印染废水深度处理及回用技术研究

合集下载

印染废水深度处理回用及零排放技术

印染废水深度处理回用及零排放技术
印染废水深度处理回用及零排放技术
国家规定
有关印染废水的相关规定和存在的问题
水资源缺乏
降低成本
《印染行业准入条件(2010年修订版)》规定,印染企业要“实行生产排水清浊分流、分质处理、分质回用,水重复利用率要达到35%以上。”
水资源紧张,七大水系遭受不同程度污染,目前在全国640多个城市中,缺水城市已达300多个,其中严重缺水城市达108个。
印染废水深度处理回用零排放的思考
Fig. 4
印染废水经深度处理后可完全实现大部分回用; 臭氧-BAF工艺深度处理印染废水可实现出水COD<40mg/L, 色度<10倍,可实现高标准达标排放或初级回用要求。 膜分离的淡水可有效过滤生化出水有机物、色度、SS和无机盐等组分;它可用于高级回用,可作为锅炉用水,甚至做纯水。 反渗透浓水浓水含盐,有机杂质等,能不能做到既回用浓水的水,又回用浓水中的盐?
排污费成本逐年增加,自来水费用上涨,印染废水处理回用可减少排污费用,降低用水成本。
印染废水处理回用工艺
印染废水
水解酸化
物化混凝
好氧处理
UF+RO
臭氧催化氧化+一体化臭氧-BAF
淡水
浓水
石灰苏打
Fenton/PS氧化
常规处理
达标排放
(COD<40 mg/L,色度<10倍)
深度处理
普通回用水
优质回用水
互太(番禺)纺织印染废水深度处理工程(40000t/d)
规模:40000t/d 工艺:臭氧催化氧化+曝气生物滤池 配套资金:3000万 实施阶段:已完成设计,正在报建
广东溢达纺织印染废水深度处理工程(25000t/d)
规模:25000t/d 工艺:臭氧催化氧化+曝气生物滤池 实施阶段:已经调试运行,处理效果良好

纺织印染行业废水处理及回用

纺织印染行业废水处理及回用
12
发电标煤耗率 270g/kw•h,发改委统计:2000年392g/kw•h;现在360g/kw•h;2020年320g/kw•h
大气污染必将提上日程 定型机(每企业1-10个)问题来自于二方面: 1、热源问题:目前一般单独采用热媒炉,烧煤或 重油,效率低下、污染重;一般小煤锅炉,发1度电 消耗标煤430克(gce),而大型热电厂发1度电消 耗标煤270-290克(gce) 改用蒸汽节煤35%以上,同时热电厂废气治理效率 远好于小锅炉。每吨煤排放(经过处理)SO2=3.3 公斤;每吨煤排放(经过处理)烟尘=1. 2公斤; 小锅炉做不到
纺织印染行业 废水处理技术及回用
1
目录:
一、印染生产工艺及污染物产生
二、印染工艺及废水治理最新发展情况
三、回用率、重复利用率 四、回用方式、回用情况及发展 五、核查中注意事项
2
一、印染生产工艺及污染物产生 前处理:退浆和煮练(以棉为主)、碱减 量(以涤纶为主)等;废水量约占30%40%,COD负荷约占55%-60%; 染色和印花:废水量约占60%-70%, COD负荷约占40%-45%;上染率问题。 后整理:废水量很少。 关于染色和印花。
90吨!涤纶从150吨到82吨产品质量提高;高新技术技术越趋 成熟、价格持续下降(纤维膜、平板膜、活性炭));环保压力-
承受能力提高(吨水处理费用从几角到几元、几十元) 清浊分流后浓液处理技术(公斤COD去除从12元下降到12元,混合废水下降30%);
深度处理技术(COD从100下降到80、60)回用技术(与深
法,价格从7000元一吨下降到3500元一吨,当COD从100mg/l下降到80mg/l约3元-3.5 元
4、臭氧技术 管式和板式;脱色和去除COD;运行成 本;只适用于深度处理。

