中科院半导体器件物理 第六章
国科大-半导体器件物理
国科⼤-半导体器件物理第⼀章半导体物理基础1.主要半导体材料的晶体结构。
简单⽴⽅(P/Mn)、体⼼⽴⽅(Na/W)、⾯⼼⽴⽅(Al/Au)⾦刚⽯结构:属⽴⽅晶系,由两个⾯⼼⽴⽅⼦晶格相互嵌套⽽成。
Si Ge闪锌矿结构(⽴⽅密堆积),两种元素,GaAs, GaP等主要是共价键纤锌矿结构(六⽅密堆积),CdS, ZnS闪锌矿和纤锌矿结构的异同点共同点:每个原⼦均处于另⼀种原⼦构成的四⾯体中⼼,配种原⼦构成的四⾯体中⼼,配位数4不同点:闪锌矿的次近邻,上下彼此错开60,⽽纤锌矿上下相对2.⾦属、半导体和绝缘体能带特点。
1)绝缘体价电⼦与近邻原⼦形成强键,很难打破,没有电⼦参与导电。
能带图上表现为⼤的禁带宽度,价带内能级被填满,导带空着,热能或外场不能把价带顶电⼦激发到导带。
2)半导体近邻原⼦形成的键结合强度适中,热振动使⼀些键破裂,产⽣电⼦和空⽳。
能带图上表现为禁带宽度较⼩,价带内的能级被填满,⼀部分电⼦能够从价带跃迁到导带,在价带留下空⽳。
外加电场,导带电⼦和价带空⽳都将获得动能,参与导电。
3)导体导带或者被部分填充,或者与价带重叠。
很容易产⽣电流3.Ge, Si,GaAs能带结构⽰意图及主要特点。
1)直接、间接禁带半导体,导带底,价带顶所对应的k是否在⼀条竖直线上2)导带底电⼦有效质量为正,带顶有效质量为负3)有效质量与能带的曲率成反⽐,导带的曲率⼤于价带,因此电⼦的有效质量⼤;轻空⽳带的曲率⼤,对应的有效质量⼩4.本征半导体的载流⼦浓度,本征费⽶能级。
5.⾮本征半导体载流⼦浓度和费⽶能级。
<100K 载流⼦主要由杂质电离提供杂质部分电离区(凝固区) 。
100~500K,杂质渐渐全部电离,在很⼤温度范围内本征激发的载流⼦数⽬⼩于杂质浓度,载流⼦主要由掺杂浓度决定。
饱和电离区。
>500K,本征激发的载流⼦浓度⼤于掺杂浓度,载流⼦主要由本征激发决定。
本征区。
6.Hall效应,Hall迁移率。
半导体器件物理复习纲要word精品文档5页
第一章 半导体物理基础能带:1-1什么叫本征激发?温度越高,本征激发的载流子越多,为什么?1-2试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。
1-3、试指出空穴的主要特征及引入空穴的意义。
1-4、设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E v (k)分别为:2222100()()3C k k k E k m m -=+和22221003()6v k k E k m m =-;m 0为电子惯性质量,1k a π=;a =0.314nm ,341.05410J s -=⨯⋅,3109.110m Kg -=⨯,191.610q C -=⨯。
试求:①禁带宽度;②导带底电子有效质量;③价带顶电子有效质量。
题解:1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为导电电子的过程就是本征激发。
其结果是在半导体中出现成对的电子-空穴对。
如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。
1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。
温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。
反之,温度降低,将导致禁带变宽。
因此,Ge 、Si 的禁带宽度具有负温度系数。
1-3、准粒子、荷正电:+q ; 、空穴浓度表示为p (电子浓度表示为n ); 、E P =-E n (能量方向相反)、m P *=-m n *。
空穴的意义:引入空穴后,可以把价带中大量电子对电流的贡献用少量空穴来描述,使问题简化。
1-4、①禁带宽度Eg 根据dk k dEc )(=2023k m +2102()k k m -=0;可求出对应导带能量极小值E min 的k 值: k min =143k , 由题中E C 式可得:E min =E C (K)|k=k min =2104k m ;由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0;并且E min =E V (k)|k=k max =22106k m ;∴Eg =E min -E max =221012k m =222012m a π =23423110219(1.05410)129.110(3.1410) 1.610π----⨯⨯⨯⨯⨯⨯⨯=0.64eV②导带底电子有效质量m n2222200022833C d E dk m m m =+=;∴ 22023/8C n d E m m dk == ③价带顶电子有效质量m ’ 22206V d E dk m =-,∴2'2021/6V n d E m m dk ==- 掺杂:2-1、什么叫浅能级杂质?它们电离后有何特点?2-2、什么叫施主?什么叫施主电离?2-3、什么叫受主?什么叫受主电离?2-4、何谓杂质补偿?杂质补偿的意义何在?题解:2-1、解:浅能级杂质是指其杂质电离能远小于本征半导体的禁带宽度的杂质。
