复合材料第章碳碳复合材料

合集下载

碳碳复合材料

碳碳复合材料

二、碳/碳复合材料的应用
C/C复合材料作为刹车盘
二、碳/碳复合材料的应用



2. 先进飞行器 导弹、载人飞船、航天飞机等,在再入环境时飞行器头 部受到强激波,对头部产生很大的压力,其最苛刻部位 温度可达2760℃,所以必须选择能够承受再入环境苛刻 条件的材料。 设计合理的鼻锥外形和选材,能使实际流入飞行器的能 量仅为整个热量1%~10%左右。对导弹的端头帽也要 求防热材料,在再入环境中烧蚀量低,且烧蚀均匀对称, 同时希望它具有吸波能力、抗核爆辐射性能和全天候使 用的性能。 三维编织的C/ C复合材料,其石墨化后的热导性足以满 足弹头再入时由160℃气动加热至1700℃时的热冲击要 求,可以预防弹头鼻锥的热应力过大引起的整体破坏; 其低密度可提高导弹弹头射程,已在很多战略导弹弹头 上得到应用。除了导弹的再入鼻锥,C/C 复合材料还可 作热防护材料用于航天飞机。
碳/碳复合材料CVD工艺


在CVD过程中特殊问题--防止预成型体封口。 在工艺参量控制时应使反应气体和反应生成气 体的扩散速度大于沉积速度。
预成型体和基体碳

碳/碳复合材料制备的基本思路 先将碳增强材料预先制成预成型体,然后再以基体碳填充, 逐渐形成致密的C/C复合材料。 预成型体是一个多孔体系,含有大量孔隙,即使是在用成束 碳纤维编织的预成型体中,纤维束中的纤维之间仍含有大量 的孔隙。
二、碳/碳复合材料的应用
C/C在航天领域中的应用
二、碳/碳复合材料的应用
二、碳/碳复合材料的应用





3. 固体火箭发动机喷管上的应用 C/C 复合材料自上世纪70 年代首次作为固体火箭发动机 (SRM) 喉衬飞行成功以来,极大地推动了固体火箭发动 机喷管材料的发展。 采用 C/C 复合材料的喉衬、扩张段、延伸出口锥,具有 极低的烧蚀率和良好的烧蚀轮廓, 可提高喷管效率1 %~ 3%,即可大大提高固体火箭发动机的比冲。 喉衬部一般采用多维编织的高密度沥青基C/C复合材料, 增强体多为整体针刺碳毡、多向编织结构等,并在表面 涂覆SiC以提高抗氧化性和抗冲蚀能力。 美国在此方面的应用有:①“民兵2Ⅲ”导弹发动机第三 级的喷管喉衬材料; ②“北极星”A27 发动机喷管的收 敛段;③MX 导弹第三级发动机的可延伸出口锥(三维编织 薄壁 C/C 复合材料制品)。 俄罗斯用在潜地导弹发动机的喷管延伸锥(三维编织薄壁 C/C复合材料制品) 。

碳碳复合材料ppt课件

碳碳复合材料ppt课件

循环浸渍-碳化曲线反映了浸渍-碳化工艺特点:
❖ 在进行1~3次浸渍碳化时,复合材料的密度增加较快, 从预制体密度(约1.2~1.3g/cm3)增加到1.6g/cm3以上;
❖ 从第四次循环浸渍碳化开始,则每次复合材料的密度增 加相对较慢。
❖ 为了减少浸渍-碳化次数,提高浸渍碳化效率和改善复 合材料的性能,一般采用真空压力浸渍工艺,形成了压 力浸渍碳化工艺(PIC, Pressure Impregnation Carbonization)。并且在沥青液态浸渍-碳化工艺中得 到应用。
沥青碳化率=0.95QI+0.85(BI-QI)+(0.3-0.5)BS
因此,沥青的碳化率随高分子量芳香族化合物的含量增加而增加。 最高的碳化率达90%,但与碳化时的压力有关。当碳化压力增强时, 低分子量物质挥发气化,并在压力下热解得到固态沥青碳。
★ 沥青碳化特性
★ 沥青碳化特性
沥青的压力碳化经历以下过程:
沥青液态压力浸渍-碳化 工艺是在常压、250℃下先浸 渍,然后在此温度下加压至 100MPa压力下继续浸渍,再 此压力下经650℃碳化。
同样需经历多次PIC工艺 使/C复合材料致密化。
● HIPIC工艺
HIPIC工艺是热等静压浸 渍碳化工艺(Hot Isostatic Pressure Carbonization),即 在等静压炉中进行PIC工艺。
沥青、树脂浸渍-碳化与CVD裂解碳填充孔隙的区别
C/C复合材料CVD/CVI工艺的种类主要有:
❖ 等温 (Isothermal)法; ❖ 压力梯度 (Pressure gradient)法; ❖ 温度梯度(Thrmal gradient)法; ❖ 化学液气相沉积法(Chemical Liquid Vapour

