(完整版)人教版初中数学不等式与不等式组知识点及习题总汇-
人教版七年级数学下不等式与不等式组知识点与试题教学文案
不等式与不等式组本章知识点:1、不等式:用>或<号表示大小关系的式子叫做不等式。
Shu 532、不等式的解:把使不等式成立的未知数的值叫做不等式的解。
3、解集:使不等式成立的x 的取值范围叫做不等式解的集合,简称解集。
4、不等式的性质:1、不等式两边同时加(或减)同一个数(或式子),不等号的方向不变。
a+c>b+c,a-c>b-c2、不等式两边同乘(或除以)同一个正数,不等号的方向不变。
如果a>b,并且c>0,ac>bc,a/c<b/c3、不等式两边同乘(或除以)同一个负数,不等号的方向改,a>b,c<0,ac<bc a/c<b/c5、一元一次不等式:含有一个未知数,未知数的次数是1的不等式叫做一元一次不等式。
6、一元一次不等式组:把几个不等式合起来,组成一个一元一次不等式组。
7、不等式组的解集:不等式组中每一个解集的公共部分叫做不等式组的解集。
记:同大取大,同小取小,大小小大取中间,大大小小无解。
练习:1.用不等号填空:(1)若b a -<π,则a π- b (2)若b a >,当bc ac <时,c 0(3)若b a >,则c a - c b - (4)若b a -<2,则a 2- b(5)若0,0<>a ab ,则b 0 (6)a b a >-,则b 0(7)若a b a ><,0,则ab 2a (8)若b a <,则3a b a 2一、画出数轴,在数轴上表示出下列不等式的解集: (1)⋅>213x (2)x ≥-4. (3)⋅≤51x (4) -2x<5 解下列不等式,并把它们的解集在数轴上表示出来。
1、3(x+2)>4(x-1)+72、 312-x ≤643-x二、选择1、下列数中是不等式x 32>50的解的有( )76, 73, 79, 80, 74.9, 75.1, 90, 60A、5个 B、6个 C、7个 D、8个2、下列各式中,是一元一次不等式的是( )A、5+4>8 B、12-x C、x 2≤5 D、x x 31-≥0 3、若b a π,则下列不等式中正确的是( )A、b a +-+-33φ B、0φb a - C、b a 3131φ D、b a 22--φ 4、用不等式表示与的差不大于2-,正确的是( )A、2--φe d B、2--πe d C、e d -≥2- D、e d -≤2-5、不等式组⎩⎨⎧22πφx x 的解集为( ) A 、x >2- B 、2-<x <2 C 、x <2 D 、 空集6、不等式86+x >83+x 的解集为( )A 、x >21 B 、x <0 C 、x >0 D 、x <21 7、不等式2+x <6的正整数解有( ) A 、1个 B 、2个 C 、3 个 D 、4个8、下图所表示的不等式组的解集为( )-2A 、x 3φB 、32ππx -C 、 2-φxD 、32φφx -1.下列各数,,3,2.50421,,,,π-其中使不等式2-x >1成立有( ). A.–4,2.5,πB.3,2.5,πC.3,0,21 D.2.5,π 2.在下列数学表达式中,–3<0.4,32,5,,1,0322+>+≠+=>+y x x xy x x y x 其中不等式 有( ).A.1个B.3个C.4个D.5个3.“y 的2倍与3的差小于或等于4”,以下各式中表示正确的是( ).A.432<-yB.2y –3=4C.2y –3≤4D.2y –3>44.下列按要求列出的不等式中正确的是( ).A.“a 不是负数”即a >0B.“b 是不大于零的数”即b<0C.“m 是不小于–2的数”即m>–2D.“P+Q 是正数”即P+Q>05.有下列数字表达式,(1),2)4(,32)3(,3)2(,04322y xy x y a y y x ++<+≠<+其中属于 不等式的有( ).A.1个B.2个C.3个D.4个6.“a 的3倍与21的和不大于4”,以下各式表示正确的是( ). A.4213≤+a B.4213<+a C.4213≥+a D.4213>+a7.下列按要求列出的不等式中不正确的是( ).A.“b 的相反数是正数”即–b>0B.“a 是不小于零的数”即a >0C.“k 不大于3”即k ≤3D.“m+n 是正数”即m+n>0三、填空题9、“x 的一半与2的差不大于1-”所对应的不等式是10、不等号填空:若a<b<0 ,则5a - 5b -;a1 b 1;12-a 12-b 11、当a 时,1+a 大于212、直接写出下列不等式(组)的解集①42φ-x ②105πx -③ ⎩⎨⎧-21πφx x 13、不等式03φ+-x 的最大整数解是四、解下列不等式,并把解集在数轴上表示出来: 1.2231061-+>-x x 2.17)10(2283--≤--x x x 3.4238171->--x x 4.)23(6)1(3)1(2+-≥+--x x x 5.413121+>+--y y y 6.1257433-≤--y y y 五、解答题19、代数式2131--x 的值不大于321x -的值,求x 的范围 五、解答题:1.x 取何值时,3)34(2-x 的值不大于6)125(5+x 的值. 2.已知)1(645)25(3+-<++x x x ,化简:x x 3113--+.3.已知0)24(1832=--++k y x x ,当k 为何值时,y 的值为非负数.七、求不等式95)1(3-≥+x x 的正整数解?4.求不等式25+>x kx 的解集.5.有个两位数的十位数字与个位数字的和大于11,如果这个两位数减去18后得到的数是原两位数的数字位置互换的两位数,求这个两位数.6.在爆破时,如果导火索燃烧的速度是每秒钟0.8厘米,人跑开的速度是每秒钟4米,为了使点导火索的人在爆破时跑到100米以外的安全地区,这个导火索的长度应有什么限制?六、列不等式(组)解应用题某次数学测验,共16个选择题,评分标准为:对一题给6分,错一题扣2分,不答不给分。
人教版数学七年级下册第九章不等式与不等式组基础知识点讲解+典型例题讲解.doc
【本文档由书林工作坊整理发布,谢谢你的下载和关注!】不等式及其性质(基础)知识讲解【学习目标】1.了解不等式的意义,认识不等式和等式都可以用来刻画现实世界中的数量关系.2. 知道不等式解集的概念并会在数轴上表示解集.3. 理解不等式的三条基本性质,并会简单应用.【要点梳理】要点一、不等式的概念一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大.(2)符号读法意义“≠”读作“不等于”它说明两个量之间的关系是不相等的,但不能确定哪个大,哪个小“<”读作“小于”表示左边的量比右边的量小“>”读作“大于”表示左边的量比右边的量大“≤”读作“小于或等于”即“不大于”,表示左边的量不大于右边的量“≥”读作“大于或等于”即“不小于”,表示左边的量不小于右边的量(3)x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立.要点二、不等式的解及解集1.不等式的解:能使不等式成立的未知数的值,叫做不等式的解.2.不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.不等式的解是具体的未知数的值,不是一个范围不等式的解集是一个集合,是一个范围.其含义:①解集中的每一个数值都能使不等式成立②能够使不等式成立的所有数值都在解集中3.不等式的解集的表示方法(1)用最简的不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式的无限个解.如图所示:要点诠释:借助数轴可以将不等式的解集直观地表示出来,在应用数轴表示不等式的解集时,要注意两个“确定”:一是确定“边界点”,二是确定方向.(1)确定“边界点”:若边界点是不等式的解,则用实心圆点,若边界点不是不等式的解,则用空心圆圈;(2)确定“方向”:对边界点a 而言,x >a 或x ≥a 向右画;对边界点a 而言,x <a 或x ≤a 向左画. 注意:在表示a 的点上画空心圆圈,表示不包括这一点. 要点三、不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a >b ,那么a ±c >b ±c .不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a >b ,c >0,那么ac >bc (或a b c c >). 不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a >b ,c <0,那么ac <bc (或a b c c<). 要点诠释:不等式的基本性质的掌握注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会. (2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变. 【典型例题】类型一、不等式的概念1.用不等式表示: (1)x 与-3的和是负数;(2)x 与5的和的28%不大于-6; (3)m 除以4的商加上3至多为5. 【思路点拨】列不等式时,应抓住“大于”、“不大于”、“不是”、“至多”、“非负数”等表示不等关系的关键性词语,进而根据这些关键词的内涵列出不等式. 【答案与解析】解:(1)x -3<0;(2)28%(x+5)≤-6;(3)34m+≤5. 【总结升华】在不等式及其应用的题目中,经常会出现一些表示不等关系的词语.正确理解这些关键词很重要.如:若x 是非负数,则x ≥0;若x 是非正数,则x ≤0;若x 大于y ,则有x -y >0;若x 小于y ,则有x -y <0等.举一反三: 【变式】(2015春•陕西校级期末)下列式子:①﹣2<0;②2x+3y <0;③x=3;④x+y 中,是不等式的个数有( ) A .1个 B .2个 C .3个 D .4个 【答案】B .类型二、不等式的解及解集2.对于不等式4x+7(x-2)>8不是它的解的是()A.5 B.4 C.3 D.2【思路点拨】根据不等式解的定义作答.【答案】D【解析】解:当x=5时,4x+7(x-2)=41>8,当x=4时,4x+7(x-2)=30>8,当x=3时,4x+7(x-2)=19>8,当x=2时,4x+7(x-2)=8.故知x=2不是原不等式的解.【总结升华】不等式的解的定义与方程的解的定义是类似的,其判定方法是相同的.3.不等式x>1在数轴上表示正确的是()【思路点拨】根据不等式的解集在数轴上表示出来的方法画数轴即可.【答案】C【解析】解:∵不等式x>1∴在数轴上表示为:故选C.【总结升华】用数轴表示解集时,应注意两点:一是“边界点”,如果边界点包含于解集,则用实心圆点;二是“方向”,相对于边界而言,大于向右,小于向左,同时还应善于逆向思维,通过读数轴写出对应不等式的解集.举一反三:【变式】如图,在数轴上表示的解集对应的是( ).A.-2<x<4 B.-2<x≤4 C.-2≤x<4 D.-2≤x≤4【答案】B类型三、不等式的性质4.(2015•浙江模拟)若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.x+3>y+3 C.