半导体物理第六章PPT课件课件
电子和空穴的扩散方程可进一步变换为下式:
上述两式就是在掺杂和组分均匀的条件下,半导体材 料中过剩载流子浓度随着时间和空间变化规律的方程。
《半导体物理第六章》PPT课件
扩散方程的物理意义: 与时间相关的扩散方程描述过剩载流子浓度随着时间和 空间位置的变化规律。
《半导体物理第六章》PPT课件来自这一节将详细讨论过剩载流子运动的分析方法。
《半导体物理第六章》PPT课件
6.2.1 连续性方程 如下图所示的一个微分体积元,一束一维空穴流在
x处进入微分体积元,又在x+dx处离开微分体积元。 空穴的流量:Fpx+,单位:个/cm2-s,则有下式成立:
《半导体物理第六章》PPT课件
《半导体物理第六章》PPT课件
6.3.1 双极输运方程的推导
利用方程: 扩散方程; 泊松方程;
(泊松方程能建立过剩电子浓度及过剩空穴浓度与内 建电场之间的关系),其表达式为:
其中εS是半导体材料的介电常数。 《半导体物理第六章》PPT课件
扩散方程中的
项不能忽略。
《半导体物理第六章》PPT课件
双级输运方程的推导: 半导体中的电子和空穴是成对产生的,因此电子和空 穴的产生率相等,即:
Eapp:外加电场; Eint:内建电场。
《半导体物理第六章》PPT课件
内建电场倾向于将过剩电子和过剩空穴保 持在同一空间位置,因此这些带负电的过剩电 子和带正电的过剩空穴就会以同一个等效的迁 移率或扩散系数共同进行漂移或扩散运动。 这种现象称为双极扩散或双极输运过程。
《半导体物理第六章》PPT课件
§6.3 双极输运
在第5章中,导出的电子电流密度方程和空穴电流密 度方程中,引起漂移电流的电场指的是外加的电场。
半导体器件物理教案课件
半导体器件物理教案课件PPT第一章:半导体物理基础知识1.1 半导体的基本概念介绍半导体的定义、特点和分类解释n型和p型半导体的概念1.2 能带理论介绍能带的概念和能带结构解释导带和价带的概念讲解半导体的导电机制第二章:半导体材料与制备2.1 半导体材料介绍常见的半导体材料,如硅、锗、砷化镓等解释半导体材料的制备方法,如拉晶、外延等2.2 半导体器件的制备工艺介绍半导体器件的制备工艺,如掺杂、氧化、光刻等解释各种制备工艺的作用和重要性第三章:半导体器件的基本原理3.1 晶体管的基本原理介绍晶体管的结构和工作原理解释n型和p型晶体管的概念讲解晶体管的导电特性3.2 半导体二极管的基本原理介绍半导体二极管的结构和工作原理解释PN结的概念和特性讲解二极管的导电特性第四章:半导体器件的特性与测量4.1 晶体管的特性介绍晶体管的主要参数,如电流放大倍数、截止电流等解释晶体管的转移特性、输出特性和开关特性4.2 半导体二极管的特性介绍半导体二极管的主要参数,如正向压降、反向漏电流等解释二极管的伏安特性、温度特性和频率特性第五章:半导体器件的应用5.1 晶体管的应用介绍晶体管在放大电路、开关电路和模拟电路中的应用解释晶体管在不同应用电路中的作用和性能要求5.2 半导体二极管的应用介绍半导体二极管在整流电路、滤波电路和稳压电路中的应用解释二极管在不同应用电路中的作用和性能要求第六章:场效应晶体管(FET)6.1 FET的基本结构和工作原理介绍FET的结构类型,包括MOSFET、JFET等解释FET的工作原理和导电机制讲解FET的输入阻抗和输出阻抗6.2 FET的特性介绍FET的主要参数,如饱和电流、跨导、漏极电流等解释FET的转移特性、输出特性和开关特性分析FET的静态和动态特性第七章:双极型晶体管(BJT)7.1 BJT的基本结构和工作原理介绍BJT的结构类型,包括NPN型和PNP型解释BJT的工作原理和导电机制讲解BJT的输入阻抗和输出阻抗7.2 BJT的特性介绍BJT的主要参数,如放大倍数、截止电流、饱和电流等解释BJT的转移特性、输出特性和开关特性分析BJT的静态和动态特性第八章:半导体存储器8.1 动态随机存储器(DRAM)介绍DRAM的基本结构和工作原理解释DRAM的存储原理和读写过程分析DRAM的性能特点和应用领域8.2 静态随机存储器(SRAM)介绍SRAM的基本结构和工作原理解释SRAM的存储原理和读写过程分析SRAM的性能特点和应用领域第九章:半导体集成电路9.1 