3.刚体定轴转动
刚体的定轴转动
刚体的定轴转动一、刚体极其运动刚体——受力时不改变形状和体积的物体。
注:(1)刚体是固体物件的理想模型。
(2)刚体是一个特殊的质点系(各质点间的相对位置在运动中保持不变)。
刚体的运动分为平动和转动。
平动:刚体中所有点的运动轨迹都保持完全相同,或者说刚体内任意两点间的连线总是平行于它们的初始位置间的连线。
(用质点力学处理)转动:刚体中所有的点都绕同一直线做圆周运动. 转动又分定轴转动和非定轴转动。
二、刚体转动的角速度和角加速度刚体定轴转动时,由于各质元间的相对位置保持不变,因此描述各质元的角量是一样的。
角坐标:θ=θ(t)角位移:?θ=θ(t+?t)-θ(t) 角速度:?θdθ=?t→0?tdt角速度的方向:右手螺旋法则。
dω角加速度:α= dt定轴转动的特点:(1)每一质点均作圆周运动,圆面为转动平面;(2)任一质点运动?θ,ω,α均相同,但v,a不同;(3)运动描述仅需一个坐标。
三、匀变速转动公式匀变速转动------刚体绕定轴转动的角加速度为恒量。
刚体匀变速转动与质点匀变速直线运动公式对比匀变速转动匀变速直线运动v=v+at x=x0+v0t+at2212222v=v0+2a(x-x0)2ω=lim 匀四、角量与线量的关系v=rωaτ=rαan=rω24-2力矩转动定律转动惯量一、力矩设一质点系由n个质点组成,其中i质点受力为n-1j=1Fi外+∑fjin-1 Mi=ri?(Fi外+∑fji)现对i质点所受力的力矩:j=1对i求和,刚体所受力的力矩为n M=∑Mi=∑ri?Fi外ii=1(内力矩为零)二、刚体的转动定律组成刚体的各质点间无相对位移,所以刚体对给定轴的力矩为dω2 M=rma=(rm)α=J=Jα∑iz∑∑iiτiidtii即刚体定轴转动的转动定律:绕定轴转动的刚体的角加速度与作用于刚体上的合外力矩成正比,与刚体的转动惯量成反比。
它在定轴转动中的地位相当于牛顿第二定律在质点力学中的地位。
刚体定轴转动概述
m
已知: m , m1 , m2 , r , 0 0
r
求: t ?
m2
m1
思路:质点平动与刚体定轴转 动关联问题,隔离法,分别列 方程,先求角加速度, 再
23
N
β
r
解:在地面参考系中,分别以 m1 , m2 , m 为研究对象,用隔离法,分别以牛顿第 二定律和转动定律建立方程。 对于 m 1
3 、物理意义:转动惯性的量度 .
I 大 转动惯性大
4、转动惯量的计算
若质量离散分布 若质量连续分布
I= mi ri
i
2
I r dm
2
O m2
例:如图m1 ,m2绕OO′转动,
它们距轴的距离分别为
2 1 l l 3 、 3
m1
2 l 3 1 l 3
则,系统的转动惯量为
2 1 I = m1 l m2 l 3 3
dm 2rdr l
l
3
R
O
r
dr
dI r dm 2lr dr
2
I
dI
R
0
m 1 2 I mR R 2l 2
1 4 2lr dr R l 2
3
可见,转动惯量与l无关。所以,实心圆柱对其轴的转动惯量 也是mR2/2。
m1 g T1 m1a1 (1)
T2 m2 g m2 a2 (2)
2
T2 mg
T1
对于 m 2
对于滑轮 m T r T r I 1 mr 2 (3) 1 2
T2
a2
T1
m2 g
思考:
3.3刚体定轴转动中的功与能
解:以 ω 和 ω 分别表示冲孔前后的飞轮的角速度
1 2
ω = (1 − 0 .2 )ω = 0.8ω
2 1
2
2
2πn ω = = 8πrad ⋅ s 60
1 1
−1
1
1 1 1 由转动动能定理 A = Jω − Jω = Jω (0 .8 − 1) 2 2 2 1 又 J = mr A = −5 .45 × 10 J 2
课后习题 3-8
θ1
θ2
二、刚体的转动动能和重力势能
1.绕定轴转动刚体的动能 绕定轴转动刚体的动能 绕定轴转动刚体的
∆ ,∆ ,⋅⋅⋅,∆ ,⋅⋅⋅,∆ m m m m r r r r r, r ,⋅⋅⋅, r ⋅⋅⋅, r r r r r v ,v ,⋅⋅⋅,v ,⋅⋅⋅,v
1 2 i
1 2 i, N
N
Q = rω v 1 E= ∆ v m 2
2 2 2
1 1
2
3
