传热学》课程总复习
传热学复习要点
传热学 复习要点1-3节为导热部分1.导热理论基础 (分稳态导热和非稳态导热) (1)导热现象的物理本质及在不同介质中的传递特征.依靠分子,原子和自由电子等微观粒子热运动进行的热量传递.气体中为分子,金属中为电子,非导电固体和液体中为晶格(2)温度场的空间时间概念.表达式:t=f(x,y,z, τ)空间用x,y,z表示.时间用τ.稳态: 非稳态:(3)温度梯度的概念和表达式.定义: 两等温面温差 与其法线方向距离 的比值极限..表达式:(4)傅立叶定律的概念及其表达式.----导热基本定律定义:表达式:适用范围:只适用于各向同性的固体材料.(5)导热系数的定义,物理意义和影响因素.表达式:物理意义:表征物体导热能力的大小.影响因素:(6)物性参数为常数时的导热微分方程式在各种不同条件下的数学表达.导热微分方程---由傅立叶定律和热一律导出.导热微分方程表达式:无内热源:稳态温度场:无内热源且为稳态温度场:(7)导温系数的表达及其物理意义,与导热系数的区别.导温系数a定义: a=λ/cρ;物理意义:表示物体加热或冷却时,物体内部各部分温度趋于一致的能力.(8)导热过程单值性条件和数学表达.单值性条件包括4个:几何条件;物理条件;时间条件;边界条件;其中边界条件分3类:①第一类边界条件:已知边界面温度.②第二类边界条件:已知边界面热流密度..③第二类边界条件:已知边界面与周围流体间的表面传热系数及周围流体温度tf.牛顿冷却公式:2.稳态导热--t=f(x,y,z)(1)通过单层平壁,多层平壁和复合平壁的导热计算式及温度分布,热阻概念及其表达式和运用.A: 第一类边界条件: 在无内热源,常物性条件下1)单层平壁,高度h>>厚度δ,即为无限大平壁.因是一维导热,所以温度分布为线性分布.t=tw1-(tw1-tw2)x/δ;热流密度q=tw1-tw2/(δ/λ)=Δt/Rt.热阻Rt: Rt=Δt/q.2)多层平壁:温度分布为折线..B: 第三类边界条件: 厚度δ,无内热源,常物性单层平壁:q=(tf1-tf2)/(1/h1+δ/λ+1/h2)Rt=1/h1+δ/λ+1/h2多层平壁:q=(tf1-tf2)/(1/h1+δ/λ+1/h2)C: 复杂的平壁导热:(串连加并联)RA与RB串连: R=RA+RB;RA与RB并连: R=1/(1/RA+1/RB).D: 导热系数为t的函数: λ=λ0(1+bt)t=q=此时,温度分布为二次曲线.(2)通过单层圆筒壁和多层圆筒壁的导热及温度分布,热阻表达式和运用.工程上长度l>>厚度δ的称为圆筒壁导热.1)第一类边界条件:内径为r1,外径为r2单层: 边界条件:t=q=温度分布为曲线分布.多层:q=1)第三类边界条件:单层:多层:(3)临界热绝缘直径的物理概念和如何确定合理的绝热层厚度.当绝热层外径=dx时,总热组最小,散热量最大.这一直径称为临界~~Dx=dc=2λins/h2.说明:外径d2<dc时,热损失反而增大.外径d2>dc时,加绝热层才有效.(4)肋片的作用及温度分布曲线,肋片效率概念及影响因素,肋片散热量的计算式.---- 只讨论等截面直肋1)等截面直肋:肋高为l,肋厚为δ,肋片周边长度为U,导热系数为λ,l>>δ,可认为肋片温度只沿着高度方向变化.边界条件:2)过余温度:以周围介质tf为基准的温度.θ=t-tf.其中m=温度分布为一条余弦双曲函数,即沿x反向逐渐降低.肋端国余温度:3)肋片表面散热量:4)肋片效率:定义:在肋片表面平均温度tm下,肋片的实际散热量Φ与假定整个肋片表面都处在肋基温度to时的理想散热量Φo的比值.即:结论:①当m一定时,随着肋高增加, Φ先迅速增大然后逐渐趋于平缓.也即η先降低,肋高增加到一定程度时, Φ急剧降低.②ml大,肋端过于温度小,肋片表面tm小,效率低.所以应降低m提高效率.③λ与h都给定时,m随U/A降低而减小.变截面肋片效率高.(5)接触热阻的形成和表达式.两固体直接接触,因接触面不绝对平整,会产生接触热阻.定义式:减小接触热阻的措施:改善接触面粗糙镀;提高接触面挤压压力;减小表面硬度;接触面上涂油.3.非稳态导热 (分瞬态导热和周期性导热)两个重要准则:Fo准则和Bi准则.Bi=(δ/λ):(1/h)Fo=aτ/δ2(1)瞬态导热过程及周期性不稳态导热过程的特点.前者物理量瞬间变化.后者物理量周期性变化.(2)Fo准则的表达式及物理意义,当Fo>0.2时,无限大平壁内的温度变化规律.傅立叶准则:Fo=aτ/δ2物理意义:表征不稳态导热过程的无因次时间. Fo>0.2为临界值.无限大平壁:在进行到F o>0.2的时间起,物体中任何给定地点的过余温度的对数值将随时间按线性规律变化.(3)Bi准则的表达式及物理意义, Bi准则对无限大平壁内温度分布的影响.毕渥准则Bi=(δ/λ):(1/h)物理意义:表征物体内部导热热阻与表面对流换热热阻之比.它的值越小,内部温度越趋于均匀一致.Bi<0.1可近似认为,物体温度是均匀一致的.(4)运用集总参数法的条件及温度计算式.集总参数法的条件:对于平板,圆柱,球体,温度计算式:V为体积,A为表面积,初始温度θ=to-tf.地下建筑的预热:5-7节为对流换热部分5.对流换热分析 (对流换热=导热+热对流)(1) 对流换热过程的特征及基本计算公式.定义:流体因外部原因(强迫对流)或内部原因(自然对流)而流动并与物体表面接触时发生的热量传递.特征:①导热与热对流同时存在的复杂热传递过程② 必须有直接接触(流体与壁面)和宏观运动;也必须有温差③ 由于流体的粘性和受壁面摩擦阻力的影响,紧贴壁面处会形成速度梯度很大的边界层基本计算公式:---牛顿冷却公式:q=h(tw-tf)(2)影响对流换热的因素.影响因素:①流动的起因(强迫对流或自然对流);②流动状态(层流或紊流);③有无相变;④换热表面几何因素;⑤流体的物理性质。
