卧式单面多轴钻孔组合机床动力滑台液压系统
卧式单面多轴钻孔组合机床液压系统设计9
《液压与气压传动》课程设计说明书题目:卧式单面多轴钻孔组合机床液压系统设计目录《液压与气压传动》课程设计任务书 (3)设计基本要求 (5)一、负载分析 (5)二、液压系统方案设计 (6)1确定液压泵类型及调速方式 (6)2选用执行元件 (6)3快速运动回路和速度换接回路 (6)4换向回路的选择 (6)5组成液压系统绘原理图 (7)三、液压系统的参数计算 (7)(一)液压缸参数计算 (7)1.初选液压缸的工作压力 (7)2.确定液压缸的主要结构尺寸 (7)3.计算液压缸各工作阶段的工作压力、流量和功率 (8)(二)液压泵的参数计算 (9)(三)电动机的选择 (9)1.差动快进 (10)2.工进 (10)3.快退 (10)四、液压元件的选择 (11)1液压阀及过滤器的选择 (11)2油管的选择 (11)3邮箱容积的确定 (11)五、验算液压系统性能 (11)(一)压力损失的验算及泵压力的调整 (12)1.工进时的压力损失验算及泵压力的调整 (12)2.快退时的压力损失验算及大流量泵卸载压力的调整 (12)3.局部压力损失 (13)(二)液压系统的发热和温升验算 (13)六、参考文献 (14)《液压与气压传动》课程设计任务书一、设计目的《液压与气压传动》课程设计是机械工程专业教学中重要的实践性教学环节,也是整个专业教学计划中的重要组成部分,是培养学生运用所学有关理论知识来解决一般gon工程实际问题能力的初步训练。
课程设计过程不仅要全面运用《液压与气压传动》课程有关知识,还要根据具体情况综合运用有关基础课、技术基础课和专业课的知识,深化和扩大知识领域,培养独立工作能力。
通过课程设计,使学生在系统设计方案的拟定、设计计算、工程语言的使用过程中熟悉和有效地使用各类有关技术手册、技术规范和技术资料,并得到设计构思、方案拟定、系统构成、元件选择、结构工艺、综合运算、编写技术文件等方面的综合训练,使之树立正确的设计思想,掌握基本设计方法。
液压传动课程设计-卧式单面多轴钻孔组合机床动力滑台的液压系统
液压传动课程设计-卧式单面多轴钻孔组合机床动力滑台的液压系统一、课程设计要求1. 设计卧式单面多轴钻孔组合机床动力滑台的液压系统。
2. 列出液压系统的工作原理图和液压元件的选型计算书。
3. 进行机床的控制系统设计及编写控制程序。
二、机床结构简介卧式单面多轴钻孔组合机床是一种多功能机床,可钻、攻丝、铰孔、铣槽、半圆弧等复合工艺操作,适广泛用于水泵、汽车、空气压缩机、发电机、电机、气动工具及家具等行业的生产制造。
机床结构主要由床身、主轴箱、工作台、电气系统、液压系统等组成。
其中,床身用于支撑整机,主轴箱用于装配主轴及各个传动装置,工作台用于夹持工件及执行传动。
注:本设计仅涉及液压系统部分的工作原理图和液压元件的选型。
三、液压系统工作原理图液压系统主要用于机床的升降、夹紧、进给等控制操作。
下面的工作原理图展示了该机床的主要液压系统结构。
液压油泵为双联泵,分别提供高压和低压液压油,高压系统主要用于机床的动力传输和工作台的升降,低压系统则用于工作台和主轴箱的夹持、进给和径向递进。
四、液压元件的选型计算本文中设计的液压系统主要包括液压油泵、液压缸、液压阀、液压滤清器、液压压力表等液压元件。
针对所需控制的液压作用,根据相应的公式和数据手册,进行液压元件的选型计算。
液压元件选型计算书如下:五、控制系统设计本设计中,机床的控制系统主要由PLC控制器、触摸屏、传感器、执行器和电磁阀等组成,通过编写相应的控制程序,实现机床的高效稳定运行。
液压系统的控制程序中主要包括如下控制命令:1. 单向液压缸的伸出和缩回控制命令。
2. 双向液压缸的伸出和缩回控制命令。
3. 液压油泵的控制启停命令。
4. 电磁阀的开关控制命令。
5. 液压滤清器的定期清洗命令。
通过不同的控制命令组合,可以实现机床的不同运动状态和操作需求,从而提高机床的生产效率和工作质量。
六、总结本文对卧式单面多轴钻孔组合机床动力滑台的液压系统进行了详细介绍,并给出了液压系统的工作原理图和液压元件的选型计算书,同时简要讲述了机床的控制系统设计流程和控制命令。
液压设计题目
课题
指导学
生人数
完成时间及负责人
1
设计任务:设计一台卧式钻镗组合机床动力滑台液压系统。
●工作循环回路为快进----工进----快退----原位停止。
●轴向最大切削力为12000N;工作进给速度在0.33×10-3~20×10-3m/s,范围内无极变速;动力滑台重力Fg=20000N;快进与快退的速度均为0.1 m/s;导轨为平导轨,静、动摩擦系数分别为fs=0.2,fd=0.1;往返运动的加速和减速时间均为0.2 s;快进行程L1和工进行程L2均为0.1m。
●要求采用液压与电气结合,实现自动循环。
设计工作量:
1.设计计算说明书(封面、摘要及关键词、目录、正文、结论、致谢、参考文献)
2.液压系统图(3号图纸)
孟祥虔
党伟
于怀军
王云龙
2
设计任务:设计一台双头车床的液压传动系统。
●要求:液压系统完成快进—工进—快退—停止的工作循环。同时要求各个车削头能单独调整。