质量M的圆盘滑轮可绕通过盘心的水平轴转 例3-7半径R质量 的圆盘滑轮可绕通过盘心的水平轴转 半径 质量 滑轮上绕有轻绳,绳的一端悬挂质量为m的物体 的物体。 动,滑轮上绕有轻绳,绳的一端悬挂质量为 的物体。 当物体从静止下降距离h时 物体速度是多少? 当物体从静止下降距离 时,物体速度是多少? 以滑轮、 解:以滑轮、物体和地球组成系统为研究对 由于只有保守力做功,故机械能守恒。 象。由于只有保守力做功,故机械能守恒。 设终态时重力势能为零 初态:动能为零,重力势能为mgh 初态:动能为零,重力势能为 末态: 末态:动能包括滑轮转动动能和物体平动动能 由机械能守恒
i i
i i i
2
1
2
i
N
第三章 刚体的定轴转动
m r
i 1
n
2
i i
=J
1 2 Ek Jω 2
转动动能
ω 对应 v
J 对应 m
1 2 Ek mv 2
质点的动能
二 转动惯量 ( moment of inertia ) 质量 质点惯性大小的量度
J 与 m 对应
转动惯量 刚体转动惯性大小的量度
n
J mi ri
i 1
2
体分布
dm =ρdV dm =σdS dm =λdl
面分布 线分布
J r dm
2 m
单位:
kg · 2 m
说明: J r 2dm
m
1. J 与刚体的质量有关; 2. 质量一定,与质量的分布有关;
3. 与轴的位置有关。因此叫作绕轴的
转动惯量。
转动惯量的计算
例1 质量为m,半径为 r 的均匀细圆环, 对通过其中心并垂直环面的转轴的转动惯量。 解: 根据转动惯量的定义求解。
3. 题 3-2,3-8,3-9。
§3-1
刚体的定轴转动
刚体 ( rigid body ) :在任何情况下,其形状和大 小都不发生任何变化的物体 刚体是一种理想模型
一 刚体的运动 刚体的运动
{ 转动
平动
平动 ( translation ) 刚体运动时,其上任意两点的连线 , 在运动过程中始终保持其方向不变 。 刚体的平动遵从质点运动的规律
ω ω0 αt
1 2 θ θ0 ω0t αt 2 2 2 ω ω0 2α(θ θ0 )
切向加速度 ( tangential acceleration )
dv at dt d (rω) dt dω r dt
3.刚体的定轴转动
2 3 2
2
6.16 10
3
2
3.14 m / s
2
2
6.16 10 m / s
例3-2:一飞轮在时间t 内转过角度 at bt 3 ct 4式中a、b、c都 是常量。求它的角加速度。 解:飞轮上某点的角位置可用θ 表示为: at bt 3 ct 4 将此式对t 求导数,即得飞轮角速度的表达式为:
O
刚体定轴转动的描述
(1) 定轴转动的角量描述
角位置: (t )
角位移: (t ) (t 0 ) 角速度:
d dt d
dt d
2
角加速度:
dt
2
角速度和角加速度均为矢量,定轴转动中其方向沿转轴的
方向并满足右手螺旋定则。
说明:在刚体的定轴转动中加速度、角加速度和角位移通常用 代数量表示。通常规定:当刚体作逆时针转动时,这些角量均 取正值;反之,取负值。
观察圆盘O和圆盘上一点P的运动:
O点的运动:沿着直线向前移动 圆盘上其他点的运动:除向前移动外,还绕圆盘中心O且垂直于盘面的轴转动。
1.刚体的平动:在运动过程中,若刚体上任意一条直线在各个时 刻的位置始终彼此平行,则这种运动叫做平动。
特点:刚体内所有点具有相同的位移、速度和加速度。 --刚体上任一点的运动规律即代表刚体的平动规律。
2
2
则整个刚体的转动动能为:
Ek
1 2
m i vi
2
1 2
m i ri
2
2
1 2
J
2
二、 力矩的功和功率
1.力矩的功
刚体的定轴转动
第3章 刚体的定轴转动刚体定轴转动所遵从的力学规律,实际上是质点运动的基本概念和原理在刚体中的应用。
重要的概念有转动惯量和力矩。
刚体的动能和角动量都有其特殊的表达式,但守恒定律同样适用于包括刚体的系统。
§1 刚体的运动一 刚体刚体是固体物件的理想化模型。
实际的固体在受力作用时总是要发生或大或小的形状和体积的改变。
如果在讨论一个固体的运动时,这种形状或体积的改变可以忽略,我们就把这个固体当做刚体处理。
这就是说,刚体是受力时不改变形状和体积的物体。
刚体可以看成由许多质点组成,每一个质点叫做刚体的一个质元,刚体这个质点系的特点是,在外力作用下各质元之间的相对位置保持不变。
既然是一个质点系。
所以关于质点系的基本定律就都可以应用。
当然,由于刚体这一质点系有其特点,所以这些基本定律就表现为更适合于研究刚体运动的特殊形式。
二 刚体的运动形式刚体的运动可以是平动、转动或二者的结合。
如果刚体在运动中,连结体内两点的直线在空间的指向总保持平行,这样的运动就叫平动。
在平动时,刚体内各质元的运动轨迹都一样,而且在同一时刻的速度和加速度都相等。