集成电路的基本概念介绍集成电路的定义、分类和特点解释集成电路的制造工艺和封装方式9.2 集成电路的设计与应用介绍集成电路的设计方法和流程分析集成电路在电子设备中的应用和性能要求第十章:半导体器件的测试与故障诊断10.1 半导体器件的测试方法介绍半导体器件测试的基本原理和方法解释半导体器件测试仪器和测试电路10.2 半导体器件的故障诊断介绍半导体器件故障的类型和原因讲解半导体器件故障诊断的方法和步骤第十一章:功率半导体器件11.1 功率二极管和晶闸管介绍功率二极管和晶闸管的结构、原理和特性分析功率二极管和晶闸管在电力电子设备中的应用11.2 功率MOSFET和IGBT介绍功率MOSFET和IGBT的结构、原理和特性分析功率MOSFET和IGBT在电力电子设备中的应用第十二章:光电器件12.1 光电二极管和太阳能电池介绍光电二极管和太阳能电池的结构、原理和特性分析光电二极管和太阳能电池在光电子设备中的应用12.2 光电晶体管和光开关介绍光电晶体管和光开关的结构、原理和特性分析光电晶体管和光开关在光电子设备中的应用第十三章:半导体传感器13.1 温度传感器和压力传感器介绍温度传感器和压力传感器的结构、原理和特性分析温度传感器和压力传感器在电子测量中的应用13.2 光传感器和磁传感器介绍光传感器和磁传感器的结构、原理和特性分析光传感器和磁传感器在电子测量中的应用第十四章:半导体器件的可靠性14.1 半导体器件的可靠性基本概念介绍半导体器件可靠性的定义、指标和分类解释半导体器件可靠性的重要性14.2 半导体器件可靠性的影响因素分析半导体器件可靠性受材料、工艺、封装等因素的影响14.3 提高半导体器件可靠性的方法介绍提高半导体器件可靠性的设计和工艺措施第十五章:半导体器件的发展趋势15.1 纳米晶体管和新型存储器介绍纳米晶体管和新型存储器的研究进展和应用前景15.2 新型半导体材料和器件介绍石墨烯、碳纳米管等新型半导体材料和器件的研究进展和应用前景15.3 半导体器件技术的未来发展趋势分析半导体器件技术的未来发展趋势和挑战重点和难点解析重点:1. 半导体的基本概念、分类和特点。
半导体器件物理ppt 共62页
N
A
WE
显示三段掺杂区域的杂质浓度,发射
区的掺杂浓度远比集电区大,基区的
浓度比发射区低,但高于集电区浓度
。图4.3(c)表示耗尽区的电场强度分
E
布情况。图(d)是晶体管的能带图,
它只是将热平衡状态下的p-n结能带
直接延伸,应用到两个相邻的耦合p
+-n结与n-p结。各区域中EF保持水平 。
EC EF
如 图 为 一 p-n-p 双 极 型 晶 体 管 的透视图,其制造过程是以p型半 导体为衬底,利用热扩散的原理 在p型衬底上形成一n型区域,再 在此n型区域上以热扩散形成一高 浓度的p+型区域,接着以金属覆 盖p+、n以及下方的p型区域形成 欧姆接触。
天津工业大学
现代半导体器件物理
双极型晶体管及相关器件 3
双极型晶体管工作在放大模式
IE
发射区
P
V EB
基区
n
IB
集电区
P V BC
IC
输出
图 (a) 为 工 作 在 放 大 模 式 下 的 共 基组态p-n-p型晶体管,即基极被输 入与输出电路所共用,图(b)与图(c) 表示偏压状态下空间电荷密度与电场
强度分布的情形,与热平衡状态下比
较,射基结的耗尽区宽度变窄,而集 基结耗尽区变宽。图(d)是晶体管工 作在放大模式下的能带图,射基结为 正向偏压,因此空穴由p+发射区注 入基区,而电子由基区注入发射区。
流往基区的电子电流。
发射区 (P)
}I EP
I En
基区 (n) I BB
}
IB
空穴电流 和空穴流
图 4.5
集电区 (P)
}I CP
IC
ICn
半导体物理学第6章(pn结)
2 i
2 qV A / kT i
2 i
P
N
n p ( x p ) pn ( xn )
耗尽层边界(续)
N型一侧
n pn ( xn ) eqVA / kT 1 ND
2 i
耗尽层边界处非平衡载流子浓度与 外加电压有关
工艺简介:
♦ 合金法—合金烧结方法形成pn结 ♦ 扩散法—高温下热扩散,进行掺杂 ♦离子注入法—将杂质离子轰击到半导体基片 中掺杂分布主要由离子质量和注入离子的能量 决定(典型的离子能量是30-300keV,注入剂量 是在1011-1016 离子数/cm2范围),用于形成 浅结 杂质分布的简化: ♦突变结 ♦线性缓变结
②平衡p-n结及其能带图: ♦当无外加电压, 载流子的流动终将达到 动态平衡(漂移运动与扩散运动的效果相 抵消, 电荷没有净流动), p-n结有统一的EF (平衡pn结) ♦ 结面附近,存在内建电场,造成能带弯 曲,形成势垒区(即空间电荷区).