炭_炭复合材料热膨胀性能的研究

炭_炭复合材料热膨胀性能的研究

收稿日期:2006.叭.25:修订日期:2006.05.10 基金项目: 国家“973”项目(2006CB600908) 作者简介:赵建国(1971一),男,博士,现为山西大同大学化学系讲 师,主要从事复合材料、新型炭材料研究以及计算机数值模拟研究, 已发表论文20余篇,申请国家专利5项。 通讯作者: 李克智,西北工业大学材料学院教授,Tel:029.
映原子间结合能的大小,不同晶格结构类型的材料由 于原子间的结合能不同,具有不同的膨胀系数。结合 力大,热振动幅度就小,因而膨胀就小。在高温下,晶 格振动的激化会使热膨胀系数增大,随着温度的升 高,原子振动在宏观上表现出材料的热膨胀现象,即 随着温度的升高,膨胀系数增大,如图1所示。
T p
彳 。 一 × 叫 ■ U
定热膨胀行为的材料。高温热处理是提高炭/炭复合 材料导热性能,调整摩擦性能的重要手段,本文研究 高温热处理对炭/炭复合材料热膨胀性能的影响。
1 实验材料及方法
1.1炭/炭复合材料的制备 以天然气为前驱体,其中组分的体积含量为
98%cH4,0.3%C,H。,0.3%c。H,o,0.4%其他烃类化合 物,1%N,。炭纤维毡作预制体,利用热梯度化学气相 沉积工艺来制备炭/炭复合材料‘1 0I,所得炭/炭复合材 料的密度为1.759/cm3。在氩气保护下对炭/炭复合 材料试样分别进行不同的高温热处理。 1.2性能测试
88495764,E.mail:likezhinwpu@263.neto
万方数据
2 结果与讨论
2.1炭纤维的取向对炭,炭复合材料热膨胀性能的 影响
热膨胀性能与材料的熔点、结合能和晶体的结构 有关。热膨胀系数(CTE)受制于孤立原子相互结合 为晶体的内聚力或结合能。膨胀系数的大小直接反

碳碳复合材料的制备方法

碳碳复合材料的制备方法

碳碳复合材料的制备方法
碳碳复合材料的制备方法主要包括以下步骤:
增强纤维及其织物的选择:碳纤维束的选择和纤维织物的结构设计是制造C/C复合材料的基础,通过合理选择纤维种类和织物的编制参数,可以决定C/C复合材料的力学性能和热物理性能。

碳纤维预制坯体的制备:预制坯体是指按产品形状和性能要求先把纤维成型为所需结构形状的毛坯,以便进行致密化工艺。

目前C复合材料主要使用的编织工艺是三维整体多向编织,编织过程中所有编织纤维按照一定的方向排列,每根纤维沿着自己的方向偏移一定的角度互相交织构成织物,其特点是可以成型三维多向整体织物,可以有效的控制C/C复合材料各个方向上纤维的体积含量,使得C/C复合材料在各个方向发挥合理的力学性能。

C/C的致密化工艺:致密化程度和效率主要受织物结构、基体材料工艺参数的影响。

目前使用的工艺方法有浸渍碳化、化学气相沉积(CVD)、化学气相渗透(CVI)、化学液相沉积、热解等方法。

主要使用的工艺方法有两大类:浸渍碳化工艺和化学气渗透工艺。

碳碳复合材料热容-概述说明以及解释

碳碳复合材料热容-概述说明以及解释

碳碳复合材料热容-概述说明以及解释1.引言概述部分的内容可以按照以下方式来进行撰写:1.1 概述碳碳复合材料是一种由碳纤维和碳基基质构成的材料,具有轻量化、高强度、高温性能良好等优点,广泛应用于航空航天、汽车和电子等领域。

近年来,随着科技的不断发展,碳碳复合材料的热容性能逐渐受到人们的重视。

热容是指物质在吸收或释放热量过程中的温度变化能力,是评估材料热学性能的重要指标之一。

对于碳碳复合材料而言,其热容性能直接关系到其在高温环境下的稳定性和耐久性。

因此,研究碳碳复合材料的热容性能对于优化材料设计和提高材料性能具有重要的意义。

本文将对碳碳复合材料的热容性能进行全面的描述和分析。

首先,将介绍碳碳复合材料的定义和特点,包括其制备工艺、结构特征以及热学性能等方面的内容。

然后,将着重分析碳碳复合材料在高温环境下的热容性能,探讨其受热过程中温度变化规律以及热容值的计算方法。

最后,将总结热容性能对碳碳复合材料的重要性,并展望未来研究方向,以期为碳碳复合材料的制备和应用提供科学的依据和指导。

通过对碳碳复合材料热容性能的深入研究,可以对该材料的高温应用能力和性能进行更加准确的评估,并为其在未来的研究和应用中提供参考和指导。

同时,对于碳碳复合材料以及其他相关研究领域的学者和科研人员也具有一定的参考价值。

在研究过程中,我们将通过综合运用理论分析和实验验证相结合的方法,力求全面准确地揭示碳碳复合材料的热容性能,以期为相关领域的深入研究和应用提供一定的理论和实践指导。

文章结构部分的内容如下:1.2 文章结构本文主要通过以下几个方面对碳碳复合材料的热容进行探讨和分析。

首先,对碳碳复合材料的定义和特点进行介绍,以便读者能够对该材料有一个基本的了解。

其次,将重点关注碳碳复合材料的热容性能,探究其在热学方面的表现和应用。

最后,通过总结热容性能对碳碳复合材料的重要性,以及展望碳碳复合材料热容性能的未来研究方向,来对文章进行一个总结和展望。

复合材料概论 复习 重点

复合材料概论 复习 重点

第一章总论一.复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。

★二.复合材料的命名和分类★1.按增强材料形态分类(1)连续纤维复合材料:作为分散相的纤维,每根纤维的两个端点都位于复合材料的边界处;(2)短纤维复合材料:短纤维无规则地分散在基体材料中制成的复合材料;(3)粒状填料复合材料:微小颗粒状增强材料分散在基体中制成的复合材料;(4)编织复合材料:以平面二维或立体三维纤维编织物为增强材料与基体复合而成的复合材料。

2. 按增强纤维种类分类(1)玻璃纤维复合材料;(2)碳纤维复合材料;(3)有机纤维(芳香族聚酰胺纤维、芳香族聚酯纤维、高强度聚烯烃纤维等)复合材料;(4)金属纤维(如钨丝、不锈钢丝等)复合材料;(5)陶瓷纤维(如氧化铝纤维、碳化硅纤维、硼纤维等)复合材料。

如果用两种或两种以上纤维增强同一基体制成的复合材料称为混杂复合材料3.按基体材料分类(1)聚合物基复合材料:以有机聚合物(主要为热固性树脂、热塑性树脂及橡胶)为基体制成的复合材料;(2)金属基复合材料:以金属为基体制成的复合材料,如铝基复合材料、钛基复合材料等;(3)无机非金属基复合材料:以陶瓷材料(也包括玻璃和水泥)为基体制成的复合材料。

