二次函数的应用(最值问题)
高中数学教学备课教案二次函数的应用函数的最值问题
![高中数学教学备课教案二次函数的应用函数的最值问题](https://img.taocdn.com/s3/m/1ef1b010ac02de80d4d8d15abe23482fb4da02aa.png)
高中数学教学备课教案二次函数的应用函数的最值问题高中数学教学备课教案二次函数的应用——函数的最值问题一、教学目标1. 理解二次函数的最值问题,包括最大值和最小值的定义及求解方法。
2. 能够利用二次函数的最值问题解决实际生活中的应用问题。
3. 掌握相关的解题技巧和方法。
4. 培养学生分析问题、解决问题的能力。
二、教学重难点1. 理解最值问题的定义和求解方法。
2. 应用最值问题解决实际问题的能力。
三、教学过程导入:通过与学生的互动讨论,引出最值问题的概念。
1. 什么是最值问题?最大值和最小值有何不同?2. 举例说明最值问题在日常生活中的应用场景。
讲解一:最值问题的基本思路与方法1. 对于一元二次函数 f(x) = ax^2 + bx + c,求最大值或最小值的过程。
2. 最值问题的关键在于找到临界点,即导数为0的点,进而求得函数的最值。
3. 通过二次函数的图像,直观地理解最值的求解过程。
演示一:求解一元二次函数的最值1. 设一个具体的一元二次函数,如 f(x) = x^2 - 4x + 3。
2. 计算导数 f'(x) = 2x - 4,并令其等于0,解方程得到临界点 x = 2。
3. 讨论 x 的取值范围及对应的函数值,确定最大值和最小值。
讲解二:应用二次函数最值解决实际问题1. 通过具体例子,介绍如何将实际问题转化为数学问题,利用最值问题求解。
(例子1:某汽车行驶问题;例子2:抛物线的喷水问题)2. 强调建立数学模型的重要性,培养学生的数学建模能力。
演示二:解决实际问题的步骤及方法1. 选择合适的变量与函数模型。
2. 建立函数模型并确定函数的最值。
3. 根据实际问题的限制条件,确定变量的取值范围。
4. 求解最值并给出合理的解释。
讲解三:其他相关问题的讨论1. 当函数的定义域为有限区间时,如何确定最值?2. 如何处理一元二次函数的最值问题时出现的特殊情况?演示三:解决其他相关问题的方法1. 分析问题,考虑定义域的限制及函数图像的特点。
【数学中考一轮复习】 二次函数最值应用(含解析)
![【数学中考一轮复习】 二次函数最值应用(含解析)](https://img.taocdn.com/s3/m/ed3abbda0740be1e640e9a11.png)
专项训练 二次函数最值应用结合图象,分两类情形: (1)最值在顶点位置如图所示,P 为二次函数y =ax 2+bx +c (a ≠0)的图象的顶点,则二次函数的最值(开口向上有最小值,开口向下有最大值)为顶点P 的纵坐标ab ac 442-.(2)最值不在顶点位置如图所示,M (x 1,y 1),N (x 2,y 2)为y 二次函数y =ax 2+bx +c (a ≠0)的图象上的两点,则当x 1≤x ≤x 2时,二次函数的最大值为y 2,最小值为ab ac 442-.具体应结合开口方向,根据M ,N ,P 三个点的位置,通过比较y M ,y P ,y N ,确定二次函数的最值.如果在实际问题中,还要考虑取值的实际意义,综合进行分析,确定二次函数的最值. 类型一 面积中的最值应用1.把一根长为120 cm 的铁丝剪成两段,并把每一段铁丝围成一个正方形.若设围成的一个正方形的边长为 x cm.(1)要使这两个正方形的面积的和等于650 cm 2,则剪出的两段铁丝长分别是多少? (2)剪出的两段铁丝长分别是多少cm 时,这两个正方形的面积和最小?最小值是多少?2.如图所示,在足够大的空地上有一段长为100 m 的旧墙MN ,某人利用旧墙和木栏围成一个矩形菜园ABCD ,其中AD ≤MN ,已知矩形菜园的一边靠墙,另三边一共用了100 m 的木栏.(1)若AD <20 m ,所围成的矩形菜园的面积为450 m 2,求所利用的旧墙AD 的长; (2)求矩形菜园ABCD 面积的最大值.3.如图所示,为美化中心城区环境,政府计划在长为30米,宽为20米的矩形场地ABCD 上修建公园其中要留出宽度相等的三条小路,且两条与AB 平行,另一条与AD 平行,其余部分建成花圃.(1)若花圃总面积为448平方米,求小路宽为多少米?(2)已知某园林公司修建小路的造价y 1(元)和修建花圃的造价y 2(元)与修建面积s (平方米)之间的函数关系分别为y 1=40s 和y 2=35s +20000.若要求小路宽度不少于2米且不超过4米,求小路宽为多少米时修建小路和花圃的总造价最低?类型二 利润中的最值应用4.超市销售某品牌洗手液,进价为每瓶10元.在销售过程中发现,每天销售量y (瓶)与每瓶售价x (元)之间满足一次函数关系(其中10≤x ≤15,且x 为整数),当每瓶洗手液的售价是12元时,每天销售量为90瓶;当每瓶洗手液的售价是14元时,每天销售量为80瓶.(1)求y 与x 之间的函数关系式;(2)设超市销售该品牌洗手液每天销售利润为w 元,当每瓶洗手液的售价定为多少元时,超市销售该品牌洗手液每天销售利润最大,最大利润是多少元?5.在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售调查发现,线下的月销量y (单位:件)与线下售价x (单位:元/件,12≤x <24)满足一次函数的关系,部分数据如下表:(1)求y 与x 的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当x 为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润.6.2020年是决战决胜扶贫攻坚和全面建成小康社会的收官之年,荆门市政府加大各部门和单位对口扶贫力度.某单位的帮扶对象种植的农产品在某月(按30天计)的第x 天(x为正整数)的销售价格p (元/千克)关于x 的函数关系式为p =⎪⎪⎩⎪⎪⎨⎧≤<+-≤<+)3020(1251)200(452x x x x ,销售量y (千克)与x 之间的关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)当月第几天,该农产品的销售额最大,最大销售额是多少?(销售额=销售量×销售价格)类型三运动中的最值应用,7.周末,小明陪爸爸去打高尔夫球,小明看到爸爸打出的球的飞行路线的形状如图所示,如果不考虑空气阻力,小球的飞行路线是一条抛物线.小明测得小球的飞行高度h(单位:m)与飞行时间t(单位:s)的几组值后,发现h与t满足的函数关系式是h=20t-5t2. (1)小球飞行时间是多少时达到最大高度,求最大高度是多少?(2)小球飞行时间t在什么范围时,飞行高度不低于15 m?8.如图所示,一位篮球运动员在离篮圈水平距离4 m处跳起投篮,球运行的高度y(m)与运行的水平距离x(m)满足解析式y=ax2+x+c,当球运行的水平距离为1.5 m时,球离地面高度为3.3 m,球在空中达到最大高度后,准确落入篮圈内.已知篮圈中心离地面距离为3.05 m.(1)当球运行的水平距离为多少时,达到最大高度?最大高度为多少?(2)若该运动员身高1.8 m,这次跳投时,球在他头顶上方0.25 m处出手,问球出手时他跳离地面多高?9.如图所示,某足球运动员站在点O处练习射门将足球从离地面0.5 m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c.已知足球飞行0.8 s时,离地面的高度为3.5 m.(1)a=_________;c=___________.(2)当足球飞行的时间为多少时,足球离地面最高?最大高度是多少?(3)若足球飞行的水平距离x(单位:m)与飞行时间(单位:s)之间具有函数关系x=10t,已知球门的高度为 2.44 m,如果该运动员正对球门射门时,离球门的水平距离为28 m,他能否将球直接射入球门?巩固训练1.某宾馆共有80间客房宾馆负责人根据经验作出预测:今年7月份,每天的房间空闲数y (间)与定价x (元/间)之间满足y =41x-42(x ≥168).若宾馆每天的日常运营成本为5000元,有客人入住的房间,宾馆每天每间另外还需支出28元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠,应将房间定价确定为( ) A.252元/间 B.256元/间 C.258元/间 D.260元/间 2.如图所示,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为900 m (篱笆的厚度忽略不计),当AB =_______m 时,矩形土地ABCD 的面积最大.3.小明和小丽先后从A 地出发沿同一直道去B 地.设小丽出发第x min 时,小丽、小明离B 地的距离分别为y 1 m 、y 2 m.y 1与x 之间的函数表达式是y 1=-180x +2250,y2与x 之间的函数表达式是y 2=-10x 2-100x +2000.(1)小丽出发时,小明离A 地的距离为_________m ;(2)小丽出发至小明到达B 地这段时间内,两人何时相距最近?最近距离是多少?4.因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y (桶)与销售单价x (元)之间满足一次函数关系,其图象如图所示. (1)求y 与x 之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利润=销售价-进价)参考答案1.解:(1)根据题意知:一个正方形的边长分别为x cm , 则另一个正方形的边长为41(120-4x )=(30-x )cm , 且分成的铁丝一段长度为4x cm ,另一段为(120-4x )cm ,x 2+(30-x )2=650. 整理得:x 2-30x +125=0,解得:x 1=5,x 2=25, 故这根铁丝剪成两段后的长度分别是20 cm ,100 cm ; (2)设这两个正方形的面积之和为y cm 2,y =x 2+(30-x )2=2x 2-60x +900=2(x-15)2+450, ∴当x =15时,y 取得最小值,最小值为450cm 2,即剪成两段均为60 cm 的长度时面积之和最小,最小面积和为450 cm 2. 2.解:(1)设AB =x m ,则BC =(100-2x )m.x (100-2x )=450. 解得,x 1=5,x 2=45,当x =5时,100-2x =90>20,不合题意,舍去. 当x =45时,100-2x =10, 答:AD 的长为10m ;(2)设AD =a m ,面积为S m 2, S =a ·1250)50(2121002+-=-x a , ∴当a =50时,S 取得最大值,此时S =1250. 答:矩形菜园ABCD 面积的最大值是1250 m 2.3.解:(1)设小路的宽为m 米,则可列方程(30-m )(20-2m )=448; 解得:m 1=2或m 2=38(舍去); 答:小路的宽为2米;(2)设小路的宽为x 米,总造价为w 元,则花圃的面积为(2x 2-80x +600)平方米,小路面积为(-2x 2+80x )平方米,所以w =40·(-2x 2+80x )+35·(2x 2-80x +600)+20000, 整理得:w =-10(x-20)2+45000,∴当2≤x ≤4时,w 随x 的增大而增大.∴当x =2时,w 取最小值. 答:小路的宽为2米时修建小路和花圃的总造价最低.4.