因此在描述刚体的平动时,就可以用一点的运动来代表,通常就用刚体质心的运动来代表整个刚体的平动。
平动是刚体的基本运动形式之一。
转动也是刚体的基本运动形式之一,它又可分为定轴转动和定点转动。
定轴转动:运动中各质元均做圆周运动,且各圆心都在同一条固定的直线(转轴)上。
定点转动:运动中刚体上只有一点固定不动,整个刚体绕过该定点的某一瞬时轴线转动。
刚体不受任何限制的的任意运动。
它可分解为以下两种刚体的基本运动:随基点(可任选)的平动,绕通过基点的瞬时轴的定点转动。
三 刚体定轴转动的运动学描述刚体的定轴转动是最简单的转动情况。
在这种运动中各质元均做圆周运动,而且各圆的圆心都在一条固定不动的直线上,这条直线叫转轴。
刚体绕某一固定转轴转动时,各质元作圆周运动的轨道半径不同,所以各质元的线速度、加速度一般是不同的。
刚体定轴转动
1.刚体的转动 刚体的转动 在圆盘上任意取一个质元 切向速度: 切向速度:
ω
c
vi = ωri = θri
mi , ri
r i
mi
r ai = ωri = θi = αri 切向加速度: 切向加速度:
角加速度rad
s2
由于质元是任取的,所以刚体上各质元的v 由于质元是任取的,所以刚体上各质元的v、a一般 角加速度α 不同,但角量(角位移θ、角速度ω 、角加速度α)都 不同, 角位移θ 角速度ω 相同,所以描述刚体定轴转动用角量最方便 用角量最方便。 相同,所以描述刚体定轴转动用角量最方便。
刚体定轴 转动定律 对 比 牛顿第二定律
dLc = d (I cω ) = I dω = I α Mc = c c dt dt dt
dp d(mv) dv F= = =m =ma dt dt dt
刚体定轴转动定律在转动问题中的地位相当于质 刚体定轴转动定律在转动问题中的地位相当于质 点运动中牛顿第二定律 牛顿第二定律的 点运动中牛顿第二定律的,各物理量间存在明显的 对应关系。 对应关系。
刚体定轴转动
1
安徽工业大学 数理学院 刘畅
2. 刚体的转动动能和转动惯量 刚体的转动动能 转动动能和 1 2 1 2 2 质元 mi的动能 Eki = mivi = miω ri m i 2 2 r c i 总动能 Ek = ∑Eki 2 1 ω 2 2 2 = ∑ miω ri = ∑miri 2 2 1 I—转动惯量 = Ic ω2 2 单个质点绕定轴转动的转动惯量 单个质点绕定轴转动的转动惯量 I = mr 2 质量连续分布的刚体的转动惯量 I = r dm
dt 若 M =0LΒιβλιοθήκη M =dL∫
刚体定轴转动知识点总结
刚体定轴转动知识点总结1. 刚体的转动定轴刚体的转动定轴是指固定不动的直线,沿其进行转动的刚体的每一个质点所受的力矩的代数和等于零。
在实际中,通常通过支点来实现转动定轴,比如钟摆、摇摆、旋转的转轴等。
2. 刚体的角位移、角速度和角加速度在刚体定轴转动中,刚体围绕定轴线进行旋转,其角位移、角速度和角加速度是非常重要的物理量。
角位移表示刚体在围绕定轴线旋转的过程中所经过的角度变化量,通常用θ表示;角速度表示刚体围绕定轴线旋转的速度,通常用ω表示;角加速度表示刚体围绕定轴线旋转的加速度,通常用α表示。
3. 牛顿第二定律在刚体定轴转动中的应用牛顿第二定律也适用于刚体定轴转动的情况。
在刚体定轴转动中,外力会给刚体带来转动运动,根据牛顿第二定律,刚体的角加速度与作用在其上的外力矩成正比。
因此,可以根据力矩的大小和方向来分析刚体的转动运动。
4. 转动惯量和转动动能在刚体定轴转动中,转动惯量是一个非常重要的物理量。
转动惯量描述了刚体围绕定轴线旋转的难易程度,其大小与刚体的质量分布和轴线的位置有关。
转动动能是刚体围绕定轴线旋转的能量,其大小取决于刚体的转动惯量和角速度。
5. 转动定律和角动量守恒定律在刚体定轴转动中,转动定律和角动量守恒定律是非常重要的定律。
转动定律描述了刚体受力矩产生的角加速度与所受力矩的关系,角动量守恒定律描述了刚体转动过程中角动量的守恒规律。
6. 平衡条件和稳定性分析在刚体定轴转动中,平衡条件和稳定性分析是非常重要的内容。
通过平衡条件,可以分析刚体围绕定轴线旋转的平衡状态。
稳定性分析则是分析刚体在平衡状态下的稳定性,通常通过刚体的势能函数和平衡位置的稳定性来进行分析。
7. 应用领域刚体定轴转动的理论和方法在工程技术、航空航天、机械制造、物理学等领域都有重要的应用价值。
比如在机械制造中,可以通过分析刚体的定轴转动来设计机械装置;在航空航天中,可以通过分析刚体的定轴转动来设计飞行器的运动控制系统。
大学物理上第3章 刚体的定轴转动