﹣3x>﹣3y D.>【思路点拨】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案. 【答案】C . 【解析】解:A 、不等式的两边都减3,不等号的方向不变,故A 正确; B 、不等式的两边都加3,不等号方向不变,故B 正确; C 、不等式的两边都乘﹣3,不等号的方向改变,故C 错误; D 、不等式的两边都除以3,不等号的方向改变,故D 正确; 故选:C .【总结升华】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变. 举一反三:【变式】三角形中任意两边之差与第三边有怎样的关系? 【答案】解:如图,设c ,b ,a 为任意一个三角形的三条边,则:b ac ,a c b ,c b a >+>+>+移项可得:a b c ,c a b ,b c a ->->-> 即:三角形两边的差小于第三边.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】一元一次不等式的解法(基础)知识讲解【学习目标】1.理解一元一次不等式的概念; 2.会解一元一次不等式.【要点梳理】要点一、一元一次不等式的概念只含有一个未知数,未知数的次数是一次的不等式,叫做一元一次不等式,例如,2503x >是一个一元一次不等式.要点诠释:(1)一元一次不等式满足的条件:①左右两边都是整式(单项式或多项式);②只含有一个未知数; ③未知数的最高次数为1.(2) 一元一次不等式与一元一次方程既有区别又有联系: 相同点:二者都是只含有一个未知数,未知数的次数都是1,“左边”和“右边”都是整式. 不同点:一元一次不等式表示不等关系,由不等号“<”、“≤”、“≥”或“>”连接,不等号有方向;一元一次方程表示相等关系,由等号“=”连接,等号没有方向. 要点二、一元一次不等式的解法1.解不等式:求不等式解的过程叫做解不等式.2.一元一次不等式的解法:与一元一次方程的解法类似,其根据是不等式的基本性质,将不等式逐步化为:a x <(或a x >)的形式,解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)化为ax b >(或ax b <)的形式(其中0a ≠);(5)两边同除以未知数的系数,得到不等式的解集. 要点诠释:(1)在解一元一次不等式时,每个步骤并不一定都要用到,可根据具体问题灵活运用. (2)解不等式应注意:①去分母时,每一项都要乘同一个数,尤其不要漏乘常数项; ②移项时不要忘记变号;③去括号时,若括号前面是负号,括号里的每一项都要变号;④在不等式两边都乘(或除以)同一个负数时,不等号的方向要改变. 3.不等式的解集在数轴上表示:在数轴上可以直观地把不等式的解集表示出来,能形象地说明不等式有无限多个解,它对以后正确确定一元一次不等式组的解集有很大帮助.要点诠释: 在用数轴表示不等式的解集时,要确定边界和方向: (1)边界:有等号的是实心圆点,无等号的是空心圆圈; (2)方向:大向右,小向左. 【典型例题】类型一、一元一次不等式的概念1.下列式子中,是一元一次不等式的有哪些? (1)3x+5=0 (2)2x+3>5 (3)384x < (4)1x≥2 (5)2x+y ≤8 【思路点拨】根据一元一次不等式的定义判断,(1)是等式;(4)不等式的左边不是整式;(5)含有两个未知数. 【答案与解析】解:(2)、(3)是一元一次不等式. 【总结升华】一元一次不等式的定义主要由三部分组成:①不等式的左右两边分母不含未知数;②不等式中只含一个未知数;③未知数的最高次数是1,三个条件缺一不可.类型二、解一元一次不等式2.(2015•南京)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来. 【思路点拨】解不等式时去括号法则与解一元一次方程的去括号法则是一样的.【答案与解析】解:去括号,得2x+2﹣1≥3x +2, 移项,得2x ﹣3x≥2﹣2+1, 合并同类项,得﹣x≥1, 系数化为1,得x ≤﹣1,这个不等式的解集在数轴上表示为:【总结升华】在不等式的两边同乘以(或除以)负数时,必须改变不等号的方向. 举一反三:【变式】不等式2(x+1)<3x+1的解集在数轴上表示出来应为 ( )【答案】C3.(2015•巴中)解不等式:≤﹣1,并把解集表示在数轴上.【思路点拨】按基本步骤进行,注意避免漏乘、移项变号,特别注意当不等式两边同时乘以或除以一个负数时,不等号的方向要改变. 【答案与解析】解:去分母得,4(2x ﹣1)≤3(3x+2)﹣12, 去括号得,8x ﹣4≤9x+6﹣12, 移项得,8x ﹣9x≤6﹣12+4, 合并同类项得,﹣x≤﹣2, 把x 的系数化为1得,x≥2. 在数轴上表示为:.【总结升华】去分母时,不要漏乘没有分母的项. 举一反三: 【变式】若3511+-=x y ,14522--=x y ,问x 取何值时,21y y >. 【答案】 解:∵3511+-=x y ,14522--=x y , 若21y y >, 则有1452351-->+-x x即 6101<x ∴当6101<x 时,21y y >.4.关于x 的不等式2x -a ≤-1的解集为x ≤-1,则a 的值是_________.【思路点拨】首先把a 作为已知数求出不等式的解集,然后根据不等式的解集为x≤-1即可得到关于a 的方程,解方程即可求解. 【答案】-1【解析】由已知得:12a x -≤,由112a -=-,得1a =-. 【总结升华】解不等式要依据不等式的基本性质,注意移项要改变符号.举一反三:【变式1】如果关于x 的不等式(a+1)x <a+1的解集是x >l ,则a 的取值范围是________. 【答案】1a -<【变式2】已知关于x 的方程2233x m xx ---=的解是非负数,m 是正整数,求m 的值. 【答案】 解:由2233x m xx ---=,得x =22m -, 因为x 为非负数,所以22m-≥0,即m ≤2, 又m 是正整数,所以m 的值为1或2.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】实际问题与一元一次不等式(基础)知识讲解责编:杜少波【学习目标】1.会从实际问题中抽象出不等的数量关系,会用一元一次不等式解决实际问题; 2. 熟悉常见一些应用题中的数量关系.【要点梳理】要点一、常见的一些等量关系 1.行程问题:路程=速度×时间2.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量3.利润问题:商品利润=商品售价-商品进价,=100%⨯利润利润率进价4.和差倍分问题:增长量=原有量×增长率5.银行存贷款问题:本息和=本金+利息,利息=本金×利率6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.要点二、列不等式解决实际问题列一元一次不等式解应用题与列一元一次方程解应用题类似,通常也需要经过以下几个步骤:(1)审:认真审题,分清已知量、未知量及其关系,找出题中不等关系要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“至少”、“不超过”、“超过”等; (2)设:设出适当的未知数;(3)列:根据题中的不等关系,列出不等式; (4)解:解所列的不等式;(5)答:写出答案,并检验是否符合题意. 要点诠释:(1)列不等式的关键在于确定不等关系;(2)求得不等关系的解集后,应根据题意,把实际问题的解求出来; (3)构建不等关系解应用题的流程如图所示.(4)用不等式解决应用问题,有一点要特别注意:在设未知数时,表示不等关系的文字如“至少”不能出现,即应给出肯定的未知数的设法,然后在最后写答案时,应把表示不等关系的文字补上.如:若“设还需要B 型车x 辆 ”,而在答中应为“至少需要11辆 B 型车 ”.这一点应十分注意. 【典型例题】类型一、行程问题1.爆破施工时,导火索燃烧的速度是0.8cm/s ,人跑开的速度是5m/s ,为了使点火的战士在施工时能跑到100m 以外(包括100m )的安全地区,导火索至少需要多长? 【思路点拨】设导火索要xcm 长,根据导火索燃烧的速度为0.8cm/s ,人跑开的速度是5m/s ,为了使点导火索的战士在爆破时能跑到离爆破点100m 的安全地区,可列不等式求解. 【答案与解析】解:设导火索要xcm 长,根据题意得:1000.85x ≥解得:答:导火索至少要16cm 长.【总结升华】本题考查一元一次不等式在实际问题中的应用,关键是以100m 的安全距离作为不等量关系列不等式求解. 类型二、工程问题2.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要完成多少土方? 【思路点拨】假设以后几天平均每天完成x 土方,一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,那么该土方工程还剩300-60=240土方,现在要比原计划至少提前两天完成任务,说明至多4天完成任务,用去一天,还剩4-1=3(天)则列不等式2403x≤ 解得x 即可知以后平均每天至少完成多少土方. 【答案与解析】解:设以后几天平均每天完成x 土方.由题意得:30060621x---≤ 解得: x≥80答:现在要比原计划至少提前两天完成任务,以后几天平均每天至少要完成80土方. 【总结升华】解本类工程问题,主要是找准正确的工程不等式,如本题,以天数作为基准列不等式.举一反三: 【变式】(2014春•常州期末)某人计划20天内至少加工400个零件,前5天平均每天加工了33个零件,此后,该工人平均每天至少需加工多少个零件,才能在规定的时间内完成任务?【答案】解:设以后平均每天加工x 个零件,由题意的:5×33+(20﹣5)x≥400,解得:x≥2153. ∵x 为正整数, ∴x 取16.答:该工人以后平均每天至少加工16个零件.类型三、利润问题3.水果店进了某种水果1t ,进价是7元/kg .售价定为10元/kg ,销售一半以后,为了尽快售完,准备打折出售.如果要使总利润不低于2000元,那么余下的水果至少可以按原定价的几折出售? 【答案与解析】解:设余下的水果可以按原定价的x 折出售,根据题意得:1t =1000kg10001000(107)(107)20001022x ⨯-⨯+-⨯≥ 解得:8x ≥ 答:余下的水果至少可以按原定价的8折出售.【总结升华】本题考查一元一次不等式的应用,关键以利润作为不等量关系列不等式. 举一反三: 【变式】某商品的进价为1000元,售价为2000元,由于销售状况不好,商店决定打折出售,但又要保证利润不低于20%,则商店最多打 折. 【答案】六.类型四、方案选择4.(2015•庆阳)某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元.(1)求每个篮球和每个排球的销售利润;(2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元购进篮球和排球共100个,且要求篮球数量不少于排球数量的一半,请你为专卖店设计符合要求的进货方案.