传热学复习资料(全)
传热学复习资料(全)0.2.1、导热(热传导) 1 、概念定义:物体各部分之间不发⽣相对位移或不同物体直接接触时,依靠分⼦、原⼦及⾃由电⼦等微观粒⼦的热运动⽽产⽣的热量传递称导热。
如:固体与固体之间及固体内部的热量传递。
3、导热的基本规1 )傅⽴叶定律 1822 年,法国数学家如图所⽰的两个表⾯分别维持均匀恒定温度的平板,是个⼀维导热问题。
考察x ⽅向上任意⼀个厚度为dx 的微元层律根据傅⾥叶定律,单位时间内通过该层的热流量与温度变化率及平板⾯积A 成正⽐,即式中是⽐例系数,称为热导率,⼜称导热系数,负号表⽰热量传递的⽅向与温度升⾼的⽅向式中是⽐例系数,称为热导率,⼜称导热系数,负号表⽰热量传递的⽅向与温度升⾼的⽅向相反式中是⽐例系数,称为热导率,⼜称导热系数,负号表⽰热量传递的⽅向与温度升⾼的⽅向相反。
2 )热流量单位时间内通过某⼀给定⾯积的热量称为热流量,记为,单位 w 。
3 )热流密度单位时间内通过单位⾯积的热量称为热流密度,记为 q ,单位 w/ ㎡。
当物体的温度仅在 x ⽅向发⽣变化时,按傅⽴叶定律,热流密度的表达式为:说明:傅⽴叶定律⼜称导热基本定律,式(1-1)、(1-2)是⼀维稳态导热时傅⽴叶定律的数学表达式。
通过分析可知:(1)当温度 t 沿 x ⽅向增加时,>0⽽ q <0,说明此时热量沿 x 减⼩的⽅向传递;(2)反之,当 <0 时, q > 0 ,说明热量沿 x 增加的⽅向传递。
4 )导热系数λ表征材料导热性能优劣的参数,是⼀种物性参数,单位: w/(m ·℃ )。
不同材料的导热系数值不同,即使同⼀种材料导热系数值与温度等因素有关。
5) ⼀维稳态导热及其导热热阻如图1-3所⽰,稳态 ? q = const ,于是积分Fourier 定律有:dxdt Aλ-=Φ⽓体液体⾮⾦属固体⾦属λλλλ>>>导热热阻,K/W 单位⾯积导热热阻,m2· K/W 0.2.2、热对流1 、基本概念1) 热对流:流体中(⽓体或液体)温度不同的各部分之间,由于发⽣相对的宏观运动⽽把热量由⼀处传递到另⼀处的现象。
传热学知识点复习
传热学知识点复习传热学是研究热能传递和转换的一门学科,它是物理学和工程学中的重要分支之一、在现代科技的发展过程中,传热学的理论和应用广泛应用于能源利用、材料制备、环境保护等领域。
以下是一些传热学中的重要知识点的复习:1.热传导:热传导是通过固体、液体和气体中分子振动、传导和碰撞传递热能的过程。
根据傅里叶定律,热传导率与传导物质的热导率、温度梯度和传导方向有关。
2.辐射传热:辐射传热是通过热辐射传递热能的一种方式,不需要介质来传递。
根据斯特藩-玻尔兹曼定律,辐射传热率与温度的四次方和传热面的辐射特性有关。
3.对流传热:对流传热是通过流体的流动传递热能的方式。
传热率与温度差、流体性质和流体速度有关。
对流传热可以分为自然对流和强制对流两种情况。
4.传热方程:传热学中常用的传热方程有导热方程、辐射传热方程和对流传热方程。
这些方程描述了物体内部或表面的能量传递情况,可以用于计算传热速率和表面温度分布。
5.传热换热器:换热器是用于传热过程的装置,通常由多个传热表面和流体通道组成。
常见的换热器类型有壳管式换热器、板式换热器和空气冷却器等。
换热器设计的目标是提高传热效率并降低压降。
6.热工性能参数:热工性能参数用于描述物体或系统的传热性能。
常见的参数包括热导率、传热系数、热阻和热容等。
这些参数可以帮助我们了解材料的导热性能和设备的传热性能。
7.传热过程的计算:在实际工程中,需要对传热过程进行计算和优化。
常见的计算方法包括传热传质计算、数值模拟和实验测量等。
通过这些方法,可以确定传热率、温度分布和传热表面的热负荷。
8.热传导的管道系统:管道系统中的热传导问题是很常见的工程问题。
在管道系统中,多个管道之间的传热会影响系统的热平衡。
对于管道系统的传热计算,需要考虑传热介质的热导率、流动状态和管道的几何结构。
9.热辐射的应用:热辐射在许多应用中都起到重要的作用。
例如,在太阳能光伏电池中,辐射传热是将太阳能转化为电能的过程。
传热学复习资料
一、名词解释1、导热系数:2、集总参数法:3、肋效率:4、膜状凝结:5、传热系数:6、热对流:7、珠状凝结:8、有效辐射: 二、简答题1、试用传热学术语说明导热问题常见的三类边界条件。
2、在寒冷的北方地区,建房用砖采用实心砖还是多孔的空心砖好?为什么?3、简述毕渥数的物理意义,0→Bi 及∞→Bi 各代表什么样的换热条件?4、P r 数的物理意义是什么?试比较P r <1、P r >1和P r =1时,速度边界层与温度边界层厚度的相对大小。
5、热扩散系数是表征什么的物理量?它与导热系数的区别是什么?6、空气横掠垂直管束时,沿流动方向管排数越多,换热越强,而蒸汽在水平管束外凝结时,沿液膜流动方向管排数越多,换热强度降低,为什么?7、分别写出N u 、R e 、B i 数学表达式,并说明其物理意义。
8、试从管内强制对流换热的实验关联式4.08.0Pr Re 023.0=Nu 出发,分析强化对流换热的有效措施。
三、计算1、有一厚为20mm 的大平壁,导热系数为1.3W/(m ·K)。
