与自变量 xi以及自变 量 xi与 xi 的相关性的数量。
返回
五、预测 所谓预测就是给定解释变量一组值 x0 ( x01, x02 ,..., x0 p )'
如果自变量相邻数值之间大小间隔相等,而且相
邻样本点对应的因变量y的二次差分大致相同, 则该总体可配合二次多项式函数 如果是三次差分大致相同,则可配合三次多项式 函数
第三节 自变量选择与逐步回归
在建立一个实际问题的回归模型,我们应该如何确定 回归自变量。 如果遗漏了某些重要的变量,回归方程的效果肯定不 好。 如果考虑过多的变量,在这些变量中有些自变量对问 题研究可能不重要,有些变量可能与其它变量有很大 程度的重叠。如果模型把这些变量也引入的话,不仅 计算量增大,而且得到的回归方程的稳定性也很差, 直接影响了回归方程的应用。
随机误差项与解释变量之间不相关
i)=0
cov(xi, ξ
随机误差项的正态分布假定条件为
2 i ~ N (0, ) i 1,2,..., n 1 , 2 ,..., n相互独立
二、回归参数的估计
设 令
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无共线性 不存在一组不全为零的数 和 使得:
(7.1.8)
如果这一关系式存在,则说X2 和X3 是共线的或线性相关。
如果仅当
Evalu时a成ti立o,n则o说nXly2 .和X3 线性独立。
ted wit无h多A重s共p线o性se.Slides for .NET 3.5 Client Profile 5.2 C假和o设财p(富yr,7i.1g经.1h)济t中理2的论0Y设0、想4X-收22入和0和X13财1分富A别对s代消p表费o消s各费e有支独P出立ty、影收L响入t。d.
其观中 测CY。是当o因数p变y据r量为ig,时hX间t2 序和2列X030时是4,解-下释2标0变t1量将1,用Au来是s指p随第o机i次s干e观扰测P项。t,y而Lit指d第. i次
在上述方程中β1 是截距项,它代表X2 和X3 均为零时Y的均值,如通 常所说,它给出了所有未包含到模型中来的变量对Y的平均影响。系 数β2 和β3 称为偏回归系数(partial regression coefficients)。
换句C话o说p,yriβg2h给t出2保0持04X-3 2不0变1时1EA(sYp| oX2s,eXP3 )ty对LXt2d的. 斜率。
二、偏回归系数的OLS估计
1. OLS估计量
与(7.1.1)的 PRF相对应的样本回归函数如下:
OLS方法 是要选择未E知v参a数lu的a值ti,on使残o差n平ly方. 和RSS尽可能小,即: ted with Aspose.Slides for .NET 3.5 Client Profile 5.2
Copyright 2004-2011 Aspose Pty Ltd.
在上述公式中σ2 是总体干扰项 ui的方差。
可以证实, σ2 的一个无偏估计量是:
Evaluation only. ted w现it在h的A自s由p度o是se(.nS-3li)d,e这s 是fo因r为.N在估E计T 3.之5前C,li我e们n必t 须P先rofile 5.2
第七章 多元回归分析:估计问题
Evaluation only.
ted w◆i学th 习As目po的se.Slides for .NET 3.5 Client Profile 5.2 Copyright 2004-2011 Aspose Pty Ltd.
理解多元线性回归模型的表示,掌握 多元线性回归模型的参数估计。
Copyright 2004-2011 Aspose Pty Ltd.
将该式对三个未知数求偏导数,并令其为零,解得:
由上述正规方程组可以得到β1、β2 和β3 的OLS估计量:
Evaluation only. ted with Aspose.Slides for .NET 3.5 Client Profile 5.2
◆从多元回归的角度看简单回归 ◆R2及校正R2 ◆多项式回归模型Βιβλιοθήκη 第一节 对多元回归方程的解释
一、三变量模型:符号与假定
将双变量的总体回归模型推广,便可写出三变量PRF为:
Evaluation only. (7.1.1) ted with Aspose.Slides for .NET 3.5 Client Profile 5.2
时Y的平均值或Y的平均响应。
第二节 偏回归系数的含义与估计
一、偏回归系数的含义
前其面含指义出如下,:系数β2β度2 和E量βv着3a称在lu为Xa3偏t保i回o持n归不(op变nar的lyti情.al况r下eg,reXs2s每io变n)化系一数。 ted w单ith位A,sYp的o均s值eE.S(lYid| eX2s,fXo3r).N的E变T化。3.5 Client Profile 5.2
(7.2.1)
ted wit该h式A给s出p以o变se量.XS2 和lidXe3 的s固fo定r值.的N条E件T的3Y的.5条C件l均ie值n或t 期P望ro值f。ile 5.2
因C此,op如y同r双ig变h量t 情2形00那4样-,2多01元1回A归分sp析o是s以e多P个t解y释L变td量.的
固定值为条件的回归分析,并且我们所获取的,是给定回归元值
二、多元线性回归模型的基本假设
(1)ui 有零均值,或:
(7.1.2)
(2)无序列相关,或:
(7.1.3)
(3)同方差性E,v或a:luation only.
(7.1.4)
ted with Aspose.Slides for .NET 3.5 Client Profile 5.2
C(o4p)yurii与g每ht一2X0变0量4之-2间0都11有零A协sp方o差s,e或P:ty Ltd.
(5)无设定偏误,或:模型被正确地设定
(7.1.5) (7.1.6)
(6)X诸变量间无精确的共线性,或: X2 和X3 之间无精确的线性关系
(7.1.7)
假设(7.1.6)中 X2 和X3之间无精确的线性关系,称为无共线性 (no collinearity)或无多重共线性(no multicollinearity)。
Copyright 2004-2011 Aspose Pty Ltd.
小写字母表示对样本均值离差的惯例。
2.OLS估计量的方差和标准误
我们计算标准误有两个目的:建立置信区间和检验统计假设。
Evaluation only. ted with Aspose.Slides for .NET 3.5 Client Profile 5.2
第七章 多元回归分析:估计问题
◆对多元回归方程的解释
◆偏回归系数E的va含lu义at与ion估o计nly. ted with As◆p多os元e.判Sl定id系es数foRr2与.N复E相T 关3.系5 数ClRient Profile 5.2
Copyright 2004-2011 Aspose Pty Ltd.
若收入和财富之间有线性关系,则无从区分各自的影响了。
令
,则(7.1.1)变成:
给出的是X2 和X3 对Y的联合影响。没有办法
分别估计X2 的单独影响和X3 的单独影响。
三、对多元回归方程的解释
给定经典回归模型的诸假定,那么,在(7.1.1)的两边对Y求条 件期望得:
Evaluation only.