热平衡条件
P N Hole
Ec
Ef
Silicon (p-type)
电位V
- - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + +
V0
- - - - - -
P型区
空间 电荷 区
半导体物理与器件 第六章3 (2)-PPT课件
半导体物理与器件
半导体物理与器件
当有过剩载流子存在时,半导体材料就不再处于热平衡状态, 此时费米能级就失去意义,但是在这种情况下,我们可以分别 为电子和空穴定义一个适用于非平衡条件下的准费米能级,即:
其中EFn和EFp就是电子和空穴的准费米能级,在非平衡条件 下,电子的总浓度和空穴的总浓度分别是其准费米能级的函数。
t=0时刻 输入脉冲
V1
t=t0
t
xpEt 0 0 d p E 0t0
δ p脉冲按少子迁移率 沿着外加电场方向漂 移
t=t1 t
半导体物理与器件
§6.4 准费米能级
在热平衡条件下,电子和空穴的浓度是费米能级位置的函数, 即:
其中EF和EFi分别是费米能级和本征费米能级,ni是本征载流子 浓度。对于N型和P型半导体材料,其EF和EFi的位置分别如下 页图所示。
介质驰豫时间常数
半导体物理与器件
例6.5 n型Si掺杂浓度为10e16,计算该半导体的介电驰豫常数。 答案:
1 4 1 1 . 7 8 . 8 5 1 0 1 3 5 . 3 9 1 0 s d 1 . 9 2
在4τd时间后,即可达到电荷平衡,与过剩载流 子寿命(~0.1µ s)相比,该过程非常迅速。这证 明了电中性条件。
半导体物理与器件
过剩载流子浓度随着时间的指数衰减过程示意图
光照停止后的载流子复合过程
半导体物理与器件
例8.2
半导体物理与器件
开始光照时,过剩载流子的产 生过程
半导体物理与器件
求解如下: 对于均匀掺杂的P型半导体材料,少数载流子电子的 双极输运方程为:
半导体物理与器件
半导体物理与器件
根据题设条件,一维均匀半导体材料,无外加电场,除x=0点 之外,各处产生率为零,要求稳态时过剩载流子分布结果,故双 极输运方程可简化为:
《半导体器件物理》课件
目录 Contents
• 半导体器件物理概述 • 半导体材料的基本性质 • 半导体器件的基本结构与工作原理 • 半导体器件的特性分析 • 半导体器件的制造工艺 • 半导体器件的发展趋势与展望
01
半导体器件物理概述
半导体器件物理的定义
半导体器件物理是研究半导体材料和器件中电子和空穴的行为,以及它们与外部因 素相互作用的一门学科。
可以分为隧道器件、热电子器件、异质结器 件等。
半导体器件的应用
01
通信领域
用于制造手机、卫星通信、光纤通 信等设备中的关键元件。
能源领域
用于制造太阳能电池、风力发电系 统中的传感器和控制器等。
03
02
计算机领域
用于制造计算机处理器、存储器、 集成电路等。
医疗领域
用于制造医疗设备中的检测器和治 疗仪器等。
04
02
半导体材料的基本性质
半导体材料的能带结构
总结词
能带结构是描述固体中电子状态的模 型,它决定了半导体的导电性能。
详细描述
半导体的能带结构由价带和导带组成 ,它们之间存在一个禁带。当电子从 价带跃迁到导带时,需要吸收或释放 能量,这决定了半导体的光电性能。
载流子的输运过程
总结词
载流子输运过程描述了电子和空穴在 半导体中的运动和相互作用。
•·
场效应晶体管分为N沟道 和P沟道两种类型,其结 构包括源极、漏极和栅极 。
场效应晶体管在放大、开 关、模拟电路等中应用广 泛,具有功耗低、稳定性 高等优点。
当栅极电压变化时,导电 沟道的开闭状态会相应改 变,从而控制漏极电流的 大小。
04
半导体器件的特性分析
半导体器件的I-V特性
中科院半导体所考研固体物理复习汇总
中科院半导体所考研固体物理复习汇总
( 2012 考生自我总结版)
欢迎发邮件至 jiazhiwei008@或联系 QQ376588039共同探讨学习
2012 ‐ 2 ‐ 5 间的考研复习,终于结束这段压抑的时光。成绩还没有出来, 总感觉不是那么理想,回想一下这半年,确实也没有付出那么多努力,终给人 生留下一些遗憾。 在复习过程中,自认为最为失败的就是专业课《固体物理》,自己的懒惰 和盲目是主要原因,但没有系统学习过这门课程以及复习资料的混乱也算是比 较重要的原因,遂趁闲暇时间按照自己粗浅的见识将复习资料整理一下,以备 今后更好的学习,也供后来人参考。考试之后最大的感觉就是遗憾,好多本来 并不是不会的题没有能够给出正确的答案,原因就在于没有大量练习而不够熟 练,希望读者能够引以为鉴。 本文档大部分为前人工作成果,在此引用无丝毫盗用之心,只是希望通过 我们共同的努力使学习的过程更为轻松,思路更为清晰。本人水平极为有限, 有何不妥之处, 请发邮件至 jiazhiwei008@或联系 QQ376588039共同探讨 学习,在此表示由衷的感谢。
热膨胀热传导5中子的非弹性散射测声子能谱五能带理论1布洛赫定理2近自由电子模型3紧束缚近似4费密面能态密度和能带的特点六晶体中电子在电场和磁场中的运动考研路上永不言弃1恒定电场作用下电子的运动考研路上永不言弃2用能带论解释金属半导体和绝缘体以及空穴的概念3恒定磁场中电子的运动4回旋共振德哈斯范阿尔芬效应七金属电子论1金属自由电子的模型和基态性质2金属自由电子的热性质3电子在外加电磁场中的运动漂移速度方程霍耳效应二考试要求一晶体结构了解x射线衍射条件基元的几何结构因子及原子形状因子二固体的结合理解离子性结合共价结合金属性结合范德瓦尔斯结合等概念三晶体中的缺陷和扩散大致了解离子晶体中的点缺陷和离子性导电四晶格振动与晶体的热学性质熟练掌握并理解其物理过程要求能灵活应用
半导体器件 绪论
半导体器件物理
Lieber, 4, 51, 2019
38
中国科学技术大学物理系微电子专业
Construction of DNA / Protein Chips
Array of Sensors with various Probe molecules
Automated Measurements
Si
Key challenge: Selective functionalization of different nanowires?