【思路点拨】(1)设每个篮球和每个排球的销售利润分别为x元,y元,根据题意得到方程组;即可解得结果;(2)设购进篮球m个,排球(100﹣m)个,根据题意得不等式组即可得到结果.【答案与解析】解:(1)设每个篮球和每个排球的销售利润分别为x元,y元,根据题意得:,解得:,答:每个篮球和每个排球的销售利润分别为25元,20元;(2)设购进篮球m个,排球(100﹣m)个,根据题意得:,解得:≤m≤35,∴m=34或m=35,∴购进篮球34个排球66个,或购进篮球35个排球65个两种购买方案.【总结升华】本题考查了一元一次不等式的应用,二元一次方程组的应用,找准数量关系是解题的关键.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】一元一次不等式组(基础)知识讲解【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x,请你根据题意写出x必须满足的不等式.【思路点拨】由题意知,x必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系.【答案与解析】解:依题意得:8482(8)34. xx>⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.举一反三:【变式】直接写出解集:(1)2,3xx>⎧⎨>-⎩的解集是______;(2)2,3xx<⎧⎨<-⎩的解集是______;(3)2,3xx<⎧⎨>-⎩的解集是_______;(4)2,3xx>⎧⎨<-⎩的解集是_______.【答案】(1)2x>;(2)3x<-;(3)32x-<<;(4)空集.类型二、解一元一次不等式组2. 解下列不等式组(1)313112123x xx x+<-⎧⎪⎨++≤+⎪⎩①②(2)213(1)4x x x+>-≥-.【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集.【答案与解析】解:(1)解不等式①,得x<-2解不等式②,得x≥-5故原不等式组的解集为-5≤x<-2.其解集在数轴上表示如图所示.(2)原不等式可变为:213(1)3(1)4x xx x+>-⎧⎨-≥-⎩①②解①得:4x<解②得:12x≥-故原不等式组的解集为142x-≤<.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.举一反三:【变式】(2015•江西样卷)解不等式组,并把解集在数轴上表示出来.【答案】解:,∵解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.【思路点拨】设有x名学生,则由第一种植树法,知道一共有(4x +37)棵树;第二种植树法中,前(x-1)名学生中共植6(x-1)棵树;最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵,这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式.到此,不等式组即建立起来了,接下来就是解不等式组.【答案与解析】解:设有x名学生,根据题意,得:4376114376132x xx x+>-⎧⎨+--<⎩()()()()(),不等式(1)的解集是:x<2121;不等式(2)的解集是:x>20,所以,不等式组的解集是:20<x<2121,因为x是整数,所以,x=21,4×21+37=121(棵)答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内? 【答案】解:设这件商品原价为x 元,根据题意可得:88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩ 解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.4.(2015•桂林)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样). (1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案. 【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可; (2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可. 【答案与解析】 解:(1)设每本文学名著x 元,动漫书y 元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:,解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本; 方案二:文学名著27本,动漫书47本; 方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少? 【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x x x +-≥⎧⎨+-≥⎩,解得57x ≤≤, 又x 为整数,所以5x =或6或7, ∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆; 方案2:租甲种货车6辆,乙种货车4辆; 方案3:租甲种货车7辆,乙种货车3辆. (2)运输费用:方案1:2000×5+1300×5=16500(元); 方案2:2000×6+1300×4=17200(元); 方案3:2000×7+1300×3=17900(元). ∴方案1运费最少,应选方案1.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】《不等式与一次不等式组》全章复习与巩固(基础)知识讲解【学习目标】1.理解不等式的有关概念,掌握不等式的三条基本性质;2.理解不等式的解(解集)的意义,掌握在数轴上表示不等式的解集的方法;3.会利用不等式的三个基本性质,熟练解一元一次不等式或不等式组;4.会根据题中的不等关系建立不等式(组),解决实际应用问题;5.通过对比方程与不等式、等式性质与不等式性质等一系列教学活动,理解类比的方法是学习数学的一种重要途径.【知识网络】。
(完整版)人教版七年级数学下不等式与不等式组知识点与试题
不等式与不等式组本章知识点:1、不等式:用>或<号表示大小关系的式子叫做不等式。
Shu 532、不等式的解:把使不等式成立的未知数的值叫做不等式的解。
3、解集:使不等式成立的x 的取值范围叫做不等式解的集合,简称解集。
4、不等式的性质:1、不等式两边同时加(或减)同一个数(或式子),不等号的方向不变。
a+c>b+c,a-c>b-c2、不等式两边同乘(或除以)同一个正数,不等号的方向不变。
如果a>b,并且c>0,ac>bc,a/c<b/c3、不等式两边同乘(或除以)同一个负数,不等号的方向改,a>b,c<0,ac<bc a/c<b/c5、一元一次不等式:含有一个未知数,未知数的次数是1的不等式叫做一元一次不等式。
6、一元一次不等式组:把几个不等式合起来,组成一个一元一次不等式组。
7、不等式组的解集:不等式组中每一个解集的公共部分叫做不等式组的解集。
记:同大取大,同小取小,大小小大取中间,大大小小无解。
练习:1.用不等号填空:(1)若b a -<π,则a π- b (2)若b a >,当bc ac <时,c 0(3)若b a >,则c a - c b - (4)若b a -<2,则a 2- b(5)若0,0<>a ab ,则b 0 (6)a b a >-,则b 0(7)若a b a ><,0,则ab 2a (8)若b a <,则3a b a 2一、画出数轴,在数轴上表示出下列不等式的解集: (1)⋅>213x (2)x ≥-4. (3)⋅≤51x (4) -2x<5 解下列不等式,并把它们的解集在数轴上表示出来。
1、3(x+2)>4(x-1)+72、 312-x ≤643-x二、选择1、下列数中是不等式x 32>50的解的有( )76, 73, 79, 80, 74.9, 75.1, 90, 60A、5个 B、6个 C、7个 D、8个2、下列各式中,是一元一次不等式的是( )A、5+4>8 B、12-x C、x 2≤5 D、x x 31-≥0 3、若b a π,则下列不等式中正确的是( )A、b a +-+-33φ B、0φb a - C、b a 3131φ D、b a 22--φ 4、用不等式表示与的差不大于2-,正确的是( )A、2--φe d B、2--πe d C、e d -≥2- D、e d -≤2-5、不等式组⎩⎨⎧22πφx x 的解集为( ) A 、x >2- B 、2-<x <2 C 、x <2 D 、 空集6、不等式86+x >83+x 的解集为( )A 、x >21 B 、x <0 C 、x >0 D 、x <21 7、不等式2+x <6的正整数解有( ) A 、1个 B 、2个 C 、3 个 D 、4个8、下图所表示的不等式组的解集为( )-2A 、x 3φB 、32ππx -C 、 2-φxD 、32φφx -1.下列各数,,3,2.50421,,,,π-其中使不等式2-x >1成立有( ). A.–4,2.5,πB.3,2.5,πC.3,0,21 D.2.5,π 2.在下列数学表达式中,–3<0.4,32,5,,1,0322+>+≠+=>+y x x xy x x y x 其中不等式 有( ).A.1个B.3个C.4个D.5个3.“y 的2倍与3的差小于或等于4”,以下各式中表示正确的是( ).A.432<-yB.2y –3=4C.2y –3≤4D.2y –3>44.下列按要求列出的不等式中正确的是( ).A.“a 不是负数”即a >0B.“b 是不大于零的数”即b<0C.“m 是不小于–2的数”即m>–2D.“P+Q 是正数”即P+Q>05.有下列数字表达式,(1),2)4(,32)3(,3)2(,04322y xy x y a y y x ++<+≠<+其中属于不等式的有( ).A.1个B.2个C.3个D.4个6.“a 的3倍与21的和不大于4”,以下各式表示正确的是( ). A.4213≤+a B.4213<+a C.4213≥+a D.4213>+a7.下列按要求列出的不等式中不正确的是( ).A.“b 的相反数是正数”即–b>0B.“a 是不小于零的数”即a >0C.“k 不大于3”即k ≤3D.“m+n 是正数”即m+n>0三、填空题9、“x 的一半与2的差不大于1-”所对应的不等式是10、不等号填空:若a<b<0 ,则5a - 5b -;a1 b 1;12-a 12-b 11、当a 时,1+a 大于212、直接写出下列不等式(组)的解集①42φ-x ②105πx -③ ⎩⎨⎧-21πφx x 13、不等式03φ+-x 的最大整数解是四、解下列不等式,并把解集在数轴上表示出来: 1.2231061-+>-x x 2.17)10(2283--≤--x x x 3.4238171->--x x 4.)23(6)1(3)1(2+-≥+--x x x 5.413121+>+--y y y 6.1257433-≤--y y y 五、解答题19、代数式2131--x 的值不大于321x -的值,求x 的范围 五、解答题:1.x 取何值时,3)34(2-x 的值不大于6)125(5+x 的值. 2.已知)1(645)25(3+-<++x x x ,化简:x x 3113--+.3.已知0)24(1832=--++k y x x ,当k 为何值时,y 的值为非负数.七、求不等式95)1(3-≥+x x 的正整数解?4.求不等式25+>x kx 的解集.5.有个两位数的十位数字与个位数字的和大于11,如果这个两位数减去18后得到的数是原两位数的数字位置互换的两位数,求这个两位数.6.在爆破时,如果导火索燃烧的速度是每秒钟0.8厘米,人跑开的速度是每秒钟4米,为了使点导火索的人在爆破时跑到100米以外的安全地区,这个导火索的长度应有什么限制?六、列不等式(组)解应用题某次数学测验,共16个选择题,评分标准为:对一题给6分,错一题扣2分,不答不给分。