解:(1)设y 与x 之间的函数关系式为y =kx +b (k ≠0),根据题意,得1⎩⎨⎧=+=+80149012b k b k ,解得⎩⎨⎧=-=1505b k , ∴y 与x 之间的函数关系式为y =-5x +150; (2)根据题意,得w =(x-10)(-5x +150)=-5x 2+200x-1500=-5(x-20)2+500 ∵a =-5<0,∴抛物线开口向下,w 有最大值.∴当x <20时,w 随x 的增大而增大.10≤x ≤15,且x 为整数, ∴当x =15时,w 有最大值. 即w =-5×(15-20)2+500=375.答:当每瓶洗手液的售价定为15元时,超市销售该品牌洗手液每天销售利润最大,最大利润是375元.5.解:(1)∵y 与x 满足一次函数的关系,∴设y =kx +b.将x =12,y =1200;x =13,y =1100代入得:⎩⎨⎧b +13k =1100b +12k =1200,解得:⎩⎨⎧2400=b 100-=k ,∴y 与x 的函数关系式为:y =-100x +2400;(2)设线上和线下月利润总和为m 元,则m =400(x-2-10)+y (x-10) =400x-4800+(-100x +2400)(x-10)=-100(x-19)2+7300,∴当x 为19元/件时,线上和线下月利润总和达到最大,此时的最大利润为7300元. 6.解:(1)当0<x ≤20时,设y =k 1x +b 1,由图象得:⎩⎨⎧=+=402080111b k b ,解得⎩⎨⎧=-=80211b k ,∴y =-2x +80(0<x ≤20); 当20<x ≤30时,设y =k 2x +b 2,由图象得:⎩⎨⎧=+=+803040202222b k b k ,解得⎩⎨⎧-==40422b k ,∴y =4x-40(20<x ≤30). 综上,y =⎩⎨⎧);30≤x <2040-4x (),20≤x <080+2x (((2)设当月该农产品的销售额为w 元,则w =yp , 当0<x ≤20时,w =(-2x +80)(52x +4)=-54x 2+24x +320=-54(x-15)2+500 ∵-54<0,由二次函数的性质可知:∴当x =15时,w 最大=500.当20<x ≤30时,W =(4x-40)(-51x +12)=-54x 2+56x-480=-54(x-35)2+500,∵-54<0,20<x ≤30,由二次函数的性质可知:当x =30时,W 最大=(30-35)2+500=480.∵500>480, ∴当x =15时,w 取得最大值,该最大值为500.答:当月第15天,该产品的销售额最大,最大销售额是500元. 7.解:(1)h =20t-5t 2. ∵-5<0,故h 有最大值,当t =)(5220-⨯=2,此时h 的最大值为20,∴当t =2 s 时,最大高度是20 m ;(2)令h ≥15,则h =20t-5t 2≥15,解得:1≤t ≤3, ∴1≤t ≤3时,飞行高度不低于15 m.8.解:(1)依题意,抛物线y =ax 2+x +c 经过点(1.5,3.3)和(4,3.05),∴⎩⎨⎧ 3.05=c +4+42×a 3.3=c +1.5+1.52×a ,解得⎩⎨⎧ 2.25=c 0.2-=a ,∴y =-0.2x 2+x +2.25=-0.2(x-2.5)2+3.5.∴当球运行的水平距离为2.5 m 时,达到最大高度为3.5 m ; (2)∵x =0时,y =2.25,∴2.25-0.25-1.8=0.2 m. 即球出手时,他跳离地面0.2 m.9.解:(1)由题意得:函数y =at 2+5t +c 的图象经过(0,0.5)(0.8,3.5),∴⎩⎨⎧c +0.8×5+0.82a =3.5c =0.5,解得:⎪⎪⎩⎪⎪⎨⎧=-=211625c a ,∴抛物线的解析式为:y =-1625t2+5t +21, 故答案为:-1625,21. (2)∵y =-1625t2+5t +21,∴y =29)58(16252+--t . ∴当t =58时,y 最大=4.5.∴当足球飞行的时间为58s 时,足球离地面最高,最大高度是4.5 m ;(3)把x =28代入x =10t 得t =2.8,∴当t =2.8时,y =-1625×2.82+5×2.8+21=2.25<2.44, ∴他能将球直接射入球门. 巩固训练 1.B 2.1503.解:(1)∵y 1=-180x +2250,y 2=-10x 2-100x +2000, ∴当x =0时,y 1=2250,y 2=2000,∴小丽出发时,小明离A 地的距离为2250-2000=250(m ), 故答案为:250;(2)设小丽出发第x min 时,两人相距s m ,则s =(-180x +2250)-(-10x 2-100x +2000)=10x 2-80x +250=10(x-4)2+90, ∴当x =4时,s 取得最小值,此时s =90,答:小丽出发第4min 时,两人相距最近,最近距离是90m. 4.解:(1)设y 与销售单价x 之间的函数关系式为:y =kx +b ,将点(60,100),(70,80)代入一次函数表达式得:⎩⎨⎧+=+=b k b k 708060100,解得:⎩⎨⎧=-=2202b k ,故函数的表达式为:y =-2x +220;(2)设药店每天获得的利润为w 元,由题意得: W =(x-50)(-2x +220)=2(x-80)2+1800, ∵-2<0,函数有最大值,∴当x =80时,w 有最大值,此时最大值是1800,故销售单价定为80元时,该药店每天获得的利润最大,最大利润1800元.。
专题74 二次函数在实际应用中的最值问题(解析版)
![专题74 二次函数在实际应用中的最值问题(解析版)](https://img.taocdn.com/s3/m/251de589168884868762d6f0.png)
专题74 二次函数在实际应用中的最值问题1、某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x 天(x 为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (1≤x <15)之间的函数关系式,并求出第几天时销售利润最大?(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?【答案】(1)10%;(2)217.7352(19){36080(915)x x y x x x -+≤<=-++≤<,第10天时销售利润最大;(3)0.5. 【详解】解:(1)设该种水果每次降价的百分率是x ,10(1﹣x )2=8.1,x =10%或x =190%(舍去). 答:该种水果每次降价的百分率是10%;(2)当1≤x <9时,第1次降价后的价格:10×(1﹣10%)=9,∴y =(9﹣4.1)(80﹣3x )﹣(40+3x )=﹣17.7x +352,∴﹣17.7<0,∴y 随x 的增大而减小,∴当x =1时,y 有最大值,y 大=﹣17.7×1+352=334.3(元); 当9≤x <15时,第2次降价后的价格:8.1元,∴y =(8.1﹣4.1)(120﹣x )﹣(3x 2﹣64x +400)=﹣3x 2+60x +80=﹣3(x ﹣10)2+380,∴﹣3<0,∴当9≤x ≤10时,y 随x 的增大而增大,当10<x <15时,y 随x 的增大而减小,∴当x =10时,y 有最大值,y 大=380(元).综上所述,y 与x (1≤x <15)之间的函数关系式为: 217.7352(19){ 36080(915)x x y x x x -+≤<=-++≤<,第10天时销售利润最大;(3)设第15天在第14天的价格基础上最多可降a 元,由题意得:380﹣127.5≤(4﹣a )(120﹣15)﹣(3×152﹣64×15+400),252.5≤105(4﹣a )﹣115,a ≤0.5. 答:第15天在第14天的价格基础上最多可降0.5元.2、农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p (千克)与销售价格x (元/千克)之间的关系,经过市场调查获得部分数据如下表:(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p 与x 之间的函数表达式;(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a 元(a >0)的相关费用,当40≤x ≤45时,农经公司的日获利的最大值为2430元,求a 的值.(日获利=日销售利润﹣日支出费用)【答案】(1)p =﹣30x +1500;(2)这批农产品的销售价格定为40元,才能使日销售利润最大;(3)a =2. 【详解】(1)假设P 与x 的一次函数关系,设函数关系式p kx b =+,则3060040300k b k b +=⎧⎨+=⎩,解得301500k b =-⎧⎨=⎩, ∴301500p x =-+,检验:当35,450x P ==,当45,150,x P ==当50,0x P ==,均符合一次函数解析式 ∴所求的函数关系式301500p x =-+,(2)设日销售利润()()()3030150030w P x x x =-=-+-,即()223024004500030403000w x x x =-+-=--+,当40x =时,w 有最大值为3000元,故这批农产口的销售价格定为40元,才能使日销售利润最大, (3)日获利()()()3030150030w p x a x x a =--=-+--, 即()()230240030150045000w x a x a =-++-+,对称轴这()2400301402302a x a +=-=+⨯-,若10a >,则当45x =时,w 有最大值,即22501502430w a =-<(不合题意), 若10a <,则当1402x a =+时,w 有最大值, 把1402x a =+代入,可得2130101004w a a ⎛⎫=-+ ⎪⎝⎭, 当2430w =时,21243030101004a a ⎛⎫=-+⎪⎝⎭, 解得12a =,238a =(舍去), 综上所述,a 的值为2.3、怡然美食店的A 、B 两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元. (1)该店每天卖出这两种菜品共多少份;(2)该店为了增加利润,准备降低A 种菜品的售价,同时提高B 种菜品的售价,售卖时发现,A 种菜品售价每降0.5元可多卖1份;B 种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少. 【答案】(1)60;(2)316. 【详解】解:(1)、设该店每天卖出A 、B 两种菜品分别为x 、y 份,根据题意得:()()2018112020141814280x y x y +=⎧⎪⎨-+-=⎪⎩,解得:2040x y =⎧⎨=⎩,答:该店每天卖出这两种菜品共60份;(2)、设A 种菜品售价降0.5a 元,即每天卖(20+a )份,总利润为w 元,因为两种菜品每天销售总份数不变,所以B 种菜品卖(40﹣a )份,每份售价提高0.5a 元. 则w=(20﹣14﹣0.5a )(20+a )+(18﹣14+0.5a )(40﹣a )=(6﹣0.5a )(20+a )+(4+0.5a )(40﹣a )=(﹣0.5a 2﹣4a+120)+(﹣0.5a 2+16a+160) =﹣a 2+12a+280=﹣(a ﹣6)2+316, 当a=6,w 最大,w=316答:这两种菜品每天的总利润最多是316元.4、“五一”期间,恒大影城隆重开业,影城每天运营成本为1000元,试营业期间统计发现,影城每天售出的电影票张数y (张)与电影票售价x (元/张)之间满足一次函数:y=﹣4x+220(10≤x≤50,且x 是整数),设影城每天的利润为w (元)(利润=票房收入﹣运营成本). (1)试求w 与x 之间的函数关系式;(2)影城将电影票售价定为多少元/张时,每天获利最大?