印染废水深度处理及循环利用技术分析

印染废水深度处理及循环利用技术分析

印染废水深度处理及循环利用技术分析印染废水是指由印染工业过程中产生的废水,其主要污染特征包括高浓度的有机物、酸碱度变化大、色度高和含有大量的悬浮物等。

由于废水组成复杂、难以降解和处理困难,印染废水对环境造成了严重的污染。

为了实现印染废水的深度处理和循环利用,需要应用一系列的技术手段。

一、物理处理技术:1.滤料过滤:将印染废水通过不同孔径的滤网,利用滤重物理效应,去除废水中的悬浮物和颜料颗粒。

2.活性炭吸附:通过将废水与活性炭接触,利用活性炭对有机物的吸附作用,去除废水中的有机物。

3.膜技术:包括微滤、超滤、纳滤和反渗透等多种膜技术,通过膜孔径的选择,实现对废水中各种颗粒和溶解物质的有效分离,达到废水深度处理的目的。

二、化学处理技术:1.氧化法:利用氧化剂如过硫酸盐、高价铁盐等,将废水中的有机物氧化成无机物,从而实现有机物的降解。

2.沉淀法:通过添加适当的沉淀剂如氢氧化钙、聚合氯化铝等,使废水中的悬浮物和颜料颗粒迅速沉淀到废水底部。

3.中和法:通过添加酸碱试剂,调节废水的酸碱度,使废水中的酸碱度达到中性,进而提高废水的生物降解性。

三、生物处理技术:1.好氧生物处理:通过利用好氧菌的代谢能力,将废水中的有机物降解成二氧化碳和水等无害物质。

2.厌氧生物处理:通过利用厌氧菌的代谢能力,将废水中的有机物降解成甲烷等有用产物,实现资源的回收利用。

3.植物处理:利用水生植物如芦苇、菖蒲等,通过其吸收和降解的作用,将废水中的有机物和重金属等污染物去除或转化。

四、循环利用技术:1.膜技术回收:通过膜分离技术,将废水中的水分和溶解物质分离,实现废水的净化并回收水资源。

2.盐类回收:通过蒸发结晶或离子交换等方法,将废水中的盐类回收利用,例如生产工艺中需要的盐类或者是制备其他化学品。

3.余热回收:将废水中的热能通过换热器等设备进行回收,用于加热或供应生产工艺所需的热能。

综上所述,通过物理、化学、生物等多种处理技术的结合运用,可以有效实现印染废水的深度处理和循环利用。

印染废水深度处理和回用的主要技术

印染废水深度处理和回用的主要技术

印染废水深度处理和回用的主要技术下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!印染行业是我国重要的工业部门之一,但同时也是高耗水和高污染行业之一。

生物活性炭深度处理印染废水的研究

生物活性炭深度处理印染废水的研究

2 结 果 与讨论
2 1 装 置启动挂膜 .
生 物活性炭工 艺利用 吸附生长在填 料上 的微 生物 的代谢 活动来 降解 有机 污 染物质 , 同时还 能截 留 水 中的悬 浮 固体 , 达到净化水 质的 目的. 因此 , 炭挂膜 是滤池能 否稳定有效 运行 的关键 , 活性 活性炭 上生 物膜 的好 坏 , 活性 的高低 , 将直接 影响 到废 水 的净 化处理效 果.
第2 6卷 第 3期
河 北 建 筑 工 程 学 院 学 报
V 12 o3 o.6N .
20 0 8年 9月 JU N L F E E SI T FA C IE T R N II E GN E IG S pe b r 0 8 O R A B IN T U EO R HT C U EA DCVL N IE RN e t e 20 OH I T m
N的去除率与气水 比呈正 比关系 , 水 比从 1 大到 3时 , H 一N的去 除率从 4 .%上升 到 9 .% , 当气 增 N , 73 25 但是 当气水 比大 于 3时 , 继续增 大气 水 比对 N 一N 的去除 效果 影响 不 大 , 除率 始终 保 持在 9 %左 H 去 3 右 , 主要是 因为在开始 阶段 溶解氧 是硝化细 菌发 生硝化 反 应 的控制 因素 ¨ 这 … , 中溶解 氧 浓度 的增 水 大有利 于硝化反 应的进行 , 是 当溶解 氧浓度 已经能够 满足硝化 反应 的需 求时 , 但 继续 提高气水 比增大溶
了应用.
17 9 8年 , l r W. Rc 总结 欧洲 水处 理 经 验 时首 次 正 式提 出 了“ Mie l G. 和 i e在 生物 活 性炭 ” B C) ( A 一 词 J而生物 活性 炭技术 由于能够有 效的结合 活性炭 吸附 以及微 生物 降解双 重作 用去 除有机 污 染物 的 ,

印染废水深度处理技术及其评价

印染废水深度处理技术及其评价
收稿 日期 :0 8一 9—1 : 回 日期 :O 8—1 20 o 1修 20 0—2 。 2
作者简介 : 高源( 90一) 男 , 刘 18 , 山东青岛人 , 硕士研究生 , 主要从 事水 处理方面的研究。 通讯作者 : 任建敏(9 4 , , , 16 一)男 博士 副教授, 硕士生导师, 主要从事环境功能材料研究 。E—Ii r j n i13 0ucm。 r 1 e i rn2@sh.o l :na n a
的。臭氧 对于含 有酸 性染 料、 接 直 染 料 和活性 染 料 等 水 溶 性 染 料 的 染
色 废 液 脱 色 效 果 十 分 明 显 , 对 含 但 有 分散 染 料 和 还原 染 料 等 不 溶 性 染 料 的染 色 废 液 的脱 色 效 果 却 要 差 得 多 。研 究 表 明 J 在 2 ℃ 和 5 , 4 0℃
文章编 号 :6 2一 5 X(O 8 O O 1 O 17 O 8 2 O )6一 6 8一 6
印染 废 水 深 度处 理 技 术 及 其评 价
刘高源 , 任建敏 , 赵子龙 , 张永 民
( 重庆工商大学 环境 与生物工程学院 , 庆 废 水 的特 点 , 绍 了活 性 炭 吸 附、 根 介 臭氧 氧 化 、 电化 学 氧 化 、 etn试 剂 氧 Fno
水中以 B D c D等综合指标表示的有机物 , O 、O 如合成染料、 表面活性剂 、 酚类、 苯类、 有机氯农药和石油化 工产品等, 都有独特的去除能力 。活性炭 的比表面积和孔隙结构直接影响其吸附能力 , 在选择活性炭时 , 应根据废水的水质通过试验确定 。对 印染废水宜选择过渡孔发达的炭种 。此外 , 灰分也有影 响, 灰分愈
高, 再生能耗大且再生后其吸附能力亦有不同程度下降, 而且其最大吸附量受到吸附容量的限制, 因此不