●机床的快进速度为4 m/min,快退速度与快进速度相等。工进要求是:能在0.020~1.2m/min范围内进行无级调速。其最大切削力在导轨中心线方向为12000N,所要移动的总重量为15000N。工进时间在0.01~0.5min。导轨采用V型导轨,静摩擦系数为fs=0.2~0.3,动摩擦系数为fd=0.05~0.1,,启动、制动或速度变化所需时间0.01~0.5s,液压缸的机械效率为0.90~0.97。
设计工作量:
1.设计计算说明书(封面、摘要及关键词、目录、正文、)
李新龙
邓婉君
杨标
3
设计任务:设计一卧式单面多轴钻孔组合机床动力滑台的液压系统。。
●按照加工需要,动力滑台的工作循环是:快速前进---工作进给----快速退回---原位停止。
卧式单面多轴钻孔组合机床的液压系统液压传动课程设计说明书
学院学生课程设计(论文)题目:液压传动课程设计——卧式单面多轴钻孔组合机床的液压系统所在院(系):机械工程学院专业:机械设计制造及其自动化学院本科学生课程设计任务书注:任务书由指导教师填写。
课程设计(论文)指导教师成绩评定表目录1 设计题目 (1)2 负载分析 (1)3 负载图和速度图的绘制 (3)3.1 绘制负载图 (3)3.2 绘制速度图 (3)4 液压缸主要参数的确定 (4)4.1 初选液压缸的工作压力 (4)4.2 液压缸面积计算 (4)4.3 计算各个工作阶段中的压力、流量和功率值 (5)5 液压系统图的拟定 (6)5.1 液压回路的选择 (6)5.2 液压回路的综合 (7)6 液压元件的选择 (9)6.1 液压泵 (9)6.2 阀类元件及辅助元件选择 (10)6.3 油管 (11)6.4 油箱 (13)7 液压系统性能验算 (13)7.1 验算系统压力损失并确定阀的调整值 (13)7.2 油液温升验算 (15)8 致 (16)9 参考文献 (16)1 设计题目1. 设计题目试设计一卧式单面多轴钻孔组合机床的液压系统,要求液压系统完成的工作循环是:快进——工进——快退——停止;系统参数如下表,动力滑台采用平面导轨,其静、动摩擦系数分别为0.2、0.1,往复运动的加减速时间要求不大于0.2s。
2. 设计容完成系统设计计算,5000字左右的课程设计论文,包含动作循环图、负载图、速度图、系统原理图。
绘制系统图,液压缸图纸。
3. 设计数据卧式单面多轴钻孔组合机床的液压系统设计已知数据见表1-1:表1-1 卧式单面多轴钻孔组合机床的液压系统设计已知数据2 负载分析 负载与运动分析:工作负载:高速钢钻头钻铸铁孔时的轴向切削力t F (单位为N )与钻头直径D (单位为mm )、每转进给量s (单位为mm/r )和铸铁硬度HBW 之间的经算式为:0.80.625.5()t F Ds HBW = (2-1) 钻孔时的主轴转速n 和每转进给量s (参考《组合机床设计手册》)选取:对φ13.8mm 的孔,1n =360r/min ,1s =0.147mm/r 对φ8.5的孔, 2n =550r/min, 2s =0.096mm/r 代入式(1-1)求得:6.08.06.08.0240096.05.85.254240147.08.135.2512⨯⨯⨯⨯+⨯⨯⨯⨯=s F =27975N惯性负载 m=G g = 8.99800kg=1000kg m v F mt ∆=∆=1000⨯2.0607⨯=583N 阻力负载 静摩擦阻力N N F fs 196098002.0=⨯=动摩擦阻力N N F fd 98098001.0=⨯=由此得出液压缸在各工作阶段的负载如下表2-1所示:表2-1 液压缸在各工作阶段的负载 (单位:N )注: 1. 液压缸的机械效率通常取0.9-0.95,此处取0.9。
液压系统设计计算公式
液压系统设计计算举例某厂汽缸加工自动线上要求设计一台卧式单面多轴钻孔组合机床,机床有主轴16根,钻14个φ13.9mm 的孔,2个φ8.5mm 的孔,要求的工作循环是:快速接近工件,然后以工 作速度钻孔,加工完毕后快速退回原始位置,最后自动停止;工件材料:铸铁,硬度HB 为240;假设运动部件重G =9800N ;快进快退速度v1=0.1m/s ;动力滑台采用平导轨,静、动摩擦因数μs =0.2,μd =0.1;往复运动的加速、减速时间为0.2s ;快进行程L1=100mm ;工进行程L2=50mm 。
试设计计算其液压系统。
一、作F —t 与v —t 图1.计算切削阻力钻铸铁孔时,其轴向切削阻力可用以下公式计算:F c =25.5DS 0.8硬度0.6(N)式中:D 为钻头直径(mm);S 为每转进给量(mm/r)。
选择切削用量:钻φ13.9mm 孔时,主轴转速n1=360r/min ,每转进给量S1=0.147mm/r ;钻8.5mm 孔时,主轴转速n2=550r/min ,每转进给量S2=0.096mm/r 。