为使每平方米壁面的热损失不超过1500W ,在外表面上覆盖了一层导热系数为0.12W/(m ·K)的保温材料。
已知复合壁两侧温度分别为700℃及50℃,试确定此时保温层的厚度。
2、用热线风速仪测定气流速度的试验中,将直径为0.1mm 的电热丝与来流方向垂直放置,来流温度为25℃,电热丝温度为55℃,测得电加热功率为20W/m 。
假定除对流外其它热损失可忽略不计。
试确定此时的来流速度。
(15分) 已知空气的物性参数:温度25t =℃时,0.0263λ= W/(m ·K),615.5310v -=⨯m 2/s ,Pr 0.702= 温度40t =℃时,0.0276λ= W/(m ·K),616.9610v -=⨯m 2/s ,Pr 0.699= 温度55t =℃时,0.0287λ= W/(m ·K),618.4610v -=⨯m 2/s ,Pr 0.697= 已知关联式:13Re Pr n Nu C =,其中C 和n 的值从下表中查取:Re C n 0.4~4 0.989 0.330 4~40 0.911 0.385 40~4000 0.683 0.466 4000~400000.1930.61840000~400000 0.0266 0.8053、用裸露的热电偶测定圆管中气流的温度,热电偶的指示值1170t =℃,已知管壁温度90w t =℃,气流对热接点的对流传热表面传热系数为50h =W/(m 2·K),热接点表面的发射率0.6ε=。
传热学复习
第一章绪论1、热流量(heat transfer rate)单位时间内通过某一给定面积的热量2、热流密度(heat flux ):通过单位面积的热流量。
3、热对流(heat convection):流体的宏观运动引起的流体各部分之间的相对位移,冷热流体相互渗透导致的热量传递过程。
4、对流传热(convective heat transfe):流体流过一个物体表面时流体与物体表面间的热量传递过程。
自然对流(natural convection):流体冷热部分的密度不同引起。
强制对流(forced convection):流体的流动是由于水泵风机或其他压差作用热辐射(thermal radiation):因热的原因发出辐射能辐射传热(radiation heat transfer是指物体辐射与吸收过程的综合结果。
黑体Black body:能吸收投入到其表面上的所有热辐射能量的物体。
10、传热过程overall heat transfer process:)是热量在被壁面隔开的两种流体之间的热量传递过程。
11、传热系数k(overall heat transfer coefficient)12、牛顿冷却公式h=表面传热系数convection heat-transfer eoeffieient, W/m2・°Celectromag netic radiati on 电磁辐射vacuum 真空con versi on 转换斯忒藩-玻耳兹曼定律Stefan-Boltzmann Law Stefa n-Boltzma nn con stant£ - emissivity 发射率(黑度) Stefa n-Boltzma nn con sta nt_8 2 4 - 5.67 10 W/m K稳态传热steady-state heat transfer热阻Thermal resista nee第二章稳态热传导Steady-state heat con duct ion1、温度场Temperature field绝热材料Heat insulating materials2、热扩散率thermal diffusivity , m2/s3、边界条件Boundary Conditions4、一维稳态导热One-dimensional steady state heat conduction5、单层平壁Single plane wall So:(t2 "t i)6单层圆筒壁t 2=t i-q「'i十?n^ln(r/r i)R =ln( J rj _ ln( d? d i) 一2- - l5、6、7、8 过余温度 excess temperature 日 =t _ t^九A ce总 ch[m(H - x)] 0ch (m H )18 "°ch(mH)(atX —H )7 肋片 Fin --- extended surface on circular tube or plane wall 依附于基础表面的扩展 表面 矩形的rectangular2 hP①=XAd6dxhP= ---- 日 0th (m H )」m9肋效率Fin efficiency :实际散热量:假设整个肋表面处于肋基温度下得散热量第三章 非稳态导热Un steady heat co nduction 温度随时间变化的导热1正规状况阶段regular regime 不受初始温度的影响 Initial condition 初始条件 Boundary condition 边界条件 2 毕渥数 Biot Number h 心; R Bi = ---- = —— = —z九 仃h R h3、 集中参数法 Lumped-heat-capacity method4、 傅里叶数 Fourier number 指数曲线 exponential curve 时间常数 time constant5、 热电偶thermocouple 适用性,适用范围 即plicability 特征长度 characteristiclen gth丄 丄一a (V/A)2t - J _e-[hA/FcVkFot ° - t ::时间常数:When . - :?cV/ hABi =— -0.16 海斯勒图 Heisler Charts Fo>0.27、 离散方程 discretization equation 内节点 inner grid points 8、 热平衡法 Thermal balanee method9、- 0ewns■日-r = exp 「BV F O V )-0 t -tot t• Im4,n m,ny x△ x=巴. 