印染废水处理研究

印染废水处理研究

印染废水处理研究一、内容综述印染废水处理研究是环保领域中的一项重要课题。

印染行业在生产过程中产生的废水含有大量的染料、添加剂、盐类和有机物等有害物质,使得废水的处理变得尤为复杂和困难。

这些废水若未经有效处理直接排放,将对环境造成严重的污染,甚至威胁到人类健康和生活质量。

印染废水处理不仅关系到环境保护和资源利用,还直接关系到社会的可持续发展。

印染废水处理技术得到了广泛的研究和关注。

传统的化学物理方法,如絮凝、沉淀、过滤等,虽然在一定程度上能够去除废水中的部分污染物,但其在处理染料类化合物时的效率和效果并不理想。

研究人员开始探索更为高效、环保的废水处理技术。

生物处理方法成为印染废水处理的重要方向之一。

通过利用微生物的代谢作用,生物处理方法能够有效地降解废水中的有机物质,达到净化水质的目的。

生物处理方法还具有运行成本低、处理效果好等优点,因此在印染废水处理中得到了广泛的应用。

除了生物处理方法外,高级氧化技术、纳米材料技术等新兴技术也在印染废水处理中展现出良好的应用前景。

这些技术通过产生自由基、氧化剂或利用纳米材料的独特性质,能够有效地破坏废水中的有机物结构,从而实现废水的深度处理。

印染废水处理仍面临着诸多挑战和难题。

废水中染料的种类和浓度差异较大,使得处理工艺的选择和参数的确定变得复杂;废水中可能存在的重金属、有毒有害物质等也对处理技术的选择和处理效果提出了更高的要求。

印染废水处理研究是一项复杂而重要的工作。

通过不断研究和探索新的废水处理技术和方法,我们有望实现印染废水的有效处理和资源化利用,为环境保护和可持续发展做出贡献。

1. 印染废水的来源与特点印染废水主要来源于纺织印染工业的各个生产环节,包括预处理、染色、印花、整理等过程。

这些环节产生的废水成分复杂,包含大量的染料、助剂、浆料、纤维屑、酸碱等物质,其中部分物质具有难降解性、毒性甚至致癌性,对环境构成了严重威胁。

印染废水的水量巨大。

由于纺织印染工业的生产规模庞大,其废水排放量也相应较大。

印染废水深度处理及回用技术应用资料

印染废水深度处理及回用技术应用资料

俄罗斯、波兰、以色列、墨西哥及沙特阿拉伯等国的废水回用也很 普遍。
我国污水再生利用起步较晚,大致可分为三个阶段:
〔1〕1985年前的“六五”是起步阶段;
〔2〕1986-2023年的“七五”、“八五”、“九五”是技
术储藏,示范工程引导阶段;
〔3〕2023年“十五”纲要明确提出了污水再生利用要求。
5.印染废水特点和深度处理及回用水质要求
6.2 印染废水的生物处理法
70年月以来,国内对印染废水以生物处理为主,占80%以上, 尤以好氧生物处理法占绝大多数。
好氧生物处理优缺点:
对BOD去除效果明显,一般可达80%左右,
色度和COD去除率不高,尤其如PVA等化学浆料、外表活性剂、溶剂
及匹布碱减量技术的广泛应用,不但使印染废水的COD
到达
2023~3000 mg/L,而且BOD/COD也由原来的0.4~0.5下降
丝绸、绢印染;针织印染;线带染色;巾被印染等。 不同纤维、不同染料其生产过程不尽一样,产生的印染废水
性质也不尽一样。
5.印染废水特点和深度处理及回用水质要求
5.3 印染废水深度处理及回用水质要求
印染用水主要指标: 感观性状指标〔色度、PH、透亮度、SS等〕; 铁和锰〔与染浅色布时产生“斑点”有关〕; 硬度
美国是世界上进展废水深度处理及回用最早的国家之一,20世纪 70年月初开头大规模建设污水处理厂,随后即开头回用污水。
90年月初,日本在全国范围内进展了工业废水再生回用的可行性 争论和先进工艺的设计,在严峻缺水的地区广泛推广工业废水回用 技术,使日本近年来的工业用水取水量逐年削减,节水已初见成效。
龙英染织厂漂染以下种类织物: 应用染料的种类及附着度:
春亚纺,桃皮绒;

印染废水双膜法(CMF—RO)深度处理及回用研究

印染废水双膜法(CMF—RO)深度处理及回用研究

印染废水双膜法(CMF—RO)深度处理及回用研究在水资源利用过程中,工业废水回收利用一直是企业技术革新的重要内容。

本文主要从印染废水膜处理技术角度出发,重点对双膜法(CMF-RO)深度处理技术以及相关运行成本进行了剖析,以供同行参考。

标签:废水处理;回用;印染废水双膜法1、引言水在印染行业中作为染料、药剂、助剂等的溶剂,漂洗织物也需要水,行业用水量大,随着水资源的日益短缺和水费不断上涨,该行业对废水的循环使用及回用提出了更高的要求,废水回用技术势必逐步推广。

要实现印染废水的大规模回用,需将废水回用至印染生产过程中,而印染生产用水对水质CODcr、色度、硬度、含盐量等有指标有较为严格的要求。

《纺织染整工业废水治理工程技术规范》(HJ471-2009)中给出指导性的意见:印染废水COD、色度、盐度较高,传统的处理技术难以满足回用的要求。

双膜技术是目前国际上研发和工程化应用的热点,作为一种有效的工程预处理手段,超滤可去除废水中大部分浊度和有机物,从而能减轻反渗透膜的污染,延长膜的使用寿命,减少膜工程的运行成本。