则F c =14×25.5D 1S 0.81硬度0.6+2×25.5D 2S 0.82硬度0.6=14×25.5×13.9×0.1470.8×2400.6+2×25.5×8.5×0.0960.8×2400.6=30500(N) 2.计算摩擦阻力静摩擦阻力:Fs=f s G=0.2×9800=1960N 动摩擦阻力:F d =f d G=0.1×9800=980N 3.计算惯性阻力4.计算工进速度工进速度可按加工φ13.9的切削用量计算,即:v 2=n 1S 1=360/60×0.147=0.88mm/s=0.88×10-3m/s 5.根据以上分析计算各工况负载如表所示。
卧式单面多轴钻孔组合机床液压系统的设计
卧式单面多轴钻孔组合机床液压系统的设计卧式单面多轴钻孔组合机床是一种重要的工业设备,用于在工件上进行钻孔加工。
为了保证机床的正常运行,需要设计一套稳定可靠的液压系统。
本文将介绍卧式单面多轴钻孔组合机床液压系统的设计,包括系统的工作原理、系统的组成以及系统的控制方法。
卧式单面多轴钻孔组合机床液压系统的工作原理是基于液压驱动的。
液压系统由液压执行元件、动力元件、控制元件和辅助元件组成。
液压执行元件主要包括油缸、液压缸和液压马达等,在钻孔加工过程中起到了推进钻头、提升工件等作用;动力元件主要是液压泵,负责提供液压能量;控制元件主要包括阀门和控制电磁阀,用于控制液压系统的流量和压力;辅助元件主要是油箱和管路等,用于储存和传输液压介质。
卧式单面多轴钻孔组合机床液压系统的组成主要包括三个部分:油源系统、液压执行系统和控制系统。
油源系统是液压系统的动力供应,通常由一个或多个液压泵组成;液压执行系统是液压系统的工作部分,通过液压驱动钻孔过程中的各个执行元件;控制系统是液压系统的核心部分,通过阀门和控制电磁阀来实现液压系统的调控。
卧式单面多轴钻孔组合机床液压系统的控制方法主要包括手动控制和自动控制。
在手动控制状态下,操作人员通过手动控制阀门或控制面板上的按钮来控制液压系统的启停、流量和压力等参数。
在自动控制状态下,通过编程控制电磁阀和PLC等设备,实现对液压系统的自动调控,提高钻孔过程的精确度和生产效率。
卧式单面多轴钻孔组合机床液压系统的设计需要考虑多个因素。
首先,需要根据机床的实际工作情况确定液压系统的工作压力和流量。
其次,需要选择合适的液压泵、液压缸和液压马达等执行元件,确保其工作性能和使用寿命。
同时,还需要选择合适的阀门和控制电磁阀,确保液压系统的控制精度和稳定性。
最后,还需要设计合理的油箱和管路布局,确保液压系统的循环和散热。
总之,卧式单面多轴钻孔组合机床液压系统的设计是一项复杂的工作,需要深入理解液压原理和机械加工过程,并结合实际情况进行综合考虑。
卧式单面多轴钻孔组合机床液压系统设计..
机电工程学院《液压与气压传动课程设计》说明书课题名称:卧式单面多轴钻孔组合机床液压系统设计学生姓名:学号:专业:机械设计班级:成绩:指导教师签字:2013年06月27日前言 (01)第一章设计要求及其工况分析 (02)第二章液压系统主要参数的确定 (05)第三章拟定液压系统原理图 (11)第四章计算和选择液压源,辅件 (15)第五章第五章液压缸设计基础 (21)第六章第六章验算液压系统性能 (25)第七章第七章设计小结 (29)第八章第八章主要参考文献 (30)《液压与气动控制技术课程设计》是学生学完《液压与气动控制技术》等专业课程后安排的具有综合性和实践性的重要环节,旨在培养学生综合运用液压与气动控制技术课程的理论知识和生产实际知识分析、解决工程实际问题的能力,以进一步巩固、深化、扩展本课程所学到的理论知识。
同时培养学生运用标准、规范、手册、图册和查阅有关技术资料和编写技术文件等能力。
本设计主要是为卧式单面多轴钻孔组合机床动力滑台设计液压传动系统。
液压系统应用在机床中,可以实现机床自动进给。
而且可以使机床的运动更平衡,加工精度更高,效率更高,从而实现机床的自动化。
钻孔组合机床是以系列化,标准化的通用部件为基础,配以少量的专用部件组成的专用机床,适于对产品大批大量,一面或多面同时成组多加工的高效机加工设备。
液压动力滑台是其重要组成部件。
通过本题目设计训练,使我们全面熟悉加工工艺,刀具,切削用量,组合机床,液压动力滑台组成和工作原理。
在此基础上,完成给定参数的动力滑台液压系统设计。
通过设计基础技能的训练,使学生掌握液压与气压传动系统设计的一般方法和步骤,为以后毕业设计乃至实际工程设计奠定必要的基。
第三章拟定液压系统原理图3.1主体方案的确定由表7可知,本系统属于速度变化不大的小功率固定作业系统,因而首先考虑性能稳定的双定量泵供油,差动缸差动快进和高速阀进口节流高速的开式系统方案。
这样,既满足液压缸工进的高压小流量要求,既考虑了节能问题,又兼顾了工作可靠性问题。
卧式单面多轴钻孔组合机床液压课程设计
卧式单面多轴钻孔组合机床液压课程设计以卧式单面多轴钻孔组合机床液压课程设计为标题,本文将从机床结构设计、液压系统设计、控制系统设计三个方面进行详细阐述。
一、机床结构设计卧式单面多轴钻孔组合机床是一种具有多轴钻孔功能的机床,其结构设计至关重要。
在设计过程中,需要考虑以下几个方面:1.1 机床整体结构设计卧式单面多轴钻孔组合机床的整体结构应具有良好的刚性和稳定性,以确保加工过程中的精度和稳定性。
同时,还需要考虑机床的操作便捷性和安全性。
1.2 主轴设计主轴是机床的核心部件之一,其设计应考虑主轴的转速范围、功率和扭矩需求,以满足不同工件的加工要求。