0 -4 -2 0 2 4
Vg (V)
0.5
0.0 0.0 0.5 1.0 1.5 2.0 2.5
Vin(V) One of the first integrated systems made of carbon nanotubes.
IDS(nA) IDS (nA)
Vout(V)
"Carbon 2019/10/3
22
中国科学技术大学物理系微电子专业
“摩尔定律”:处理器(CPU)的功能和 复杂性每年(其后期减慢为18个月)会 增加一倍,而成本却成比例地递减。 在技术上,摩尔定律依然勇往直前
2019/10/3
半导体器件物理
23
Transistor Research中国科学技术大学物理系微电子专业
50 nm
SiGe S/D Strained Silicon
Vout
n
VDD Vin
p-type CNT Vout
K
Si back gate
0V
2.5
P type MOSFET:
N type MOSFET:
60
12
2.0
《半导体物理第六章》课件
以可靠性测试、光电性能测试、尺寸测量为例,介绍半导体器件的特殊测试方法。
3
故障分析
讲解半导体器件的故障定位和与制造
学习IC设计的基本流程和制造 工艺。
集成电路器件
掌握集成电路的种类、分类及 其基本原理。
分立元件和模拟器件
介绍分立元件、模拟器件和数 字器件的基本特性和应用。
工作原理
掌握p-n结的基本构造、电学性质及工 作原理。
光电二极管
讲解光电二极管的内部结构、工作方 式和应用。
光电器件与半导体器件
发光二极管
介绍LED的特性、类型及应用。
传感器
介绍传感器的种类、原理及应用。
太阳能电池
掌握太阳能电池的工作原理和结构。
集成电路
学习集成电路的发展历史、制作工艺及设计 方法。
半导体材料与工艺
材料制备
掌握制备单晶硅和多晶硅的方 法及原理。
光刻工艺
学习光刻胶制备、光刻芯片制 造和相关工艺。
等离子刻蚀
讲解等离子刻蚀的基本原理和 工艺过程。
洁净室技术
介绍半导体器件制造中的洁净 室技术和要求。
半导体器件的特性与检测
1
电学特性
讲解电感、电容、电阻、电压及电流等基本电学特性。
2
特殊测试
半导体结构
讲解半导体的基本结构和制备 工艺。
载流子与能带理论
1 费米能级
介绍半导体中费米能级 的概念及作用。
2 载流子统计
掌握电子与空穴的贡献 对半导体电学特性的影 响。
3 掺杂
讲解杂质原子掺杂对半 导体特性的影响。
p-n结及其应用
1
二极管
2
掌握二极管的类型、电学特性和应用。
3
半导体器件物理教案课件
半导体器件物理教案课件PPT第一章:半导体简介1.1 半导体的概念与分类介绍半导体的定义解释N型和P型半导体讲解半导体材料的分类及性质1.2 半导体的导电特性说明半导体的导电原理探讨半导体导电性的影响因素分析N型和P型半导体的导电特性第二章:PN结的形成与特性2.1 PN结的形成讲解PN结的形成过程说明PN结的形成机制探讨PN结的平衡状态2.2 PN结的特性分析PN结的伏安特性讲解PN结的击穿现象探讨PN结的势垒结构和电荷分布第三章:二极管的结构与特性3.1 二极管的结构介绍二极管的结构及组成讲解P型和N型半导体对接形成二极管的过程探讨二极管的掺杂浓度和材料选择3.2 二极管的特性分析二极管的伏安特性讲解二极管的正向和反向导通条件探讨二极管的动态响应特性和温度特性第四章:二极管的应用4.1 整流电路讲解二极管整流电路的原理分析整流电路的电压和电流波形探讨整流电路的效率和输出特性4.2 滤波电路介绍二极管滤波电路的原理分析滤波电路的频率响应特性探讨滤波电路的应用场景和效果4.3 稳压电路讲解二极管稳压电路的原理分析稳压电路的稳压特性探讨稳压电路的选用和设计要点第五章:晶体三极管的结构与特性5.1 晶体三极管的结构介绍晶体三极管的结构及组成讲解PNP和NPN型晶体三极管的结构特点探讨晶体三极管的制造工艺和材料选择5.2 晶体三极管的特性分析晶体三极管的伏安特性讲解晶体三极管的工作原理探讨晶体三极管的电流放大效应和输出特性第六章:晶体三极管的应用6.1 放大电路讲解晶体三极管放大电路的原理分析放大电路的电压和电流波形探讨放大电路的输入和输出特性6.2 开关电路介绍晶体三极管开关电路的原理分析开关电路的转换特性探讨晶体三极管在开关电路中的应用和选择第七章:场效应晶体管的结构与特性7.1 