z
(ω, β )
r fi
F 两边乘以r 两边乘以ri ,有: it ri + f it ri = ∆mi ait ri
对所有质元的同样的式子求和, 对所有质元的同样的式子求和,有:
fit
∆mi
Fit
r Fi
Fir
o
Fit ri + ∑ f it r i = ∑ ∆mi ait ri = β ∑ ( ∆mi ri 2 ) ∑
表示合外力矩,记作M ∑ F r 表示合外力矩,记作 表示内力矩之和, ∑ f r 表示内力矩之和,其值等于零
it i
it i
(∆mi ri 2 ) 称为刚体对轴的转动惯量,记作J 称为刚体对轴的转动惯量,记作 ∑
则上式可简写成: 则上式可简写成:M = Jβ
11
M = Jβ
刚体定轴转动定律: 刚体定轴转动定律:刚体所受的对于某一固定转动 轴的合外力矩等于刚体对此转轴的转动惯量与刚体 在此合外力矩作用下所获得的角加速度的乘积。 在此合外力矩作用下所获得的角加速度的乘积。 说明: 说明: 1. 上式是矢量式(在定轴转动中力矩只有两个方向)。 上式是矢量式(在定轴转动中力矩只有两个方向)。 2. M、J、β是对同一轴而言的。 是对同一轴而言的。 3. 上式反映了力矩的瞬时效应。M = Jβ = J dω 上式反映了力矩的瞬时效应。 dt 4. 刚体转动定律的地位与牛顿第二定律相当。 刚体转动定律的地位与牛顿第二定律相当。 5. 转动惯量 是刚体转动惯性大小的量度。 转动惯量J是刚体转动惯性大小的量度 是刚体转动惯性大小的量度。
2
§3.1
3.1.1 刚体的运动
刚体定轴转动的描述
刚体的平动:刚体在运动过程中, 刚体的平动:刚体在运动过程中,其 上任意两点的连线始终保持平行。 上任意两点的连线始终保持平行。 可以用质点动力学的方法 来处理刚体的平动问题。 来处理刚体的平动问题。 刚体的定轴转动: 刚体的定轴转动:刚体上各点都绕同 一直线作圆周运动, 一直线作圆周运动,而直线本身在空 间的位置保持不动的一种转动。 间的位置保持不动的一种转动。这条 直线称为转轴 转轴。 直线称为转轴。
第3章 刚体的定轴转动
F
Od
r *ϕ
P
方向: 沿轴向(使刚体绕轴逆时针改变运动状态为正) 方向: 沿轴向(使刚体绕轴逆时针改变运动状态为正) 单位: 单位: N ⋅ m (牛⋅米) 定轴转动的刚体受到几个力矩的作用, 定轴转动的刚体受到几个力矩的作用,合力矩是 各力矩的代数和。 各力矩的代数和。
6
3.2 刚体的定轴转动定律
4
3.1 刚体的运动
当刚体绕定轴转动的角加速度为恒量时, 当刚体绕定轴转动的角加速度为恒量时,刚体作 匀变速转动 。 刚体匀变速转动与质点匀变速直线运动公式对比 质点匀变速直线运动 质点匀变速直线运动 刚体绕 刚体绕定轴作匀变速转动
v = v 0 + at
x = x 0 + v 0 t + at
1 2
1
3.1 刚体的运动
3.1.2 刚体的定轴转动
转动:组成刚体的各质点都绕某一直线作 组成刚体的各质点都绕某一直线作 圆周运动, 这条线为转轴。 圆周运动, 这条线为转轴。 转轴 若转轴相对于给定的参考系在空间 固定不动,则称为刚体的定轴转动。 固定不动,则称为刚体的定轴转动。 刚体的定轴转动 刚体的一般运动 (如:运行的车轮) 运行的车轮) 随某点(基点) 随某点(基点)的平动 + 过该点 的定轴转动。 的定轴转动。
第3章 刚体的定轴转动 章 3.1 刚体的运动
刚体: 刚体:特殊的质点系 受力时质点系的形状和体积不改变
3.1.1 刚体的平动
在运动过程中刚体上的任 意一条直线在各个时刻的位置 都相互平行 任意质元运动都代表整体运动 任意质元运动都代表整体运动 质元运动都代表整体
A’ A B A”
B’
B”
可用质点运动学和动力学知识研究
第3章刚体的定轴转动
绕通过质心 由合外力矩决定(应用
轴的转动
转动定律)
第3章 刚体的定轴转动
例3 质量为 mA 的物体 A 静止在光滑水平面上,
和一质量不计的绳索相连接,绳索跨过一半径为 R、质
量为 的圆mC柱形滑轮 C,并系在另一质量为 的物mB
体 B 上. 滑轮与绳索间没有滑动, 且滑轮与轴承间的摩
擦力可略去不计. 问:(1) 两物体的线加速度为多少?
dt
M
dL
作用于质点的合力对参考点 O 的力矩 ,等于质点对该点 O 的角
dt 动量随时间的变化率.
第3章 刚体的定轴转动
M
dL
dt
t2 t1
Mdt
L2
L1
冲量矩
t2
Mdt
t1
质点的角动量定理:对同一参考点 O ,质点所受
的冲量矩等于质点角动量的增量.