次人门1-t mn :吕!匸!mn =0xyyJJ1 J a・r —f1 *--1 -m ,n -im’nr 1 Im-1,nm+1,n2・t1 (2 t t2 xcwX n 、0【mn = ;(2tm」,n +°门屮 +[mnj + 十丿=U4丸 k夕卜部角点 the exterior corner node2・t=l(t= +t + Xfn + 24 xqim,nm -1,nm,n -122九 人内部角点 the interior corner node第五章对流传热1、强制对流 forced convection 自然对流 natural/free convection 相变 phase change 层流 laminar 湍流 turbulent 管束 tube banks 竖向的 vertical 水平的 horizontal 局部表面传热系数 local convective heat transfer coefficient 粘性 viscous 质量流量 mass flow 焓 enthalpy 动量 momentum2流动边界层Flow boundary layer :流体的速度随着离开壁面距离的增加急剧增 加,经过一个薄层后速度增长接近主流速度。
传热学-总复习
积分法
(2)角系数性质 相对性(互换性): (9-3) 完整性: 分解性: (9-5) (9-17)
湘 潭 大
学
(3)两表面封闭体系的辐射换热量 一般式: (9-8) 几种特殊情况的简化式: (a) X1-2=1时: (9-10)
(b)X1-2=X2-1=1 时: (9-9)
(5) 分析:各种情况下非稳态温度分布的定性描述。
湘 潭 大
学
三、对流与相变换热
1、基本概念 流动边界层(层流、紊流、层流底层),温度边界层,Pr、 Re、Gr、Nu的物理概念、数量级,定性温度,定型尺寸,同类 现象,受迫对流、自然对流、当量直径,膜状凝结,珠状凝结, 过冷沸腾,饱和沸腾,泡态沸腾,膜状沸腾,沸腾换热临界热流 密度,烧毁点,大容器沸腾换热曲线。
湘 潭 大
学
2、理论 普朗克定律: 维恩位移定律: (8-11) (8-12)
斯蒂芬-玻尔兹曼定律(四次方定律): (8-13)和(8-14) 兰贝特定律: (8-17) (8-25)
基尔霍夫定律:
湘 潭 大
学
3、辐射换热计算 (1) 角系数 代数法: (a) 一个方向无限长封闭三凸面
(b) 一个方向无限长任意两凸面
湘 潭 大
学
2、 理论 (1)对流换热的数学描写 动量方程(2个): (5-4a)和(5-4b) 能量方程: (5-5a)和(5-5b) 连续性方程: (5-3) 换热方程: (5-2a)和(5-2b) 边界条件: (2)边界层微分方程组及其求解: (5-2)、 (5-3)、(5-12)和(5-11) (3)边界层积分方程组及其求解:(5-18)和(5-28) (4)雷诺类比:(5-39)和(5-40) (5)相似原理:
传热学总复习试题及答案【第五版】【精】【_必备】
总复习题基本概念 :•薄材 : 在加热或冷却过程中 , 若物体内温度分布均匀 , 在任意时刻都可用一个温度来代表整个物体的温度 , 则该物体称为 ----.•传热 : 由热力学第二定律 , 凡是有温差的地方 , 就有热量自发地从高温物体向低温物体转移 , 这种由于温差引起的热量转移过程统称为 ------.•导热 : 是指物体内不同温度的各部分之间或不同温度的物体相接触时 , 发生的热量传输的现象 .•对流 : 指物体各部分之间发生相对位移而引起的热量传输现象 .•对流换热 : 指流体流过与其温度不同的物体表面时 , 流体与固体表面之间发生的热量交换过程称为 ------.•强制对流 : 由于外力作用或其它压差作用而引起的流动 .•自然对流 : 由于流体各部分温度不同 , 致使各部分密度不同引起的流动 .•流动边界层 : 当具有粘性的流体流过壁面时 , 由于粘滞力的作用 , 壁面附近形成一流体薄层 , 在这一层中流体的速度迅速下降为零 , 而在这一流层外 , 流体的速度基本达到主流速度 . 这一流体层即为 -----.•温度边界层 : 当具有粘性的流体流过壁面时 , 会在壁面附近形成一流体薄层 , 在这一层中流体的温度迅速变化 , 而在这一流层外 , 流体的温度基本达到主流温度 . 这一流体层即为 -----.•热辐射 : 物体由于本身温度而依靠表面发射电磁波而传递热量的过程称为 ------.•辐射力 : 物体在单位时间内 , 由单位表面积向半球空间发射的全部波长的辐射能的总量 .•单色辐射力 : 物体在单位时间内 , 由单位表面积向半球空间发射的波长在λ -- λ +d λ范围内的辐射能量 .•立体角 : 是一个空间角度 , 它是以立体角的角端为中心 , 作一半径为 r 的半球 , 将半球表面上被立体角切割的面积与半径平方 r 2 的比值作为 ------ 的大小 .