(文末附答案)人教版初中数学不等式与不等式组常考必考知识点总结
(文末附答案)人教版初中数学不等式与不等式组常考必考知识点总结单选题1、不等式3x −2<4中,x 可取的最大整数值是( )A .0B .1C .2D .32、若关于x 的不等式mx - n >0的解集是x <15,则关于x 的不等式(m +n)x >n −m 的解集是( ) A .x >−23B .x <−23C .x <23D .x >233、已知非负数 x ,y ,z 满足.3−x 2=y+23=z+54.,设 W =3x −2y +z ,则 W 的最大值与最小值的和为( )A .−2B .−4C .−6D .−84、已知关于x 的不等式3x ﹣m+1>0的最小整数解为2,则实数m 的取值范围是( )A .4≤m <7B .4<m <7C .4≤m≤7D .4<m≤75、如果关于x 的不等式组{13(2x +5)>x −512(x +3)<x +a只有5个整数解,则a 的取值范围是( ) A .−6<a <−112B .−6≤a <−112C .−6≤a ≤−112D .−6<a ≤−112 6、下列说法中,错误的是( )A .x =1是不等式x <2的解B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x =-3D .不等式x <10的整数解有无数个7、已知x =m +15,y =5−2m ,若m >−3,则x 与y 的关系为( )A .x =yB .x >yC .x <yD .不能确定8、小明放学回家后,问爸爸妈妈小牛队与太阳队篮球比赛的结果.爸爸说:“本场比赛太阳队的纳什比小牛队的特里多得了12分.”妈妈说:特里得分的两倍与纳什得分的差大于10;纳什得分的两倍比特里得分的三倍还多.”爸爸又说:“如果特里得分超过20分,则小牛队赢;否则太阳队赢.”请你帮小明分析一下,那么本场比赛特里、纳什各得了()分?A.23,25B.25,35C.35,25D.23,35 填空题9、已知实数x满足{5(x+1)≥3x−112x−1≤7−32x,若S=|x﹣1|+|x+1|的最大值为m,最小值为n,则mn=_____.10、(1)已知x<a的解集中的最大整数为3,则a的取值范围是________.(2)已知x>a的解集中最小整数为-2,则a的取值范围是________.11、不等式−5x>11的解集是__________.12、不等式4(x+1)≤16的正整数解是_____.13、不等式4x﹣6≥7x﹣12的非负整数解为________________.解答题14、(1)解二元一次方程组:{x−y=2x−y=y+1.(2)解不等式:x−2≥x+12+3.15、小明距书店8 km,他上午8∶30出发,以15 km/h的速度行驶了xh之后,又以18 km/h的速度行驶,结果在9∶00前赶到了书店,请列出不等式.(文末附答案)人教版初中数学不等式与不等式组_009参考答案1、答案:B解析:首先解不等式,再从不等式的解集中找出适合条件的最大正整数即可.解:3x−2<4,3x<4+23x<6x<2,∴最大整数解是1.故选为:B.小提示:本题考查解一元一次不等式,一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.2、答案:B解析:可判断m、n都是负数,且可得到m、n之间的数量关系,再解不等式(m+先解不等式mx- n>0,根据解集x<15n)x>n−m可求得解不等式:mx- n>0mx>n∵不等式的解集为:x<15∴m<0解得:x<nm∴nm =15,∴n<0,m=5n∴m+n<0解不等式:(m+n)x>n−mx<n−mm+n将m=5n代入n−mm+n得:n−m m+n =n−5n5n+n=−4n6n=−23∴x<−23故选:B小提示:本题考查解含有参数的不等式,解题关键在在系数化为1的过程中,若不等式两边同时乘除负数,则不等号需要变号.3、答案:C解析:首先设3−x2=y+23=z+54=k,求得x=−2k+3,y=3k−2,z=4k−5,又由x,y,z均为非负实数,即可求得k的取值范围,则可求得W的取值范围.解:设3−x2=y+23=z+54=k,则x=−2k+3,y=3k−2,z=4k−5,∵x,y,z均为非负实数,∴{−2k+3⩾03k−2⩾04k−5⩾0,解得54⩽k⩽32,于是W=3x−2y+z=3(−2k+3)−2(3k−2)+(4k−5)=−8k+8,∴−8×32+8⩽−8k+8⩽−8×54+8,即−4⩽W⩽−2.∴W的最大值是−2,最小值是−4,∴W的最大值与最小值的和为−6,故选:C.小提示:此题考查了最值问题.解此题的关键是设比例式:3−x2=y+23=z+54=k,根据已知求得k的取值范围.此题难度适中,注意仔细分析求解.4、答案:A解析:先解出不等式,然后根据最小整数解为2得出关于m的不等式组,解之即可求得m的取值范围.解:解不等式3x﹣m+1>0,得:x>m−13,∵不等式有最小整数解2,∴1≤m−13<2,解得:4≤m<7,故选A.小提示:本题考查了一元一次不等式的整数解,解一元一次不等式组,正确解不等式,熟练掌握一元一次不等式、一元一次不等式组的解法是解答本题的关键.5、答案:D解析:解不等式组得解集,根据解集可确定这5个整数解,从而可关于a的不等式,解不等式即可得a的取值范围.解不等式组得{x<20x>3−2a,∴3−2a<x<20,∴5个整数解为19,18,17,16,15,∴14≤3−2a<15,∴−6<a≤−112.故选:D小提示:本题考查了解一元一次不等式组,关键是根据不等式组的整数解得到不等式.6、答案:C解析:A、B、D正确,C. 不等式-3x>9的解集是x<-3.故选C.7、答案:B根据题意,直接利用作差法进行计算,得x−y=3m+10,比较3m+10与0的大小,即可得到答案.解:∵x−y=m+15−(5−2m)=3m+10,∵m>−3,∴3m>−9.∴3m+10>1>0.∴x>y.故选:B.小提示:本题考查了有理数的比较大小,以及代数式的变形和不等式的解法,难度适中.解题的关键是熟练掌握作差法比较大小.8、答案:D解析:关键描述语是:特里得分的两倍与纳什得分的差大于10,纳什得分的两倍比特里得分的三倍还多.不等关系为:特里得分×2−纳什得分>10;纳什得分×2>特里得分×3.根据这两个不等关系就可以列出不等式组,从而求解.解:设本场比赛特里得了x分,则纳什得了(x+12)分,根据题意,得{2x−(x+12)>102(x+12)>3x.解得22<x<24.因为x为整数,故x=23,23+12=35.23>20.答:小牛队赢了,特里得了23分,纳什得了35分.D小提示:解决本题的关键是读懂题意,找到符合题意的不等式组.并且要注意未知数的取值是正整数.9、答案:16解析:解不等式组得-3≤x≤4,根据两点间的距离的公式知当-1≤x≤1时,S=|x-1|+|x+1|取得最小值;当x=4时,S=|x-1|+|x+1|取得最大值,继而可得答案.解不等式5(x+1)≥3x﹣1,得:x≥﹣3,解不等式12x−1≤7−32x,得:x≤4,则﹣3≤x≤4,当﹣1≤x≤1时,S=|x﹣1|+|x+1|取得最小值,最小值n=2,当x=4时,S=|x﹣1|+|x+1|取得最大值,最大值m=8,∴mn=2×8=16,所以答案是:16.小提示:本题主要考查解一元一次不等式组,解题的关键是掌握熟练掌握解不等式组的能力和数轴上两点间的距离公式.10、答案:3<a≤4−3≤a<−2解析:(1)根据不等式的解集中最大的整数是3,可得答案.(2)根据不等式的解集中最小整数为-2,可得答案.解:(1)∵x<a的解集中的最大整数为3,∴3<a≤4,所以答案是:3<a≤4.(2)∵x>a的解集中最小整数为-2,∴−3≤a<−2,所以答案是:−3≤a<−2.小提示:本题考查了不等式的解集,熟练掌握不等式的解集是解题关键.11、答案:x<−115解析:根据不等式的性质求出不等式的解集即可.∵−5x>11,两边同除以-5,不等式方向改变,得x<−11.5.故填:x<−115小提示:本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键.12、答案:1,2,3解析:首先确定不等式组的解集,然后再找出不等式的特殊解.移项得:4x≤16﹣4,合并同类项得:4x≤12,系数化为1得:x≤3,所以不等式4(x+1)≤16的正整数解为1,2,3.所以答案是:1,2,3.小提示:本题考查不等式的整数解问题,关键是先求出不等式的解,再找满足条件的解,掌握解不等式要点.13、答案:0,1,2解析:首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.解:移项得:4x-7x≥-12+6,合并同类项得:-3x≥-6;化系数为1得: x≤2;因而不等式的非负整数解是:0,1,2.小提示:正确解不等式,求出解集是解决本题的关键.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.14、答案:(1){x=3y=1;(2)x≥11解析:(1)利用加减消元法求解即可;(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项可得答案.解:(1){x −y =2①x −y =y +1②, ①﹣②得:0=2−(y +1),解得y =1,把y =1代入①可得:x =3,所以方程组的解为{x =3y =1; (2)去分母,得:2(x −2)≥x +1+6,去括号,得:2x −4≥x +7,移项、合并同类项,得:x ≥11.小提示:本题考查解二元一次方程组和一元一次不等式,解题的关键是熟练掌握解解二元一次方程组和一元一次不等式的方法步骤.15、答案:15x +18(12-x)>8解析:根据题意,可得不等关系为以15 km/h 的速度行驶xh 的路程+以18 km/h 的速度行驶(12-x) h 的路程>8 km . 小明上午8∶30出发, 在9∶00前赶到了书店,路途共用了不到12h, 由题意得15x +18(12-x)>8.所以答案是:15x +18(12-x)>8.小提示:此题主要考查列一元一次不等式,找到实际问题的不等关系是解题的关键.。