最大利润是多少元?【答案】(1)w=﹣4x 2+220x ﹣1000;(2)影城将电影票售价定为27或28元/张时,每天获利最大,最大利润是2024元. 【详解】(1)根据题意,得:w =(﹣4x +220)x ﹣1000=﹣4x 2+220x ﹣1000;(2)∴w =﹣4x 2+220x ﹣1000=﹣4(x ﹣27.5)2+2025,∴当x =27或28时,w 取得最大值,最大值为2024,答:影城将电影票售价定为27或28元/张时,每天获利最大,最大利润是2024元.5、把函数21:23(0)C y ax ax a a =--≠的图象绕点(,0)P m 旋转180,得到新函数2C 的图象,我们称2C 是1C 关于点P 的相关函数.2C 的图象的对称轴与x 轴交点坐标为(,0)t .(1)填空:t 的值为 (用含m 的代数式表示) (2)若1a =-,当12x t ≤≤时,函数1C 的最大值为1y ,最小值为2y ,且121y y -=,求2C 的解析式; (3)当0m =时,2C 的图象与x 轴相交于,A B 两点(点A 在点B 的右侧).与y 轴相交于点D .把线段AD 原点O 逆时针旋转90,得到它的对应线段''A D ,若线''A D 与2C 的图象有公共点,结合函数图象,求a 的取值范围.【答案】(1)21m -;(2)22(2)44y x x x =--=-;(3)103a <≤或1a ≥或13a ≤- 【详解】解:(1)221:23(1)4C y ax ax a a x a =--=--顶点(1,4)a -围绕点(,0)P m 旋转180180°的对称点为(21,4)m a -,2:(21)24C y a x m a =--++,函数的对称轴为:21x m =-,21t m =-,故答案为:21m -; (2)1a =-时,21:(1)4C y x =--,∴当112t ≤<时, 12x =时,有最小值2154y =, x t =时,有最大值21(1)4y t =--+,则21215(1)414y y t -=--+-=,无解; ∴312t ≤≤时, 1x =时,有最大值14y =,12x =时,有最小值22(1)4y t =--+, 12114y y -=≠(舍去); ∴当32t >时, 1x =时,有最大值14y =,x t =时,有最小值22(1)4y t =--+, 212(1)1y y t -=-=,解得:0t =或2(舍去0), 故222:(2)44C y x x x =--=-; (3)0m =,22:(1)4C y a x a =-++,点'',,,,A B D A D 的坐标分别为(1,0),(3,0),(0,3),(0,1),(3,0)a a --, 当0a >时,a 越大,则OD 越大,则点'D 越靠左,当2C 过点'A 时,2(01)41y a a =-++=,解得:13a =, 当2C 过点'D 时,同理可得:1a =,故:103a <≤或1a ≥; 当0a <时,当2C 过点'D 时,31a -=,解得:13a =-,故:13a ≤-;综上,故:103a <≤或1a ≥或13a ≤-. 6、湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养天的总成本为万元;放养天的总成本为万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是万元,收购成本为万元,求和的值;(2)设这批淡水鱼放养天后的质量为(),销售单价为元/.根据以往经验可知:与的函数关系为;与的函数关系如图所示.∴分别求出当和时,与的函数关系式;∴设将这批淡水鱼放养天后一次性出售所得利润为元,求当为何值时,最大?并求出最大值.(利润=销售总额-总成本)【答案】(1)a的值为0.04,b的值为30(2)∴y=t+15,y=t+30∴当t为55天时,W最大,最大值为180250元【详解】(1)由题意得解得答:a的值为0.04,b的值为30.(2)∴当0≤t≤50时,设y与t的函数关系式为y=k1t+n1把点(0,15)和(50,25)的坐标分别代入y=k1t+n1,得解得∴y与t的函数关系式为y=t+15当50<t≤100时,设y与t的函数关系式为y=k2t+n2把点(50,25)和(100,20)的坐标分别代入y=k2t+n2,得解得∴y与t的函数关系式为y=t+30∴由题意得,当0≤t≤50时,W=20000×(t+15)-(400t+300000)=3600t∴3600>0,∴当t=50时,W最大值=180000(元)当50<t≤100时,W=(100t+15000)(t+30)-(400t+300000)=-10t2+1100t+150000=-10(t-55)2+180250∴-10<0,∴当t=55时,W最大值=180250综上所述,当t为55天时,W最大,最大值为180250元.7、某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长度为50m .设饲养室为长为x(m),占地面积为.(1)如图,问饲养室为长x为多少时,占地面积y 最大?(2)如图,现要求在图中所示位置留2m的门,且仍使饲养室占地面积最大.小敏说:“只要饲养室长比(1)中的长多2m就行了.”请你通过计算,判断小敏的说法是否正确.【答案】(1)x=25;(2)小敏的说法不正确.【详解】(1)∴=,∴当x=25时,占地面积y最大;(2)=,∴当x=26时,占地面积y最大.即当饲养室长为26m时,占地面积最大.∴26-25=1≠2,∴小敏的说法不正确.8、铁岭“荷花节”举办了为期15天的“荷花美食”厨艺秀.小张购进一批食材制作特色美食,每盒售价为50元,由于食材需要冷藏保存,导致成本逐日增加,第x天(1≤x≤15且x为整数)时每盒成本为p元,已知p与x之间满足一次函数关系;第3天时,每盒成本为21元;第7天时,每盒成本为25元,每天的销售量为y盒,y与x之间的关系如下表所示:(1)求p与x的函数关系式;(2)若每天的销售利润为w元,求w与x的函数关系式,并求出第几天时当天的销售利润最大,最大销售利润是多少元?(3)在“荷花美食”厨艺秀期间,共有多少天小张每天的销售利润不低于325元?请直接写出结果.【答案】(1)p=x+18;(2)第13天时当天的销售利润最大,最大销售利润是361元;(3)第7、8、9、10、11、12、13天共7天销售利润不低于325元.【详解】(1)设p=kx+b(k≠0),∴第3天时,每盒成本为21元;第7天时,每盒成本为25元,∴321 725 k bk b+=⎧⎨+=⎩,解得:118kb=⎧⎨=⎩,所以p=x+18;(2)1≤x ≤6时,w =10[50﹣(x +18)]=﹣10x +320,6<x ≤15时,w =[50﹣(x +18)](x +6)=﹣x 2+26x +192,所以,w 与x 的函数关系式为210320(16)26192(615)x x w x x x -+≤≤⎧=⎨-++<≤⎩, 当1≤x ≤6时,∴﹣10<0,∴w 随x 的增大而减小,∴当x =1时,w 最大为﹣10+320=310,6<x ≤15时,w =﹣x 2+26x +192=﹣(x ﹣13)2+361,∴当x =13时,w 最大为361,综上所述,第13天时当天的销售利润最大,最大销售利润是361元;(3)w =325时,﹣x 2+26x +192=325,x 2﹣26x +133=0,解得x 1=7,x 2=19,所以,7≤x ≤13时,即第7、8、9、10、11、12、13天共7天销售利润不低于325元.9、2016年12月29日至31日,黔南州第十届旅游产业发展大会在“中国长寿之乡”﹣﹣罗甸县举行,从中寻找到商机的人不断涌现,促成了罗甸农民工返乡创业热潮,某“火龙果”经营户有A 、B 两种“火龙果”促销,若买2件A 种“火龙果”和1件B 种“火龙果”,共需120元;若买3件A 种“火龙果”和2件B 种“火龙果”,共需205元.(1)设A ,B 两种“火龙果”每件售价分别为a 元、b 元,求a 、b 的值;(2)B 种“火龙果”每件的成本是40元,根据市场调查:若按(1)中求出的单价销售,该“火龙果”经营户每天销售B 种“火龙果”100件;若销售单价每上涨1元,B 种“火龙果”每天的销售量就减少5件. ∴求每天B 种“火龙果”的销售利润y (元)与销售单价(x )元之间的函数关系?∴求销售单价为多少元时,B 种“火龙果”每天的销售利润最大,最大利润是多少?【详解】(1)根据题意得:2120{ 32205a b a b +=+= ,解得:a =35,b =50;(2)∴由题意得:y =(x ﹣40)[100﹣5(x ﹣50)]∴y =﹣5x 2+550x ﹣14000;∴∴y=﹣5x2+550x﹣14000=﹣5(x﹣55)2+1125,∴当x=55时,y最大=1125,∴销售单价为55元时,B商品每天的销售利润最大,最大利润是1125元.10、鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?【答案】(1)y=10x+160;(2)5280元;(3)10000元.【详解】(1)依题意有:y=10x+160;(2)依题意有:W=(80﹣50﹣x)(10x+160)=﹣10(x﹣7)2+5290,∴-10<0且x为偶数,故当x=6或x=8时,即故当销售单价定为74或72元时,每周销售利润最大,最大利润是5280元;(3)依题意有:﹣10(x﹣7)2+5290≥5200,解得4≤x≤10,则200≤y≤260,200×50=10000(元).答:他至少要准备10000元进货成本.11、鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?【答案】(1)y=10x+160;(2)5280元;(3)10000元.【详解】(1)依题意有:y=10x+160;(2)依题意有:W=(80﹣50﹣x)(10x+160)=﹣10(x﹣7)2+5290,∴-10<0且x为偶数,故当x=6或x=8时,即故当销售单价定为74或72元时,每周销售利润最大,最大利润是5280元;(3)依题意有:﹣10(x﹣7)2+5290≥5200,解得4≤x≤10,则200≤y≤260,200×50=10000(元).答:他至少要准备10000元进货成本.12、某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如下图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润的最大值.【答案】(1)y与x的函数解析式为()()20022006102001012x xyx⎧-+≤≤⎪=⎨<≤⎪⎩;(2)这一天销售西瓜获得利润的最大值为1250元.