4.按材料作用分类(1)结构复合材料:用于制造受力构件的复合材料;(2)功能复合材料:具有各种特殊性能(如阻尼、导电、导磁、换能、摩擦、屏蔽等)的复合材料。

三.复合材料是由多相材料复合而成,其共同的特点是:★(1)可综合发挥各种组成材料的优点,使一种材料具有多种性能,具有天然材料所没有的性能。

(2)可按对材料性能的需要进行材料的设计和制造。

例如,针对方向性材料强度的设计,针对某种介质耐腐蚀性能的设计等。

(3)可制成所需的任意形状的产品,可避免多次加工工序。

四.影响复合材料性能的因素很多,主要取决于①增强材料的性能、含量及分布状况,②基体材料的性能、含量,以及③增强材料和基体材料之间的界面结合情况,作为产品还与④成型工艺和结构设计有关。

复合材料PPT

复合材料PPT
总论 复合材料的基体材料 复合材料的增强材料 复合材料的界面 聚合物基复合材料 金属基复合材料 碳/碳复合材料
第一章
总 论
1.1 发展概况
1.2 复合材料定义、命名 和分类 1.3 复合材料的基本性能
第一章 总 论
1.1 发展概况
材料发展历史: 石器、铜器、铁器时代等 实现生产、科学目的: 新材料研究 材料科学历史: 四十多年
问 题: (1)复合产物能否为液体或气体? (2)复合材料是不是只能是一个
连续相与一个分散相的复合?
1.2.2 命名
例:玻璃纤维增强树脂基复合材料命名
玻璃钢 玻纤增强塑料、玻璃塑料、玻璃布 层压板、玻璃纤维复合材料
命名原则:
增强材料+基体材料+复合材料
例:碳纤维环氧树脂复合材料 书写: 碳/环氧复合材料
亚短钢纤维(长度40—60mm) 短钢纤维(长度20—35mm) 超短钢纤维(长度<15mm)
横截面形状:圆形、矩形截面 钢纤维主要品种:不锈钢、低碳钢
图 15
高架桥
1.3.6 三种复合材料性能比较 (1)使用温度、硬度 使用温度: CMC >MMC > PMC 硬 度: CMC >MMC > PMC
纤维增强树脂基复合材料:
● 基体强韧性降低裂纹扩展速度 ● 纤维对裂纹阻隔作用,使裂纹 尖端变纯或改变方向
裂纹扩展路径曲折、复杂
图12 三种材料疲劳性能比较
1—碳纤维复合材料
3—铝合金
2—玻璃钢
金属疲劳强度=20—50%抗张强度
碳纤维复合材料疲劳强度=
70—80%抗张强度
(3)减振性能好 影响自振频率因素:
1.3.2 聚合物基复合材料及主要性能

碳碳复合材料

碳碳复合材料

碳/碳复合材料的分类定义:碳碳复合材料是指用碳纤维或石墨纤维为增强材料,以碳化或石墨化的树脂或用化学蒸气沉积的碳作为基体材料的复合材料。

特点:比强度大、比模量高、高温烧蚀性能好、耐热冲击、化学惰性好等优点,而且升华温度高,高温下仍能保持很高强度。

适用于高温的最佳的最佳先进复合材料。

根据增强材料与基体材料的不同,碳/碳复合材料可分为三种:碳纤维增强碳、石墨纤维增强碳、石墨纤维增强石墨。

根据纤维的类型或编制方式,碳/碳复合材料可分为短纤维增强的碳/碳复合材料、单向连续纤维增强的碳/碳复合材料、层合织物(碳布重叠或原丝制毡)增强的碳/碳复合材料及三维立体编织物增强的碳/碳复合材料等多种。

短纤维复合材料的成本低,容易加工,但强度不高;连续纤维复合材料仅在纤维方向具有较高的强度;层合织物可在纤维平面上提供高强度和良好的抗冲击性能,而在垂直于纤维平面的方向上力学性能较差;三维织物增强的复合材料比其他几种形式的复合材料性能皆佳,整体性强,层间剪切强度高,但制造成本亦高。

由于碳在常压下不熔化,也不能溶解于任何溶剂中,因此不能直接用作基体材料。

基体制造工艺有两种。

第一种是先制成碳纤维增强热固性树脂基复合材料,然后在氧气中缓慢热分解,使树脂基体分解,并在沥青、酚醛树脂等溶液中反复进行浸渍并热解,最后只残留碳基体,得到碳/碳复合材料。