反渗透不仅能有效去除有机物、降低COD,而且具有优秀的脱盐效果。

出水品质能直接回用于印染环节。

2、印染废水膜处理技术2.1 超滤及微滤膜技术印染废水的深度处理一般在生化二级处理之后进行,而作为反渗透的预处理系统,连续膜过滤(CMF)可替代传统絮凝、机械过滤、精滤等RO膜前处理工艺,可有效去除水中的胶体、细菌、微生物、悬浮物等,污染指数(SDI)可小于3,大大减少设备的占地面积,系统产水水质搞并且水质稳定,在处理印染废水时优势十分明显,可以保證反渗透系统的长期连续运行并延长防渗透系统的使用寿命,是新一代的高效水处理系统工艺。

连续膜过滤(CMF)指的是,以微滤亦或超滤膜为中心,配备规格一致的管路与阀门,智能清洗体系,助剂添加体系与智能管控体系,构成一套能够完成连贯操作产水,在线膜清理体系,进而实现持续运行的目标。

纺织印染行业废水处理及回用

纺织印染行业废水处理及回用
13
❖2、定型过程从织物上排放颗粒物的浓度150250mg/m3,实际每日排放50-100kg;
❖油烟浓度40-80mg/m3,日排放量20-40kg。 ❖PM2.5--其异味和似油类物质对周围群众造成很大
影响,是居民投诉热点之一。 ❖改蒸汽—问题所在; ❖工艺废气处理难点(静电除尘电压、油污清除)
17
❖2、稀土催化氧化:稀土的特点 ❖铁碳法的局限(PH=3) ❖实例:退浆废水;蜡染浓水;染料中间体
❖ COD去除率在35%-70%;PH不管酸或碱,均趋于9;酸性下反应更快
❖适用于高浓度;低浓度采用生物催化技术 ❖成本分析(不需加酸、碱;基本使用半年以上) ❖适用范围-高浓度废水-理由;
18
❖催化生物活性污泥法—适用于深度处理; ❖关键是催化活性污泥的制备! ❖3、粉末活性炭技术 ❖用于深度处理(差一口气时)由于自行回收活性炭,采用板框压滤方
8
❖如何转换? ❖可以根据各类产品一一转换; ❖也可以和环保部门协商按主要产品计量按
FZ/T01002-2010-用表B1左端第一列与相 应产品查对,选择幅度值(上限、下限、 中值)
9
❖棉-750+280万吨;涤纶2700万吨、其他 除黏胶70万吨,毛、丝、麻及其它化纤产 品均只有30-50万吨;涤纶和棉共占90%
艺或和杂用,最后一道漂洗慎用,不宜用 于配料、溶解染料、助剂、不宜用于打小 样等。 ❖2、 回用方式:将回用水直接用于部分生 产工艺和杂用;掺一定比例净水后使用。
27
❖3 、根据生产工艺、产品质量要求和回用 水实际水质,应经过小试、中试后才能确 定回用量和回用方式。
❖4、目前有一种新方法:处理到一定水平 (较好、无色、盐少)混合相当比例新鲜 水,直接用于全过程,实例和现状。