人教版七年级数学下册不等式与不等式组知识点及习题
三 不等式与不等式组1. 不等式的概念不等式:用不等号表示不等关系的式子,叫做不等式。
不等式的解集:1)对于一个含有未知数的不等式,任何一个适合这个不等式的未知数 的值,都叫做这个不等式的解。
2)对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式 的解的集合,简称这个不等式的解集。
3)求不等式的解集的过程,叫做解不等式。
用数轴表示不等式的方法,2.不等式基本性质1)不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
3. {4. 一元一次不等式➢ 一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
➢ 解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x 项的系数化为14. 一元一次不等式组➢ 一元一次不等式组:1)几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2)几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不 等式组的解集。
[如果a >b, 那么a ±c >b ±c < 如果a >b, c >0,那么ac >bc (或b >a ) 如果a >b, c <0,那么ac <bc (或cb c <a )3)求不等式组的解集的过程,叫做解不等式组。
当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
➢一元一次不等式组的解法:1)分别求出不等式组中各个不等式的解集2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
四不等式与不等式组1.全面调查:考察全体对象的调查方式叫做全面调查。
—2.抽样调查:一种非全面调查,它是从全部调查研究对象中,抽选一部分单位进行调查,并据以对全部调查研究对象作出估计和推断的一种调查方法。
(文末附答案)人教版初中数学不等式与不等式组必考知识点归纳总结
(文末附答案)人教版初中数学不等式与不等式组必考知识点归纳总结单选题1、已知关于x 的分式方程m−2x+1=1的解是负数,则m 的取值范围是( )A .m≤3B .m≤3且m≠2C .m <3D .m <3且m≠22、不等式3x −2<4中,x 可取的最大整数值是( )A .0B .1C .2D .33、为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共( )只.A .55B .72C .83D .894、已知关于x 的不等式(3−a)x >3−a 的解集为x <1,则( )A .a ⩽3B .a ⩾3C .a >3D .a <35、若方程3m(x +1)+1=m(3−x)−5x 的解是正数,则m 的取值范围是( )A .m >54B .m <54C .m >−54D .m <−546、“x 的2倍与3的和是非负数”列成不等式为( )A .2x +3≥0B .2x +3>0C .2x +3≤0D .2x +3<07、某校网课学习的要求是每周听课时长至少达到480分钟算合格.张飞前3天平均每天听课时长为90分钟,问张飞后2天平均每天听课时长不得少于多少分钟才能合格?设张飞后2天平均听课时长为x 分钟,以下所列不等式正确的是( )A .90×3+2x ⩾480B .90×3+2x ⩽480C .90×3+2x <480D .90×3+2x >4808、已知关于x 的不等式(3−a)x >3−a 的解集为x <1,则( )A .a ⩽3B .a ⩾3C .a >3D .a <3填空题9、x 的 13 与 2 的差不小于 5,用不等式表示为________________.10、不等式组{−2x +3≥0x −1>0的解集是_____. 11、不等式3x −5<3+x 的非负整数解有______.12、若不等式(m −6)x >m −6,两边同除以(m −6),得x <1,则m 的取值范围为__.13、定义:[x]表示不大于x 的最大整数,例如:[2.3]=2,[1]=1.有以下结论:①[﹣1.2]=﹣2;②[a ﹣1]=[a]﹣1;③[2a]<[2a]+1;④存在唯一非零实数a ,使得a 2=2[a].其中正确的是_____.(写出所有正确结论的序号)解答题14、若关于x 、y 的二元一次方程组{x −y =2m +1x +3y =3的解满足x +y >0,求m 的取值范围. 15、解不等式组:{3x +6⩾5(x −2)x−52−4x−33<1 ,并求出最小整数解与最大整数解的和.(文末附答案)人教版初中数学不等式与不等式组_005参考答案1、答案:D解析:解方程得到方程的解,再根据解为负数得到关于m的不等式结合分式的分母不为零,即可求得m的取值范围.m−2=1,x+1解得:x=m﹣3,∵关于x的分式方程m−2=1的解是负数,x+1∴m﹣3<0,解得:m<3,当x=m﹣3=﹣1时,方程无解,则m≠2,故m的取值范围是:m<3且m≠2,故选D.小提示:本题考查了分式方程的解,熟练掌握分式方程的解法以及分式方程的分母不为零是解题关键.2、答案:B解析:首先解不等式,再从不等式的解集中找出适合条件的最大正整数即可.解:3x−2<4,3x<4+23x <6x <2,∴最大整数解是1.故选为:B .小提示:本题考查解一元一次不等式,一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.3、答案:C解析:设该村共有x 户,则母羊共有(5x+17)只,根据“每户发放母羊7只时有一户可分得母羊但不足3只”列出关于x 的不等式组,解之求得整数x 的值,再进一步计算可得.设该村共有x 户,则母羊共有(5x +17)只,由题意知,{5x +17−7(x −1)>05x +17−7(x −1)<3解得:212<x <12,∵x 为整数,∴x =11,则这批种羊共有11+5×11+17=83(只),故选C .小提示:本题主要考查一元一次不等式组的应用,解题的关键是理解题意找到题目蕴含的不等关系,并据此得出不等式组.4、答案:C解析:根据不等式的解集与原不等式,发现x系数化为1时,不等式两边同除以一个负数,即3−a<0,解出即可得出答案.∵不等式(3−a)x>3−a的解集为x<1,∴3−a<0,解得:a>3.故选:C.小提示:本题考查不等式的性质和不等式的解集,熟练掌握不等式的性质是解题关键.5、答案:D解析:本题首先要解这个关于x的方程,然后根据解是正数,就可以得到一个关于m的不等式,最后求出m的范围.原方程可整理为:3mx+3m+1=3m−mx−5x,(3m+m+5)x=−1,两边同时除以(4m+5)得,x=−1,4m+5∵方程3m(x+1)+1=m(3−x)−5x的解是正数,∴−1>0,4m+5∴4m+5<0,.解得:m<−54故选:D小提示:6、答案:A解析:非负数就是大于或等于零的数,再根据x的2倍与3的和是非负数列出不等式即可.解:“x的2倍与3的和是非负数”列成不等式为:2x+3≥0,故选:A.小提示:本题考查的是列不等式,掌握“非负数是正数或零,用不等式表示就是大于或等于零”是解题的关键.7、答案:A解析:根据前3天听课的总时间+后2天听课的总时间≥480可得不等式.解:设张飞后2天平均听课时长为x分钟,根据题意,得:3×90+2x⩾480,故选:A.小提示:本题主要考查由实际问题抽象出一元一次不等式,用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号,因此建立不等式要善于从“关键词”中挖掘其内涵,不同的词里蕴含着不同的不等关系.8、答案:C解析:出答案.∵不等式(3−a)x >3−a 的解集为x <1,∴3−a <0,解得:a >3.故选:C .小提示:本题考查不等式的性质和不等式的解集,熟练掌握不等式的性质是解题关键.9、答案:13x −2≥5解析:直接利用“x 的13”即13x ,再利用差不小于5,即大于等于5,进而得出答案.解:由题意可得:13x −2≥5. 所以答案是:13x −2≥5.小提示:本题考查了由实际问题抽象出一元一次不等式,正确理解题意是解题的关键.10、答案:1<x ≤32解析:{−2x +3≥0①x −1>0② ,由①得:x ≤32, 由②得:x >1,∴1<x≤3.2.故答案为1<x≤3211、答案:0,1,2,3解析:先求出不等式的解集,再根据非负整数的定义得到答案.解:3x−5<3+x,2x<8,x<4,∴不等式3x−5<3+x的非负整数解有0,1,2,3,所以答案是:0,1,2,3.小提示:此题考查了解不等式,求不等式的非负整数解,正确解不等式是解题的关键.12、答案:m<6解析:由不等式的基本性质知m-6<0,据此可得答案.解:若不等式(m−6)x>m−6,两边同除以(m−6),得x<1,则m−6<0,解得m<6,所以答案是:m<6.小提示:本题考查了解一元一次不等式,解题的关键是掌握不等式的基本性质.13、答案:①②③.解析:根据题意可以分别判断各个小的结论是否正确,从而可以解答本题.①[﹣1.2]=﹣2,故①正确;②[a﹣1]=[a]﹣1,故②正确;③[2a]<[2a]+1,故③正确;④当a=0时,a2=2[a]=0;当a=√2时,a2=2[a]=2;原题说法是错误的.故答案为①②③.小提示:本题考查新定义,解答本题的关键是明确题目中的新定义,可以判断出各个小题中的结论是否正确.14、答案:m>﹣2解析:两方程相加可得x+y=m+2,根据题意得出关于m的方程,解之可得.解:将两个方程相加即可得2x+2y=2m+4,则x+y=m+2,根据题意,得:m+2>0,解得m>﹣2.小提示:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15、答案:−3<x⩽8,6解析:根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集,即可求出答案.解:{3x+6⩾5(x−2)①x−52−4x−33<1②,由①得:x⩽8,由②得:x>−3,∴不等式组的解集为−3<x⩽8,∴x的最小整数为−2,最大整数为8,∴x的最小整数解与最大整数解的和为6.小提示:本题考查了解一元一次不等式组,一元一次不等式组的整数解,解题的关键是能根据不等式的解集求出不等式组的解集.。
人教版七年级数学下册 第九章 不等式与不等式组 知识点总结及典型例题 (25张PPT)
知识点 4 不等式的性质2,3
不0等式的性质2 9
不等式两边乘(或除以)同一 个正数,不等号的方向不变
字母表示:(1)如果a>b,c>0,那么ac>bc(或
a c
b c
);
(2)如果a<b,c>0,那么ac<bc(或
a c
b c
).