第二种是化学蒸气沉积法,即用碳氢化合物气体,如甲烷、乙炔等,在1000~1100℃下进行分解,在三维织物、碳毡、纤维缠绕件的结构空隙内进行沉积。

形成致密的碳/碳复合材料。

第一种制造方法常用的基体材料主要有沥青、酚醛、糠醛等含碳量高的树脂。

由于热分解时树脂中非碳元素的分解逸出,在基体中易产生空隙。

因此,制造时一般应利用化学蒸气沉积技术在空隙中沉积碳,以提高材料的致密性。

碳/碳复合材料与其他碳素材料一样,在空气中加热到400℃以上就会发生氧化。

即使很少量的烧蚀也会导致材料的物理性能和力学性能劣化。

碳碳复合材料,灰分含量

碳碳复合材料,灰分含量

碳碳复合材料,灰分含量碳碳复合材料是一种由碳纤维和碳基矩阵相互渗透形成的复合材料。

它具有高温、高强度、高导热性和低热膨胀系数等优点,被广泛应用于航空航天、汽车制造、能源等领域。

然而,碳碳复合材料的制备过程中灰分含量是一个重要的参数,对其性能有着直接的影响。

灰分含量是指在高温下燃烧样品后,残留下来的无机物质的质量与样品质量之比。

碳碳复合材料的灰分主要来自于碳基矩阵中添加的填充剂、增韧剂等材料。

灰分含量的高低会直接影响到碳碳复合材料的力学性能、热稳定性和导热性能等方面。

首先,碳碳复合材料的灰分含量对其力学性能有着直接的影响。

灰分含量高的材料通常具有较高的硬度和强度,但也会降低其延展性和韧性。

此外,灰分含量还会影响到材料的断裂韧度和疲劳寿命等性能。

因此,在制备碳碳复合材料时,需要根据具体应用需求合理控制其灰分含量。

其次,灰分含量还会影响碳碳复合材料的热稳定性。

灰分含量高的材料通常具有较高的热稳定性,能够在高温下保持结构的完整性和性能稳定。

这是因为灰分中的无机物质具有较高的熔点和热分解温度,能够抵御高温时的热腐蚀和氧化作用。

因此,在高温环境下应用的碳碳复合材料通常要求较高的灰分含量。

此外,灰分含量还会对碳碳复合材料的导热性能产生影响。

灰分中的无机物质具有较高的热导率,能够提高复合材料的整体热传导性能。

然而,过高的灰分含量也会导致导热性能下降。

因此,在制备碳碳复合材料时,需要根据具体应用需求合理控制灰分含量,以达到最佳的导热性能。

总结起来,碳碳复合材料的灰分含量对其力学性能、热稳定性和导热性能等方面有着直接的影响。

合理控制灰分含量,可以使得碳碳复合材料具备良好的力学强度、高温稳定性和优异的导热性能。

因此,在制备碳碳复合材料时,需要充分考虑灰分含量对材料性能的影响,并根据具体应用需求制定合适的控制措施和工艺流程,以保证复合材料的性能达到最佳。

碳碳复合材料抗氧化性能研究综述

碳碳复合材料抗氧化性能研究综述

碳碳复合材料抗氧化性能研究综述周一至周五| 9:00—22:00 论文网政治论文| 经济论文| 管理论文| 历史论文| 文学论文| 医学论文| 艺术论文| 科技论文| 教育论文| 知识百科| 学问百科【摘要】碳/碳复合材料具有优异的性能,但其高温下的氧化限制了该材料的应用。

目前,碳碳复合材料的抗氧化技术主要有涂层法和基体抗氧化法,以涂层法为主要抗氧化方法,其中涂层法主要有玻璃涂层、金属涂层、陶瓷涂层和复合涂层。

【关键词】碳/碳复合材料;抗氧化;研究C/C复合材料抗氧化的途径主要是采用涂层法和基体抗氧化法。

其抗氧化原理是:将碳材料与氧化环境隔离,添加抗氧化物质占据氧化反应活性点、减少氧气传递的通道。

实现方法是在材料中引入抗氧化物质如硅化物、硼化物、磷酸盐以及过度金属化合物等,这些抗氧化物质在高温下氧化形成具有流动性的玻璃态物质,覆盖在C/C复合材料表面,并填充在C/C复合材料的孔隙或裂纹中,截断氧在材料内部的传递通道,从而达到提高C/C复合材料抗氧化耐烧蚀性能的目的[1]。

一、抗氧化涂层原理:涂层抗氧化原理是利用涂层中的化合物与氧气反应形成玻璃态物质覆盖在涂层表面,阻止氧进入材料内部,从而使材料与氧隔离。

抗氧化涂层的制备方法主要有:CVD 法,熔浆法,涂刷法,等离子喷涂法和溶胶-凝胶法等。

考虑因素:在C/C复合材料表面涂覆的抗氧化涂层,首先必须能够有效阻止氧的侵入,即要求抗氧化涂层有较低的氧气渗透率;其次必须使涂层的热膨胀系数与材料本体相当,防止在高温下产生较大的热应力使涂层产生裂纹甚至剥落;第三,为防止涂层挥发,涂层材料必须具有较低的蒸气压;此外,还应当考虑涂层与C/C复合材料的表面润湿性能、界面结合强度、化学相容性等因素,只有这样涂层才能与材料本体结合牢固可靠。

研究得较多的涂层材料是SiC,Si3N4,MoSi2等硅基材料以及B4C,BN等硼化物,或者多种材料相结合的梯度涂层。

除了以上几种材料外,用于抗氧化涂层的材料还有过渡金属化合物如ZrC,ZrB2,TaC,Y2O3,Al2O3等。

第一章 复合材料绪论

第一章 复合材料绪论
良好的功能性能
第一章
1-3 复合材料的特性
复合材料的缺点: ➢材料价格高 ➢劳动强度大 ➢抗挤压和抗分层能力差 ➢力学性能受温度/湿度影响 ➢不易检查 ➢对铝会产生电化学腐蚀 ➢固化时间长
第一章
1-3 复合材料的特性
性能:取决于基体相、增强相种类及数量,其次是 它们的结合界面、成型工艺等。 1、主要取决于增强相的性能 ⑴.比强度,比刚度高 ⑵.冲击韧性和断裂韧性高 ⑶.耐疲劳性好 ⑷.减震性 ⑸.热膨胀系数小
70年代民用飞机开始用复合材料做调整片,口盖等. 美国的ACEE计划.从舵面过渡到尾翼.
80-90年代,美国NASA的ACM计划.重点发展DFM-设计制造一体化.
第一章
1-4 复合材料在民用飞机结构上的应用
目前研究低成本的复合材料设计与制造技术 CAI大量的仿真技术.设计,制造,生产一体化仿真实
现异地设计异地制造.80-90年代实现了复合材料向主承力 结构应用的过渡.
金属基复合材料MMC
复合 材料
有机材料基复 合材料
无机非金属基 复合材料
木质基复合材料
聚合物基复 合材料PMC
橡胶基 树脂基
水泥或混凝土基 复合材料
陶瓷基复合材料CMC
热塑性树脂 热固性树脂
第一章
1-2 复合材料的定义与分类
根据第二相(增强体)形态分。 分散强化复合材料
颗粒状分散 相复合材料
颗粒增强复合材料
A380,B787的出现.
第一章
1-4 复合材料在民用飞机结构上的应用
第一章
1-4复合材料在民用飞机结构上的应用
先进树脂基复合材料是民用飞机的主要复合材料.
复合材料在民用飞机的应用出现的几个特征:
➢小型/简单次承力结构