印染废水特点及处理技术

印染废水特点及处理技术

印染废水特点及处理技术印染废水特点及处理技术一、引言印染工业是一个消耗大量水资源的行业,它的废水含有大量有机物和无机杂质。

这些废水如果不经过处理,会对环境造成严重的污染。

因此,印染废水的处理成为一项重要的任务,需要采取适当的技术来降低废水的污染程度。

二、印染废水特点印染废水的主要特点是色度高、COD(化学需氧量)和BOD (生化需氧量)等指标含量较高。

其中,色度是印染废水最明显的特点之一,这是由于印染工业中使用的染料和助剂的关系造成的。

此外,废水中还会含有大量的悬浮颗粒物、油脂、有机酸等。

三、印染废水处理技术目前,常用的印染废水处理技术包括生物处理、物理处理和化学处理。

这些处理技术可以单独应用,也可以组合使用。

1. 生物处理技术生物处理技术是将废水中的有机物通过微生物的代谢作用降解为无机物的过程。

常用的生物处理技术包括活性污泥法、生物膜法和厌氧处理等。

其中,活性污泥法是最常用的一种技术,它通过悬浮有机物的微生物附着于活性污泥颗粒上,利用微生物对有机物的吸附、降解和氧化作用来处理废水。

而生物膜法则是利用生物膜对有机物的附着作用来进行处理。

厌氧处理则是利用厌氧微生物对废水中有机物的降解过程来降低废水的有机物含量。

2. 物理处理技术物理处理技术主要是通过物理方法来去除废水中的悬浮颗粒物、沉淀物和油脂等。

常用的物理处理技术包括沉淀法、过滤法、离心法、膜分离等。

其中,沉淀法是最常用的物理处理技术之一,通过加入化学药剂来促使废水中的悬浮颗粒物沉淀下来,然后再进行沉淀物的分离。

过滤法和离心法则是利用过滤或离心的原理进行废水的固液分离。

3. 化学处理技术化学处理技术是通过添加化学药剂来改善废水的性质,降低有害物质的含量。

常用的化学处理技术包括氧化法、吸附法和还原法等。

其中,氧化法是利用氧化剂对废水中的有机物进行氧化降解。

吸附法则是利用吸附剂对废水中的有机物进行吸附去除。

还原法是通过还原剂将废水中的有害物质还原为无害或低毒的物质。

印染废水深度处理及回用技术研究进展

印染废水深度处理及回用技术研究进展
( 浙江 至美环境 科技 有 限公 司, 浙江杭 州 3 1 0 0 3 0 )
[ 摘 要 ]综 述 了 印 染 废 水 深 度 处 理 及 回 用 技 术 的 研 究 现 状 , 介 绍 了常 规 处 理 技 术 的 工 艺 原 理 、 优 缺点 和研 究 应 用情 况 。由于 印 染废 水 水 质 复 杂 , 废 水 回用 光靠 单 一 技 术 难 以 实 现 , 强 调 各 种技 术 有 机 结 合 的集 成 处 理 工 艺 , 提 出了 膜 技 术 与其 他 技 术 相 结合 是 印染 废 水 深 度 处 理重 要 研 究 方 向 。 [ 关 键 词 ] 印染 废 水 ; 深度处理 ; 回用
s h o u l d b e c o mb i n e d o r g a n i c a l l y . Co mb i n i n g me mb r a n e t e c h n i q u e wi t h o t h e r t e c h n i q u e s i s a n i mp o r t a n t t r e a t me n t r e —
第 3 3卷 第 9期
2 0 1 3年 9月
工业 水处 理
I n d u s t r i a l Wa t e r T r e a t me n t
Vo 1 . 3 3 No . 9
S e p . , 2 01 3
印染废水深度处理及 回用技术研 究进展
张 挺, 唐佳坞 , 高 冲
[ 中图 分 类 号 ] 7 0 3 . 1
[ 文 献 标 识 码 ]A
[ 文章编号]1 0 0 5 — 8 2 9 X( 2 0 1 3 ) 0 9 — 0 0 0 6 — 0 4

印染废水的深度处理及回用

印染废水的深度处理及回用
异。
[ 关键词 ]印染废水 ;无极 紫外光 ;光催 化氧化 ; 微波等离子体 【 中图分类号 ] 7 1X 0 . 【 X 9 ; 7 31 文献标识码 ]B 【 文章编号]10 — 2 X 2 0 )4 0 2 3 0 5 8 9 (0 60 —0 2 一O
St d n te a v n e r a me ta d rc cig o y ig wa twa e u y o h d a c d te t n n e y l fd en se t r n
维普资讯
第2 6卷 第 4期
20 0 6年 4月
工业 水处 理
I d s ;lW ae rame t n u , a trT e t n
Vo.6 No4 1 . 2
Ap .2 0 r,0 6
印染废水的深度处理及回用
阮新 潮 , 涛 ,曾庆福 王
Ke r s:y igwatwae ;ee t d ls l a ilt h t aay igo iain;mirwa ep ama y wo d d en s e tr lcr eesut voe ;p ooc t zn xd t o r l o c o v ls
纺 织 印染工业 作 为 中国具有 优势 的传统 支柱 行
Ab ta tI me t a tr e ur me t h n d en a twae a e n a v n e rae y ee t d ls sr c :t es fcoy rq i e ns w e y ig w se tr h s b e d a c d t td b lcr ees e o
R a ica , n a , e gQnf unXnho Wag o Zn ig T u
( ee c et E v om n l c neWua n e i S i c dTcnl y W hn 303 C i ) R sa h n r ni n et i c , hnU i r to c ne n h o g , u a 07 ,h a r C eo f r aS e v sy f e a e o 4 n

探析物化法处理印染废水的研究进展

探析物化法处理印染废水的研究进展

探析物化法处理印染废水的研究进展摘要:近年来,随着染料工业的快速发展和各种染料的不断使用,进入环境的染料数量和种类与日俱增.印染废水由于含有大量很难被生物降解的有机物,且色度极高,单独的物化法难以对其有效处理。

本文综述了近几年来国内外采用吸附、混凝、膜分离等物理方法和光氧化、电氧化、湿式氧化等化学氧化技术处理印染废水的进展情况和优缺点,并指出物化法与化学氧化法相耦合将是处理印染废水经济有效的工艺。

关键词:印染废水;物理处理法;化学氧化法中图分类号: x703 文献标识码: a 文章编号:1 处理印染废水的物理方法常用的处理印染废水的物理方法主要包括吸附、混凝、膜处理等。

通常地,吸附和膜处理技术作为生物处理的深度处理技术;而混凝技术视具体情况可以放在生物处理工段的前面,也可以放在后面。

这些技术都可取得较好的效果。

不过一般来说此类技术只是对废水中的污染物进行了相间转移,并没有从根本上消除污染,而且相应材料消耗较大,增加了处理成本,限制了大范围的推广应用。

1.1 吸附法当印染废水与多孔性物质混合或通过由其颗粒组成的滤床时,污染物就会进入多孔物质的孔隙内或者是黏附在表面而被除去。

吸附法适用于低浓度印染废水,多用于深度处理。

应用最多的吸附剂是活性炭,但单独采用活性炭吸附处理印染废水的成本很高。

近些年来研究的重点主要在于寻找开发新型廉价易得的吸附剂,并对其进行改性来提高吸附性能,其种类和主要性能如表 1 所示。

表1 常用吸附剂的种类1.2 混凝法混凝工艺流程简单,操作管理方便。

但由于染料品种繁多,单一混凝剂难以适应成分复杂的印染废水,因此开发新型高效无毒混凝剂,对现有药剂进行改性,争取做到一剂多用是目前该技术发展的趋势。

目前常用的絮凝剂包括无机絮凝剂、有机絮凝剂及生物絮凝剂。

无机絮凝剂主要有铝盐、铁盐等低分子混凝剂以及聚合氯化铝(pac)、聚合硫酸铁等高分子混凝剂。

传统的铝盐混凝一直占主导地位,其絮体小、形态稳定,对大部分染料废水处理效果比较理想,但反应较慢,受温度影响较大且有毒性;铁盐反应快、絮体大、易失稳沉淀,对疏水性染料脱色效率高,但对亲水性染料脱色不理想,投加量不当会使水体呈现黄色,cod 去除率低。