•定向辐射强度 : 单位时间内 , 在单位可见面积 , 单位立体角内发射的全部波长的辐射能量称为 ----.•传质 : 在含有两种或两种以上组分的流体内部 , 如果有浓度梯度存在 , 则每一种组分都有向低浓度方向转移 , 以减弱这种浓度不均匀的趋势 . 物质由高浓度向低浓度方转移过程称为 ----.•分子扩散传质 : 静止的流体中或在垂直于浓度梯度方向作层流流动的流体中的传质 , 有微观分子运动所引起 , 称为 ----.•对流流动传质 : 在流体中由于对流掺混引起的质量传输 .•有效辐射 : 单位时间内 , 离开所研究物体单位表面积的总辐射能 .•灰体 : 单色吸收率 , 单色黑度与波长无关的物体 .•角系数 : 有表面 1 投射到表面 2 的辐射能量 Q 1 → 2 占离开表面 1 的总能量 Q 1 的份数 , 称为表面 1 对表面 2 的角系数 .•辐射换热 : 物体之间通过相互辐射和吸收辐射能而产生的热量交换过程 .填空题 :•当辐射投射到固液表面是表面辐射,投射到气体表面是 ---------- 辐射。
9传热学-总复习
Φ
2
rlq
tw1 ln( r2
tw2 r1 )
tw1 tw2 R
W
2 l
Φ tw1 tw(n1)
n
i1
1
2i
L
ln
ri1 ri
ql
tw1 tw(n1)
n
i1
1
2i
ln
ri1 ri
W W m
x2 dx t2 (t)dt
x1 A(x)
t1
求解变截面变 导热系数的通
式
e e m(Hx)
(1) 通过炉墙的热流密度; (2) 两层接触面的温度。
解:根据题意以及已知条件有
q
tw1 tw3
1 2
700 0.2
900 0.2
732 .3
1 2 0.6 0.4
W/m2
q
tw1 tw2
1
1
tw2
t w1
q 1 1
700
732 .3
0.2 0.6
456
℃
在涉及热传导和热对流的传热过程中,热阻是一个
(2)非稳态导热过程中导热体自身参与吸热(或放热),即 导热体有储热现象,所以即使对通过平壁的非稳态导热来说, 在与热流方向相垂直的不同截面上的热流量也是处处不等的, 而在一维稳态导热中通过各层的热流量是相等的。
(3)非稳态导热过程中的温度梯度及两侧壁温差远大于稳态 导热。
两个不同的阶段: 非正规状况阶段:初始温度 正规状况阶段:边界条件及物性参数
温度梯度:等温面法线方向的温度变化率矢量
热导率数值上等于在单位温度梯度作用下物体内所产生的 热流密度矢量的模
保温材料:国家标准规定,温度低于350摄氏度时热导 率小于0.12W/(mK) 的材料(绝热材料)
《热力学与传热学》课程综合复习资料
《热力学与传热学》课程综合复习资料一、判断题:1、理想气体吸热后,温度一定升高。
2、对于顺流换热器,冷流体的出口温度可以大于热流体的出口温度。
3、工程上常用的空气的导热系数随温度的升高而降低。
4、工质进行膨胀时必须对工质加热。
5、工质的熵增就意味着工质经历一个吸热过程。
6、已知湿蒸汽的压力和温度,就可以确定其状态。
7、同一温度场中两条等温线可以相交。
二、简答题:1、夏天,有两个完全相同的储存液态氮的容器放置在一起,一个表面上已结霜,另一个没有。
请问哪一个容器的隔热性能更好?为什么?2、有人将一碗热稀饭置于一盆凉水中进行冷却。
为使稀饭凉的更快一些,你认为他应该搅拌碗中的稀饭还是盆中的凉水?为什么?3、一卡诺热机工作于500 ℃和200 ℃的两个恒温热源之间。
已知该卡诺热机每秒中从高温热源吸收100 kJ,求该卡诺热机的热效率及输出功率。
4、辐射换热与对流换热、导热相比,有什么特点?hl的形式,二者有何区别?5、Nu数和Bi数均可写成λ三、计算题:1、将氧气压送到容积为2m3的储气罐内,初始时表压力为0.3bar,终态时表压力为3bar,温度由t1=45℃升高到t2=80℃。
试求压入的氧气质量。
当地大气压为P b=760mmHg,氧气R g=260J/(kg⋅K)。
2、2kg温度为25 ℃,压力为2 bar的空气经过一个可逆定压过程后,温度升为200 ℃。
已知空气的比定压热容c p=1.0 kJ/(kg⋅K),比定容热容c V=0.71 kJ/(kg⋅K)。
试计算:(1)该过程的膨胀功;(2)过程热量。
3、流体受迫地流过一根内直径为25 mm的直长管,实验测得管内壁面温度为120℃,流体平均温度为60 ℃,流体与管壁间的对流换热系数为350 W/(m2⋅K)。
试计算单位管长上流体与管壁间的换热量。
4、在一根外直径为120mm的蒸汽管道外包一厚度为25mm的石棉保温层,保温层的导热系数为0.10 W/(m⋅K)。
传热学总复习
一、热量传递的三种基本方式--导热、对流、热辐射: 1、概念:1)基本概念:ⅰ)、导热的概念:物体各部分之间不发生相对位移,依靠分子、原子及自由电子等微观粒子的热运动而产生的热量传递。
ⅱ)、对流的概念:指由于流体的宏观运动,从而流体各部分之间发生相对位移、冷热流体相互掺混所引起的热量传递过程 ⅲ)、热辐射:物体因热的原因发出辐射能的现象2)、传热的机理:ⅰ)导热依靠微观粒子的热运动:分子、原子的相互碰撞、晶格的振动等ⅱ)对流依靠流动的宏观运动:流体的相互位移或掺混ⅲ)热辐射:发射电磁波 2、热量传递的三个基本公式 1)导热的傅里叶定律(一维):Φ-热流量(单位时间通过某一给定面积的热量),单位W q —单位时间内通过单位面积的热流量,单位W/m2 2) 对流换热的牛顿冷却定律: Ⅰ、对流换热:对流伴随有导热的现象 Ⅱ、牛顿冷却定律流体被加热时: 流体被冷却时: h —表面传热系数,与过程有关。