《复合材料》习题及答案 (2)

《复合材料》习题及答案 (2)

《复合材料》习题及答案第一章1、材料科技工作者的工作主要体现在哪些方面?(简答题)①发现新的物质,测试新物质的结构和性能;②由已知的物质,通过新的制备工艺,改善其微观结构,改善材料的性能;③由已知的物质进行复合,制备出具有优良特性的复合材料。

2、复合材料的定义(名词解释)复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。

3、复合材料的分类(填空题)⑴按基体材料分类①聚合物基复合材料;②金属基复合材料;③无机非金属基复合材料。

⑵按不同增强材料形式分类①纤维增强复合材料:②颗粒增强复合材料;③片材增强复合材料;④叠层复合材料。

4、复合材料的结构设计层次(简答题)⑴一次结构:是指由基体和增强材料复合而成的单层复合材料,其力学性能取决于组分材料的力学性能,各相材料的形态、分布和含量及界面的性能;⑵二次结构:是指由单层材料层合而成的层合体,其力学性能取决于单层材料的力学性能和铺层几何(各单层的厚度、铺设方向、铺层序列);⑶三次结构:是指工程结构或产品结构,其力学性能取决于层合体的力学性能和结构几何。

5、复合材料设计分为三个层次:(填空题)①单层材料设计;②铺层设计;③结构设计。

第二章1、复合材料界面对其性能起很大影响,界面的机能可归纳为哪几种效应?(简答题)①传递效应:基体可通过界面将外力传递给增强物,起到基体与增强体之间的桥梁作用。

②阻断效应:适当的界面有阻止裂纹的扩展、中断材料破坏、减缓应力集中的作用。

③不连续效应:在界面上产生物理性能的不连续性和界面摩擦出现的现象。

④散热和吸收效应:光波、声波、热弹性波、冲击波等在界面产生散射和吸收。

⑤诱导效应:复合材料中的一种组元的表面结构使另一种与之接触的物质的结构由于诱导作用而发生变化。

2、对于聚合物基复合材料,其界面的形成是在材料的成型过程中,可分为两个阶段(填空题)①基体与增强体的接触与浸润;②聚合物的固化。

3、界面作用机理界面作用机理是指界面发挥作用的微观机理。

碳纤维复合材料产品

碳纤维复合材料产品

碳纤维复合材料产品碳纤维复合材料是一种由碳纤维和树脂等材料组成的复合材料,具有重量轻、强度高、耐腐蚀等优点,被广泛应用于航空航天、汽车、体育用品、建筑等领域。

本文将重点介绍碳纤维复合材料产品的特点、应用和发展趋势。

碳纤维复合材料产品的特点。

碳纤维复合材料产品具有重量轻、强度高、刚性好、耐腐蚀、耐疲劳等特点。

由于碳纤维本身具有很高的拉伸强度和模量,再加上树脂的增强作用,使得碳纤维复合材料具有极高的强度和刚性,可以替代传统材料如金属、塑料等。

此外,碳纤维复合材料还具有良好的耐腐蚀性能,能够在恶劣环境下长期使用,同时具有良好的耐疲劳性能,能够承受长期的重复载荷而不易疲劳破坏。

碳纤维复合材料产品的应用。

由于碳纤维复合材料具有优异的性能,被广泛应用于航空航天、汽车、体育用品、建筑等领域。

在航空航天领域,碳纤维复合材料被用于制造飞机机身、机翼、舵面等部件,能够减轻飞机重量,提高飞机的燃油效率和飞行性能。

在汽车领域,碳纤维复合材料被用于制造汽车车身、底盘等部件,能够减轻汽车重量,提高汽车的燃油效率和安全性能。

在体育用品领域,碳纤维复合材料被用于制造高尔夫球杆、网球拍、自行车等,能够提高运动器材的性能和使用寿命。

在建筑领域,碳纤维复合材料被用于制造建筑结构、桥梁等,能够提高建筑物的抗震性能和耐久性能。

碳纤维复合材料产品的发展趋势。

随着科学技术的不断进步,碳纤维复合材料产品的性能不断提升,应用领域不断拓展。

未来,碳纤维复合材料有望在航空航天、汽车、体育用品、建筑等领域取得更广泛的应用。

同时,随着碳纤维复合材料的生产工艺的不断改进和成本的不断降低,碳纤维复合材料产品的价格将更加合理,有望替代传统材料,成为未来材料的主流。

总之,碳纤维复合材料产品具有重量轻、强度高、耐腐蚀等优点,被广泛应用于航空航天、汽车、体育用品、建筑等领域。

随着科学技术的不断进步,碳纤维复合材料产品的性能将不断提升,应用领域将不断拓展,有望成为未来材料的主流。

碳碳复合材料讲解

碳碳复合材料讲解

03
飞机刹车 材料关键
技术
C/C复合材料产业现状
C/C复合飞机刹车材料预制体成型技术 C/C复合飞机刹车材料快速致密化技术 C/C复合飞机刹车材料的氧化防护技术 C/C复合飞机刹车材料再生修复技术
ቤተ መጻሕፍቲ ባይዱ
C/C复合材料产业现状
03
C/C复合飞机刹车材料预制体成型技术
预制体是C/C复合材料的增强骨架,它直接决定或影响着后续制备复合 材料的力学、热物理和摩擦等性能。
03
①先进碳/ 碳复合飞机刹车材料关键技术研究