不等式的性质3
0
9
不等式两边乘(或除以)同一 个负数,ห้องสมุดไป่ตู้等号的方向改变
故x=3是不等式的解,同理可知,x=π也是不等式的解;把X=0代入不等
知识点 2 不等式的解、解集与解不等式
式的左边,得3x-1=-1<2,所以不等式不成立,故x=0不是不等式的解。 同理可知,x=-2,x= 1 也不是不等式的解。
2
(2)根据不等关系,易知不等式的解集为x>3,在数轴上表示时,要 注意表示3的点上画空心圆圈。 答案:(1)A (2)x>3 如图:
知识点 3 不等式的性质1
解析:(1)已知a>b,根据不等式的性质1,不等式两边加1,不等号的方向不 变,得到a+1>b+1; (2)已知a<b,根据不等式的性质1,不等式两边减3,不等号的方向不变,得 到a-3>b-3; (3)已知a>b,根据不等式的性质1,不等式两边加a,不等号的方向不变,得 到2a>a+b. 总结:不等式的性质1是对不等式的两边同时进行加减,所加或所减的数(或式 子)要相同,不等号的方向不变.
2.一元一次不等式与一元一次方程的异同点
相同点 不同点
两者都只含有一个未知数,且含未知数的项的最高次数 是1,左、右两边都是整式 一元一次不等式表示的是不等关系,用不等号连接;一 元一次方程表示的是相等关系,用等号连接
(文末附答案)人教版初中数学不等式与不等式组知识点总结全面整理
(文末附答案)人教版初中数学不等式与不等式组知识点总结全面整理单选题1、已知关于x的不等式2x+a≤1与−2x≥2的解集相同,则a的值为()A.3B.2C.1D.无法确定2、下列说法中错误的是()A.不等式x+2≤3的整数解有无数个B.不等式x+4<5的解集是x<1C.不等式x<3的正整数解有限个D.0是不等式2x<−1的解3、若关于x的不等式3-x>a的解集为x<4,则关于m的不等式2m+3a<1的解集为()A.m<2B.m>1C.m>-2D.m<-14、ax>b的解集是()A.x>ba B.x<baC.x=baD.无法确定5、某城市的出租车收费标准是:起步价6元(即行驶距离不超过3千米需付6元车费),超过3千米后,每增加1千米加收1.5元(不足1千米按1千米计),小王乘这种出租车从甲地到乙地支付车费18元,设他乘坐的路程为x千米,则x的最大值为().A.7B.9C.10D.116、3x−8的值不大于8−x的值,x的取值范围是()A.x≥4B.x≤4C.x≥−2.5D.x≤−2.57、若3x>−3y,则下列不等式中一定成立的是()A.x+y>0B.x−y>0C.x+y<0D.x−y<08、不等式x+2≥3的解集在数轴上表示正确的是()A .B .C .D . 填空题9、x 的 13 与 2 的差不小于 5,用不等式表示为________________.10、已知实数x 满足{5(x +1)≥3x −112x −1≤7−32x ,若S =|x ﹣1|+|x+1|的最大值为m ,最小值为n ,则mn =_____. 11、定义:[x]表示不大于x 的最大整数,例如:[2.3]=2,[1]=1.有以下结论:①[﹣1.2]=﹣2;②[a ﹣1]=[a]﹣1;③[2a]<[2a]+1;④存在唯一非零实数a ,使得a 2=2[a].其中正确的是_____.(写出所有正确结论的序号)12、若不等式组{2x −b ≥0x +a ≤0的解集为3≤x ≤4,则不等式ax +b <0的解集为____. 13、不等式组{x +1⩾12(x +3)−3>3x的解集是_____. 解答题14、为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A ,B 两种型号的学习用品共1000件,已知A 型学习用品的单价为20元,B 型学习用品的单价为30元.(1)若购买这批学习用品用了26000元,则购买A ,B 两种学习用品各多少件?(2)若购买这批学习用品的钱不超过28000元,则最多购买B 型学习用品多少件?15、已知b =4√3a −2+2√2−3a +2,求1a +1b 的算术平方根.(文末附答案)人教版初中数学不等式与不等式组_015参考答案1、答案:A解析:求出不等式−2x≥2的解集,对应2x+a≤1即可得出答案.解:2x+a≤1,,解得x≤1−a2−2x≥2,解得x≤−1,∴1−a=−1,2∴a=3,故选:A.小提示:本题考查了解一元一次不等式以及解一元一次方程,解题的关键是根据两不等式解集相同得出关于a的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,能够熟练的运用解不等式的知识解出不等式是关键.2、答案:D解析:逐一对选项进行分析即可.A. 不等式x+2≤3的解集为x≤1,所以整数解有无数个,故正确;B. 不等式x+4<5的解集是x<1,故正确;C. 不等式x<3的正整数解为1,2,是有限个,故正确;D. 0不是不等式2x<−1的解,故错误;故选:D.小提示:本题主要考查不等式的解集及解的个数,会解不等式是解题的关键.3、答案:A解析:试题解析:解不等式3−x>a,得x<3−a,又∵此不等式的解集是x<4,∴3−a=4,∴a=−1,∴关于m的不等式为2m−3<1,解得m<2.故选A.4、答案:D解析:根据不等式的性质,先确定a的符号,再确定不等号的方向即可解答.解:由于a的符号不能判断,所以不等号的方向也不确定,所以解集无法确定.故选D.小提示:本题考查了不等式的性质:在不等式两边同加或减一个数或式子,不等号方向不变;在不等式两边同乘或除以一个正数或式子,不等号的方向不变;在不等式两边同乘或除以一个负数或式子不等号方向改变.5、答案:D解析:根据题意18>6判断小王行驶路程x>3千米,再由出租车从甲地到乙地支付车费18元,列一元一次不等式6+1.5(x−3)≤18,解此不等式即可解题.解:∵18>6∴x>3设小王从甲地到乙地经过的路程是x千米,根据题意得:6+1.5(x−3)≤18,解得x≤11,∴小王从甲地到乙地经过的路程的最大值为11千米,故选:D.小提示:本题考查一元一次不等式的运用,是基础考点,掌握相关知识是解题关键.6、答案:B解析:先根据语句列不等式,然后解不等式即可.解:∵3x−8的值不大于8−x的值,∴3x−8≤8−x,移项合并得4x≤16,解得x≤4.故答案为B.小提示:本题考查列不等式,和解不等式,根据语句列不等式是关键.7、答案:A解析:根据不等式的性质,可得答案.解:两边都除以3,得x>−y,两边都加y,得x+y>0,故选:C.小提示:本题考查了不等式的性质,解题的关键是熟记不等式的性质并根据不等式的性质求解.8、答案:D解析:先求出不等式的解集,再根据数轴的特点表示解集即可.解:x+2≥3,解得x≥1,在数轴上表示解集为:,故选:D.小提示:此题考查了求不等式的解集,在数轴上表示不等式的解集,掌握数轴上表示不等式解集的方法是解题的关键.9、答案:13x −2≥5解析:直接利用“x 的13”即13x ,再利用差不小于5,即大于等于5,进而得出答案.解:由题意可得:13x −2≥5. 所以答案是:13x −2≥5.小提示:本题考查了由实际问题抽象出一元一次不等式,正确理解题意是解题的关键.10、答案:16解析:解不等式组得-3≤x≤4,根据两点间的距离的公式知当-1≤x≤1时,S=|x-1|+|x+1|取得最小值;当x=4时,S=|x-1|+|x+1|取得最大值,继而可得答案.解不等式5(x+1)≥3x ﹣1,得:x≥﹣3,解不等式12x −1≤7−32x ,得:x≤4,则﹣3≤x≤4,当﹣1≤x≤1时,S =|x ﹣1|+|x+1|取得最小值,最小值n =2,当x =4时,S =|x ﹣1|+|x+1|取得最大值,最大值m =8,∴mn =2×8=16,所以答案是:16.小提示:本题主要考查解一元一次不等式组,解题的关键是掌握熟练掌握解不等式组的能力和数轴上两点间的距离公式.11、答案:①②③.解析:根据题意可以分别判断各个小的结论是否正确,从而可以解答本题.①[﹣1.2]=﹣2,故①正确;②[a ﹣1]=[a]﹣1,故②正确;③[2a]<[2a]+1,故③正确;④当a =0时,a 2=2[a]=0;当a =√2时,a 2=2[a]=2;原题说法是错误的.故答案为①②③.小提示:本题考查新定义,解答本题的关键是明确题目中的新定义,可以判断出各个小题中的结论是否正确.12、答案:x >32## x >1.5 解析:解:解{2x −b ≥0x +a ≤0得b 2≤x ≤−a . ∵不等式组{2x −b ≥0x +a ≤0的解集为3≤x ≤4,∴{b 2=3−a =4⇒{b =6a =−4. ∴不等式ax +b <0为﹣4x +6<0,解得x >32.13、答案:0≤x <3解析:{x +1≥1①2(x +3)−3>3x② ,解①得x ≥0;解②得x <3;∴不等式组的解集是0≤x <3.故答案为0≤x<3. 14、答案:(1)购买A 型学习用品400件,B 型学习用品600件.(2)最多购买B 型学习用品800件 解析:(1)设购买A 型学习用品x 件,B 型学习用品y 件,就有x+y=1000,20x+30y=26000,由这两个方程构成方程组求出其解就可以得出结论.(2)设最多可以购买B 型产品a 件,则A 型产品(1000﹣a )件,根据这批学习用品的钱不超过28000元建立不等式求出其解即可.解:(1)设购买A 型学习用品x 件,B 型学习用品y 件,由题意,得{x +y =100020x +30y =26000 ,解得:{x =400y =600. 答:购买A 型学习用品400件,B 型学习用品600件.(2)设最多可以购买B 型产品a 件,则A 型产品(1000﹣a )件,由题意,得20(1000﹣a )+30a≤28000,解得:a≤800.答:最多购买B 型学习用品800件15、答案:√2.解析:根据算术平方根的定义可得{3a −2≥0,2−3a ≥0.解不等式组,求出a,b ,代入求值即可. 解:根据题意,得{3a −2≥0,2−3a ≥0.则a =23, ∴b =2,∴1a +1b =32+12=2, ∴1a +1b 的算术平方根为√1a +1b =√2. 小提示:本题考核知识点:算术平方根,解不等式组.理解算术平方根定义和解不等式组方法是关键.。