印染废水中水回用及RO浓水深度处理工

印染废水中水回用及RO浓水深度处理工

工程实例工业水处理 2023-01,43(1)物〔8〕,但存在投资大、运行成本高等不足;原位强化膜生物反应器工艺〔9〕(Enhance membrane bio -reactor ,EMBR )是膜生物反应器与生物技术有机结合的新型废水处理技术,通过向膜生物反应器的膜池中加入生物填料,使微生物附着在填料上,进一步提高对 COD 等有机物的去除效果,大大强化了生物反应器的功能。

与传统的生物处理方法相比,具有生化效率高、抗负荷冲击能力强等优势,同时还具有出水水质稳定、占地面积小、排泥周期长、易实现自动控制等优点。

电催化氧化工艺(Electro -catalytic oxidation with pulse ,ECOP )主要是利用具有催化性能的金属氧化物电极,产生具有强氧化能力的羟基自由基或其他自由基氧化水中污染物,使其完全氧化分解为CO 2和H 2O ,以达到去除废水中有机物、氨氮和苯胺的目的〔10-11〕。

嘉兴某印染厂废水处理系统处理量为1 000 m³/d ,采用水解酸化—好氧—二沉池—终沉池—MBR —RO 工艺处理印染废水,前期因对回用水水量的要求较低,RO 系统回收率仅有40%~50%,RO 浓水COD 低于《纺织染整工业水污染物排放标准》(GB 4287—2012)中表2限值,可直接外排。

随着该印染厂对高品质回用水需求量的增大,需将RO 系统回收率提高至70%以上,此时RO 浓水COD 为330 mg/L 左右,远高于排放标准。

业主拟采用活性炭粉吸附工艺去除RO 浓水中的COD 〔12〕,但活性炭为消耗品,投加成本较高,自动化程度低,操作繁琐,需额外增加人工成本,吸附饱和的活性炭需返回压滤机工段进行压滤处理,进而又产生固废,增加固废处理费用。

针对该印染厂现场运行情况和水质情况,结合“源头减排—过程控制—末端治理”的全流程废水治理理念〔13〕,确定采用EMBR-RO-ECOP 工艺深度处理印染废水,EMBR 系统进一步降低RO 进水中的COD ,经过ECOP 工艺对RO 浓水进行深度处理后外排。

双膜法技术在印染废水深度处理与回用中的运用

双膜法技术在印染废水深度处理与回用中的运用

双膜法技术在印染废水深度处理与回用中的运用张勇【摘要】针对经生化、物化处理后的印染废水的水质特点,采用“O3+UF+RO”的组合工艺对该废水进行深度处理,产水满足生产工艺回用水质的要求,外排水(浓水)达到广东省地方排放一级标准,取得了良好的经济和社会效益,具有一定的推广应用价值。

%Based on the characteristics of water quality of printing and dyeing wastewater after biochemical and physico-chemicaltreatment ,the combined process of“O3+UF+RO” is adopted to conduct advanced treatment of the wastewater , the reuse water meets the process requirements and the external drainage (RO concentrate water ) reaches Guangdong Province local discharge standards .It has achieved good economic and social benefits and should be spread .【期刊名称】《工业安全与环保》【年(卷),期】2015(000)008【总页数】3页(P57-59)【关键词】印染废水;臭氧;超滤;反渗透;废水回用【作者】张勇【作者单位】中钢集团武汉安全环保研究院有限公司武汉430081【正文语种】中文Key Words printing and dyeing wastewater O3 ultrafiltration reverse osmosis wastewater reuse印染行业耗水量和污水排放量大,不仅污染环境,还对水资源造成很大的浪费,加强对印染行业的节水减排是解决行业经济和水资源关系问题的有效方法,对行业的可持续发展起着重要理论指导和现实应用意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

印染废水深度处理及回用技术研究发表时间:2016-08-01T14:41:36.850Z 来源:《基层建设》2016年9期作者:赖永丰[导读] 印染废水中水回用是实现污染总量控制和节能减排的重要抓手。

东莞市广清环保科技有限公司 523750 摘要:印染废水中水回用是实现污染总量控制和节能减排的重要抓手。

总结了印染行业废水来源及水质特征;分析了印染废水中水回用率过高对企业经济、产品和污水处理系统的影响,建议在膜技术运行过程中重视浓缩液的有效处理及膜污染防治。

关键词:印染废水;深度处理;回用印染工业作为中国具有优势的传统支柱行业之一,自20世纪90年代以来获得迅猛发展,其用水量和排水量也大幅度增长。

国家统计局公布数据显示,2010年纺织业废水排放总量达245470万吨,高居全国工业部门第三位。

近年来,随着我国经济的快速发展,淡水资源日益紧缺,印染废水的深度处理和回用已越来越引起人们的重视。

1、国内印染废水处理及回用现状我国对印染废水回用已有较多的研究,从目前研究及应用的情况来看主要有以下特点:(1)回用技术大多处于试验研究阶段,多为小试和中试,实际工程应用较少,且水的回用率较低,一般不超过 50%,主要回用于对水质要求不高的前道工序,缺乏有利于提高回用水水质及回用率的高效技术的推广应用。