1.3 工作台设计工作台是机床上用于夹持工件的部件,其设计应考虑工件的尺寸和重量,以确保工件在加工过程中的稳定性和精度。
二、液压系统设计液压系统是卧式单面多轴钻孔组合机床的重要组成部分,其设计应满足以下要求:2.1 液压元件的选择液压系统中的液压元件包括液压泵、液压马达、液压缸等,其选择应根据机床的工作负荷和工作条件进行合理搭配,以确保液压系统的正常运行。
2.2 液压系统的工作压力和流量设计液压系统的工作压力和流量设计应根据机床的工作要求和液压元件的额定参数进行合理选取,以确保液压系统能够稳定可靠地提供所需的液压能力。
2.3 液压管路设计液压管路的设计应考虑液压系统的布局和液压元件的连接方式,以确保液压油能够顺畅地流动,并且减少液压泄漏的可能性。
三、控制系统设计控制系统是卧式单面多轴钻孔组合机床的关键部分,其设计应满足以下要求:3.1 控制方式的选择控制系统可以采用传统的机械控制方式,也可以采用现代的数控控制方式。
在选择控制方式时,需要考虑机床的加工精度要求和操作人员的技术水平。
3.2 控制系统的功能设计控制系统的功能设计应根据机床的工作要求和操作人员的操作习惯进行合理设计,以提高机床的工作效率和加工质量。
3.3 控制系统的安全设计控制系统的安全设计应考虑到机床在工作过程中可能出现的故障和意外情况,采取相应的安全措施,保障操作人员的人身安全。
卧式单面多轴钻孔机床液压系统设计解读
卧式单面多轴钻孔机床液压系统设计姓名:朱泽彪日期:2011-8-11.明确设计任务:设计一卧式单面多轴钻孔组合机床动力滑台的液压系统,动力滑台的工作循环是:快进工进快退停止。
液压系统的主要参数与性能要求如下:轴向切屑力为24000N,移动部件总重力为13000N,快进行程为100mm,快进与快退速度均为4.2m/min,工进行程为20 mm,工进速度为0.08 m/min,加速、减速时间为0.2s,利用平导轨,静摩擦系数为0.2,动摩擦系数为0.1,动力滑台可以随时在中途停止运动,试设计该组合机床的液压传动系统。
2.拟定原理图2.1零件明细表:14 二位二通换向阀3WE6B50-50/W220-501(手册陈旧,找不到二位二通换向阀。
用二位三通把一孔堵住)13 溢流阀DBDAG1A/4P50-50112 单向节流阀MK6G1.2 111 二位三通换向阀3WE6B50-50/W220-50110 液压缸19 二位三通换向阀3WE6B50-50/W220-5018 二位二通换向阀3WE6B50-50/W220-501(手册陈旧,找不到二位二通换向阀。
用二位三通把一孔堵住)7 压力表Y-60 0-10Mpa 16 压力表开关15 顺序阀DZ6DP350/75 14 单向阀S6A30 13 电机Y132M-6 12 双联泵YB-40/6.3 11 滤油器WU-63X180 1序号名称型号数量备注2.2工步叙述:A泵低压大流量,B泵高压小流量快进:A泵出油经单向阀与B泵出油汇合,往阀8左位、阀9左位进入液压缸左腔,回流由液压缸右腔经阀11右位与液压缸左腔连接形成差动连接。
工进:快进结束时,压下行程开关,阀11带电。
A泵出油升压,阀5打开,泵A卸荷,泵B单独向系统供油,压力油经阀8左位、阀9左位进入液压缸左腔,回油由液压缸右腔经阀11右位经节流阀经阀12流回油箱。
快退:工进结束时,压力继电器得到信号,开始快退。
设计一台卧式单面多轴钻孔组合机床动力滑台的液压系统
负载分析中�暂不考虑回油腔的背压力�液压缸的密封装置产生的摩擦阻力 在机械效率中加以考虑。因工作部件是卧式放置�重力的水平分力为零�这样需 要考虑的力有�夹紧力�导轨摩擦力�惯性力。
在对液压系统进行工况分析时�本设计实例只考虑组合机床动力滑台所受到 的工作负载、惯性负载和机械摩擦阻力负载�其他负载可忽略。
防止油液温升过高。
从工况图中可以清楚地看到�在这个液压系统的工作循环内�液压要求油源
交替地提供低压大流量和高压小流量的油液。而快进快退所需的时间 t1 和工进所 需的时间 t 2 分别为
工进时液压缸的推力计算公式为
F / �m � A1 p1 � A2 p2 � A1 p1 � ( A1 / 2) p2 �
根据已知参数�液压缸无杆腔的有效作用面积可计算为
F
A1 �
�m
p1 �
p2 2
16333 .33 �10 6
�
0.8
3�
2
� 0.006282 m 2
液压缸缸筒直径为
D � 4 A1 � � 89 .46 mm mm
5
工进过程中�当孔被钻通时�由于负载突然消失�液压缸有可能会发生前 冲的现象�因此液压缸的回油腔应设置一定的背压(通过设置背压阀的方式)�选 取此背压值为 p2=0.8MPa。
快进时液压缸虽然作差动连接,但连接管路中不可避免地存在着压降 �p �且 有杆腔的压力必须大于无杆腔�估算取 �p � 0.5MPa。快退时回油腔中也是有背 压的�这时选取被压值 p2 =0.6MPa。
3
Fm
� m�
�v �t
�
20000 9.81
7 �
60 � 0.15
N
卧式单面多轴钻孔组合机床动力滑台的液压系统的课程设计.