单位W/m2.K 3、热辐射(斯忒藩-玻尔兹曼定律): (σ-斯忒藩-玻尔兹曼常量(黑体辐射常数)σ=5.67×10-8 W/(m2.K4) 实际物体热辐射量: 二、传热过程:1、 传热过程的概念:热量由壁面一侧的流体通过壁面传到另一侧流体中去的过程。
2、传热过程热流量的计算:3、传热系数(单位W/m2.K):三、热阻:串联环节的总热阻等于各分热阻之和,且稳态时, 各环节的热流量相等。
第二章 导热基本定律及稳态导热一、温度场、等温面、等温线、温度梯度的意义等温线的特点:物体中的任一条等温线要么形成一个封闭的曲线,要么终止在物体表面上,而不会与另一条等温线相交。
温度梯度:空间某点的温度的变化率。
二、导热的基本定律、意义 1)(1dxdt λAΦ--=dxdt A q λ-=Φ=t Ah t t Ah f w ∆=-=Φ)(t Ah t t Ah w f ∆=-=Φ)(4T A σ=Φ4T A σε=ΦtAk h h t t A f f ∆=++-=Φ212111λδ21111h h k ++=λδ2121222*********Ah A Ah t t Ah t t A t t Ah t t f f f w w w w f ++-=-=-=-=Φλδλδn nt gradt ∂∂=∂t1、导热基本定律(傅里叶定律):2、傅里叶定律的意义:揭示了连续温度场内每一点的温度梯度与热流量间的联系。
传热学-总复习
T∞
λ 从热量传递的环节分析, ↑⇒ 内部有效导热热阻 ↓⇒ Q ↑
计算题类型
一维稳定导热的理论分析 ★ 无限大平壁/无限长圆筒壁 数学模型(方程/边界条件) 求解过程 变截面锥台 热阻分析法 例题2-1, 2-2,2-5,2-6,2-8,2-10
第三章 非稳态导热
1、非稳态导热的基本概念
集总热容系统的温度变化曲线
1.0
θ θ0
0.8 0.6 0.4 0.2 1 2 3 4
τ τr
一般地,经过4个时间常数,
θ0
τ θ = e τ r = e − 4 = 0.018
−
计算题类型
集总参数法
θ =e θ0
hA − τ ρcV
=e
h (V / A) λ τ − λ ρc (V / A) 2
4、临界热绝缘直径 ★
问题的提出 P42 热阻分析
dx 1 1 d2 1 1 Rl = + ln + ln + h1πd1 2πλ d1 2πλins d2 h2πdx
热阻极值的确定/极小值的判据
dRl 1 1 1 = − =0 2 dd x 2πλins d x h2πd x
临界绝热直径的工程应用意义
思考 ☺
常物性流体在热充分发展段:h = const 对于常物性流体的管内流动换热,定性分析在 恒热流和恒壁温两种壁面加热条件下,沿程壁面温 度和流体截面平均温度的趋势。
计算题类型
根据准则关联式 定性温度 定型尺寸 特征速度 根据相似理论 例题 5-2,5-3, 5-4,5-7
第六章 有相变的对流换热
= e − BiFo
注意:在集总参数法中,毕渥数中的特征尺寸 判断或验证Bi是否满足集总参数法判据 例题3-1, 3-2,3-3,3-6
传热学复习资料
传热学复习资料第一章概论一、名词解释热流量是单位时间内传递的热量,热流密度是单位传热面上的热流量。
导热是指物体内部温度差或不同温度物体接触时,物质微粒的热运动传递热量的现象。
对流传热是流体通过固体壁的热传递过程,包括表面对流传热和导热。
辐射传热是物体向周围空间发出和接收热辐射能的过程。
总传热过程是指热量从温度较高的流体经过固体壁传递给另一侧温度较低流体的过程。
对流传热系数、辐射传热系数和复合传热系数分别表示对流传热能力、辐射传热能力和复合传热能力的大小。
总传热系数表示总传热过程中热量传递能力的大小。
二、填空题1.热量传递的三种基本方式为热传导、热对流、热辐射。
2.热流量是指单位时间内传递的热量,单位为W;热流密度是指单位传热面上的热流量,单位为W/m2.3.总传热过程是指热量从温度较高的流体经过固体壁传递给另一侧温度较低流体的过程,总传热系数表示它的强烈程度。
4.总传热系数是指传热温差为1K时,单位传热面积在单位时间内的传热量,单位为W/(m2·K)。
5.导热系数的单位是W/(m·K),对流传热系数的单位是W/(m2·K),传热系数的单位是W/(m2·K)。
6.复合传热是指复合传热系数等于对流传热系数和辐射传热系数之和,单位为W/(m2·K)。
7.单位面积热阻rt的单位是K/W,总面积热阻Rt的单位是m2·K/W。
8.单位面积的导热热阻可以表示为m2·K/W或K/W。
9.单位面积的对流传热热阻可以表示为1/h。
10.总传热系数K与单位面积传热热阻rt的关系为rt=1/K。
11.总传热系数K与总面积A的传热热阻Rt的关系为Rt=1/KA。
12.稳态传热过程是指物体中各点温度不随时间而改变的热量传递过程。
13.非稳态传热过程是指物体中各点温度随时间而改变的热量传递过程。
14.某燃煤电站过热器中,烟气向管壁传热的辐射传热系数为30W/(m2·K),对流传热系数为270W/(m·K),其复合传热系数为100 W/(m2·K)。
传热学总复习提纲
第七章 凝结与沸腾换热
理解膜状凝结和珠状凝结的概念,了解各自形 成的原因,两者一般哪个的对流换热系数大?
大空间沸腾常可分为过冷沸腾和饱和沸腾。其 中饱和沸腾有哪三种基本沸腾状态?
