小学奥数知识3-2-9接送问题.学生版
小学奥数接送问题
⼩学奥数接送问题接送问题教学⽬标1、准确画出接送问题的过程图——标准:每个量在相同时间所⾛的路程要分清2、理解运动过程,抓住变化规律3、运⽤⾏程中的⽐例关系进⾏解题知识精讲⼀、校车问题——⾏⾛过程描述队伍多,校车少,校车来回接送,队伍不断步⾏和坐车,最终同时到达⽬的地,即到达⽬的地的最短时间,不要求证明。
⼆、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式⼦1、总时间=⼀个队伍坐车的时间+这个队伍步⾏的时间;2、班车⾛的总路程;3、⼀个队伍步⾏的时间=班车同时出发后回来接它的时间。
模块⼀、汽车接送问题——接⼀个⼈【例 1】某校和某⼯⼚之间有⼀条公路,该校下午2时派车去该⼚接某劳模来做报告,往返需⽤1⼩时.这位劳模在下午1时便离⼚步⾏向学校⾛来,途中遇到接他的汽车,便⽴刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步⾏速度的⼏倍?【巩固】(2008年“陈省⾝杯”国际青少年数学邀请赛)张⼯程师每天早上8点准时被司机从家接到⼚⾥。
⼀天,张⼯程师早上7点就出了门,开始步⾏去⼚⾥,在路上遇到了接他的汽车,于是,他就上车⾏完了剩下的路程,到⼚时提前20分钟。
这天,张⼯程师还是早上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了接他的汽车,那么这次他⽐平常要提前分钟到⼚。
模块⼆、汽车接送问题——接两个⼈或多⼈(⼀)、车速不变、⼈速不变【例 2】(难度级别※※※)A 、B 两个连队同时分别从两个营地出发前往⼀个⽬的地进⾏演习,A 连有卡车可以装载正好⼀个连的⼈员,为了让两个连队的⼠兵同时尽快到达⽬的地,A 连⼠兵坐车出发⼀定时间后下车让卡车回去接B 连的⼠兵,两营的⼠兵恰好同时到达⽬的地,已知营地与⽬的地之间的距离为32千⽶,⼠兵⾏军速度为8千⽶/⼩时,卡车⾏驶速度为40千⽶每⼩时,求两营⼠兵到达⽬的地⼀共要多少时间?【巩固】甲班与⼄班学⽣同时从学校出发去公园,两班的步⾏速度相等都是4千⽶/⼩时,学校有⼀辆汽车,它的速度是每⼩时48千⽶,这辆汽车恰好能坐⼀个班的学⽣.为了使两班学⽣在最短时间内到达公园,设两地相距150千⽶,那么各个班的步⾏距离是多少?【例 3】(难度级别※※)甲、⼄、丙三个班的学⽣⼀起去郊外活动,他们租了⼀辆⼤巴,但⼤巴只够⼀个班的学⽣坐,于是他们计划先让甲班的学⽣步⾏,⼄丙两班的学⽣步⾏,甲班学⽣搭乘⼤巴⼀段路后,下车步⾏,然后⼤巴车回头去接⼄班学⽣,并追赶上步⾏的甲班学⽣,再回头载上丙班学⽣后⼀直驶到终点,此时甲、⼄两班也恰好赶到终点,已知学⽣步⾏的速度为5千⽶/⼩时,⼤巴车的⾏驶速度为55千⽶/⼩时,出发地到终点之间的距离为8千⽶,求这些学⽣到达终点⼀共所花的时间.【例 4】海淀区劳动技术学校有100名学⽣到离学校33千⽶的郊区参加采摘活动,学校只有⼀辆限乘25⼈的中型⾯包车.为了让全体学⽣尽快地到达⽬的地.决定采取步⾏与乘车相结合的办法.已知学⽣步⾏的速度是每⼩时5千⽶,汽车⾏驶的速度是每⼩时55千⽶.请你设计⼀个⽅案,使全体学⽣都能到达⽬的地的最短时间是多少⼩时1份【例 5】甲、⼄两班学⽣到离校39千⽶的博物馆参观,但只有⼀辆汽车,⼀次只能乘坐⼀个班的学⽣.为了尽快到达博物馆,两个班商定,由甲班先坐车,⼄班先步⾏,同时出发,甲班学⽣在途中某地下车后步⾏去博物馆,汽车则从某地⽴即返回去接在途中步⾏的⼄班学⽣.