湖南工业大学课程设计资料袋机械工程学院学院(系、部)2013 ~ 20 14 学年第 1 学期课程名称液压与气压传动指导教师罗中平职称教授学生姓名曹炎斌专业班级机工1102班学号11495200131 题目组合机床动力滑台液压系统设计成绩起止日期2013 年12 月19日~1014 年1月02日目录清单湖南工业大学课程设计任务书2013—2014学年第1学期机械工程学院(系、部)机电一体化专业1102 班级课程名称:液压与气动设计题目:组合机床动力滑台液压系统设计1完成期限:自2013 年12 月30 日至2014 年1 月 3 日共 1 周指导教师(签字):年月日系(教研室)主任(签字):年月日(课程设计名称)设计说明书(题目)起止日期:2013 年12月19日至2014 年1 月 2 日学生姓名曹炎斌班级机工1102学号11495200131成绩指导教师(签字)机械工程学学院(部)2013年12 月30 日液压传动课程设计指导书湖南工业大学机械工程学院2013年12月第一章明确液压系统的设计要求要求设计一台卧式单面多轴钻孔组合机床动力滑台的液压系统。
设计要求驱动动力滑台实现“快进→工进→快退→停止”的工作循环。
液压系统的主要参数与性能要求如下:机床上有主轴16个,加工Φ13.9 mm 的孔14个,Φ8.5mm 的孔2个。
刀具材料为高速钢,工件材料为铸铁,硬度为240HBS ,运动部件总质量G=9800N ,快进、快退的速度v 1= v 3=5.5 m/min ,快进行程长度l 1=100mm ,工进行程长度l 2=50 mm ,往复运动的加速,减速时间为0.2s ,动力滑台采用平导轨,其静摩擦系数f s =0.2,动摩擦系数f d =0.1,液压系统中的执行元件使用液压缸。
第二章 负载与运动分析负载分析中,暂不考虑回油腔的背压力,液压缸的密封装置产生的摩擦阻力在机械效率中加以考虑。
因工作部件是卧式放置,重力的水平分力为零,这样需要考虑的力有:夹紧力,导轨摩擦力,惯性力。
液压与气压传动课程设计-卧式单面多轴钻孔组合机床动力滑台的液压系统
题目:卧式单面多轴钻孔组合机床动力滑台的液压系统姓名:学号:班级:一题目:设计一卧式单而多轴钻孔组合机床动力滑台的液压系统, 动力滑台的工作循环是:快进一一工进一一快退一一停止。
液压系统的主要参数与性能要求如下:轴向切削力为用21000N,移动部件总重力为10000N,快进行程为100mm,快进与快退速度均为4. 2m / min,工进行程为20mm,工进速度为0.05m / min,加速、减速时间为0.2s,利用平导轨,静摩擦系数为0.2,动摩擦系数为0.1,动力滑台可以随时在中途停止运动,试设计该组合机床的液压传动系统。
二负载分析1工作负载:工作负载为轴向切削力讪帆F任=0.2 X LOOOO = 20OON2静摩擦阻力3动摩擦阻力F M- 0.1 X 10000 ■ 1000N4惯性负载取重力加速度则有移动部件质量为m■ IQQQkfF = IJI^= 1000kg X <N = 333.33NAt P 84 5?表I液压缸各阶段的負孜和推力(液压缸的机械效率取帕』9)F/N24444-2223国i 负我循环谢快进速度V 】•与快退勺分别为勺■ b ■ 4.2m/min 快进行程: 工进行程:h =快退行程£ = I 】+ b = 120mm工进速度v ? • OSm/min三设计方案采用单定量泵和溢流阀组成的供油源 使用调速阀出口节流调 速回路 采用电磁阀的快慢速接换回路选用单杆活塞缸的差动连接 来实现 使用三位四通电磁换向阀2223148L4111250100 1 20L/mm-11121液压系统原理图22系统图的原理1快进快进,按下启动按钮,电磁铁YA2通电,由泵输岀的压力油经三位四通换向阀的左侧,这使得主油路:进油路:泵一单向阀4—三位四通换向阀5 (YA2得电)一液压缸左腔回油路:液压缸右腔一二位四通换向阀8 (YA3得电)由此形成液压缸两腔连通,实现差动快进。
2工进快进终止,挡块压下行程阀9,发出信号,使二位四通换向阀8 的电磁铁YA3断电,油液压缸右腔输出的压力油经二位四通换向阀8 的右侧,这时的主油路为:进油路:泵一单向阀4—三位四通换向阀5 (YA2得电)一液压缸左侧回油路:液压缸右腔一二位四通换向阀8 (YA3)—单向节流阀7—三维换向阀5 (YA2得电)一油箱3快退当滑台完成工进进给碰到行程10时,发出信号,使三位四通换向阀5的电磁铁YA1得电,YA2失电。
液压气动技术课程设计精编版
液压气动技术课程设计精编版MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】机械设计制造及其自动化专业课程设计任务书西安广播电视大学机械设计制造及其自动化专业(本科)《液压与气动技术》课程设计题目卧式单面多轴钻孔组合机床动力滑台液压系统设计姓名:卜建锋学号:专业:机械设计及其制造层次:年级: 13秋学校:阎良学习中心工作单位:指导老师:完成时间:目录一、负载分析 (1)负载与运动分析 (1)负载图和速度图的绘制 (2)二、设计方案拟定 (3)三、参数计算 (5)液压缸参数计算 (5)液压泵的参数计算 (10)电动机的选择.... ............ ....... .. (11)四、元件选择 (12)确定阀类元件及辅件 (12)油管的选择 (14)油箱容积的确定 (14)五、液压系统性能验算 (14)验算系统压力损失 (14)验算系统发热与温升 (16)六、小结 (18)七、参考文献 (18)一、负载分析负载与运动分析1.工作负载:工作负载即为轴向切削力Ff=24000。