理解饱和沸腾过程与沸腾温差间的关系。
何为“烧毁点”现象。
第八章 热辐射的基本定律
热辐射与导热、对流换热相比较有何特点? 热辐射与其它电磁辐射有何区别? 理解黑体、白体、透明体、灰体的概念。 掌握辐射强度、单色辐射强度、辐射力、单色辐 射力、定向辐射力的定义和概念,并能准确指出 它们间的区别和联系。 熟记斯蒂芬-玻尔兹曼定律的表达式,注意其适用 范围。 理解兰贝特定律、基尔霍夫定律。 理解发射率、单色发射率、吸收率、单色吸收率 的定义过程。能指出它们间的区别和联系。
第六章 单相流体对流换热及准则关联式
管内受迫流动换热其流动和换热各可分成哪两段,每段有 何特点。 热进口段与流动进口段长度是否一定相等?如不相等,其 下列情况下两者关系如何?为什么?①Pr=1②Pr>1③Pr<1。 理解物性场(主要是粘度)不均匀对对流换热的影响。 定性了解各状态参数、物性参数和几何参数对h的影响。 能用适当的准则方程式计算对流换热系数。 顺排管与叉排管在其它条件相同时哪个对流换热系数大? 为什么? 注意各准则方程式的适用范围、定性温度、定型尺寸。 为什么各实验准则方程式均有一定的适用范围。
第十章 传热和换热器
能进行复合换热的传热计算。 掌握增强或削弱传热的基本途径。 掌握肋壁总效率的定义式和物理意义。能指出其与肋片效 率的区别和联系。 工程中采用肋片增强传热时,一般将肋片加在哪一侧?为 什么? 有时工程中也有将肋片加在h大的一侧,其目的何在? 熟记并理解对数平均温压的表达式。 为什么其它条件相同时,逆流平均温差比顺流大? 换热器的热工计算一般有哪两种类型,哪两种方法? 掌握效能及传热单元数的定义和物理意义。 LMTD法与-NTU法各适合哪种热工计算?为什么?
传热学知识点复习
传热学知识点复习传热学是研究热量的传递和热工过程的科学。
它涉及到热传递的基本机理,如热传导、对流和辐射,以及它们在工程中的应用。
下面是传热学的一些知识点复习。
1.热传导热传导是物质内部热量传递的一种方式。
它是由于粒子在物体内部的自由运动引起的。
热传导的速率与温度梯度成正比,与物体的导热性能成反比。
传热方程可以用傅里叶定律表示为q = -kA (dT/dx),其中q是传热速率,k是导热系数,A是传热面积,dT/dx是温度梯度。
2.对流传热对流传热是物质与流体之间热量传递的一种方式。
它是由于流体内部的热量运动引起的。
对流传热可以分为自然对流和强制对流两种。
自然对流是由于温度差异引起的自发热对流,强制对流是通过外部力或设备引起的流体运动。
对流传热的速率与温度差、流体速度和流体性质有关。
3.辐射传热辐射传热是由于物体之间的热辐射引起的热量传递。
辐射传热不需要介质来传递热量,并且可以发生在真空中。
辐射传热的速率与物体的温度的四次方成正比,与表面特性和相互关系有关。
4.热传导方程热传导方程描述了热传导过程中温度分布随时间和空间变化的关系。
一维热传导方程可以表示为dT/dt = α(d²T/dx²),其中T是温度,t是时间,x是空间位置,α是热扩散系数。
该方程可以用于分析稳态和非稳态的热传导过程。
5.热传导的边界条件热传导问题需要确定边界条件,以求解热传导方程。
常见的边界条件有第一类边界条件(指定温度或热流密度),第二类边界条件(指定热流量),和第三类边界条件(指定混合边界条件)。
6.热传导的导热性能导热性能是一个物体传导热量的能力。
导热性能由物体的导热系数、物体的尺寸、物体的形状和物体的材料性质决定。
导热系数是一个材料导热能力的度量,它取决于物质的热导率、密度和比热容。
7.传热器件和传热设备传热器件和传热设备是应用传热学原理进行热量传递的装置。
常见的传热器件有换热器、冷凝器、蒸发器、加热器等。
传热学》课程总复习 2
传热学》课程总复习 2
傅里叶定律
温度场概念
温度梯度 金属
导热系数
非金属
液体
气体
导热微分方程
直角坐标系
导温系数
柱坐标系
传热学》课程总复习 2
傅里叶导热定律 一维平板稳态导热 一维圆筒稳态导热 多层计算(第一类、第三类边界条件) 变截面、变导热系数 肋片的数学描述 集总参数法
传热学》课程总复习 2
与热阻网络计算法) 遮热罩的应用计算
传热学》课程总复习 2
传热系数; 热阻 临界热绝缘直径 换热器的种类 顺流与逆流温度分布特点 对数平均温差 增强换热的途径
传热学》课程总复习 2
传热学》课程总复习 2
问题的归类,示意图,数学模型(守恒方程,本构方 程)
热计算热电比拟思想及各种热阻表达形式 准则数的定义及物理意义 换热强化的原则及具体措施
传热学》课程总复习 2
影响导热系数(热导率)的因素和规律 导热微分方程及各项物理意义 导温系数(热扩散系数) 肋片(伸展体) Bi、Fo 初始状况,正规状况 集总参数法、时间常数
不要求背记经验公式,但应熟练、正确、灵活地使用
传热学》课程总复习 2
吸收、反射和透射; 黑体与灰体; 普兰克定律; 兰贝特定律; 斯蒂芬-波尔兹曼定律 基尔霍夫定律; 气体辐射特性、贝尔定律; 实际物体的黑度、辐射力与吸收率;
传热学》课程总复习 2
维恩位移定律; 斯蒂芬闭系统(辐射换热净热量法
Re、Gr、Nu、Pr 动量微分方程、能量微分方程各项物理意义; 速度(流动)边界层、温度(热)边界层及其相互关系; 表面传热系数的物理意义; 相似理论 相似分析法 沸腾曲线、临界热负荷(对控制热流、控制温度加热方
导热部分总复习
v 由傅里叶定律: q -g r a d t [ W m 2 ]可知,
确定热流密度的大小,首先应知道物体内的温度场:
tf(x, y, z, )