场效应晶体管的结构介绍场效应晶体管的结构及组成讲解MOSFET和JFET的结构特点探讨场效应晶体管的制造工艺和材料选择7.2 场效应晶体管的特性分析场效应晶体管的伏安特性讲解场效应晶体管的工作原理探讨场效应晶体管的电流放大效应和输出特性第八章:集成电路的基本原理8.1 集成电路的构成介绍集成电路的构成要素讲解集成电路的制造工艺探讨集成电路的分类和应用领域8.2 集成电路的设计与制造分析集成电路的设计流程讲解集成电路的制造步骤探讨集成电路的设计原则和制造技术第九章:常用集成电路应用实例9.1 放大集成电路讲解放大集成电路的原理与应用分析放大集成电路的性能指标探讨放大集成电路在实际电路中的应用实例9.2 数字集成电路介绍数字集成电路的原理与应用分析数字集成电路的逻辑功能探讨数字集成电路在数字系统中的应用实例第十章:半导体器件的发展与新技术10.1 半导体器件的发展历程回顾半导体器件的发展历程分析不期半导体器件的特点和突破探讨半导体器件未来发展趋势10.2 半导体新技术介绍半导体新技术的研究方向分析半导体新技术的应用前景探讨半导体新技术对半导体产业的影响重点和难点解析重点环节1:半导体的导电特性需要重点关注半导体导电原理和影响导电性的因素,因为这是理解后续半导体器件工作的基础。
半导体器件物理 课件 第六章
p沟道耗尽型MOSFET 零栅压时已存在反型沟道,VTP>0
37
耗尽型:栅压为0时已经导通 N沟(很负才关闭) P沟(很正才关闭)
增强型:栅压为0时不导通
N沟(正电压开启 “1”导通)
P沟(负电压开启 “0”导通)
38
6.3.2 N 沟道增强型 MOS 场效应管工作原理
1. VGS对半导体表面空间电荷区状态的影响
EFS Ev
费米能级
价带顶能级
6
6.1 MOS电容
小的正栅压情形
表面能带图:p型衬底(2)
(耗尽层)
大的正栅压情形
X dT
(反型层+耗尽层)
EFS Ev
EFS EFi
EFS Ev
EFS EFi
7
6.1 MOS电容
表面能带图:n型衬底(1)
正栅压情形
EFS Ec
EFS EC
8
6.1 MOS电容
小的负栅压情形
n型
(耗尽Hale Waihona Puke )大的负栅压情形n型
(反型层+耗尽层)
表面能带图:n型衬底(2)
EFS Ec
EFS EFi
EFS Ec
EFS EFi
9
6.1 MOS电容 空间电荷区厚度:表面耗尽情形
表面势 s / s 半导体表面电势与 体内电势之差
Al SiO2 Si : fp 0.228V
(T 300K, Na 1014 cm3)
ms 0.83V
15
6.1 MOS电容 功函数差:n+掺杂多晶硅栅(P-Si)
简并:degenerate 退化,衰退
半导体器件 绪论 共48页
23.07.2019
半导体器件物理
25
中国科学技术大学物理系微电子专业
23.07.2019
半导体器件物理
26
中国科学技术大学物理系微电子专业
23.07.2019
半导体器件物理
27
中国科学技术大学物理系微电子专业
23.07.2019
半导体器件物理
28
中国科学技术大学物理系微电子专业
Building Blocks for Nanoelectronics
Quantum Dots Nanowires Carbon Nanotubes
Advantages for one-dimensional nanostructures: Atomic precision available via chemical synthesis; Easy to wire up (compared to quantum dots); Rich and versatile properties.
1 cm
Transistor
1 mm
Integrated circuits
VLSI
10 nm
1A
23.07.2019
Molecular dimensions
1950 1970 1990 2019 2030
Year
半导体器件物理
From Intel
21
中国科学技术大学物理系微电子专业
23.07.2019
0 -4 -2 0 2 4
Vg (V)
0.5
0.0 0.0 0.5 1.0 1.5 2.0 2.5
Vin(V) One of the first integrated systems made of carbon nanotubes.