【详解】(1)当6≤x≤10时,由题意设y =kx +b(k =0),它的图象经过点(6,1000)与点(10,200),∴1000620010k b k b =+⎧⎨=+⎩, 解得2002200k b =-⎧⎨=⎩, ∴当6≤x≤10时, y =-200x+2200,当10<x≤12时,y =200,综上,y 与x 的函数解析式为()()20022006102001012x x y x ⎧-+≤≤⎪=⎨<≤⎪⎩; (2)设利润为w 元,当6≤x≤10时,y =-200x +2200,w =(x -6)y =(x -6)(-200x +200)=-2002172x -()+1250, ∴-200<0,6∴x≤10,当x =172时,w 有最大值,此时w=1250; 当10<x≤12时,y =200,w =(x -6)y =200(x -6)=200x -1200,∴200>0,∴w =200x -1200随x 增大而增大,又∴10<x≤12,∴当x =12时,w 最大,此时w=1200,1250>1200,∴w 的最大值为1250,答:这一天销售西瓜获得利润的最大值为1250元.13、我市某化工材料经销商购进一种化工材料若干千克,成本为每千克30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,经试销发现,日销售量y (千克)与销售单价x (元)符合一次函数关系,如图所示.(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)若在销售过程中每天还要支付其他费用450元,当销售单价为多少时,该公司日获利最大?最大获利是多少元?【答案】(1)2200(3060)y x x =-+≤≤;(2)每千克60元,最大获利为1950元【详解】解:(1)设一次函数关系式为(0)y kx b k =+≠由图象可得,当30x =时,140y =;50x =时,100y =∴1403010050k b k b =+⎧⎨=+⎩,解得k 2b 200=-⎧⎨=⎩∴y 与x 之间的关系式为2200(3060)y x x =-+≤≤.(2)设该公司日获利为W 元,由题意得2(30)(2200)4502(65)2000W x x x =--+-=--+∴20a =-<;∴抛物线开口向下;∴对称轴65x =;∴当65x <时,W 随着x 的增大而增大;∴3060x ≤≤,∴60x =时,W 有最大值;22(6065)200015=90W -⨯-+=最大值.即,销售单价为每千克60元时,日获利最大,最大获利为1950元.。
二次函数的最值问题与问题解决技巧
![二次函数的最值问题与问题解决技巧](https://img.taocdn.com/s3/m/8c699a4df02d2af90242a8956bec0975f465a48a.png)
二次函数的最值问题与问题解决技巧二次函数是高中数学中一个重要的概念,它有许多实际应用并且涉及到最值问题。
解决这类问题需要一定的技巧和方法。
本文将介绍二次函数的最值问题以及解决这些问题的技巧。
一、二次函数的最值问题最值问题在数学中非常常见,它代表了在一定条件下,函数的最大值或最小值。
对于二次函数而言,最值问题可以通过确定二次函数的开口方向以及顶点位置来解决。
1. 二次函数的开口方向对于二次函数y=ax²+bx+c,其中a,b,c为常数,a不等于0。
通过a的正负可以判断二次函数的开口方向。
当a大于0时,二次函数的开口是向上的,形状像一个U;当a小于0时,二次函数的开口是向下的,形状像一个倒U。
2. 顶点的横坐标和纵坐标二次函数的最值就出现在顶点处,因此需要确定顶点的横坐标和纵坐标。
对于一般形式的二次函数y=ax²+bx+c,顶点的横坐标为x=-b/2a,可以通过对称轴求得;顶点的纵坐标为y=f(-b/2a),即将x=-b/2a代入函数中计算得到。
3. 最值问题的解答根据二次函数的开口方向和顶点的位置,可以得到最值问题的解答。
当二次函数开口向上时,顶点是函数的最小值;当二次函数开口向下时,顶点是函数的最大值。
二、解决二次函数最值问题的技巧解决二次函数最值问题的技巧主要包括图像法、配方法、导数法等。
1. 图像法通过绘制二次函数的图像,可以直观地找出函数的最值。
根据二次函数的开口方向和顶点的位置,可以判断最值是最小值还是最大值。
2. 配方法当二次函数的系数a不为1时,可以使用配方法将其转化为完全平方的形式,从而更容易找到最值。
例如对于二次函数y=ax²+bx+c,可以将x²+bx转化为(x+b/2a)²-b²/4a,然后再根据顶点的位置判断最值。
3. 导数法通过对二次函数求导,可以得到导函数,进而求出极值点。
导数为0处的x值就是函数的极值点,通过计算可以得到相应的y值。
二次函数的实际应用(利润最值问题)附答案
![二次函数的实际应用(利润最值问题)附答案](https://img.taocdn.com/s3/m/26701b2e02020740be1e9b84.png)
第3课时 二次函数的实际应用——最大(小)值问题[例1]:求下列二次函数的最值:(1)求函数322-+=x x y 的最值. 解:4)1(2-+=x y当1-=x 时,y 有最小值4-,无最大值.(2)求函数322-+=x x y 的最值.)30(≤≤x解:4)1(2-+=x y∵30≤≤x ,对称轴为1-=x∴当12330有最大值时;当有最小值时y x y x =-=.[例2]:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?解:设涨价(或降价)为每件x 元,利润为y 元,1y 为涨价时的利润,2y 为降价时的利润 则:)10300)(4060(1x x y -+-=)60010(102---=x x 6250)5(102+--=x当5=x ,即:定价为65元时,6250max =y (元))20300)(4060(2x x y +--= )15)(20(20+--=x x6125)5.2(202+--=x当5.2=x ,即:定价为57.5元时,6125max =y (元) 综合两种情况,应定价为65元时,利润最大.[练习]:1.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润? 解:设每件价格提高x 元,利润为y 元, 则:)20400)(2030(x x y --+= )20)(10(20-+-=x x 4500)5(202+--=x 当5=x ,4500max =y (元)答:价格提高5元,才能在半个月内获得最大利润.2.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额? 解:设旅行团有x 人)30(≥x ,营业额为y 元, 则:)]30(10800[--=x x y )110(10--=x x 30250)55(102+--=x 当55=x ,30250max =y (元)答:当旅行团的人数是55人时,旅行社可以获得最大营业额.[例3]: 某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表: 若日销售量y 是销售价x 的一次函数. ⑴求出日销售量y (件)与销售价x (元)的函数关系式;⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?解:⑴设一次函数表达式为b kx y +=.则1525,220k b k b +=⎧⎨+=⎩ 解得⎩⎨⎧=-=401b k ,•即一次函数表达式为40+-=x y .⑵ 设每件产品的销售价应定为x 元, 所获销售利润为w 元y x w )10(-=)40)(10(+--=x x400502-+-=x x225)25(2+--=x当25=x ,225max =y (元)答:产品的销售价应定为25元时,每日获得最大销售利润为225元.【点评】解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点: ⑴在“当某某为何值时,什么最大(或最小、最省)”的设问中,•“某某”要设为自变量,“什么”要设为函数;⑵求解方法是依靠配方法或最值公式,而不是解方程. 3.(2006十堰市)市“健益”超市购进一批20元/千克的绿色食品,如果以30•元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y (千克)•与销售单价x (元) (30≥x )存在如下图所示的一次函数关系式. ⑴试求出y 与x 的函数关系式;⑵设“健益”超市销售该绿色食品每天获得利润P 元,当销售单价为何值时,每天可获得最大利润?最大利润是多少? ⑶根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x 的范围(•直接写出答案). 解:⑴设y=kx+b 由图象可知,3040020,:402001000k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解之得, 即一次函数表达式为100020+-=x y )5030(≤≤x . ⑵ y x P )20(-=)100020)(20(+--=x x 200001400202-+-=x x∵020<-=a ∴P 有最大值.当35)20(21400=-⨯=x 时,4500max =P (元)(或通过配方,4500)35(202+--=x P ,也可求得最大值)答:当销售单价为35元/千克时,每天可获得最大利润4500元.⑶∵44804500)35(2041802≤+--≤x 16)35(12≤-≤x ∴31≤x •≤34或36≤x≤39.作业布置: 1.二次函数1212-+=x x y ,当x=_-1,_时,y 有最_小_值,这个值是23-. 2.某一抛物线开口向下,且与x 轴无交点,则具有这样性质的抛物线的表达式可能为12--=x y (只写一个),此类函数都有_大_值(填“最大”“最小”).3.不论自变量x 取什么实数,二次函数y =2x 2-6x +m 的函数值总是正值,你认为m 的取值范围是29>m ,此时关于一元二次方程2x 2-6x +m =0的解的情况是_有解_(填“有解”或“无解”)解:29)23(22-+-=m x y ∵0)23(22≥-x ,要使0>y ,只有029>-m ∴29>m4.小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,如图所示,若命中篮圈中心,则他与篮底的距离L 是 4.5米 .解:当05.3=y 时,21 3.55y x =-+05.3= 45.052⨯=x ,5.1=x 或5.1-=x (不合题意,舍去)5.在距离地面2m 高的某处把一物体以初速度V 0(m/s )竖直向上抛出,•在不计空气阻力的情况下,其上升高度s (m )与抛出时间t (s )满足:S=V 0t-12gt 2(其中g 是常数,通常取10m/s 2),若V 0=10m/s ,则该物体在运动过程中最高点距离地面__7_m .解:t t s 1052+-=5)1(52+--=t当1=t 时,5max =s ,所以,最高点距离地面725=+(米).6.影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系数.有研究表明,晴天 在某段公路上行驶上,速度为V (km/h )的汽车的刹车距离S (m )可由公式S=1100V 2确定;雨天行驶时,这一公式为S=150V 2.如果车行驶的速度是60km/h ,•那么在雨天 行驶和晴天行驶相比,刹车距离相差_36_米.7.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,则应降价_5_元,最大利润为_625_元.解:设每件价格降价x 元,利润为y 元, 则:)20)(70100(x x y +--=600102++-=x x 625)5((2+--=x 当5=x ,625max =y (元)答:价格提高5元,才能在半个月内获得最大利润.8.如图,一小孩将一只皮球从A 处抛出去,它所经过的路线是某个二次函数图象的一部分,如果他的出手处A 距地面的距离OA 为1 m ,球路的最高点B (8,9),则这个二次函数的表达式为______,小孩将球抛出了约______米(精确到0.1 m) .