2、导热微分方程式
v 理论基础:傅里叶定律 + 热力学第一定律
c t x( x t) y( y t) z( z t) q v
分析:严格地说,肋片中的温度场是三维、稳态、无内热源、 常物性、第三类边界条件导热问题。但由于三维问题比较复杂, 故在忽略次要因素的基础上,将问题简化为一维问题。
导热微分方程:
d2t dx2
hP(t
Ac
t)0
非齐次
引入过余温度 tt,令 m
hP const
Ac
导热问题完整的数学描写:
则有齐次方程:
grat dlim tntn n 0n n
gradtti t jtk x y z
v 热流密度:单位时间、单位面积上所传递的热量; v 不同方向上的热流密度的大小不同。 q W m2
热导率:物体中单位温度梯度、单位时间、通过单位 面积的导热量。
q
-grad t
热导率的数值表征物质导热能力大小。实验测定
Ø进行计算机编程计算获得结果。
y
x
实验解法 Experimental methods
Ø常需要付出较多的人力、物力和财力。对于有许多复杂 影响因素的物理现象,要找出众多变量之间的关系,实验 的次数必然十分庞大。
Ø为减少实验次数,必须在 相似原理的指导下进行实验。 使个别实验得出的结果上升 到代表整个相似组的地位。
当界面上的空隙中充满导热系数 远小于固体的气体时,接触热阻 的影响更突出;但有利于保温。
传热学复习资料终结篇
传热学复习资料终结篇1.试写出普朗克定律,兰贝格定律的数学表达式,并说明其物理意义及数学表达式中各符号的意义与单位。
答:(1)、普朗克定律:E bλ=C 1λ?5e C 2λT ?1;物理意义:单位时间内单位表⾯积向其上的半球空间的所有⽅向辐射出去的在包含波长λ在内的单位波长内的能量称为光谱辐射⼒,记为E b λ单位为W/(m 2×m )或W/(m 2×µm )E b λ----⿊体光谱辐射⼒,W/m 3;λ-----波长,m ;T------⿊体热⼒学温度,ke-----⾃然对数的底; C1---第⼀辐射常量,3.7419×10-16W ·m 2C2---第⼆辐射常量1.4388×10-2m ·k(2)、兰贝特定律:dΦ(θ)dAd Ωcos θ=I ;物理意义:⾯积为的dA 的⿊体微元⾯积内围绕空间结构⾓θ⽅向的微元⽴体⾓d Ω内辐射出去的能量为d Φ(θ);I---常数,与θ⽅向⽆关;d Φ(θ)--辐射出去的能量,WdAcos θ---可以视为从θ⽅向看过去的⾯积称为可见⾯积,m2d Ω----微元⽴体⾓,sr2.试阐述导热、对流传热及辐射传热三种传递⽅式之间的联系与区别?答:导热和对流的区别在于:物体内部依靠微观粒⼦的热运动⽽产⽣的热量传递现象,称为导热;对流则是流体各部分之间发⽣宏观相对位移及冷热流体的相互掺混。
联系是:在发⽣对流换热的同时必然伴⽣有导热。
导热、对流这两种热量传递⽅式,只有在物质存在的条件下才能实现,⽽辐射可以在真空中传播,辐射换热时不仅有能量的转移还伴有能量形式的转换。
3.试写出以热流密度表⽰的傅⾥叶定律、⽜顿冷却定律及斯忒藩-玻尔兹曼定律的数学表达式,并写出表达式中各符号的意义与单位。
答:①傅⾥叶定律:dxdt λ-=q ,其中,q--热流密度;λ--导热系数---表征材料导热能⼒的⼤⼩,是⼀种物理参数,与材料种类和温度有关;dx dt ---沿x ⽅向的温度变化率----表⽰热量传递的⽅向是沿着温度降低的⽅向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分 方法、计算、概念的重点
问题的归类,示意图,数学模型(守恒方程,本构方 程)
热计算热电比拟思想及各种热阻表达形式 准则数的定义及物理意义 换热强化的原则及具体措施
第二部分 导热概念
影响导热系数(热导率)的因素和规律 导热微分方程及各项物理意义 导温系数(热扩散系数) 肋片(伸展体) Bi、Fo 初始状况,正规状况 集总参数法、时间常数
Re、Gr、Nu、Pr 动量微分方程、能量微分方程各项物理意义; 速度(流动)边界层、温度(热)边界层及其相互关系; 表面传热系数的物理意义; 相似理论 相似分析法 沸腾曲线、临界热负荷(对控制热流、控制温度加热方
式的意义);
第五部分 对流换热计算
流体在管道内作强迫对流换热; 流体外绕壁面作强迫对流换热; 自然对流换热; 蒸汽膜状凝结换热; 核态沸腾区换热; 稳定模态沸腾区换热;
导热的基本理论
傅里叶定律
温度场概念
温度梯度 金属导热系数非金属 Nhomakorabea液体
气体
导热微分方程
直角坐标系
导温系数
柱坐标系
第三部分 导热问题数学描写与计算
傅里叶导热定律 一维平板稳态导热 一维圆筒稳态导热 多层计算(第一类、第三类边界条件) 变截面、变导热系数 肋片的数学描述 集总参数法
第四部分 对流换热概念
不要求背记经验公式,但应熟练、正确、灵活地使用
第六部分 辐射换热概念
吸收、反射和透射; 黑体与灰体; 普兰克定律; 兰贝特定律; 斯蒂芬-波尔兹曼定律 基尔霍夫定律; 气体辐射特性、贝尔定律; 实际物体的黑度、辐射力与吸收率;
第七部分 辐射换热计算
维恩位移定律; 斯蒂芬-波尔兹曼定律; 角系数计算; 两表面,三表面组成的封闭系统(辐射换热净热量法
与热阻网络计算法) 遮热罩的应用计算
第八部分 传热过程与换热器概念
传热系数; 热阻 临界热绝缘直径 换热器的种类 顺流与逆流温度分布特点 对数平均温差 增强换热的途径
第九部分 传热过程与换热器计算
热阻网络算法、热阻的并联与串联(应用于辐射换热 中与导热、对流的区别与联系)
平均温差法