先进碳/碳复合材料是我国大型飞机和高性能军机的关键刹车材料,碳/ 碳(C/C)复合材料刹车盘(简称碳盘)是飞机刹车装置普遍使用的关键器材, 它不仅是一种摩擦元件,而且是一种热库和结构元件。碳盘替换传统的钢刹 车盘可以获得明显减重以及大幅度进步刹车盘性能和使用寿命的效果,因此, 自从20世纪70年代装机首飞成功以来,目前国际上已有100余种大中型民航 客 机和先进军机采用了碳刹车技术,是否采用碳刹车装置已成为衡量现代航 空 机轮水平的重要标志之一。
03
C/C复合材料产业现状
C/C复合飞机刹车材料快速致密化技术
为了解决制备周期长这一关键题目,国外进行了大量的研发工作。 早在1994年,美国Textron公司报道,他们研发的高效工艺能在8h内制 备出碳盘样品,但主要题目是该方法一炉只能制备一个样品,至今仍未 能实现工程化。Vaidyaraman S等人研究的强制活动热梯度法能使沉积 速率进步12~30倍,但仅适用于制备外形简单的小样品(直径小于 100mm,厚度小于10mm),同样一炉只能制备一个样品,仍然无法
03
C/C复合材料产业现状
C/C复合飞机刹车材料快速致密化技术

《复合材料概论》心得与总结

《复合材料概论》心得与总结

《复合材料概论》心得与总结卫琦 1306030118通过学习《复合材料概论》,我了解了复合材料的命名、分类以及复合材料的基本性能。

复合材料的基体材料有四种:金属材料、无机胶凝材料、陶瓷材料、聚合物材料。

了解了碳纤维的优点以及碳纤维在生活中被广泛的应用。

以及对聚合物基复合材料,金属基复合材料,陶瓷基复合材料的了解。

以下是我对一些知识点的总结。

第一章总论一、复合材料定义:复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料;在复合材料中通常有一个相为连续相,称为基体,另一相为分散相,称为增强材料。

二、复合材料的分类1.按增强材料形态分类(连续纤维复合、短纤维复合、颗粒复合、编织复合)2.按增强材料纤维种类分类(玻璃纤维、碳纤维、有机纤维、金属纤维、陶瓷纤维、混合)3.按基体材料分类(聚合物基、金属基、无机非金属基)4.按材料作用分类(结构复合材料、功能复合材料)三、复合材料的基本性能1.可综合发挥各组成材料的优点2.可按对材料性能的需要进行材料的设计和制造(最大特点!)3.可制成所需的任意形状的产品四、复合材料结构设计的三个结构层次①:一次结构:指由基体和增强材料复合而成的单层材料②:二次结构:指由单层材料层合而成的层合体③:三次结构:指通常所说的工程结构或者产品结构第二章复合材料的基体材料复合材料的基体材料有以下四种:①:金属材料主要包括铝及铝合金、镁合金、钛合金、镍合金、铜与铜合金、锌合金、铅、钛铝、镍铝金属间化合物等无机胶凝材料主要包括水泥、石膏、菱苦土和水玻璃等陶瓷材料主要包括玻璃、玻璃陶瓷、氧化物陶瓷、非氧化物陶瓷聚合物材料主要包括不饱和聚酯树脂、环氧树脂、酚醛树脂及各种热固性/热塑性聚合物。

第三章复合材料的增强材料一、增强材料的定义:在复合材料中,凡事能基体材料力学性能的物质,均称为增强材料。

二、玻璃纤维的分类:1.以玻璃原料成分分类:无碱玻璃纤维(E玻纤);中碱玻璃纤维;有机玻璃纤维(A玻璃);特种玻璃纤维。

高性能针刺碳碳复合材料的制备与性能

高性能针刺碳碳复合材料的制备与性能

高性能针刺碳/碳复合材料的制备与性能摘要:为获得高性能针刺碳/碳复合材料, 拓展其应用领域, 通过优化针刺工艺参数, 设计并研制了不同结构参数的针刺预制体。

采用沥青高压致密化工艺将针刺预制体制备成一系列针刺碳/碳复合材料, 研究了针刺碳/碳复合材料的微观结构、力学性能和热物理性能。

结果表明, 针刺预制体的针刺深度、针刺密度以及短/长纤维配比等对碳/碳复合材料的力学性能和热物理性能影响显著。

当针刺深度为12 mm、针刺密度为22针/cm2、短/长纤维比例为1.0 : 4.8时, 针刺碳/碳复合材料表现出优良的综合性能, 拉伸、压缩、弯曲、面内剪切和层间剪切强度分别达到207、228、285、54和28 MPa。

关键词:碳/碳复合材料; 针刺结构参数; 力学性能; 热物理性能碳/碳复合材料具有高比强度、高比模量、可设计性强、可加工性好且高温性能优良等特征, 在航空航天领域应用广泛[1]。

自二十世纪末以来, 世界航天强国掀起了先进高超声速飞行器研究的热潮, 武器装备的技战术指标对热防护用碳/碳复合材料在耐高温、高强、轻质及其低成本化方面提出了更高要求[2-5]。

与其它复合材料类似, 碳纤维预制体结构是决定碳/碳复合材料性能、质量以及生产成本的重要因素[6]。

目前常用的碳/碳复合材料预制体结构包括碳布穿刺、正交三向、三维编织及针刺结构[7], 其中碳布穿刺和正交三向无法实现异形件仿形编织; 三维编织纤维利用率低, 因纤维磨损过大而无法编织复杂形状的预制体。

针刺预制体结构是通过网胎提供的短切纤维在碳布层间的搭接, 不但具有准三维结构较高的层间性能, 而且具有适合于仿形成型、连续长纤维方向可设计性强和平面方向纤维利用率高的优点, 并且制备过程自动化程度高、周期短、质量稳定, 可高效制备出各种复杂形状的碳纤维预制体[8-10]。