3 质点的角动量守恒定律
M 0, L 恒矢量
的大小与角速度的平方成正比,比例系数为 k
( k 为大于零的常数).当 1 30 时,飞轮的角
加速度为
,所经历的时间为
M k2
M J
k 2
J
k
2 0
9J
第3章 刚体的定轴转动
M k2
M J J d
k 2 J d
dt
dt
t dt J
1
3
0
1
d
0
k 0 2
2J t
M mr 2
2)刚体
质量元受外力 Fej,内力 Fij
Mej Mij mjrj2
外力矩
内力矩
第3章 刚体的定轴转动
z
M
F
F
O
刚体定轴转动的转动定律
R
M
h
Hale Waihona Puke 解法一 用牛顿第二运动 定律及转动定律求解.分 析受力如图所示. 对物体m用牛顿第二 运动定律得 mg T ma 对匀质圆盘形滑轮用 转动定律有 TR J 物体下降的加速度的 大小就是转动时滑轮边缘 上切向加速度,所以
o R M
T
h
a
G
a R 物体m 落下h 高度时的速率为
2
3.试求质量为m 、半径为R 的匀质圆环 对垂直于平面且过中心轴的转动惯量. 解 作示意图如右,由于质 量连续分布,所以由转动 惯量的定义得
J R 2dm
m
dm
o
R
2R 0
m R dl 2R
2
mR 2
4.试求质量为m 、半径为R 的匀质圆盘 对垂直于平面且过中心轴的转动惯量. dr 解 如图所示, 由于质 量连续分布,设圆盘的 R l o r 厚度为l,则圆盘的质量 密度为 m 2 R l
r近日 r远日
v近日
解 彗星受太阳引力的作用,而引力通过了 太阳,所以对太阳的力矩为零,故彗星在运 行的过程中角动量守恒. 于是有 r近日 v近日 r远日 v远日 因为 r近日 v近日 ,r远日 v远日
r近日v近日 所以 r远日 v远日
代入数据可, 得
J r 2dm
m
R 0
1 1 4 r 2r ldr R l mR 2 2 2
2
5. 如图所示,一质 量为M 、半径为R 的匀 质圆盘形滑轮,可绕一 无摩擦的水平轴转动. 圆盘上绕有质量可不计 绳子,绳子一端固定在 滑轮上,另一端悬挂一 质量为m 的物体,问物 体由静止落下h 高度时, 物体的速率为多少?
刚体 定轴转动定律
1 12
mL2
mh 2
例:半径为R、质量均匀分布的细圆环及薄圆 盘,质量均为m,求对中垂轴的转动惯量。
r
R
(1)细圆环:
J r 2dm R2 dm mR 2
(2)薄圆盘:看作由许多宽为dr的细圆环组成
dm ds 2π rdr dJ r 2dm 2π r 3dr
J R 2πr 3dr 1 mR 2
(2) 3g sin 3g cos
2L
2L
d d d dt d dt
d d
d 3g cos d
2L
d
π 2
3g
cos
d
0
0 2L
L
mg
3g L
例:质量m的圆盘半径为R,绕中心旋转,与桌
面的摩擦系数为m。
求:圆盘从0到静止所需要的时间 t。
解: M f
J
J d dt
N
T2 m2 g m2a2
T1r T2r J
a1 a2 r
a1
a2
(m1 m2 )g
m1
m2
1 2
m
T1
2m1m2 g m1 m2
1 2
m1m3 g 1 2 m3
讨论 m3 0 :轻滑轮
3
T2
T1
T1 m3 T1 m3 g m1 a1
m1 g
a2
T2
T2
m2
m2 g
2m1m2
g
1 2
m2m
m1
T2
2mm2 1m122mg3 m1 m2
3
g
例:细杆质量为m,长为L,可绕水平光滑轴O
在竖直平面内转动,自水平静止释放。
求:(1)杆与铅直方向成 角时的;
第03章 刚体定轴转动01-转动定律
作用于刚体内每一质元上的内力矩的矢量和为零,即
fr 0
i i i
14
F r
i i
i
为作用于刚体内每一质元上的外力矩的矢量和。
M Fi ri
i
定义:刚体的转动惯量J (moment of interia) 则有:
2 m r ii i
M J
即:
M J
刚体定轴转动的转动定律:刚体定轴转动的角加速度与它所 受的合外力矩成正比 ,与刚体的转动惯量成反比。 —— 刚体定轴转动的基本动力学规律。
dm 2 π r dr
P
3 2
圆环对轴的转动惯量
dJ r dm 2π r dr R 3 J 2π r dr π R 4 0 2 1 2 而 m π R 所以 J mR 2
圆盘对P 轴的转动惯量
R
R
O O
r dr
1 J P mR 2 mR 2 2
19
15
三、转动惯量
J mi ri
i
2
物理意义:刚体转动惯性的量度。 对于质量离散分布刚体的转动惯量
J mi ri 2 m1r12 m2r22
i
质量连续分布刚体的转动惯量
J lim
mi 0
2 2 m r r i i dm i
P1 y
P2
23
(3)如图所示,不计绳子的质量,滑轮的质量与半径分别为M
和R,滑轮与绳间只滚不滑,不计滑轮与轴间的摩擦力。 且 m1 m2 。 求重物释放后,物体的加速度和绳的张力。 A
m1 FN m1 FT1
O
C
取坐标如图
M
第三章刚体的定轴转动
§3.1 刚体定轴转动的动能定理和转动定律
二、刚体定轴转动的动能定理 B、对于定轴转动刚体,所有内力的功总和在任何过程中均为零。(内力成对,大小相等方向相反,
一对内力矩的代数和为零;∴内力矩的功总和为零。另一角度,内力的功相对位移为零 .)