(2)回用处理主要是对印染废水在达标处理的基础上进一步进行处理,达到回用水水质标准。

处理工艺主要采用混凝、吸附、过滤和氧化等技术,其中对去除盐度和硬度的关键技术研究较少。

(3)由于现有技术水平的限制,印染废水大量回用对生产及废水处理系统会带来一系列问题,包括有机污染物和无机盐的积累。

目前对废水长期回用的水质问题及对水处理系统的影响研究不多,特别是无机盐的积累问题基本没有涉及。

2 、印染废水深度处理及回用工艺介绍印染废水常用的处理方法主要有:物化法、化学法、生化法、膜技术和其他组合工艺等。

仅靠单一的处理工艺很难达到深度处理及回用的目的,必须对现有的工艺进行集成,采用多种工艺联合处理的方法,才能真正实现回用的目标。

2.1 物化法物化法主要以吸附法为主,目前在印染废水深度处理及回用中常用的吸附剂有活性炭、硅藻土、活性氧化铝、粉煤灰、沸石、膨润土等。

印染废水深度处理及回用研究和应用较多的是活性炭。

活性炭比表面积大、亲水性强、吸附脱色效果好,特别适合于小分子水溶性染料的吸附脱色。

活性炭对于二级生物处理后印染废水中的残余污染物(如合成染料、表面活性剂等)具有很好的吸附能力,但处理成本高,再生能耗大,常与其它工艺组合对纺织印染废水进行深度处理。

张健俐等。

2.2采用臭氧脱色和活性炭吸附组合系统对淄博市某纺织企业的印染废水进行回用处理,进水COD值为8O~100 mg/L、色度为0.25~0.35时,出水COD为6~10mg/L、色度为0.01~0.03,处理后的水可用于企业冷却循环系统,经济效益和环境效益明显。

谢丹萍等[3]采用连续膜过滤系统(CMF)-活性炭吸附工艺对某印染厂污水处理站排水进行回用处理,处理后出水Fe、Mn的去除率达到100 %,色度为4、浊度0.2 NTU、COD<10 mg/L,达到印染企业生产用水水质要求。

2.3化学法印染废水处理中常用的氧化剂有Fenton试剂和臭氧。

Fenton法具有简单、快速、可产生絮凝等优点,但仍存在氧化剂利用率低、氧化效率差、处理成本偏高等缺陷。

目前,Fenton法常与电化学氧化法结合对纺织印染废水进行回用深度处理。

如姜兴华等(1)将铁炭微电解一Fenton试剂联合氧化技术用于经A/O处理的印染废水出水,在最佳反应条件下,COD去除率达到90 %以上,色度去除率为99 %,达到了印染废水回用的要求。

针对印染废水色度大的特点,臭氧极强的氧化性可有效去除色度及废水中的有机物,同时臭氧还具有杀菌除臭功能。

在实际工程应用中,通常很少单独采用臭氧氧化法处理印染废水,而是与其他方法联合使用,如臭氧-活性炭和臭氧-曝气生物滤池。

Lin等(2)在活性炭为填料的流化床或固定床中通人臭氧,把臭氧氧化和活性炭吸附组合成一个单一的过程。

研究发现,臭氧氧化能够延长活性炭的再生,减少其再生成本;活性炭不仅仅是一个吸附剂,同时是臭氧氧化的催化剂。

两者可以弥补各自固有的不足。

具有很好的协同作用。

顾晓扬等(3)采用臭氧-曝气生物滤池工艺对某纺织洗水厂二级生化处理出水进行回用处理,在进水COD约为8O mg/L、色度为16倍、浊度约为8 NTU的条件下,当臭氧投加量为3O~45 mg/L、曝气生物滤池水力停留时间为3~4 h、气水比为5∶1时,出水COD<30 mg/L、色度为2倍、浊度<1 NTU,满足生产工艺对回用水水质的要求。

2.4 生化法生化法主要是运用微生物的代谢作用来分解污染物,不仅可以用于印染废水的达标排放处理,而且也可以作为深度处理及回用技术。

生化法主要有曝气生物滤池、生物活性炭等,一般很少采用生化法作为深度处理回用工艺,实际应用中多采用生化法与其他工艺联合使用。

曝气生物滤池(Biological Aerated Filter,简称BAF)是一种集物理吸附、过滤和生物降解于一体的新型生物膜处理技术,它适用于低悬浮物和低COD废水的处理[7-8]。

BAF应用于印染废水深度处理主要是因为经过厌氧水解+接触氧化工艺处理的废水,其B/C值很小,可生化性很差,难降解的残余有机物首先被滤料和滤料上生物膜所吸附,其停留时间相当于生物膜泥龄时间,因此有足够的接触时间,使这些有机物被微生物所降解。

黄瑞敏[9]在混凝处理后采用BAF处理,可使针织棉染色废水的COD指标低于国家污水排放标准,接近生产回用的要求。

BAF出水再经过精密过滤去除细小悬浮物和离子交换去除水中的无机盐后,出水的各项指标均可以达到回用的要求。

生物活性炭是生物处理和活性炭吸附相结合的组合工艺,微生物的氧化分解和生物吸附与活性炭物理吸附协调作用,使处理效果大大增强。

耿士锁[10]采用生物接触氧化-生物炭流化床串联装置对印染废水深度处理,在进水水质COD为113~263 mg/L、色度20~200倍、 SS为14~184 mg/L前提下,去除率分别达到70 %~89 %、73 %~90 %、78 %~79 %。