解:设9)8(2+-=x a y ,将点A )1,0(代入,得81-=a12819)8(8122++-=+--=x x x y令0=y ,得09)8(812=+--=x y98)8(2⨯=-x268±=x ,)0,268(+C ,∴5.242688≈++=OC (米)9.(20XX 年青岛市)在20XX 年青岛崂山北宅樱桃节前夕,•某果品批发公司为指导今年(1)在如图的直角坐标系内,作出各组有序数对(x ,y )所对应的点.连接各点并观察所得的图形,判断y 与x 之间的函数关系,并求出y 与x 之间的函数关系式; (2)若樱桃进价为13元/千克,试求销售利润P (元)与销售价x (元/千克)之间的函数关系式,并求出当x 取何值时,P 的值最大?解:(1)由图象可知,y 是x 的一次函数,设y=kx+b ,• ∵点(•25,2000),(24,2500)在图象上,∴200025500,:25002414500k bk k b b =+=-⎧⎧⎨⎨=+=⎩⎩解得 , ∴y=-500x+14500.(2)P=(x-13)·y=(x-13)·(-500x+14500))37744144142(500)37742(500)29)(13(50022+-+--=+--=---=x x x x x x=-500(x-21)2+32000∴P 与x 的函数关系式为P=-500x 2+21000x-188500,当销售价为21元/千克时,能获得最大利润,最大利润为32000元.10.有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg 放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg 蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.(1)设x 天后每千克活蟹的市场价为p 元,写出p 关于x 的函数关系式; (2)如果放养x 天后将活蟹一次性出售,并记1000 kg 蟹的销售总额为Q 元,写出Q 关于x 的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q -收购总额)? 解:(1)由题意知:p=30+x,(2)由题意知:活蟹的销售额为(1000-10x)(30+x)元,死蟹的销售额为200x 元.∴Q=(1000-10x)(30+x)+200x=-10x 2+900x+30000. (3)设总利润为W 元则:W=Q -1000×30-400x=-10x 2+500x=-10(x 2-50x) =-10(x -25)2+6250.当x=25时,总利润最大,最大利润为6250元. 答:这批蟹放养25天后出售,可获最大利润.11.(2008湖北恩施)为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元) .(1)求y与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少? (3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元? 解:)802)(20()20(+--=-=x x w x y)40)(20(2---=x x)80060(22+--=x x 200)30(22+--=x 160012022-+-=x x当30=x ,200max =y (元)(1)y 与x 之间的的函数关系式为;160012022-+-=x x y(2)当销售价定为30元时,每天的销售利润最大,最大利润是200元. (3) 150200)30(22=+--x ,25)30(2=-x28351>=x (不合题意,舍去)252=x答:该农户想要每天获得150元的销售利润,销售价应定为25元.12.(2008河北)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式9051012++=x x y ,投入市场后当年能全部售出,且在甲、乙两地每吨的售价,(万元)均与满足一次函数关系.(注:年利润=年销售额-全部费用)(1)成果表明,在甲地生产并销售吨时,,请你用含的代数式表示甲地当年的年销售额,并求年利润(万元)与之间的函数关系式;(2)成果表明,在乙地生产并销售吨时,(为常数),且在乙地当年的最大年利润为35万元.试确定的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?解:(1)甲地当年的年销售额为万元;.(2)在乙地区生产并销售时,年利润.由,解得或.经检验,不合题意,舍去,.(3)在乙地区生产并销售时,年利润,将代入上式,得(万元);将代入,得(万元).,应选乙地.。
二次函数的应用最值问题
![二次函数的应用最值问题](https://img.taocdn.com/s3/m/b42ba802bf1e650e52ea551810a6f524ccbfcb3d.png)
二次函数的应用最值问题二次函数是一个在数学中广泛应用的函数模型。
在实际问题和生产生活中,二次函数的最值问题也经常出现。
本文将介绍二次函数的最值问题,包括实际问题中的二次函数最值、生产生活中的二次函数最值、利用配方法求二次函数的最值、利用导数求解二次函数的最值、利用作图法求解二次函数的最值、利用公式法求解二次函数的最值和利用对称轴求解二次函数的最值等方面。
一、实际问题中的二次函数最值在实际问题中,二次函数最值通常出现在诸如最大利润、最小成本、最高产量等问题中。
例如,一个工厂生产一种产品,该产品的成本包括固定成本和可变成本。
固定成本是不随产量变化的成本,而可变成本是随产量变化的成本。
因此,总成本函数是一个开口向下的二次函数。
为了使总成本最低,需要找到自变量的取值,使得总成本函数的导数为零,并判断导数是否为零,从而确定最值是否存在。
二、生产生活中的二次函数最值在生产生活中,二次函数最值也经常出现。
例如,一个公司投资一个项目,该项目的收益随投资额变化,且收益函数是一个开口向下的二次函数。
为了使收益最大,需要找到投资额的最优解。
最优解可以通过求解收益函数的导数并令其为零得到。
三、利用配方法求二次函数的最值配方法是求二次函数最值的一种常用方法。
该方法的基本思想是将二次函数转化为一个完全平方项和一个常数项之和的形式,然后利用平方的非负性求出最值。
具体步骤如下:(1)将二次函数配方为一个完全平方项和一个常数项之和的形式;(2)根据平方的非负性,求出这个完全平方项的取值;(3)将这个完全平方项的取值代入配方后的二次函数中,求出最值。
四、利用导数求解二次函数的最值利用导数求解二次函数的最值是一种比较简单的方法。
该方法的基本思想是先求出二次函数的导数,然后令导数为零,解出此时的自变量取值,最后比较所有自变量取值对应的函数值,找出最大(或最小)的一个即可。
五、利用作图法求解二次函数的最值作图法是一种直观地求解二次函数最值的方法。
应用二次函数解中考最值问题
![应用二次函数解中考最值问题](https://img.taocdn.com/s3/m/4fe342f67c1cfad6195fa709.png)
为了有效地考查学生的综合能力以及运用数学知识解决实际问题的能力,近年来,二次函数的最值问题成为中考命题的热点,下面举几例加以说明,与同学们一起探讨这类题的解答策略.一、几何图形中的最值问题例1 如图1,在正方形ABCD 中,AB =2,E 是AD 边上一点,(点E 与点A 、D 不重合).BE 的垂直平分线交AB 于M ,交DC 于N .(1)设AE =x ,四边形ADNM 的面积为S .写出S 关于x 的函数关系式;(2)当AE 为何值时,四边形ADNM 的面积最大?最大值是多少?分析:因为四边形ADNM 是一个直角梯形,欲求其面积,只知道高AD =2,所以需分别求出上底AM 和下底DN 的长.解:(1)如图2,连接ME ,过点N 作NF ⊥AB 于点F ,并设MN 交BE 于点P .因为MN 垂直平分BE ,所以ME =MB ,MN ⊥BE .在Rt △EBA 和Rt △MNF 中,∠MBP +∠BMN =90°,∠MNF +∠BMN =90°,所以∠MB P=∠MNF .又AB =BC =FN ,所以Rt △EBA ≌Rt △MNF .所以MF =AE =x .在Rt △MAE 中,由勾股定理,得ME 2=AE 2+AM 2,所以ME 2=x 2+AM 2. 即MB 2=x 2+AM 2,即(2-AM )2=x 2+AM 2.解得2114AM x =-. 于是四边形ADNM 的面积为222AM DN AM AF S AD ++==⨯ 2A M A M M F A M A E =++=+ 221121242x x x x ⎛⎫=-+=-++ ⎪⎝⎭. 即所求关系式为212(02)2S x x x =-++<<. (2)因为221152(1)222S x x x =-++=--+. 所以当AE =x =1时,四边形ADNM 的面积S 的值最大,此时最大值是52.二、实际问题中的最值问题例2 某通讯器材公司销售一种市场需求较大的新型通讯产品.已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)总计120万元.在销售过程中发现,年销售量y (万件)与销售单价x (元)之间存在着如图3所示的一次函数关系.(1)求y 关于x 的函数关系式;(2)试写出该公司销售该种产品年获利z (万元)关于销售单价x (元)的函数关系式(年获利=年销售额-年销售产品总进价-年总开支).当销售单价x 为何值时,年获利最大?并求这个最大值;(3)若公司希望该种产品一年的销售获利不低于40万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围,在此情况下,要使产品销量最大,你认为销售单价应定为多少元?解:(1)设y =kx +b ,它过(60,5),(80,4)两点,所以560480.k b k b =+⎧⎨=+⎩,b .解得1208.k b ⎧=-⎪⎨⎪=⎩,.所以1820y x =-+. (2)z =xy -40y -1202118(40)120104402020x x x ⎛⎫=-+--=-+- ⎪⎝⎭, ∴当x =100元时,最大年获利为60万元. (3)令z =40,得21401044020x x =-+-, 整理得x 2-200x +9 600=0.解得x 1=80,x 2=120.在平面直角坐标系中作出211044020z x x =-+-的图象,如图4所示. 由图象可知,要使年获利不低于40万元,销售单价应在80元到120元之间,又因为销售单价越低,销售量越大.所以要使销售量最大,又要使年获利不低于40万元,销售单价应定为80元.点评:本题由“形”到“数”,再由“数”到“形”,从而使实际问题中的最值问题得以解决,整个解答过程运用了三种数学思想:即数形结合思想、数学建模思想、函数思想.同时,此题以当代经济生活为背景,充分地说明了数学源于生活,又服务于生活.。
二次函数的应用——利润最值问题
![二次函数的应用——利润最值问题](https://img.taocdn.com/s3/m/ad877ddd910ef12d2af9e72d.png)
w … 60 x x … 40300 30 … x x 6000 x 30x 2 30 300 60-x
变式1:某商店销售某款童装,每件售价60元,每星期可卖出 300件,为了促销,该网店决定降价销售,市场反映:每降价 1 2 元,每星期可多卖30件,已知该童装每件成本40元,设该款童 款每件降价x元,每星期的销售量y件。 (1)求y与x之间的函数关系式。 (2)当每件降价为多少元时,每星期的销售利润最大,最大利 润为多少元?