2.摩擦负载:摩擦负载即为导轨的摩擦阻力:静摩擦阻力Ffs= ×5100=1020.动摩擦阻力 Ffd=01 × 5100=5103.惯性负载:取重力加速度,则有移动部件质量为m=510kg。
Fm=M×△v÷△t=510×÷60÷==149N取η=。
启动:=1020N Ft=F/η=1020/=加速: =1020+149=1169N Ft=F/η=1169/=快进: =510N Ft=F/η工进: =1020+25800=245100N Ft=F/η=245100/=25800N 快退: =510N Ft=F/η=510/=表1 液压缸各阶段的负载和推力(液压缸的机械效率取η=工况负载组成液压缸负载液压缸推力(Ft)F/η启动1020加速1169快进510工进245100 25800快退510注:不考虑动力滑台上颠覆力矩的作用。
卧式单面多轴钻孔组合机床动力滑台的液压系统设计-开题报告
一、设计过程
设计一台卧式单面多轴钻孔组合机床动力滑台的液压系统,要求实现的动作顺序为:启动→快进→工进→快退→停止。液压系统的主要参数与性能要求如下:轴向切削力总和切削力Ft=20000N,移动部件总质量G=10050N;快进行程l1=100mm,共进行程l2=50mm。快进、快退的速度为4m/min,工进速度0.05m/min。加速减速时间△t=0.2s;静摩擦系数fs=0.2;动摩擦系数fd=0.1。该动力滑台采用水平放置的平导轨,动力滑台可在任意位置停止。
在液压系统原理图中,应该附有运动部件的动作循环图和电磁铁动作顺序表。
3.液压系统的计算和选择液压元件
液压系统计算的目的是确定液压系统的主要参数,以便按照这些参数合理选择液压元件和设计非标准元件。具体计算步骤如下:
1) 计算液压缸的主要尺寸以及所需的压力和流量。
2) 计算液压泵的工作压力、流量和传动功率。
在设计过程中,总是遇到这样或那样的问题。有时发现一个问题的时候,需要做大量的工作,花大量的时间才能解决。自然而然,我的耐心便在其中建立起来了。为以后的工作积累了经验,增强了信心。
三、存在问题
设计过程中在安装维护、泄漏、爬行的方面未进行考虑,由于参考资料有限,时间紧,在常用的液压元件的选取上没有选择最合适的元件,没有选取辅助。
2.拟定液压系统原理图
拟定液压系统原理图一般要考虑以下几个问题。
1)采用何种形式的执行机构。
2)确定调速方案和速度换接方法。
3)如何完成执行机构的自动循环和顺序动作。
4)系统的调压、卸荷及执行机构的换向和安全互锁等要求。
5)压力测量点的合理选择。
根据上述要求选择基本回路,然后将各基本回路组合成液压系统。当液压系统中有多个执行部件时,要注意到它们相互间的联系和影响,有时要采用防干扰回路。
设计一卧式单面多轴钻孔组合机床动力滑台的液压系统
设计一卧式单面多轴钻孔组合机床动力滑台的液压系统钻孔组合机床是常见的金属加工设备,由于其具有多种功能,深受工业领域的喜爱。
在设计一卧式单面多轴钻孔组合机床动力滑台的液压系统时,需要考虑以下几个方面:液压系统的工作原理、液压元件的选用、液压系统的安全性和稳定性等。
首先,液压系统的工作原理。
液压系统由液压泵、阀门、液压缸和液压控制器等组成。
液压泵通过带动的电机将机械能转换为液压能,液压管路将液压能传递到液压缸,液压缸根据控制信号实现运动。
通过调整阀门的开关,控制液压缸的运动速度和力大小。
液压控制器负责接收输入的指令,并将其转化为控制信号,以控制液压阀门的开关。
其次,液压元件的选用。
液压泵的选用主要考虑其排量和工作压力,需要根据机床的工艺需要和负载情况来确定。
液压阀门的选用要考虑其工作压力和流量的要求,同时还需要注意其稳定性和可靠性。
液压缸的选用要考虑其工作压力、行程和负载能力等。
除了以上基本液压元件外,还可以根据具体需要选择液压缸的连接件、密封件等。
再次,液压系统的安全性和稳定性。
首先,应选用符合国家标准的液压元件,并按照要求进行安装和调试,确保其安全可靠。
其次,设计液压系统时应考虑加载力的稳定性和响应时间的快慢,以提高机床的工作效率和品质。
同时,液压系统的管路设计应合理,避免泄露和漏油现象。
在设计液压系统时还需要考虑液压油的选用和维护。
液压油的选用要考虑其黏度、抗氧化性、抗磨性等性能指标,并定期检查和更换液压油,以保证液压系统的正常运行。
最后,要做好液压系统的维护工作。
定期检查液压系统的工作状态,包括液压泵、阀门、液压缸等的工作情况,及时发现并解决问题。
同时,注意液压系统的润滑和冷却,确保其正常运行和延长使用寿命。
综上所述,设计一卧式单面多轴钻孔组合机床动力滑台的液压系统需要考虑液压系统的工作原理、液压元件的选用、液压系统的安全性和稳定性等方面的问题。
只有通过科学合理的设计和工艺保障,才能提高机床的工作效率和品质,使其更适用于工业领域的生产需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学液压与气压课程设计说明书题目卧式单面多轴钻孔组合机床动力滑台的液压系统专业机械设计制造及其自动化班级机制0912姓名。