目前针刺预制体及其碳/碳复合材料多应用于火箭发动机喉衬、扩散段、出口锥及飞机刹车盘等外形简单以及其它承载要求不高的热端部件[11-12]。

碳碳复合材料表面烧蚀研究进展

碳碳复合材料表面烧蚀研究进展

亠星如無INDUSTRIAL HEATING・38・2021年第50卷第5期Vol. 5 0 No.5 2021DOT 10. 3969/j. issn. 1002-1639.2021.05. 010碳/碳复合材料表面烧蚀研究进展D j(西安航空职业技术学院航空材料工程学院,陕西西安710089)摘要:碳/碳复合材料作为碳基复合材料的一种,因其具有耐高温、耐高压、耐表面烧蚀及抗辐射等优越性能,在航空航天领域发挥着重要的作用( 碳合材 环境为高温富氧条件下时, 出现表面烧蚀的 ,因 年的研究大多集中在 改善高温的.通过介绍碳/碳复合材料表面烧蚀机理,从验和模拟两方面综述了高温氧化烧 /碳复合材料的研究进,从为碳/碳复合材料的研究 提定的参考意义(关键词:碳/T合材料;表面烧蚀;研究进展中图分类号:TQ314. 248文献标志码:A文章编号:1002-1639(2021 )05-0038-03Research Progres t ic Ablation of Carbon / Carbon CompositetANNa(XiWn Aeronautical Polytechnic Institute ,Colleae of Aeronautical Materiale Engineering ,XiWn 710089,China)Abstract : As a kind of carbon matrix composite ,carbon / carbon composite plays an important role in the fielO of aerospace because of its hightemperature resistance ,high pressure resistance ,suOace erosion resistance and radiation resistance. However ,when the environme n t of carbon / carbon composite material s is high temperature and rich oxyyen ,the suOace ablation problem appears. So in recent years ,most of the re ­search focuses on how / improve the high temperature and ease / oxidize. By introducing the ablation mechanism of carbon / carbon compos ­ite material s ,the research proxress of high temperature oxidation ablation of carbon / carbon composite material s is summarized from two as-pecW of experiment and simulationse as / provide some reference significance for the research and development of carbon composites materi-ae.Key W o /s : carbon / carbon composite ; suOace ablation ; research provress碳基复合材料一般是指以碳纤维或者碳化硅作为 强体加 材料中 备的复合材料,而C/C 合材 合材料中的一种[1]( 碳合材 有高强度、高模量、高韧性、隔热 多能, 天域中使用的重要材料,长期以C/C 复合材 存在 研究 , 在富氧高温环境下其表面的 烧蚀比较严重(见图1)(研究表明,如果C/C 复合材料表面 重为1% ,其材 的强度 下 10%; 重 10% ,其材料强度急速下 50%o C/C 复合材料主要用于 (火箭部 、洲际弹、特种飞机),其服役的环境极其恶虐,在 穿 气 程中,复合材 受 的影响。

PMC材料

PMC材料

5.2
PMC的力学性能
复合材料的力学性能主要包括静态性能(拉、压、弯、 扭等)和动态性能(断裂韧性、蠕变性能、疲劳、冲击等)。
聚合物基的复合材料种类可能非常多,但决定一种复合 材料性能的主要因素是纤维类型、纤维体积分数、纤维形式 及基体类型等。
5.2.1
静态力学性能
PMC 一般直到断裂都是完全弹性的,没有屈服点或塑性 区。此外,PMC的断裂应变很小,与金属相比,断裂功小、 韧性差。
图 4-3 碳纳米管经处理后表面官能团的红外测定结果
4.2
聚合物基复合材料界面的设计与改善
⑶ 使用聚合物涂层 聚合物涂层与增强纤维和基体都有良好的浸润性,所以 能有效地改善PMC界面粘接状况。 聚合物涂层的另一个作用是改善界面的应力状态,降低 界面的残余应力改善聚合物基复合材料的冲击韧性和疲劳性 能。
4.1 聚合物基复合材料界面的特点
● ●
大多数界面为物理粘接,粘接强度较低。 PMC 一般在较低温度下使用,故界面可保持相对稳定。