3、功率:
d A F 2d r
pdAMdM
dt dt
当 与 M 同方向, 和 为正 当 与 M 反方向, 和 为负
§3.1 刚体定轴转动的动能定理和转动定律
1 2 其中(:1 3M h 2 1 m l2l(12) ca 2o M s) 1( 3g )m h 2g(h 2 ) h 2 a (1 co )s(4 )
由(2)(3)(4)式求得:
2Mg(1lcos)/22mg(1acos)
M2l/3m a2
(Ml 2ma)g(1cos)
2
25
整理,得:
1 10 gh,
b7
vcb
10 gh 7
§3.2 定轴转动的动量矩定理和动量矩守恒定律
(2)小球到达A点不脱离轨道,要求小球在A点的速 度vA 和角速度A满足:
m v a A 2 m g v A 2 a,gA 2 v b A 2 2 a b 2 g (4 )
由机械能守恒:
b<<a
飞轮作变加速转动
§3.1 刚体定轴转动的动能定理和转动定律 例题3-1-2:一长为 l ,重为W的均匀梯子,靠墙放置,如图。墙光滑,地面粗糙, 当梯子与地面成角 时,处于平衡状态,求梯子与地面的摩擦力。
解:刚体平衡同时要满足两个条件:
Fi 0
Mi 0
列出分量方程:
O
水平方向:
f1N2 0
竖直方向:
刚体的定轴转动
不可伸长)
R m3
m1
m2
24
R
m1
m2
解 对m1 、m2,滑轮作受力分析, m1 、 m2作平动,滑轮作转动,
(T1 T1,T2 T2)
m1g T1 m1a
T2 m2 g m2a
其一 此处滑轮质量不可忽略,大小不可忽略,所以要用到转动定律;
其二 绳与滑轮间无相对滑动,所以
;因a R
故滑轮两边绳之张力不相等。
26
例2-33 质量m=1.0kg、半径 r=0.6m 的匀质圆盘,可以绕通过其中心且垂直盘面的水
平光滑固定轴转动,对轴的转动惯量 I=mr2/2。圆盘边缘绕有绳子,绳子下端挂一质量
质量分布均匀而有一定几何形 状的刚体,质心的位置为它的 几何中心。
X
32
五、机械能守恒定律 若 A外 0 A内非 =0 (或只有保守力作功)
系统机械能守恒,即
1 2
mv2
1 2
I2
mghc
1 2
k x2
恒量
33
例2-35 一均匀细杆长为l,质量为m,垂直放置,o点着地。杆绕过o的光滑水平轴
m=1.0kg 的物体,如图所示。起初在圆盘上加一恒力矩使物体以速率 v0=0.6m/s 匀速上 升,如撤去所加力矩,问经历多少时间圆盘开始作反方向运动?
r
T
m、r
T
a
v0
mg
解;受力分析如图所示
mg T ma
Tr I
a r
v0 at 0
I 1 mr2 2
解得 a mgr mr I r 2g 3
03刚体的定轴转动
的质元受阻力矩大,
细杆的质量密度 m
l
质元质量 dm dx
o
xl dm m dx
x
质元受阻力矩:
dM 阻 dmgx
细杆受的阻力矩
m l
M阻
dM
阻
0l
gxdx
1 2
gl 2
1 2
mgl
24
转动中的功和能
一. 力矩的功
设刚体上P点受到外力 F 的作用, z
位移为 d
r,
dW F ds
功为 d
三. 匀变速转动公式
当刚体绕定轴转动的角加速度为恒量时,刚
体做匀变速转动 .
质点匀变速直线运动 刚体绕定轴作匀变速转动
v v0 at
x
x0
v0t
1 2
at 2
0 t
0
0t
1 2
t 2
v2 v02 2a(x x0 )
2 02 2 ( 0 )
5
定轴转动刚体的 转动定律 力矩 角动量 转动惯量
Li
质元mi对转轴Z的角动量为:
x
Liz
Li
cos( π 2
)
mi Riv i
sin
mi ri vi
对组成刚体的所有质元的角动量求和
z
vi
mi
ri Li
Ri
O
y
Lz Liz (rimivi) (miri2)ω
9
Lz Liz miri2 ( miri2 )
i
i
i
令 J miri2
刚体绕OZ轴转动的转动惯量
i
Lz Jω
刚体绕OZ轴转动的角动量
注意:
转动惯量、角动量都是相对量,都必须指明它们是
3第三章_刚体的定轴转动
d dt
J
,
刚体定轴转动定律:刚体作定轴转动时,合外力矩等 于刚体的转动惯量与角加速度的乘积.
例:一轻绳跨过一轴承光滑的定滑轮,绳的两端分别 悬有质量为m1 和m2 的物体,滑轮可视为均质圆盘, 质量为m,半径为r,绳子不可伸长而且与滑轮之间无 相对滑动.求物体加速度、滑轮转动的角加速度和绳 子的张力. o 解: 受力图如下, 设 m 2 >m 1 r
(m 2 m1 ) g (m1 m 2 1 2
1 2 1 2 m m)g
1 2
m
m )r
m)g T2
T1
m 2 (2 m1
m1 m 2
m1 m 2
3-2 定轴转动的动量矩定理和 动量矩守恒定律
预习要点 1. 认识质点对定点的动量矩的定义, 刚体对转轴的动 量矩如何计算? 2. 刚体定轴转动的动量矩定理的内容及数学表达式是
认识刚体
在研究物体的运动时,根据问题的性质和要求, 有时需要考虑物体的形状和大小,而忽略物体在力 的作用下引起的形变,即把物体看作是形状、大小 不会改变的物体—刚体:在外力作用下形状和大小 保持不变的物体(ideal model) 刚体特征: 构成刚体任意两质点间的距离,在运动过程中恒保 持不变。是一种“速冻”质点系。 研究任务: 刚体的运动,突出转动,将其上升为研究的主要问 题和对象。忽略了振动及其它变形运动。
J J
i
m i ri
2
2
m
r dm
例:如图质点系
J
m3 r3
r1 m 1
m2 r2
i3
m i ri
2
2
i 1
刚体的定轴转动
内半径为R1 外半径为 R2 质量为m 的匀质中空圆盘 绕其对称轴的转动惯量.