学号。
指导教师职称。
2012年10月14 日目录第一章明确液压系统的设计要求 (3)第二章负载与运动分析 (3)第三章确定液压系统主要参数 (4)第四章拟定液压系统原理图 (5)第五章计算和选择液压件 (8)第六章液压缸设计基础 (13)第七章验算液压系统性能 (18)设计小结 (19)参考文献 (19)引言液压传动是用液体作为来传递能量的液压传动有以下优点易于获得较大的力或力矩功率重量比大易于实现往复运动易于实现较大范围的无级变速传递运动平稳可实现快速而且无冲击与机械传动相比易于布局和操纵易于防止过载事故自动润滑、元件寿命较长易于实现标准化、系列化。
液压传动的基本目的就是用液压介质来传递能量而液压介质的能量是由其所具有的压力及力流量来表现的。
而所有的基本回路的作用就是控制液压介质的压力和流量因此液压基本回路的作用就是三个方面控制压力、控制流量的大小、控制流动的方向。
所以基本回路可以按照这三方面的作用而分成三大类压力控制回路、流量控制回路、方向控制回路。
液压系统已经在各个部门得到广泛的应用而且越先进的设备其应用液压系统的部门就越多。
第一章 明确液压系统的设计要求1.设计要求设计一卧式单面多轴钻孔组合机床动力滑台的液压系统,动力滑台的工作循环是:快进——工进——快退——停止。
液压系统的主要参数与性能要求如下:轴向切削力为用21000N,移动部件总重力为10000N ,快进行程为 100mm ,快进与快退速度均为 4.2m /min ,工进行程为 20mm ,工进速度为 0.05m /min ,加速、减速时间为0.2s ,利用平导轨,静摩擦系数为0.2,动摩擦系数为0.1,动力滑台可以随时在中途停止运动,试设计该组合机床的液压传动系统。
第二章 负载与运动分析负载分析中 暂不考虑回油腔的背压力 液压缸的密封装置产生的摩擦阻力 在机械效率中加以考虑。
因工作部件是卧式放置 重力的水平分力为零 这样需 要考虑的力有 夹紧力 导轨摩擦力 惯性力。
在对液压系统进行工况分析时 本设计实例只考虑组合机床动力滑台所受到 的工作负载、惯性负载和机械摩擦阻力负载 其他负载可忽略。
(1)工作负载 工作负载即为切削阻力 F W =21000N(2) 阻力负载 阻力负载主要是工作台的机械摩擦阻力,分为静摩擦阻力和动摩擦阻力两部分。
摩擦负载f F 即为导轨的摩擦阻力,导轨的正压力等于动力部件的重力,设导轨的静摩擦力为F S ,则静摩擦阻力F S =0.2X 10000=2000N ,同理动摩擦阻力F V =0.1X 10000=1000N 。
( 3 ) 惯性负载 最大惯性负载取决于移动部件的质量和最大加速度 其中最大加速度可通过工作台最大移动速度和加速时间进行计算。
已知启动换向时间为 0.05s 工作台 最大移动速度 即快进、快退速度为 4.2m/min 因此惯性负载可表示为N N t v g G F i 3502.007.01010000=⨯=∆∆=(4) 运动时间快进 =⨯==-s V L t 07.0101003111 1.4s工进 =⨯⨯==--s V L t 332221083.0102024.1s 快退 s s V L L t 71.107.010)20100(33213=⨯+=+=-设液压缸的机械效率 cm η =0.9,得出液压缸在各阶段的负载和推力,如表1表1 液压缸在各运动阶段的负载和推力(cm η=0.9)根据液压缸在上述各阶段内的负载和运动时间,即可绘制出负载循环图F -t 和速度循环图υ-t ,如图1所示。
图1 速度负载循环图a)工作循环图 b )负载速度图 c)负载速度图第三章 确定液压系统主要参数1.初选液压缸工作压力所设计的动力滑台在工进时负载最大,在其他工况负载都不太高,参考表2和表3,初选液压缸的工作压力1p =3MPa 。
2.计算液压缸主要尺寸鉴于动力滑台快进和快退速度相等,这里的液压缸可选用单活塞杆式差动液压缸(A 1=2A 2),快进时液压缸差动连接。
工进时为防止孔钻通时负载突然消失发生前冲现象,液压缸的回油腔应有背压,参考表4选此背压为p 2=0.6MPa 。
表2按负载选择工作压力负载/ KN <5 5~10 10~20 20~30 30~50 >50 工作压力/MPa < 0.8~1 1.5~2 2.5~3 3~4 4~5 ≥5图1 F -t 与 -t 图表3 各种机械常用的系统工作压力表4 执行元件背压力表5 按工作压力选取d/D表6 按速比要求确定d/D注:1—无杆腔进油时活塞运动速度;υ—有杆腔进油时活塞运动速度。
2由于工作进给速度与快速运动速度差别较大,且快进、快退速度要求相等,从降低总流量需求考虑,应确定采用单杆双作用液压缸的差动连接方式。
通常利用差动液压缸活塞杆较粗、可以在活塞杆中设置通油孔的有利条件,最好采用活塞杆固定,而液压缸缸体随滑台运动的常用典型安装形式。
这种情况下,应把液压缸设计成无杆腔工作面积1A是有杆腔工作面积2A两倍的形式,即活塞杆直径d与缸筒直径D呈d = 0.707D的关系。
工进过程中,当孔被钻通时,由于负载突然消失,液压缸有可能会发生前冲的现象,因此液压缸的回油腔应设置一定的背压(通过设置背压阀的方式),选取此背压值为p2=0.6MPa 。
快进时液压缸虽然作差动连接(即有杆腔与无杆腔均与液压泵的来油连接),但连接管路中不可避免地存在着压降p ∆,且有杆腔的压力必须大于无杆腔,估算时取p ∆≈0.5MPa 。