半导体器件物理课后习题答案中文版(施敏)
� 解答: � (a) � 硅的晶体结构是金刚石
晶格结构�这种结构也 属于面心立方晶体家族� 而且可被视为两个相互 套构的面心立方副晶格� 此两个副晶格偏移的距 离为立方体体对角线的 1/4�a /4的长3度�
硅在300K时的晶格常数为5.43Å�
所以硅中最相邻原子距离=
量出的霍耳电压为 +10 mV�求半导体样品的霍耳系数、导
体型态、多数载流子浓度、电阻率及迁移率。
� 因为霍耳电压为正的�所以该样品为p型半导体(空穴导电)
� 多子浓度�
�
p � IBZW
qV
霍耳系数�
H
A
�
2.5 �10 �3 � 30 �10 �4 � 0.05 1.6 �10 �19 �10 �10 �3 �1.6 �10 �3
解�在能量为dE范围内单位体积的电子数 N(E)F(E)dE, 而导带中每个电子的动能为E-Ec 所以导带中单位体积电子总动能为
��
� (E � Ec ) N (E )F (E )dE Ec
而导带单位体积总的电子数为
��
� N (E )F (E )dE Ec
导带中电子平均动能�
��
� ( E � Ec ) N ( E ) F ( E )dE Ec �� � N ( E ) F ( E )dE Ec
Dp
�
kT q
�p
和
Dn
�
kT q
�n
得
� n � Dn � 50 �p Dp
用ρn和ρp相除�最后得 NA=100ND
11. 一个本征硅晶样品从一端掺杂了施主�而使得
ND = Noexp (-ax)。(a)在ND >> ni的范围中�求在平 衡状态下内建电场E(x)的表示法。(b)计算出当a =
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水、含水、含脂肪物质对微波具有吸收作用----微波加热。 微波的信微波加热,微波生物学等应用。
4
微波固态信号发生器,利用微波半导体二极管或微波晶体管 产生微波振荡的信号发生器。
通常用的半导体二极管是具有负阻效应的 隧道二极管、 雪崩二极管、 体效应(耿氏)二极管 在其上加直流恒流源,并以一定的方式与微波谐振腔耦合,就 可以产生微波振荡。
7
V=0
V=Vp
Vp<V<VV 峰值电压,此 时达到峰值 电流
V>VV
V<0
谷底电压,之 后,无能带交 叠,无隧穿电流
8
隧道二极管在不同偏压下的简化能带图与I-V关系的对照
峰值 电流 负微 分电 阻区
I P / IV
通常被用作 度量二极管 好坏的标准
典型隧道二极管的电流-电压特性 电流-电压关系
11
IMPATT二极管的静态特性:
雪崩 区域 宽度
里德二极管
12
单边突变二极管
P-i-n二极管
施主团
双漂移二极管
13
高-低结构
低-高-低结构
击穿电压 单边和双边对称 突变pn结 里德二极管
VB Em WD / 2
qN1 b b (WD ) 2
VB Em WD
s
qN1b 1 qN1b )b ( Em )(WD b) 高-低结构 VB (hi lo) ( Em 2 S 2 2 S
V V qV exp( 1 ) I 0 exp( ) I IP VP VP kT
隧穿电流
热电流(扩散电流)
负微分电阻
9
dI 1 V IP V 1 ) [( 1) exp( 1 )] R( dV VP VP VP
室温时,典型的Ge, GaSb, GaAs 隧道二极管静态电流电压特性
低-高-低结构
VB (lo hi lo) Emb ( Em
S
)(WD b)
施主团单位 面积杂质数
14
雪崩区宽度 取对电离积分有95%贡献的那段距离作为雪崩宽度。
xA xA 2
a dx
0
or
a dx 0.95
xA 2
漂移区 不算雪崩区在内的耗尽区 最重要的参数是载流子漂移速度,为了获得一致可以预测 的载流子穿过漂移区的渡越时间,该区内电场要足够高, 保证载流子以饱和速度运动。
18
负微分电阻
负微 分电 阻开 始的 临界 电场
负微分电阻 (NDR)区域
谷底 电场
双谷半导体的电流-电场特性。
19
产生NDR的转移电子机制必须满足的要求: 1)晶格温度需足够低,两个能谷差E>kT 2)在较低的谷, 电子必须有高的迁移率,和小的有效质量。 在较高的谷,电子必须有低的迁移率和大的有效质量。 3)两谷的能量差必须小于半导体禁带宽度,保证在电子进入较 高谷底的转移之前,雪崩击穿不发生。 主要材料 ET n-GaAs 3.2kV/cm 2.2107 cm/s -2400 cm2/Vs n-InP 10.5kV/cm 2.5 107 cm/s -2000 cm2/Vs 外延技术 器件尺寸: 几毫米~几百毫米 n+衬底掺杂浓度: 1014~1016cm-3