人教版七年级下册不等式与不等式组知识总结与练习题
第九章不等式与不等式组1. 知识总结一、不等式的概念1.不等式:用不等号表示不等关系的式子,叫做不等式。
2.不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3.不等式的解集:对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
4.解不等式:求不等式的解集的过程,叫做解不等式。
5.用数轴表示不等式的解集。
二、不等式的基本性质1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2.不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3.不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。
②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。
三、一元一次不等式1.一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2.解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1四、一元一次不等式组1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
5、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
12. 练习题一. 选择题1.在平面直角坐标系中,若点P (m -3,m +1)在第二象限,则m 的取值范围为( )A .-1<m <3B .m >3C .m <-1D .m >-1 2.已知关于的一元二次方程有两个不相等的实数根,则实数的取值范围是( ) A . B .C .D .3.把不等式组的解集表示在数轴上正确的是( )4.如图,a 、b 、c 分别表示苹果、梨、桃子的质量.同类水果质量相等,则下列关系正确的是( )A .a >c >bB .b >a >cC .a >b >cD .c >a >b5.若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).A. a <0B. a >-1C. a <-1D. a <16.若不等式组⎩⎨⎧>≤<k x x ,21有解,则k 的取值范围是( ).A. k <2B. k ≥2C.k <1 D. 1≤k <27.不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ).A. m ≤2B. m ≥2C.m ≤1D. m ≥1 8.a 、b 是有理数,下列各式中成立的是( ).A. 若a >b ,则a 2>b 2B. 若a 2>b 2,则a >bC. 若a ≠b ,则|a |≠|b |D. 若|a |≠|b |,则a ≠b9.九年级(1)班的几个同学,毕业前合影留念,每人交0.70元.一张彩色底片0.68元,扩印一张相片0.50元,每人分一张.在收来的钱尽量用掉的前提下,这张相片上的同学最少有( ). A. 2人B. 3人C. 4人D. 5人310.已知实数a/b/c/在数轴上的对应点如图,则下列式子正确的是( )A cb>abB ac>abC cb<abD c+b<a+b二. 填空题 1.不等式组的解集为 .2.不等式组的整数解的个数为 .3.已知3x+4≤6+2(x -2),则 的最小值等于________.4.如图,已知函数和的图象交点为,则不等式的解集为 .5.已知:23=+b a .当b = 时,1-<a ≤2. 6.不等号填空:若a<b<0 ,则5a -5b -;a1 b 1;12-a 12-b7.某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是 . 8.已知不等式组的解集为-1<x <2,则(m +n)2008=__________.9.若a 2>a ,则a 的取值范围是____________. 10.对于整数a ,b ,c ,d ,定义bd ac cdb a -=,已知3411<<db ,则b +d 的值为_________.11.k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1.12.6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3千克、5千克和8千克.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20千克散装大米,他们选购的3只环保购物袋至少..应付给超市______元.三. 解答题12.解下列不等式.15)2(22537313-+≤--+x x x ⋅->+-+2503.0.02.003.05.09.04.0x x x3.若|3x-6|+(2x-y-m)2=0,求m 为何值时y 为正数4.已知不等式组2665ax a x b->⎧⎨-<⎩的解集是1<x <b .则a +b 的值?5.当k 取何值时,方程x-2k=3(x-k)+1的解为负数6.如果1001<<<<-y x 、,则比较2xy xy x 、、的大小.7.解不等式组: ⎪⎪⎩⎪⎪⎨⎧<-+--<+-51)5(32,22)3(32x x ⎪⎩⎪⎨⎧-++≤--)12(23134122x x x x x 8.若0231<-+x x ,求x 的取值范围.59.当310)3(2k k -<-时,求关于x 的不等式k x x k ->-4)5(的解集.10.有一个两位数,其十位上的数比个位上的数小2,已知这个两位数大于20且小于40,求这个两位数11.某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A 、B 两种产品共50件,已知生产一件A 种产品用甲种原料9千克,乙种原料3千克,可获利700元;生产一件B 种产品用甲种原料4千克,乙种原料10千克,可获利1200元。
人教版七年级数学下册第九章 不等式与不等式组知识点及题型总结讲义
①已知不等式组 xx>>3a的解集为 x>3,则 a 的取值范围是
②已知不等式组 xx>>3a的解集为 x>a,则 a 的取值范围
x>a
③已知不等式组 x<3 无解,则 a 的取值范围
.
x>a
④已知不等式组 x<3 有解,则 a 的取值范围
.
. .
变式:1、不等式组
x 9<5x x>m 1
1
的解集是
① 3x 2 5x 6
3 2x 2 x
x 3(x 2) 4
②
1 2x 3
x
1
③⑥-2<1-
1 5
x< 3 5
2x - 7<(3 x -1)
④
4 3
x
3
1-
2 3
x
2x -1 - 5x 1 1 3、解不等式组 3 2 并写出该不等式组的最大整数解.
5x -1<(3 x 1)
C. x>0
D.x≥1
3、若不等式 x-3(x-2)≤a 的解集为 x≥-1,则 a=( )
4.若(m - 2)x2m1 -1>5是关于 x 的一元一次不等式,则该不等式的解集为
.
2、一元一次不等式的特殊解
练习:1、求 x+3<6 的所有正整数解.
2、求 10-4(x-3)≥2(x-1)的非负整数解,并在数轴上表示出来.
考点二、不等式基本性质
1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
逆定理:不等式两边都乘以(或除以)同一个数,若不等号的方向不变,则这个数是正数.
基本训练:若 a>b,ac>bc,则 c
0.
3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
人教版中考数学不等式及不等式组知识点总结(3大知识点+例题).doc
人教版中考数学不等式及不等式组知识点总结(3大知识点+例题)
不等式及不等式组知识点:
一、不等式与不等式的性质
1、不等式:表示不等关系的式子。
(表示不等关系的常用符号:≠,<,>)。
2、不等式的性质:
(l)不等式的两边都加上(或减去)同一个数,不等号方向不改变,如a>b,c为实数
a+c>b+c
(2)不等式两边都乘以(或除以)同一个正数,不等号方向不变,如a>b,c>0
ac>bc。
(3)不等式两边都乘以(或除以)同一个负数,不等号方向改变,如a>b,c<0
ac<bc.