R2
R1
dJ r 2 dm r 2 2 rdr r 3 2dr
r
dr
m ( R22 R12 )
o
J
R2 2 R1
1 2 r dr m R12 R2 2
3
同理,转动惯量与厚度l无关,有 高度的空心圆筒也有同样的公式.
N
N
N
2
i i
)
根据内力性质(每一对内力等值、反向、共 线,对同一轴力矩之代数和为零),得:
i 1
f i ri sin i 0
13
N
得到:
F r sin ( m r
i 1 i i i i 1
N
N
2
i i
)
上式左端为刚体所受外力的合外力矩,以 M 表示; 右端求和符号内的量与转动状态无关,称为刚体转 动惯量,以J 表示。于是得到
o
20
例3 、求质量为m、长为l 的均匀细棒对下面三种转 轴的转动惯量: (1)转轴通过棒的中心并和棒垂直; (2)转轴通过棒的一端并和棒垂直; (3)转轴通过棒上距中心为h的一点并和棒垂直。
解:(1)建立坐标系,分割质量元
J x 2dm
l 2 2
x
o
1 m 2 ml x dx l 2 l 12
一般的力学分析方法可归纳为:
(1)突出主要矛盾,撇开次要因素,建立理想模型; (2)将质点系化整为零,以质点或质元为研究对象, 作为突破口; (3)根据受力情况,正确地画出受力图;
(4)根据已知条件或初始条件,选用所需的基本原 理、定律,列出方程式;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
= JA(JA+JB) = 4.19×10 2 N·m·s
负号表示与方向相反.
B轮受的冲量矩
= JB(ω - 0) = 4.19×102 N·m·s
方向与相同.
9.一匀质细棒长为2L,质量为m,以与棒长方向相垂直的速度v0在光滑 水平面内平动时,与前方一固定的光滑支点O发生完全非弹性碰撞.碰 撞点位于棒中心的一侧处,如图所示.求棒在碰撞后的瞬时绕O点转动 的角速度ω.(细棒绕通过其端点且与其垂直的轴转动时的转动惯量 为,式中的m和l分别为棒的质量和长度.)
解:作示力图.两重物加速度大小a相同,方向如图.
m1g-T1=m1a
T2-m2g=m2a
设滑轮的角加速度为β,则 (T1-T2)r=Jβ
且有
a=rβ
由以上四式消去T1,T2得:
开始时系统静止,故t时刻滑轮的角速度.
7.一根放在水平光滑桌面上的匀质棒,可绕通过其一端的竖直固定光滑 轴O转动.棒的质量为m = 1.5 kg,长度为l = 1.0 m,对轴的转动惯量为J
解:(1) 角动量守恒:
∴
=15.4 rad·s-1
(2) 由转动定律,得: -Mr=(+)β
0-ω 2=2βθ
∴
=15.4 rad
8.如图所示,A和B两飞轮的轴杆在同一中心线上,设两轮的转动惯量 分别为 J=10 kg·m2 和 J=20 kg·m2.开始时,A轮转速为600 rev/min,B轮静止.C为摩擦啮合器,其转动惯量可忽略不计.A、B分 别与C的左、右两个组件相连,当C的左右组件啮合时,B轮得到加速 而A轮减速,直到两轮的转速相等为止.设轴光滑,求:
因为刚体的转动惯量与各质量元和它们对转轴的距离有关.如一匀 质圆盘对过其中心且垂直盘面轴的转动惯量为,若按质量全部集中于质 心计算,则对同一轴的转动惯量为零.
2. 刚体定轴转动时,它的动能的增量只决定于外力对它做的功而与内力 的作用无关。对于非刚体也是这样吗?为什么?
参考解答: 根据动能定理可知,质点系的动能增量不仅决定于外力做的功,还决定 于内力做的功。
= .初始时棒静止.今有一水平运动的子弹垂直地射入棒的另一端,并 留在棒中,如图所示.子弹的质量为m= 0.020 kg,速率为v = 400 m·s1.试问:
(1) 棒开始和子弹一起转动时角速度ω有多大? (2) 若棒转动时受到大小为Mr = 4.0 N·m的恒定阻力矩作用,棒能转过 多大的角度θ?
Байду номын сангаас
由于刚体内任意两质量元间的距离固定,或说在运动过程中两质量 元的相对位移为零,所以每一对内力做功之和都为零。故刚体定轴转动 时,动能的增量就只决定于外力的功而与内力的作用无关了。
非刚体的各质量元间一般都会有相对位移,所以不能保证每一对内 力做功之和都为零,故动能的增量不仅决定于外力做的功还决定于内力 做的功。
代入式②得
当小球滑到C点时,由角动量守恒定
律,系统的角速度又回复至ω0,又由机械能守恒定律知,小球在C的动
能完全由重力势能转换而来.即:
,
研讨题
1. 计算一个刚体对某转轴的转动惯量时,一般能不能认为它的质量集中 于其质心,成为一质点,然后计算这个质点对该轴的转动惯量?为什 么?举例说明你的结论。
参考解答: 不能.
解:R = 0.5 m,ω0 = 900 rev/min = 30π rad/s,
根据转动定律
M = -Jβ
①
这里
M = -νNR
②
ν为摩擦系数,N为正压力,.