22
畴的长大: 随着畴的运动, 堆积的对偶电荷 越来越多,畴逐 渐长大。 畴内电场越来越高,畴外电场越来越 低,畴内电子加速,畴外电子减速, 直到平均运动速度相等,畴不再长大, 成为成熟畴或稳态畴。 畴的生长时间TD 到达阳极后被阳 极吸收而消失。
畴的渡越与消失: 成熟畴以一定的 速度向阳极渡越
23
υp
dυ/dE
20
器件工作原理 :以两区肖特基势垒接触为例
器件结构
平衡能带图
杂质分布
电场分布
21
电子在高场区被加热,然后注入到有均匀场的有源区。
畴渡越时间模式 畴的形成: 由于热扰动等原因,材料中局 部出现空间电荷,偏离电中 性,则该处电场比周围高。 或 或者阴极金属-半导体结反 偏,阻值大,该处的电场比其 他部分高。 局部区域出现高的电场 外加电压一定,畴内电场高, 则畴外电场降低,畴外电场一 般不可能超过阈值。 若外加电压增加,则该处的电场 首先超过阈值电场,进入负阻 区, 该处电子漂移速度减慢 。 两侧的电子仍以较快的速度向阳 极运动,则负阻区左侧电子积 累,右侧电子欠缺(相当于正空 间电荷)—负阻区的两侧形成了 具有正负电荷的偶极层---偶极 畴。 偶极畴上有与外加电场 方向相同的附加电 场,----高场畴。
迁移率低 高场,GaAs沟道 中的电子从电场 获得足够的能 量,克服导带带 阶,进入低迁移 率 材 料 AlGaAs, 高场电流降低。
迁移率高 低场,电子驻留 在Ec小的材料 中,其迁移率高
25
RST二极管有偏压时的能带图
GaAs/AlGaAs异质结构RST二极管的电流电压特性 利用RST,要选择具有最佳带边不连续的异质结,材料 具有比较高的卫星能谷(或没有卫星能谷),以免转移电 子效应发生。
5
1. 隧道器件
基于量子隧穿过程的器件
隧穿现象: 多数载流子效应 载流子穿过势垒的隧穿时间极短, 不受常规的渡越时间的支配
允许用于毫米波段
隧穿电流不单调地依赖于偏压, 有微分负阻现象 隧道二极管 共振隧穿二极管
6
隧道二极管
也叫江崎二极管
结构:由两侧都是简并态(高掺杂)pn结组成。
耗尽层的宽度只 有5~10nm或更小 可发生隧穿 隧道二极管热平衡能带图
26
小结
1。隧道二极管,共振隧道二极管 2。碰撞电离雪崩渡越时间二极管 3。转移电子器件
产生负阻效应的主要原理
27
第六章 负阻器件
1。隧道器件 2。碰撞电离雪崩渡越时间二极管 3。转移电子器件
2
微波
3
微波的波长与普通电路或元件的尺寸可比拟。
似光性,能像光线一样传播,且遵循波动基本规律 三种效应:渡越时间效应, 辐射效应, 趋肤效应 雨雪云雾对微波有不同程度的吸收和发射。 --预测天气 特点 可穿透电离层,卫星通讯成为现实。
v
t TD Tt Td
转移电子器件中电子的平均漂 移速度与时间的关系 动态特性-加交变电压。
24
在渡越时间模式下,阴极成核 TED时间行为的数值模拟。
猝灭畴模式 延迟畴模式
4。实空间转移器件RST
利用实空间转移二极管产生负阻效应。 不是体效应,要求异质结构中两种材料迁移率不同,实空间转移发 生在两材料的界面处。
I P / IV
10
8:1
12:1
28:1
2。碰撞电离雪崩渡越时间二极管 IMPATT
利用雪崩倍增和半导体器件的渡越时间特性来产生在微波频率 时的负电阻。 产生负阻的原因是存在延迟使得电流滞后于电压. 雪崩电流建 立而产生的 雪崩延迟 载流子穿过漂移 区所产生的渡越 时间延迟
当两种延迟加起来的时间为半周期时,在对应频率下二极管的动 态电阻是负的. IMPATT二极管由雪崩区和漂移区构成。
15
动态特性:
注入延迟和渡越时间效应
16
理想IMPATT二极管,载流子在x=0处注入,在漂移区 以饱和速度运动
低-高-低结构
交流电压
注入电荷 负阻特性
四个时间间隔的交流循环下, 场分布与产生的载流子浓度 17
外部电流
3。转移电子器件 TED
重要的微波器件
当n型GaAs半导体两端外加电压使内部电场超过3kV/cm 时, 产生微波振荡。 转移电子效应 高能谷的有效质 量大,迁移率小 在高电场下,传 导电子可以被从 高迁移率的能谷 转移到低迁移率、 较高能量的能谷
到达阳极到完 全消失畴的消失时间 畴的渡越时间Tt Td 消失后,半导体内电场恢复到没有形成畴的原始状态,电子平均运 动速度也恢复到原始的快电子状态。若电压仍然高于阈值电压,则 再次形成偶极畴。
也是器件电流的波形,即 有连续的电流脉冲,形成 振荡。周期为 TD+Tt+Td~Tt,决定了 渡越时间频率ft