注:在不等式的两边都乘以(或除以)一个实数时,一定要养成好的习惯、就是先确定该数的数性(正数,零,负数)再确定不等号方向是否改变,不能像应用等式的性质那样随便,以防出错。
七年级数学第九章不等式与不等式组(知识点归纳+达标检测)
第九章不等式与不等式组(知识点归纳+达标检测)9.1不等式及其解集【知识点】 一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集.求不等式的解集的过程叫做解不等式. ⑴不等式分两大类:①表示大小关系的不等式,其符号类型有:“>”、“<”、“”、“”. “”读作“小于或等于”也可以说是“不大于”;“”读作“大于或等于”也可以说“不小于” ②表示不等关系的不等式,其符号为“”,读作“不等于”,它说明两个量之间的关系是不等的,但不明确谁大,谁小.③有些不等式不含未知数,有些不等式含未知数. ⑵不等式的解集的表示方法:①用最简的不等式表示:如的解集为.②用数轴表示:如 在表示 a 的点上用空心圆圈表示不包括这一点,在表示a 的点上用实心点表示包括这一点.⑶一元一次不等式与一元一次方程的“两边”1.都是整式.中x 在分母位置,这个不等式不是一元一次不等式.【达标检测】1.从小明家到学校的路程是2400米,如果小明早上7点离家,要在7点40分之前到达学校,你认为小明的速度应该满足什么条件 ?你能求出它的解集吗?如果能并用数轴表示出来。
2、用不等式表示图中的解集:3、下列式子哪些是不等式?哪些不是不等式?(1) -2<5 (2)x+3> 2x (3) 4x-2y <0 (4) a-2b (5)x2-2x+1<0 (6) a+b ≠c (7)5m+3=8 (8)x ≤-43、下列数哪些是不等式3X >6的解?哪些不是? -4, 3 ,0,1,2.5,-2.5 ,3.2,4.8,8,124、直接想出不等式的解集:(1)x+3>8 (2) 2y<8 (3)a-2 <0【检测二】 一、填空题1.用不等式表示:≤≥≤≥≠26x -<8x <x a >x a ≥5023x <(1)m -3是正数______; (2)y +5是负数______; (3)x 不大于2______;(4)a 是非负数______;(5)a 的2倍比10大______; (6)y 的一半与6的和是负数______;(7)x 的3倍与5的和大于x 的______; (8)m 的相反数是非正数______.2.画出数轴,在数轴上表示出下列不等式的解集: (1) (2)x ≥-4.(3)(4)二、选择题3.下列不等式中,正确的是( ). (A) (B)(C)(-6.4)2<(-6.4)3 (D)-|-27|<-(-3)3 4.“a 的2倍减去b 的差不大于-3”用不等式可表示为( ). (A)2a -b <-3 (B)2(a -b )<-3 (C)2a -b ≤-3 (D)2(a -b )≤-35.如图,天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m (g)的取值范围在数轴上可表示为( ).三、解答题6.利用数轴求出不等式-2<x ≤4的整数解.综合、运用、诊断一、填空题7.用“<”或“>”填空: (1)-2.5______5.2;(2)______; (3)|-3|______-(-2.3);(4)a 2+1______0; (5)0______|x |+4; (6)a +2______a .31⋅>213x ⋅≤51x ⋅-<312x 4385-<-5172<114-125-8.“x 的与5的差不小于-4的相反数”,用不等式表示为______. 二、选择题9.如果a 、b 表示两个负数,且a <b ,则( ). (A)(B)<1 (C)(D)ab <110.如图,在数轴上表示的解集对应的是( ).(A)-2<x <4 (B)-2<x ≤4 (C)-2≤x <4 (D)-2≤x ≤4 11.a 、b 是有理数,下列各式中成立的是( ).(A)若a >b ,则a 2>b 2 (B)若a 2>b 2,则a >b (C)若a ≠b ,则|a |≠|b | (D)若|a |≠|b |,则a ≠b 12.|a |+a 的值一定是( ).(A)大于零 (B)小于零 (C)不大于零 (D)不小于零 三、判断题13.不等式5-x >2的解集有无数个. ( ) 14.不等式x >-1的整数解有无数个. ( ) 15.不等式的整数解有0,1,2,3,4. ( )16.若a >b >0>c ,则( )四、解答题17.若a 是有理数,比较2a 和3a 的大小.拓展、探究、思考18.若不等式3x -a ≤0只有三个正整数解,求a 的取值范围.19.对于整数a ,b ,c ,d ,定义,已知,则b +d 的值为_________.231>ba ba ba 11<32421<<-x .0>cabbd ac c d b a -=3411<<d b9.1.2不等式的性质不等式性质1:不等式两边都加上(或减去)同一个数(或式子),不等号的方向不变. 不等式性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变. 不等式性质3:不等式两边都乘(或除以)同一个负数,不等号的方向改变.【达标检测一】1.下列说法中,正确的有( )①若a >b ,则a -b >0; ②若a >b ,则ac 2>bc 2; ③若ac >bc ,则a >b ; ④若ac 2>bc 2,则a >b. A 、1个 B 、2个 C 、3个 D 、4个 2.下列表达中正确的是( )A 、若x 2>x ,则x <0 B 、若x 2>0,则x >0 C 、若x <1则x 2<x D 、若x <0,则x 2>x 3.如果不等式ax <b 的解集是x <,那么a 的取值范围是( ) A 、a ≥0 B 、a ≤0 C 、a >0 D 、a <0 4.用“<”或“>”填空:(1)若x >y ,则-; (2)若x +2>y +2,则-x____-y ; (3)若a >b ,则1-a ______ 1-b ;(4)已知x -5<y -5,则x _ y.5.若6-5a >6-6b ,则a 与b 的大小关系是_______.6.若不等式-3x +n >0的解集是x <2,则不等式-3x +n <0的解集是________. 7.如果a <-2,那么a 与的大小关系是___________. 8.若a>b,用“<”或“>”填空。
人教版七年级数学下册—第9章不等式与不等式组单元总结复习
不等式与不等式组知识框架:不等式与不等式组⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧不等式的实际应用解集定义一元一次不等式组解集定义一元一次不等式不等式的基本性质不等式的概念知识梳理:1、不等式的概念1、不等式:用不等号表示不等关系的式子,叫做不等式。
2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
4、求不等式的解集的过程,叫做解不等式。
5、用数轴表示不等式的方法 2、不等式基本性质1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。
②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立; 3、一元一次不等式(1)一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
(2)解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x 项的系数化为14、一元一次不等式组(1)一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
1、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
口诀:大大取较大,小小取较小,大小、小大中间找,大大、小小无处找2、求不等式组的解集的过程,叫做解不等式组。
3、当任何数x 都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
人教版七年级数学下册 第九章 不等式与不等式组 知识点总结及典型例题 (25张PPT)
字母表示:(1)如果a>b,那么a+c>b+c; (2)如果a<b,那么a+c<b+c.
注:不等式的性质1是对不等式的两边同时进行加减,所加或所减的数 (或式子)要相同,不等号的方向不变.
例:填空: (1)已知a>b,则a+1___b+1,根据:________________; (2)已知a<b,则a-3___b-3,根据:________________; (3)已知a>b,则2a___a+b,根据:________________;
故x=3是不等式的解,同理可知,x=π也是不等式的解;把X=0代入不等
知识点 2 不等式的解、解集与解不等式
式的左边,得3x-1=-1<2,所以不等式不成立,故x=0不是不等式的解。 同理可知,x=-2,x= 1 也不是不等式的解。
2
(2)根据不等关系,易知不等式的解集为x>3,在数轴上表示时,要 注意表示3的点上画空心圆圈。 答案:(1)A (2)x>3 如图:
“公共部分”是指解集中同时满足不等式组中每一个不等式的 那部分解集.若组成不等式组的各个不等式的解集没有公共部 分,则这个不等式组无解.
2.特别提醒:数轴是确定一元一次不等式组解集的有效工具,要注意“两定”: (1)定边界点:一般在数轴上只标出原点和边界点即可.定边界点时要注意点
是实心圆点还是空心圆圈,若边界点含于解集则为实心圆点;若边界点 不
第九章 不等式与不等式组 知识点梳理
知识点 1 不等式的概念
1.不等式:用符号“>”“<”(或“≠”)表示大小(或不等)关系的式子.
2.注意:
(1)“>”是大于号,读作“大于”;“<”是小于号,读作“小于”.
新人教版七年级数学下册不等式与不等式组知识点归纳总结
不等式与不等式组1不等式及其解集1、用“<”或“>”号表示大小关系的式子叫做不等式。
(有些含有未知数,不含未知数。
)2、不等式的符号统称不等号,有“>” “<” “≠”. 其中“≤” “≥”,也是不等号.其中,“≤”表示,不大于、不超过,“≥”表示不小于、不低于。
3、使不等式成立的未知数的值叫做不等式的解。
4、一个含有未知数的不等式的所有的解,组成这个不等式的解集。
5、解与解集的关系:不等式的解集包括不等式全体的解;解集中的任何一个数都是不等式的解。
6、用数轴表示解集:在数轴上标出某一区间,其中的点对应的数值都是不等式的解。
①方向线向左表示小于,方向线向右表示大于;②空心圆圈表示不包括;③实心圆圈表示包括。
7、用数轴表示解集的步骤:①画数轴;②找点;③定向;④画线。
8、求不等式的解集的过程叫做解不等式。
9、含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。
2不等式的性质1、不等式的性质1 不等式两边同时加(或减)同一个数(或式子),不等号的方向不变。
如果a >b ,那么a ±c >b ±c 。
不等式的性质2 不等式两边同乘(或除以)同一个正数,不等号的方向不变。
如果a >b,c >0,那么ac >bc (或c a >c b )。
不等式的性质3 不等式两边同乘(或除以)同一个负数,不等号的方向改。
如果a >b,c <0,那么ac<bc (或c a <c b )。
2、解未知数为x 的不等式,就是要使不等式逐步化为x >a 或x <a 的形式。
3、解不等式时也可以“移项”,即把不等式一边的某项变号后移到另一边,而不改变不等号的方向。
4、解不等式时要注意未知数系数的正负,以决定是否改变不等号的方向。
5、解一元一次方程,要根据等式的性质,将方程逐步化为x =a 的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为x <a (或x >a )的形式。
3一元一次不等式组1、把几个不等式合起来,就组成了一个一元一次不等式组。