降价 多售的件数 30×1 30×3 现在售价 60-1 60-3 现在销售量 300+30 300+30×3 … 300+30x 1 (2)设利润为 w 3
30×2 300+30×2 2 =(每件售价 60-2 利润 -每件进价)×销售量
30x x5 6750 y=300+30 所以,当降价5时x 20 2x 80 2 2x 30 200 因为 20 x 28 所以由二次函数的性质可知,当x≤30时,w随x的增大而增大 所以当x=28时,w取得最大值,最大值为
w 228 30 200 192
2
练习1:草莓是云南多地盛产的一种水果,今年水果销售店在草莓 销售旺季,试销售成本为每千克20元的草莓,规定试销售时间单 价不低于成本单价,也不高于每千克40元,经试销发现,销售量y (千克)与销售单价x(元)符合一次函数关系,如图y与x的函数 关系图象 (1)求y与x函数解析式。 (2)设该水果销售店试销售草莓 获得利润为w元,求w的最大值。
例1:某商店销售某款童装,每件售价60元,每星期可卖出 300件,为了促销,该网店决定降价销售,市场反映:每降价 1元,每星期可多卖30件,已知该童装每件成本40元,设该 款童款每件降价x元,每星期的销售量y件。 (1)求y与x之间的函数关系式。 (2)当每件降价为多少元时,每星期的销售利润最大,最大 利润为多少元? 解(1)
二次函数的最值与最值问题的应用
![二次函数的最值与最值问题的应用](https://img.taocdn.com/s3/m/015d2ebc900ef12d2af90242a8956bec0875a573.png)
二次函数的最值与最值问题的应用二次函数是数学中常见的一类函数,具有很多重要的性质和应用。
其中最值与最值问题是二次函数的重要内容之一。
本文将详细介绍二次函数的最值性质,以及如何利用最值问题解决实际应用中的相关问题。
一、二次函数的基本性质二次函数的一般形式为:y = ax² + bx + c其中,a、b、c为常数,且a ≠ 0。
二次函数的图像为抛物线,开口方向取决于a的正负性。
在讨论二次函数的最值之前,我们先了解一些与最值相关的基本性质。
1. 首先,二次函数的开口方向由系数a的正负性决定。
当a > 0时,抛物线开口向上,函数的最小值出现在顶点上;当a < 0时,抛物线开口向下,函数的最大值出现在顶点上。
2. 其次,二次函数的顶点即为函数的最值点。
顶点坐标为(h, k),其中h为抛物线的对称轴的横坐标,k为函数的最值(最小值或最大值)。
3. 再次,二次函数的对称轴与顶点的横坐标相同。
对称轴的方程为x = h。
二、二次函数的最值问题二次函数的最值问题是指求解函数的最小值或最大值的问题。
在实际应用中,最值问题经常出现,例如求解投掷问题中的飞行距离最大值或者盈利问题中的最大利润等。
1. 求解二次函数的最值为了求解二次函数的最值,我们可以利用二次函数图像的特点,即找出抛物线的顶点坐标。
通过完成平方项的平方,将二次函数转换为顶点形式,可以轻松地求解最值问题。
例如,对于函数y = x² - 4x + 3,我们可以完成平方项的平方,将其转换为顶点形式:y = (x - 2)² - 1从中可以看出,顶点坐标为(2, -1),函数的最小值为-1。
因此,原二次函数的最小值为-1。
2. 应用最值问题最值问题在实际应用中非常常见,下面以一个具体的应用为例进行解析。
例题:某商品的价格为p(元),销量为x(件),已知该商品的价格和销量满足二次函数关系p = 0.5x² - 2x + 8,求该商品的最佳销量以及最佳价格。
(完整版)二次函数(应用题求最值)(含答案)
![(完整版)二次函数(应用题求最值)(含答案)](https://img.taocdn.com/s3/m/4a88441df524ccbff021844e.png)
二次函数应用题1、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?2.如图,在平面直角坐标系中,顶点为(,)的抛物线交轴于点,交轴于,41-y A x B 两点(点在点的左侧). 已知点坐标为(,).C B C A 03(1)求此抛物线的解析式;(2)过点作线段的垂线交抛物线于点,如果以点为圆心的圆与直线B AB DC 相切,请判断抛物线的对称轴与⊙有怎样的位置关系,并给出证明;BD l C (3)已知点是抛物线上的一个动点,且位于,两点之间,问:当点运动到P A C P 什么位置时,的面积最大?并求出此时点的坐标和的最大面积.PAC ∆P PAC ∆3、张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙x(第13题)另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD .设AB 边的长为x 米.矩形ABCD 的面积为S 平方米.(1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值范围). (2)当x 为何值时,S 有最大值?并求出最大值.(参考公式:二次函数2y ax bx c =++(0a ≠),当2bx a=-时,244ac b y a-=最大(小)值)4、某电视机生产厂家去年销往农村的某品牌电视机每台的售价y (元)与月份x 之间满足函数关系,去年的月销售量p (万台)与月份x 之间成一次函数关系,其502600y x =-+中两个月的销售情况如下表:月份1月5月销售量 3.9万台 4.3万台(1)求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下%m 乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求的值(保留一位小数).m )5.831 5.9166.083 6.1645、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量(件)与销售单价(元)符合一次函数y x ,且时,;时,.y kx b =+65x =55y =75x =45y =(1)求一次函数的表达式;y kx b =+(2)若该商场获得利润为元,试写出利润与销售单价之间的关系式;销售单价定W W x 为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价的范围.x 6、某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。
二次函数最值应用题
![二次函数最值应用题](https://img.taocdn.com/s3/m/c631c02003020740be1e650e52ea551810a6c964.png)
二次函数最值应用题1.如图,在矩形ABCD中,AB=6厘米,BC=12厘米,点P从点A出发,沿AB边向点B以1厘米/秒的速度移动,同时点Q从点B出发沿BC边向点C以2厘米/秒的速度移动,如果P、Q两点在分别到达B、C两点后停止移动,回答下列问题:(1)P、Q两点开始运动后第几秒时,三角形PBQ的面积等于8平方厘米?(2)设P、Q两点开始运动后第t秒时,五边形APQCD的面积为S(平方厘米),写出S与t的函数关系式,并指出自变量t的取值范围;(3)当t为何值时,S最小?求出S的最小值?2.如图,小明父亲想用长为100m的栅栏,再借助房屋的外墙围成一个矩形的羊圈ABCD.已知房屋外墙长40m,设矩形ABCD的边AB=xm,面积为Sm2.(1)请直接写出S与x之间的函数表达式为,并直接写出x的取值范围是;(2)求当x为多少m时,面积S为1050m2;(3)当AB,BC分别为多少米时,羊圈的面积最大?最大面积是多少?3.某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每次下降的百分率相同.(1)求每次下降的百分率.(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?(3)在(2)的条件下,若使商场每天的盈利达到最大值,则应涨价多少元?此时每天的最大盈利是多少?4.某商场经销一种高档水果,原价每千克50元.(1)连续两次降价后每千克32元,若每次下降的百分率相同,求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,但商场规定每千克涨价不能超过8元,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天获利最多,那么每千克应涨价多少元?5.某超市销售一种商品,每件成本为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本.(1)求该商品每月的销售量y(件)与销售单价x(元)之间的函数关系式;(不需要求自变量取值范围)(2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?(3)为了每月所获利润最大,该商品销售单价应定为多少元?6.某公司生产的一种产品在市场上很受欢迎,该公司每年的产量为6万件,可在国内和国外两个市场全部销售.若在国外销售,平均每件产品的利润y1(元)与国外销售量x(万件)之间的函数关系如图所示.若在国内销售,平均每件产品的利润为y2=84元,设该公司每年在国内和国外销售的总利润为w万元.(1)求y1与x之间的函数关系式,并求x的取值范围.(2)该公司每年在国内国外销售量各为多少时,可使公司每年的总利润最大?最大值是多少?(3)该公司计划以国外销售的每件产品中捐出2m(1≤m≤4)元给希望工程,从国内销售的每件产品中捐出m 元给希望工程,且国内销售量不低于4万件,若这时国内外销售的总利润的最大值为520万元,求m的值.7.“燃情冰雪,一起向未来”,北京冬奥会于2022年2月4日如约而至,某商家看准商机,进行冬奥会吉祥物“冰墩墩”纪念品的销售,每个纪念品进价40元.规定销售单价不低于44元,且不高于60元.销售期间发现,当销售单价定为44元时,每天可售出300个,由于销售火爆,商家决定提价销售.经市场调研发现,销售单价每上涨1元,每天销量减少10个.(1)求当每个纪念品的销售单价是多少元时,商家每天获利2640元;(2)将纪念品的销售单价定为多少元时,商家每天销售纪念品获得的利润w元最大?最大利润是多少元?8.如图,在Rt△ABC中,∠C=90°,AC=20cm,BC=15cm.现有动点P从点A出发,沿AC向点C方向运动,动点Q从点C出发,沿线段CB向点B方向运动.如果点P的速度是4cm/s,点Q的速度是2cm/s,它们同时出发,当有一点到达所在线段的端点时,就停止运动.设运动的时间为ts,求:(1)用含t的代数式表示Rt△CPQ的面积S;(2)当t=3秒时,这时,P、Q两点之间的距离是多少??(3)当t为多少秒时,S=S△ABC。
二次函数的应用 最值问题
![二次函数的应用 最值问题](https://img.taocdn.com/s3/m/d24a1759f18583d0496459c3.png)
——最值问题
例1:已知二次函数y=x2+bx+c的图象过 点A(-3,0)和点B(1,0), 且与y轴交于点C,D点在抛物线上且横 坐标是-2. (1)求抛物线的解析式; (2)抛物线的对称轴上有一动点Q使得 QA+QD的值最小,求出QA+QD的最小值.
例2:如图,直线y=x-3与x轴、 y轴分别交于B、C两点,抛 物 线 y=x2+bx+c同 时 经 过 B、 C两点,点A是抛物线与x轴 的另一交点
(1)求抛物线解析式 ( 2 ) 若 点 p 在 直 线 BC 上 , 且
S△ABP=4,求P点坐标
例2变式: 1.如图,直线y=x-3与x轴、y 轴分别交于B、C两点,抛物 线y=x2+bx+c同时经过B、C两 点,点A是抛物线与x轴的另 一交点,若点p在抛物线上, 且S△ABP=4求P点坐标。
线y=x2+bx+c同时经过B、C两
点,点A是抛物线与x轴的另
一交点,
若点P是直线BC下方抛物线上
一点,△PBC的面积是否存在
P
最大面积?最大面积是多少?
例2变式:
4.如图,直线y=x-3与x轴、y
轴分别交于B、C两点,抛物
线y=x2+bx+c同时经过B、C两
点,点A是抛物线与x轴的另
一交点,
若点P是直线BC下方抛物线上
一点,四边形ABPC的面积是
P
否存在最大面积?最大面积是
多少?
练习1.
如图,在平面直角坐标系中,直线 y=x+4与x轴、y轴分别交于A、B两点, 抛物线y=﹣x2+bx+c经过A、B两点, 并与x轴交于另一点C(点C点A的右 侧),点P是抛物线上一动点. (1)求抛物线的解析式及点C的坐标; (2)若点P在第二象限内,过点P作 PD⊥x轴于D,交AB于点E.当点P运 动到什么位置时,线段PE最长? 此时PE等于多少? (3)△PAB的面积是否存在最大面积? 最大面积是多少?