PMC界面增强本体一般不与基体发生反应。
第四章 聚合物基复合材料界面
聚合物基复合材料界面的表征:
聚合物基复合材料界面层结构主要包括增强材料表面、 与基体的反应层或与偶联剂的反应层,以及接近反应层的 基体抑制层。
5.2.4
PMC的力学性能
冲击韧性
5.3
5.3.1
PMC的其他性能
电性能
体积电阻率:
RV = V d / s
5.3
PMC的其他性能
5.3.1 电性能 表面电阻率:
RS = S d / a
a—材料表面的导电宽度。
5.3
5.3.2
PMC的其他性能
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ 石墨化:利用热活化将 热力学不稳定的炭原子 实现由乱层结构向石墨 晶体结构的有 序转 化。
2021/2/19
石墨化原因
碳元素其外部电子结构有两种: 一种是Sp3杂化轨道,金刚石结 构 ,C一C 间为 σ键。一种是SP2杂 化,形成石墨片状结构,同一层中C一 C 为σ键层与层之间是π键。
σ键很短很强,键长约0.142nm 结 合力很强,π键相对较弱。
❖ 喷射成型是把切断的碳纤维 (约为0.025mm) 配制成碳 纤维-树脂-稀释剂的混合物,然后用喷枪将此混合物 喷涂到芯模上使其成型。
❖ 用碳布或石墨纤维布叠层后进行针刺,可用空心细颈 金属棒引纱。下图是AVCD公司编织的坯体。
❖ 在坯体的研制中,发展的重点是多向织物,如三向、 四向、五向或七向等,目前是以三向织物为主。
热冲击能力很强, 不仅可用于高温环境, 而且适合 温度急剧变化的场合。其比热容高, 这对于飞机刹 车等需要吸收大量能量的应用场合非常有利。因 此可以被用作航天航空材料和刹车片材料。
2021/2/19
摩擦磨损性能 ❖ 碳/碳复合材料中碳纤维的微观组织为乱层石墨结
构, 其摩擦系数比石墨高, 特别是它的高温性能特 点, 在高速高能量条件下摩擦升温高达1000 C 以 上时, 其摩擦性能仍然保持平稳, 因此可用作刹车 片材料。
人造骨骼关节
人工心脏瓣膜
❖鉴于碳/碳复合材料具有系列优异性能,它们在宇宙飞 船、人造卫星、航天飞机、导弹、原子能、航空以及一 般工业部门中得到了日益广泛的应用。
❖今后,随着生产技术的革新,产量进一步扩大,廉价 沥青基碳纤维的开发及复合工艺的改进,碳/碳复合材 料将会有更大的发展。
9.2 碳/碳复合材料的成型加工方法
2021/2/19
物理性能 ❖碳/碳复合材料在高温热处理后的化学成分, 碳元素
高于99%, 像石墨一样, 具有耐酸、碱和盐的化学 稳定性。其比热容大, 热导率随石墨化程度的提高 而增大, 线膨胀系数随石墨化程度的提高而降低等。
2021/2/19
❖ 热学及烧蚀性能 ❖碳/碳复合材料导热性能好、热膨胀系数低, 因而
2021/2/19
1. 胚体 在沉碳和浸渍树脂或沥青之前,增强碳纤维或其织
物应预先成型为一种坯体。坯体可通过长纤维(或带) 缠绕、碳毡、短纤维模压或喷射成型、石墨布叠层的方 向石墨纤维针刺增强以及多向织物等方法制得。 多向织物是研究的的重点,目前以三向织物为主,三向 织物的细编程度越高,碳/碳复合材料的性能也就越好。
碳纤维成型物
CVD渗透
预浸物
Байду номын сангаас
浸渍树脂戍 沥青
热压成型
碳化
碳/碳复合材料
短纤维与沥 青或 树脂 混合物
碳纤维成 型物
.
石墨化的碳/碳 复合材料
石墨化
❖碳/碳复合材料的成型加工方法很多,其各种工艺过
程大致可归纳为如图所示的三种方法。
2021/2/19
❖ 碳化(carbonization) 将上述成形物在隔绝空 气下热分解为碳和其他 产物。
❖通过碳纤维适当的取向增强,可得到力学性能优良的 材料,在高温时这种性能保持不变甚至某些性能指标有 所提高。
❖碳/碳复合材料抗热冲击和抗热导能力极强,且具有 一定的化学惰性。
(2). 碳/碳复合材料的发展
❖ 碳/碳复合材料的发展主要受宇航工业发展的影响。它 具有高的烧灼热、低的烧蚀率、抗热冲击和超热环境下 具有高强度等一些列优点,被认为是一种高性能的烧蚀 材料。
2021/2/19
9.1.2 碳/碳复合材料的发展
(1). 碳/碳复合材料 (C/C)
碳/碳复合材料是由碳纤维或各种碳织物增强碳,或石 墨化的脂碳(沥青)以及化学气相沉积(CVD)碳所 形成的复合材料,是具有特殊性能的新型工程材料。
❖碳/碳复合材料由三种不同组分构成,即树脂碳、碳 纤维和热解碳。由于它几乎完全是由元素碳组成,故能 承受极高的温度和极大的加热速率。
2021/2/19
由上可知:
❖ σ键很短很强,π键相对较弱。因而导致了石墨碳 具有各向异性,但沿层面方向具有优异的电、热和 力学性能,通常情况下由于π键较弱,往往导致层与 层间的堆垛不规则或无序,形成多晶碳。
❖ 由于石墨碳的优异性能源于其有序的结构,因而将 无序结构转变为有序结构是碳/ 碳复合材料制造与 应用中非常关键。往往采用热处理等他能量输入的 方法进行石墨化转变。
碳/碳复合材料可以作为导弹的鼻锥,烧蚀率低且烧蚀 均匀,从而提高导弹的突防能力和命中率。
❖ 碳/碳复合材料还具有优异的耐磨擦性能和高的热导率, 使其在飞机刹车片和轴承等方面得到了应用;它也可以 作为飞机的刹车盘。
C/C在航天领域中的应用
C/C作为刹车盘
❖ 碳与生物体之间的相容性极好,再加上碳/碳复合材料 的优异力学性能,使之适宜制成生物构件插入到活的生 物机体内作整形材料,如人造骨骼、心脏瓣膜等。
2021/2/19
力学性能 ❖ 碳/碳复合材料的力学性能主要取决于碳纤维的种
类、取向、含量和制备工艺等。单向增强的碳/碳 复合材料, 沿碳纤维长度方向的力学性能比垂直方 向高出几十倍。碳/碳复合材料的高强高模特性来 自碳纤维, 随着温度的升高, 碳/碳复合材料的强度 不仅不会降低, 而且比室温下的强度还要高。
碳纤维从X、Y、Z三个方 向互成90º正交排列,三个方向 的纱线并不交织,X和Y方向 的纱线交替的叠层,Z方向的 纱线起增强作用。因此XYZ方 向的纱线并没有交织点,只有 重合点,可充分发挥织物里每 个纤维的力学性能。
❖ 碳纤维长丝或带缠绕方法,可根据不同的要求和用途 选择适宜的缠绕方法。
2D 生产成本低 在平行于布层的方 向拉伸强度较高容 易制成大尺寸形状 复杂的部件 3D 及多向编织具 有更好的结构完整 性和各向同性
2021/2/19
❖ 碳毡可由人造丝毡碳化或聚丙烯腈预氧化、碳化后制 得。碳毡叠层后,可以碳纤维在X、Y、Z的方向三 向增强,制得三向增强毡,如下图所示。
第9/碳复合材料
9.1碳/碳复合材料
9.1 碳/碳复合材料简介 ❖ 定义:碳/碳复合材料是指以碳纤维作为增强体,
以碳作为基体的一类复合材料。
❖ 性质:密度低、高比强度,比模量高、热传导 性低、热膨胀系数断裂韧性好、耐磨、耐烧蚀。 对宇宙辐射不敏感及在核辐射下强度增加等性 能,是所有已知材料中耐高温性最好的材料。
相关文档
最新文档