③
设在时刻t砂轮开始停转,则有:
从而得
β=ω0 / t
④
将②、③、④式代入①式,得
∴
Rω0 / (2Nt)≈0.5
3. 有一半径为R的圆形平板平放在水平桌面上,平板与水平桌面的摩擦 系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始 旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量,其中m为 圆形平板的质量)
解:选小球和环为系统.运动过程中所受合外力矩为零,角动量守恒. 对地球、小球和环系统机械能守恒.取过环心的水平面为势能零点.
小球到B点时: J0ω0=(J0+mR2)ω
①
②
式中vB表示小球在B点时相对于地面的竖直分速度,也等于它相对于环
的速度.由式①得:
ω=J0ω 0 / (J0 + mR2)
1分
解:碰撞前瞬时,杆对O点的角动量为
式中ρ为杆的线密度.碰撞后瞬时,杆对O点的角动量为
因碰撞前后角动量守恒,所以
∴
ω = 6v0 / (7L)
10. 空心圆环可绕光滑的竖直固定轴AC自由转动,转动惯量为J0,环的 半径为R,初始时环的角速度为ω0.质量为m的小球静止在环内最高 处A点,由于某种微小干扰,小球沿环向下滑动,问小球滑到与环心O 在同一高度的B点和环的最低处的C点时,环的角速度及小球相对于环 的速度各为多大?(设环的内壁和小球都是光滑的,小球可视为质点,环 截面半径r<<R.)
(1) 两轮啮合后的转速n; (2) 两轮各自所受的冲量矩.
解:(1) 选择A、B两轮为系统,啮合过程中只有内力矩作用,故系统角动量守
恒 JAωA+JBωB = (JA+JB)ω,
又ωB=0得: ω ≈ JAωA / (JA+JB) = 20.9 rad / s
转速
200 rev/min
(2) A轮受的冲量矩
相同,
at = βA r1 = βB r2
则
βA = βB r2 / r1
A轮角速度达到ω所需时间为
s=40 s
2.一砂轮直径为1 m质量为50 kg,以 900 rev / min的转速转动.撤去动 力后,一工件以 200 N的正压力作用在轮边缘上,使砂轮在11.8 s内停 止.求砂轮和工件间的摩擦系数.(砂轮轴的摩擦可忽略不计,砂轮绕 轴的转动惯量为mR2,其中m和R分别为砂轮的质量和半径).
∴
两边积分:
得
ln2 = kt / J
∴
t=(J ln2) / k
5.一质量为m的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴 上,如图所示.轴水平且垂直于轮轴面,其半径为r,整个装置架在光 滑的固定轴承之上.当物体从静止释放后,在时间t内下降了一段距离 S.试求整个轮轴的转动惯量(用m、r、t和S表示).
当质心平动的速度vc= 0而角速度 0 时,乒乓球将返回.因此,要 使乒乓球能自动返回,初始速度vc和初始角速度0的大小应满足一定的 关系. 解题:由质心运动定理: 因, 得 (1) 由对通过质心的轴(垂直于屏面)的转动定律 , 得 (2) 由(1),(2)两式可得 , 令 可得 这说明当vc= 0和0的大小满足此关系时,乒乓球可自动返回.
解:在r处的宽度为dr 的环带面积上摩擦力矩为
总摩擦力矩
故平板角加速度
β =M /J
设停止前转数为n,则转角 = 2n
由
可得
4. 一转动惯量为J的圆盘绕一固定轴转动,起初角速度为ω0.设它所受 阻力矩与转动角速度成正比,即M=-kω (k为正的常数),求圆盘的角 速度从ω0变为时所需的时间.
解:根据转动定律: Jdω / dt = -kω
刚体定轴转动
计算题
1. 如图所示,半径为r1=0.3 m的A轮通过皮带被半径为r2=0.75 m的B轮 带动,B轮以匀角加速度π rad /s2由静止起动,轮与皮带间无滑动发 生.试求A轮达到转速3000 rev/min所需要的时间.
解:设A、B轮的角加速度分别为βA和βB,由于两轮边缘的切向加速度
解:设绳子对物体(或绳子对轮轴)的拉力为T,则根据牛顿运动定律和
转动定律得:
mgT=ma ①
T r=Jβ
②
由运动学关系有:
a = rβ
③
由①、②、③式解得: J=m( g-a) r2 / a
④
又根据已知条件 v0=0
∴ S=, a=2S / t2 ⑤
将⑤式代入④式得:J=mr2(-1)
6.如图所示,设两重物的质量分别为m1和m2,且m1>m2,定滑轮的半 径为r,对转轴的转动惯量为J,轻绳与滑轮间无滑动,滑轮轴上摩擦不 计.设开始时系统静止,试求t时刻滑轮的角速度.
3. 乒乓球运动员在台面上搓动乒乓球,为什么乒乓球能自动返回?
参考解答:
分析:乒乓球(设乒乓球为均质球壳)的运动可分解为球随质心的平动 和绕通过质心的轴的转动.乒乓球在台面上滚动时,受到的水平方向的 力只有摩擦力.若乒乓球平动的初始速度vc的方向如图,则摩擦力 Fr的 方向一定向后.摩擦力的作用有二,对质心的运动来说,它使质心平动 的速度vc 逐渐减小;对绕质心的转动来说,它将使转动的角速度逐渐变 小.