二次函数的实际应用(利润最值问题)附答案
![二次函数的实际应用(利润最值问题)附答案](https://img.taocdn.com/s3/m/c409f21102d276a200292ecf.png)
第3课时 二次函数的实际应用——最大(小)值问题[例1]:求下列二次函数的最值:(1)求函数322-+=x x y 的最值.解:4)1(2-+=x y当1-=x 时,y 有最小值4-,无最大值.(2)求函数322-+=x x y 的最值.)30(≤≤x解:4)1(2-+=x y∵30≤≤x ,对称轴为1-=x∴当12330有最大值时;当有最小值时y x y x =-=.[例2]:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?解:设涨价(或降价)为每件x 元,利润为y 元,1y 为涨价时的利润,2y 为降价时的利润则:)10300)(4060(1x x y -+-= )60010(102---=x x6250)5(102+--=x当5=x ,即:定价为65元时,6250max =y (元))20300)(4060(2x x y +--= )15)(20(20+--=x x6125)5.2(202+--=x当5.2=x ,即:定价为57.5元时,6125max =y (元) 综合两种情况,应定价为65元时,利润最大.[练习]:1.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?解:设每件价格提高x 元,利润为y 元, 则:)20400)(2030(x x y --+= )20)(10(20-+-=x x 4500)5(202+--=x当5=x ,4500max =y (元)答:价格提高5元,才能在半个月内获得最大利润.2.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额? 解:设旅行团有x 人)30(≥x ,营业额为y 元, 则:)]30(10800[--=x x y )110(10--=x x 30250)55(102+--=x当55=x ,30250max =y (元)答:当旅行团的人数是55人时,旅行社可以获得最大营业额.[例3]: 某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表:若日销售量y 是销售价x 的一次函数.⑴求出日销售量y (件)与销售价x (元)的函数关系式;⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元? 解:⑴设一次函数表达式为b kx y +=. 则1525,220k b k b +=⎧⎨+=⎩ 解得⎩⎨⎧=-=401b k ,•即一次函数表达式为40+-=x y .⑵ 设每件产品的销售价应定为x 元, 所获销售利润为w 元y x w )10(-=)40)(10(+--=x x 400502-+-=x x225)25(2+--=x当25=x ,225max =y (元)答:产品的销售价应定为25元时,每日获得最大销售利润为225元.【点评】解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点: ⑴在“当某某为何值时,什么最大(或最小、最省)”的设问中, “某某”要设为自变量,“什么”要设为函数;⑵求解方法是依靠配方法或最值公式,而不是解方程.3.(2006十堰市)市“健益”超市购进一批20元/千克的绿色食品,如果以30•元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y (千克)•与销售单价x (元)(30≥x )存在如下图所示的一次函数关系式. ⑴试求出y 与x 的函数关系式;⑵设“健益”超市销售该绿色食品每天获得利润P 元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?⑶根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x 的范围(•直接写出答案).解:⑴设y=kx+b 由图象可知,3040020,:402001000k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解之得, 即一次函数表达式为100020+-=x y )5030(≤≤x . ⑵ y x P )20(-=)100020)(20(+--=x x 200001400202-+-=x x∵020<-=a ∴P 有最大值.当35)20(21400=-⨯=x 时,4500max =P (元)(或通过配方,4500)35(202+--=x P ,也可求得最大值)答:当销售单价为35元/千克时,每天可获得最大利润4500元.⑶∵44804500)35(2041802≤+--≤x16)35(12≤-≤x∴31≤x ≤34或36≤x≤39. 作业布置:1.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,则应降价_5_元,最大利润为_625_元. 解:设每件价格降价x 元,利润为y 元, 则:)20)(70100(x x y +--=600102++-=x x 625)5((2+--=x当5=x ,625max =y (元)答:价格提高5元,才能在半个月内获得最大利润.2.(2006年青岛市)在2006年青岛崂山北宅樱桃节前夕,•某果品批发公司为指导今年的樱桃销售,对往年的市场销售情况进行了调查统计,得到如下数据:销售价x (元/千克) … 25 24 23 22 … 销售量y (千克) (200)250030003500…(1)在如图的直角坐标系内,作出各组有序数对(x ,y )所对应的点.连接各点并观察所得的图形,判断y 与x 之间的函数关系,并求出y 与x 之间的函数关系式; (2)若樱桃进价为13元/千克,试求销售利润P (元)与销售价x (元/千克)之间的函数关系式,并求出当x 取何值时,P 的值最大? 解:(1)由图象可知,y 是x 的一次函数,设y=kx+b ,•∵点(•25,2000),(24,2500)在图象上, ∴200025500,:25002414500k bk k b b =+=-⎧⎧⎨⎨=+=⎩⎩解得 , ∴y=-500x+14500.(2)P=(x-13)·y=(x-13)·(-500x+14500))37744144142(500)37742(500)29)(13(50022+-+--=+--=---=x x x x x x=-500(x-21)2+32000∴P 与x 的函数关系式为P=-500x 2+21000x-188500, 当销售价为21元/千克时,能获得最大利润,最大利润为32000元.3.有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.(1)设x天后每千克活蟹的市场价为p元,写出p关于x的函数关系式;(2)如果放养x天后将活蟹一次性出售,并记1000 kg蟹的销售总额为Q元,写出Q 关于x的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q-收购总额)?解:(1)由题意知:p=30+x,(2)由题意知:活蟹的销售额为(1000-10x)(30+x)元,死蟹的销售额为200x元.∴Q=(1000-10x)(30+x)+200x=-10x2+900x+30000.(3)设总利润为W元则:W=Q-1000×30-400x=-10x2+500x=-10(x2-50x) =-10(x-25)2+6250.当x=25时,总利润最大,最大利润为6250元.答:这批蟹放养25天后出售,可获最大利润.4.(2008湖北恩施)为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元) . (1)求y与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元? 解:)802)(20()20(+--=-=x x w x y )40)(20(2---=x x)80060(22+--=x x 200)30(22+--=x160012022-+-=x x当30=x ,200max =y (元)(1)y 与x 之间的的函数关系式为;160012022-+-=x x y(2)当销售价定为30元时,每天的销售利润最大,最大利润是200元. (3) 150200)30(22=+--x ,25)30(2=-x28351>=x (不合题意,舍去)252=x答:该农户想要每天获得150元的销售利润,销售价应定为25元.12.(2008河北)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式9051012++=x x y ,投入市场后当年能全部售出,且在甲、乙两地每吨的售价,(万元)均与满足一次函数关系.(注:年利润=年销售额-全部费用)(1)成果表明,在甲地生产并销售吨时,,请你用含的代数式表示甲地当年的年销售额,并求年利润(万元)与之间的函数关系式;(2)成果表明,在乙地生产并销售吨时,(为常数),且在乙地当年的最大年利润为35万元.试确定的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?解:(1)甲地当年的年销售额为万元;.(2)在乙地区生产并销售时,年利润.由,解得或.经检验,不合题意,舍去,.(3)在乙地区生产并销售时,年利润,将代入上式,得(万元);将代入,得(万.元).,应选乙地.可编辑。
二次函数的最值问题实例分析
![二次函数的最值问题实例分析](https://img.taocdn.com/s3/m/c4fefe705b8102d276a20029bd64783e09127d8a.png)
二次函数的最值问题实例分析二次函数是高中数学中的重要内容,它在实际问题中的应用广泛而深入。
本文将通过分析几个实例来探讨二次函数的最值问题,以帮助读者更好地理解和应用这一概念。
例一:建筑抛物线拱顶的最高点某个建筑的拱顶设计为一个抛物线形状,其顶点坐标为(0,15),给定该抛物线的开口方向向上。
我们的目标是确定该抛物线拱顶的最高点的高度。
解析:设抛物线的标准方程为f(x) = ax^2 + bx + c,由于开口向上,所以a > 0。
由已知顶点的坐标可得 f(0) = 15,即 c = 15。
由于顶点为最值点,所以最高点的高度即为顶点的纵坐标。
具体求解过程略去,最终得出该抛物线拱顶的最高点高度为15。
例二:投射物体的最远距离一枚火箭以初速度v0沿着水平方向发射,求解在重力的作用下,火箭落地的水平位置,即火箭的最远飞行距离。
解析:考虑到重力加速度g,可以列出水平和竖直方向的运动方程:水平方向:x(t) = v0 * t竖直方向:y(t) = -0.5gt^2 + v0 * t最终火箭落地时,y(t) = 0,求解得到落地的时间t0。
将t0代入水平方向的运动方程可得到最远飞行距离。
例三:最小化油费支出某辆汽车在高速公路上行驶,已知该车的油耗函数为C(x) =0.01x^2 + 2x + 30,其中x为行驶的里程数(单位:公里)。
我们的目标是确定行驶一定距离时,使得油耗最低的速度。
解析:油耗函数可以表示为二次函数,我们需要求解其最小值点对应的x 值。
通过求解导数为0的点可以得到极值点位置。
求解过程略去,最终得出使得油耗最低的速度对应的行驶距离。
通过以上三个实例的分析,我们可以看到二次函数的最值问题在各种实际场景中都有广泛的应用。
理解和掌握这一概念对于解决相关问题非常重要。
希望本文能够帮助读者更好地理解和应用二次函数的最值问题。
本文介绍了建筑抛物线拱顶的最高点、投射物体的最远距离以及最小化油费支出等实例,分析了各个实例中如何应用二次函数的最值问题的解决方法。
二次函数的最值、应用问题
![二次函数的最值、应用问题](https://img.taocdn.com/s3/m/9f7149c080c758f5f61fb7360b4c2e3f5727259f.png)
二次函数的最值、应用问题
二次函数的最值及应用问题
二次函数是一类常见的函数,它的定义域是实数集,其函数表达式为:y=ax^2+bx+c,其中a≠0。
二次函数的最值是指函数在定义域内的最大值或最小值,它的最值可以通过求导法来求得,具体的求法如下:
1.首先求出二次函数的导数:y'=2ax+b;
2.然后求出导数的根:x=-b/2a;
3.最后求出函数的最值:y=-b^2/4a+c。
二次函数的最值在实际应用中有着重要的作用,它可以用来求解一些实际问题,比如求解最优解、最小值等。
例如,某公司要在一个地区建设一个工厂,需要考虑到该地区的经济发展情况,可以将经济发展情况用二次函数来表示,然后求出该函数的最值,从而得出最佳的建设地点。
另外,二次函数的最值还可以用来求解一些物理问题,比如求解抛物线的最高点、最低点等。
例如,某物体以抛物线的形式运动,可以用二次函数来表示,然后求出该函数的最值,从而得出物体的最高点和最低点。
总之,二次函数的最值在实际应用中有着重要的作用,它可以用来求解一些实际问题,比如求解最优解、最小值等,也可以用来求解一些物理问题,比如求解抛物线的最高点、最低点等。
二次函数的应用(1)——最值问题
![二次函数的应用(1)——最值问题](https://img.taocdn.com/s3/m/c11bbe97e009581b6bd9ebdf.png)
零障碍导教导学案
第 12课 二次函数的应用(1)———最值问题
一、知识储备
1.二次函数 y= -2(x-10)2 +200,当 x=
时,y取得最
值=
.
2.二次函数 y=(x-2)2 +50,当 x=
得最
值=
.
时,y取
二、新课学习
点 P从点 A开始,沿 AB边向点 B以每秒 1cm的速 x(元)与产品的日销售量 y(件)之间的关系如下表:
度移动;点 Q从点 B开始,沿着 BC边向点 C以每秒 (1)求出日销售量 y(件)与销售价 x(元)的函数关
2cm的速度移动.如果 P,Q同时出发,问经过几秒 系式(y是 x的一次函数);
天可售出 20双,每双盈利 40元,如果每 双 降 价 1 销售单价是 25元时,每天的销售量为 250件,销售
元,那么每天可多售出 2双.
单价每上涨 1元,每天的销售量就减少 10件.
(1)要想平均每天销售盈利 1200元,那么每双运动 (1)写出每天所得的销售利润 y(元)与涨价 x(元)
钟△PBQ的面积最大?最大面积是多少?
(2)要使每 日 的 销 售 利 润 最 大,每 件 产 品 的 销 售 价
应定为多少元?此时每日销售利润是多少元?
x/元 15 20 30 …
y/件 25 20 10 …
第3关
鞋应降价多少元?
之间的函数关系式;
上册第二十二章 二次函数的应用(一)—最值问题人教版九级数学全一册课件
![上册第二十二章 二次函数的应用(一)—最值问题人教版九级数学全一册课件](https://img.taocdn.com/s3/m/0184cc8cb90d6c85ed3ac656.png)
三级检测练
一级基础巩固练
6. 已知 x 人结伴去旅游共需支出 y 元,若 x,y 满足关系 式 y=2x2-20x+950,则当总支出最少时,人数为 5 .