快退时回油腔中也是有背压的,这时选取被压值0.7MPa 。
工进时液压缸的推力计算公式为c 1122/mF A p A p η=-因此,根据已知参数,液压缸无杆腔的有效作用面积可计算为2426211109110)26.03(9.022000)2(m m p p F A cm -⨯=⨯-⨯=-=η 液压缸缸筒直径为 mm m m A D 108108.010914441==⨯⨯==-ππ由于有前述差动液压缸缸筒和活塞杆直径之间的关系,d = 0.707D ,因此活塞杆直径为d=0.707×109=77mm ,根据GB/T2348—1993对液压缸缸筒内径尺寸和液压缸活塞杆外径尺寸的规定,圆整后取液压缸缸筒直径为D=110mm ,活塞杆直径为d=80mm 。
此时液压缸两腔的实际有效面积分别为:242221m 1095m 411.04-⨯=⨯==ππD A24222222m 107.44m )8.011.0(4)(4-⨯=-⨯=-=ππd D A根据计算出的液压缸的尺寸,可估算出液压缸在工作循环中各阶段的压力、流量和功率,如表4所示。
由此绘制的液压缸工况图如图2所示。
表7 液压缸在各阶段的压力、流量和功率值注:1. Δp为液压缸差动连接时,回油口到进油口之间的压力损失,取Δp=0.5MPa。
2.快退时,液压缸有杆腔进油,压力为p1,无杆腔回油,压力为p2。
第三章拟定液压系统原理图1.选择基本回路1) 选择调速回路由图2可知,这台机床液压系统功率较小,滑台运动速度低,工作负载为阻力负载且工作中变化小,故可选用进口节流调速回路。
为防止孔钻通时负载突然消失引起运动部件前冲,在回油路上加背压阀。
由于系统选用节流调速方式,系统必然为开式循环系统。
(2) 选择油源形式从工况图可以清楚看出,在工作循环内,液压缸要求油源提供快进、快退行程的低压大流量和工进行程的高压小流量的油液。
最大流量与最小流量之比qmax/qmin=0.35/(0.79×10-2)≈44;其相应的时间之比(t1+t3)/t2=(2.1+2.6)/36.1=0.13。
这表明在一个工作循环中的大部分时间都处于高压小流量工作。
从提高系统效率、节省能量角度来看,选用单定量泵油源显然是不合理的,为此可选用限压式变量泵或双联叶片泵作为油源。
考虑到前者流量突变时液压冲击较大,工作平稳性差,且后者可双泵同时向液压缸供油实现快速运动,最后确定选用双联叶片泵方案。
(3) 选择快速运动和换向回路本系统已选定液压缸差动连接和双泵供油两种快速运动回路实现快速运动。
考虑到从工进转快退时回油路流量较大,故选用换向时间可调的电液换向阀式换向回路,以减小液压冲击。
由于要实现液压缸差动连接,所以选用三位五通电液换向阀。
(4) 选择速度换接回路由于本系统滑台由快进转为工进时,速度变化大(υ1/υ2=0.07/(0.83×10-3)≈84),为减少速度换接时的液压冲击,选用行程阀控制的换接回路。
(5) 选择调压和卸荷回路在双泵供油的油源形式确定后,调压和卸荷问题都已基本解决。
即滑台工进时,高压小流量泵的出口压力由油源中的溢流阀调定,无需另设调压回路。
在滑台工进和停止时,低压大流量泵通过液控顺序阀卸荷,高压小流量泵在滑台停止时虽未卸荷,但功率损失较小,故可不需再设卸荷回路。
图2 液压缸工况图2.组成液压系统将上面选出的液压基本回路组合在一起,并经修改和完善,就可得到完整的液压系统工作原理图,如上图所示。
在上图中,为了解决滑台工进时进、回油路串通使系统压力无法建立的问题,增设了单向阀6。
为了避免机床停止工作时回路中的油液流回油箱,导致空气进入系统,影响滑台运动的平稳性,图中添置了一个单向阀13。
考虑到这台机床用于钻孔(通孔与不通孔)加工,对位置定位精度要求较高,图中增设了一个压力继电器14。
当滑台碰上死挡块后,系统压力升高,它发出快退信号,操纵电液换向阀换向。
第五章 计算和选择液压件1.确定液压泵的规格和电动机功率(1) 计算液压泵的最大工作压力小流量泵在快进和工进时都向液压缸供油,由表7可知,液压缸在工进时工作压力最大,最大工作压力为p 1=2.86MPa ,如在调速阀进口节流调速回路中,选取进油路上的总压力损失∑∆p =0.6MPa ,考虑到压力继电器的可靠动作要求压差∆p e =0.5MPa ,则小流量泵的最高工作压力估算为Mpa Mpa p p p p e p 96.3)5.06.086.2(11=++=∆+∑∆+≥大流量泵只在快进和快退时向液压缸供油,由表7可见,快退时液压缸的工作压力为p 1=1.40MPa ,比快进时大。
考虑到快退时进油不通过调速阀,故其进油路压力损失比前者小,现取进油路上的总压力损失∑∆p =0.3MPa ,则大流量泵的最高工作压力估算为Mpa Mpa p p p p 70.1)3.040.1(12=+=∑∆+≥(2) 计算液压泵的流量由表7可知,油源向液压缸输入的最大流量为0.4×10-3 m 3/s ,若取回路泄漏系数K=1.1,则两个泵的总流量为min /4.26/1044.0/104.01.133331L s m s m K q q p =⨯=⨯⨯=≥--考虑到溢流阀的最小稳定流量为3L/min ,工进时的流量为0.79×10-5 m 3/s =0.5L/min ,则小流量泵的流量最少应为3.5L/min 。