处理后的出水水质符合印染工艺洗涤用水要求。

3、膜技术膜分离技术是目前国内外印染废水回用领域中研发和工程化应用的热点之一。

目前在印染废水回用上应用较多的膜分离技术有:反渗透(RO)、纳滤(NF)、微滤(MF)和超滤(UF)。

这些膜分离过程都是以压差为驱动力,废水流经膜面的时候,废水中的污染物被截留,而水透过膜,实现了对废水的深度处理。

超滤可去除废水中大部分浊度和有机物,从而能减轻反渗透膜的污染,延长膜的使用寿命,减少膜系统的运行成本。

反渗透不仅能有效去除有机物、降低COD,而且具有优秀的脱盐效果。

由于COD脱除、脱色、脱盐能在一步完成,其出水品质高,能直接回用于印染环节,同时浓水可回流至常规工序处理,实现废水零排放和清洁生产。

越来越多的研究表明,将不同的膜分离技术进行组合(如微滤、超滤、纳滤、反渗透等),或膜分离技术与其他技术(如膜生物反应器)相结合,是印染废水深度处理的一个研究方向。

膜生物反应器是印染废水处理的新技术之一,将膜分离技术与生物反应器相结合,从而达到回用水质要求。

夏炎等采用MBR-NF组合工艺处理苏州市东方污水厂初沉池污水,在进水水质COD 372~1121 mg/L,氨氮16.17~26.85 mg/L,总氮19.18~46.54 mg/L的情况下,经HRT 30 h,回流比300 %的MBR处理后,出水COD、氨氮和总氮的平均去除率分别为87 %,95.8 %和70.2%,再经纳滤处理后,水质可满足印染工艺回用要求。

Schoeberl等对MBR二级出水采用纳滤后处理,处理出水能够满足各项回用标准,但同时指出该方法目前仍面临较高的应用技术难度和经济成本。

付江涛等采用双膜法工艺处理某印染厂废水并回用,COD去除率达到99 %,浊度和色度的去除率均接近100%,反渗透对盐分的去除率在98 %以上,满足回用于印染生产的要求。

Marcucci等采用砂滤-超滤-反渗透和砂滤-超滤-纳滤两种深度处理工艺对印染废水的二级出水进行回用处理,反渗透对盐分的去除率达到95 %以上,可回用于包括对水质要求最高的浅色染色工艺在内的印染生产工序。

Amar等采用该技术处理印染厂出水,出水效果达到了生产回用的要求。

3.1其他组合工艺由于膜技术对进水水质要求较高,因此,一般需要经过适当预处理之后的废水才能进行膜处理。

何耀忠等[16]采用“一体臭氧BAF+上流式BAF”组合工艺深度处理纺织印染废水,可为膜分离系统提供稳定可靠的进水。

一体臭氧BAF在臭氧投加量为20~30mg/L时,具有最佳运行效能。

结合后续曝气生物滤池,出水COD<40 mg/L、BOD<10 mg/L、SS<10 mg/L、色度<4倍。

膜分离系统中,反渗透产水完全满足染整工艺用水要求,膜滤浓缩液COD<100 mg/L、BOD<30 mg/L、SS<50 mg/L、色度<32倍,可达标排放。

该联合工艺不但保证膜滤浓缩液达标排放,解决了过往工程应用中,膜滤浓缩液的后续处理难题,并可带来显著的经济效益,为纺织印染行业废水深度处理及回用设施的升级改造提供了一种新的解决方案。

齐鲁青等采用预处理系统(臭氧-曝气生物滤池一体化装置+曝气生物滤池)和膜系统(超滤+反渗透)的组合工艺深度处理印染纺织废水。

试验表明,臭氧氧化和BAF生物截留吸附作用使预处理系统保证了膜进水水质,经膜系统处理后,淡水回用,浓水仍然可以达标排放。

预处理系统较佳运行参数为:气水比为5,有机负荷分别约为2.1、1.0 kg(COD)/m 3(滤料)? d,溶解氧质量浓度为3.8 mg/L,水温35~40 ℃;臭氧直接通入曝气生物滤池,形成臭氧-曝气生物滤池一体化装置,臭氧投加量宜在20~30 mg/L。

当预处理系统进水COD质量浓度平均值为101.3 mg/L,浊度为8.0NTU,SS质量浓度为21.9 mg/L,氨氮质量浓度3.4 mg/L,色度21倍,经过预处理系统稳定处理,出水COD质量浓度平均值可降至7.4 mg/L,浊度为4.2 NTU,SS质量浓度为3.0 mg/L,氨氮质量浓度0.7 mg/L,色度2倍。

预处理系统高效去除污染物,有效地保证了膜系统进水水质。

测定浓水pH 7.3~8.3,色度32倍,COD质量浓度45.7~97.9 mg/L,可直接排放。

膜系统稳定运行期间,RO产水pH在7.4~7.9,电导率则在50~200 μs/cm,平均脱盐率可达98.2%;总硬度2~10 mg/L,平均去除率为89.2 %;总碱度25~65 mg/L,平均去除率为95.0 %。

相关文档
最新文档