7. 某单位商品的利润 y 与变化的单价数 x 之间的关系为 y=-5x2+10x,当 0.5≤x≤2 时,最大利润是 5 .
上册第二十二章 二次函数的应用(一)—最值问题 人教版 九级数 学全一 册课件
上册第二十二章 二次函数的应用(一)—最值问题 人教版 九级数 学全一 册课件
4. 某超市销售一种商品,成本每千克 40 元,规定每千克售 价不低于成本,且不高于 60 元,经市场调查,每天的销售量
y(单位:千克)与每千克售价 x(单位:元)满足一次函数
3. (例 2)商场销售一批名牌衬衫,平均每天可售出 40 件,每件盈利 40 元. 为了扩大销售,增加盈利,尽 快减少库存,商场决定采取适当的降价措施. 经调查 发现,如果每件衬衫每降价 1 元,商场平均每天可多 售出 4 件.
(1)若商场平均每天要盈利 2 400 元,每件衬衫应降 价多少元? (2)若该商场要每天盈利最大,每件衬衫应降价多少 元?盈利最大是多少元?
上册第二十二章 二次函数的应用(一)—最值问题 人教版 九级数 学全一 册课件
上册第二十二章 二次函数的应用(一)—最值问题 人教版 九级数 学全一 册课件
(3)若该公司按每销售一千克提取 1 元用于捐资助学,且保 证每天的销售利润不低于 3 600 元,问该羊肚菌销售价 格该如何确定. 解:①当12≤x≤20时, W=(x-12-1)y=(x-13)(-200x+4 400) =-200(x-17.5)2+4 050. ∴-200(x-17.5)2+4 050=3 600. 解得x1=16,x2=19. 定价为16≤x≤19. ②当20<x≤24时,W=400(x-12-1)=400x-5 200≥3 600.解得22≤x≤24. 综上,销售价格确定为16≤x≤19或22≤x≤24.
二次函数的最值与应用
![二次函数的最值与应用](https://img.taocdn.com/s3/m/760fc3405bcfa1c7aa00b52acfc789eb172d9ed0.png)
二次函数的最值与应用二次函数是数学中常见且重要的一种函数类型。
它的一般形式可以表示为f(x) = ax^2 + bx + c,其中a、b和c均为实数且a ≠ 0。
在这篇文章中,我们将探讨二次函数的最值问题以及它在实际应用中的意义和用途。
1. 二次函数的最值在二次函数中,最值指的是函数的最大值和最小值。
要确定二次函数的最值,我们首先需要考虑二次函数的开口方向。
当a > 0时,二次函数的图像开口向上,最小值存在;当a < 0时,二次函数的图像开口向下,最大值存在。
为了找到二次函数的最值,我们需要用到一些重要的概念和方法,包括顶点、轴对称和判别式。
二次函数的顶点坐标可以通过公式x = -b / (2a)和y = f(x)来求得。
此外,二次函数的轴对称轴是通过顶点且与x 轴垂直的一条直线。
判别式Δ = b^2 - 4ac用于判断二次函数的图像与x 轴的交点个数,从而帮助我们确定最值是否存在。
2. 最值问题的应用二次函数的最值问题在现实生活中有许多应用场景,包括经济学、物理学和工程学等领域。
以下是其中的一些例子:(1) 经济学:在某个产业中,产品的产量和售价往往与成本和利润相关。
通过分析二次函数模型,我们可以找到使利润最大化或成本最小化的最优生产量和售价。
这有助于企业优化经营策略和提高竞争优势。
(2) 物理学:在物理学中,二次函数经常用来描述抛物线轨迹,如抛体运动中的轨迹和弹簧的伸缩长度与施加力的关系。
通过分析二次函数的最值,我们可以确定物理系统的最优参数,从而优化实验设计和模型预测。
(3) 工程学:在工程学中,二次函数可以用来描述不同材料的特性和性能。
通过最值问题,我们可以确定最优的材料组合、变量调节范围和工艺参数,从而提高产品质量和工程效率。
3. 实例分析:二次函数最值问题的求解为了更好地理解二次函数最值问题的求解过程,我们来看一个具体的实例。
假设有一个二次函数f(x) = 2x^2 + 3x - 5,我们的任务是求出其最大值或最小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(最值问题)
漳湖中学 鲍友春
精选ppt
1
(一)复习引入
设计思路:
1.复习二次函数y=ax2+bx+c
通过复习题1让学生 回忆二次函数的图
(a≠0)的图象、顶点坐标、 对称轴和最值
象和顶点坐标与最 值,通过做练习2复 习求二次函数的最
2.(1)求函数y=x2+2x-3的
值方法;练习2(1)
设计思路:
我把前面矩形的周长40厘米改为40米,变 成一个实际问题,目的在于让学生体会其 应用价值——我们要学有用的数学知识。 学生在前面探究问题时,已经发现了面积 不唯一,并急于找出最大的,而且要有理 论依据,这样首先要建立函数模型,合作 探究中在选取变量时学生可能会有困难, 这时教师要引导学生关注哪两个变量,就 把其中的一个主要变量设为x,另一个设 为y,其它变量用含x的代数式表示,找等 量关系,建立函数模型,实际问题还要考 虑定义域,画图象观察最值点,这样一步 步突破难点,从而让学生在不断探究中悟 出利用函数知识解决问题的一套思路和方 法,而不是为了做题而做题,为以后的学 习奠定思想方法基础。
10
(四)师生小结
设计思路:
1.面积、销售问题学生易于理解 本阶段,让学
和接受,最值问题是生活中利用
生总结这节课 的收获、利用
二次函数知识解决最常见、最有 函数知识解决
实际应用价值的问题之一,能分
析和表示实际问题中的变量之间的关
实际问题的方 法以及要注意 的问题,体会
系,并建立培养函数思想以及数形结 科学就是生产
(1)运动开始后第几秒时,△PBQ的面积 等于8cm2?
(2)设运动开始后第t秒时,五边形APQCD 的面积为Scm2,写出S与t的函数关系式,并 指出自变量t的取值范围;
(3)t为何值时S最小?求出S的最小值。
精选ppt
设计思路:
D
C
Q
A
B
P
本题设计了一个 动点问题,学生 见过,在这儿旧 貌换新颜,让学 生体会新旧知识 联系,培养迁移 能力。
精选ppt
4
1.在创设情境中发现问题
[合作探究]:请同学们把这根长为40厘米的 毛线围成一个矩形,同桌测算下它的面积是 多少?再和其他同学比比,发现了什么?谁 的面积最大?
我的长 些,我 的大
我的宽些, 我的大
精选ppt
5
2、在解决问题中找出方法
[想一想]:漳湖镇 是有名的黄鳝养殖基 • 地,小明的爸爸需要 围一个周长为40米的 矩形作为养殖场地, 问矩形的长和宽各取 多少米,才能使场地 的面积最大,如果你 是小明,你该怎么做?
A
D
B
C
精选ppt
9
(三)作业设计(课后选做)
C层(你一定是最棒的!)
在矩形ABCD中,AB=6cm,BC=12cm, 点P从点A出发,沿AB边向点B以1cm/秒的 速度移动,同时,点Q从点B出发沿BC边向 点C以2cm/秒的速度移动。如果P、Q两点在 分别到达B、C两点后就停止移动,回答下 列问题:
精选ppt
6
3、在巩固与应用中提高技能
例题:某件商品的进价为每件30元,现在的售价为每件40元,每周可卖出150
件,市场调查反映,若每件的售价每涨1元(每件售价不可以高于45元), 那么每周少卖出10件,设每件涨价x元(X为非负整数),每周的销量为y件。 (1)求y与x的函数关系及自变量x的取值范围 (2)如何让每周的利润最大且销量较大?每周的最大利润是多少?
解:(1)由题意可得y=150-10x,
( 0≤ x ≤ 5且为非负整数)
(2)设每周的利润为W,则:W=yx=(150-10x)(40-30+x) =-10(x-2.5)2+1562.5
∵a=-10 ﹤0; 0≤ x ≤ 5且为非负整数
∴当0≤ x ﹤2.5时,W随x的增大而增大
当2.5 ﹤ x ≤ 5时,W随x的增大而减小
(2)
(1,-4)
设计思路:
针对学困生 我设计了两 道题,学生 只要仔细观 察基本上都 能完成,尝 试到成功之 后,他们肯 定会向更高 层次发起进 攻。
精选ppt
8
(三)分层评价(课后选做)
B层:(你肯定行!) 2、如图,在一面靠墙的空地上用长24米的篱笆,围成中间隔有二 道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。 (1)求S与x的函数关系式及自变量的取值范围; (2)当x取何值时所围成的花圃面积最大,最大值是多少? *(3)若墙的最大可用长度为8米,则求围成花圃的最大面积。
又∵ x只能取非负整数
∴ 当x =2或3时,每周的利润最大
但 当X=2时,每周的销量Y=130元
当X=3时,每周的销量Y=120元
故 当X=2时,每周的利润最大且销量较大,最大利润为1560元。
精选ppt
7
(三)分层评价(课后选做)
A层:(你能行!) 1.指出下列函数的最大或最小值 (1)y= -3(x-1)2+5
线
在
什
么
位
置
取
最
值
?实条件的制约,做完练 习后及时让学生总结出
了取最值的点的位置往
往在顶点和两个端点之
1。定义域为一切实数,顶点处取最值。
间选择,为学习新课做
2。有取值范围的在端点和顶点处取最值。
好知识铺垫。
精选ppt
3
(二)讲解新课
新课分为: 1.创设情境中发现问题 2.在解决问题中找出方法 3.在巩固与应用中提高技能几个环节
最值。 (2)求函数y=x2+2x-3的
的设计中,定义域 为x∈R,学生求最 值容易想到顶点,
最值。(0≤x ≤ 3) 3、抛物线在什么位置取最值?
无论是配方、还是 利用公式都能解决;
精选ppt
2
(一)复习引入
1.复习二次函数y=ax2+bx+c
设计思路:
(a≠0)的图象、顶点坐标、 对称轴和最值
(2)中给了定义域 0≤x≤3,学生求最值时可 能还会利用顶点公式求,
2.(1)求函数y=x2+2x-3的
忽略定义域的限制,设 计此题就是为了提醒学
最值。
生注意求解函数问题不
(2)求函数y=x2+2x-3的
能离开定义域这个条件 才有意义,因为任何实
最值。(0≤x ≤ 3)
际问题的定义域都受现
3
、
抛物合思想。源自力这句话的含 义,激发学生
2. 用函数知识求解实际问题,需要 把实际问题转化为数学问题再建
学数学用数学 的信心。
立函数模型求解,解要符合实际题意,
要注意数与形结合。
精选ppt
11
(五)、布置作业
1.假设篱笆(虚线)的长度为15米,两 面靠墙围成一个矩形,要求面积最大, 如何围才能使矩形的面积最大? 2.课后练习题