如果甲、⼄两班学⽣步⾏速度相同,汽车速度是他们步⾏速度的10倍,那么汽车应在距博物馆多少千⽶处返回接⼄班学⽣,才能使两班同时到达博物馆?A B C D【例 6】(难度级别※※※※)甲、⼄两班学⽣到离校24千⽶的飞机场参观,但只有⼀辆汽车,⼀次只能乘坐⼀个班的学⽣.为了尽快到达飞机场,两个班商定,由甲班先坐车,⼄班先步⾏,同时出发,甲班学⽣在途中某地下车后步⾏去飞机场,汽车则从某地⽴即返回接在途中步⾏的⼄班学⽣.如果甲、⼄两班学⽣步⾏速度相同,汽车速度是他们步⾏速度的7倍,那么汽车应在距飞机场多少千⽶处返回接⼄班学⽣,才能使两班同时到达飞机场?【例 7】(2008年“迎春杯”六年级初赛)A、B两地相距22.4千⽶.有⼀⽀游⾏队伍从A出发,向B匀速前进;当游⾏队伍队尾离开A时,甲、⼄两⼈分别从A、B两地同时出发.⼄向A步⾏;甲骑车先追向队头,追上队头后⼜⽴即骑向队尾,到达队尾后再⽴即追向队头,追上队头后⼜⽴即骑向队尾……当甲第5次追上队头时恰与⼄相遇在距B地5.6千⽶处;当甲第7次追上队头时,甲恰好第⼀次到达B地,那么此时⼄距A地还有__________千⽶.(⼆)车速不变、⼈速变【例 8】(难度级别※※)甲班与⼄班学⽣同时从学校出发去公园,甲班步⾏的速度是每⼩时4千⽶,⼄班步⾏的速度是每⼩时3千⽶。
小学奥数 行程为题之接送问题 完整版例题讲解 带非常详细版答案解析
【例2】甲、乙、丙三个班的学生一起去郊外活动,他们租了一辆 大巴,但大巴只够一个班的学生坐,于是他们计划先让甲班的学 生步行,乙丙两班的学生步行,甲班学生搭乘大巴一段路后,下 车步行,然后大巴车回头去接乙班学生,并追赶上步行的甲班学 生,再回头载上丙班学生后一直驶到终点,此时甲、乙两班也恰 好赶到终点,已知学生步行的速度为5千米/小时,大巴车的行驶 速度为55千米/小时,出发地到终点之间的距离为8千米,求这些 学生到达终点一共所花的时间.
到C用了40÷2=20分钟,也就是2时20分在C点与劳模相遇.此时劳
模走了1小时20分,也就是80分钟.
另一方面,汽车走两个AB需要1小时,也就是从B点走到A点需要30
分钟,而前面说走完BC 需要20分钟,所以走完AC要10分钟,也就
是说BC=2AC.走完AC,劳模用了80分钟;走完BC,汽车用了20
【解析】由于卡车的速度为士兵行军速度的5倍,因此卡车折回时 已走的路程是B连士兵遇到卡车时已走路程的3倍,而卡车折回所 走的路程是B连士兵遇到卡车时已走路程的2倍,卡车接到B连士 兵后,还要行走3倍B连士兵遇到卡车时已走路程才能追上A连士 兵,此时他们已经到达了目的地,因此总路程相当于4倍B连士兵 遇到卡车时已走路程,所以B连士兵遇到卡车时已走路程为8千米 ,而卡车的总行程为(3+2+3)×8=64千米,这一段路,卡车 行驶了64÷40=8/5小时,即1小时36分钟这也是两营士兵到达目 的地所花的时间.
分钟.劳模用时是汽车的4倍,而汽车行驶距离是劳模的2倍,所以
汽车的速度是劳模速度的4×2=8倍.
【巩固1】张工程师每天早上8点准时被司机从家接到厂里。一天,张工程 师早上7点就出了门,开始步行去厂里,在路上遇到了接他的汽车,于是, 他就上车行完了剩下的路程,到厂时提前20分钟。这天,张工程师还是早 上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在 路上遇到了接他的汽车,那么这次他比平常要提前多少分钟到厂?
三年级奥数常考题接送问题
三年级奥数常考题:接送问题小学奥数题目【例一】:奥数接送问题例题1:如果A、B两地相距10千米,一个班有学生45人,由A地去B地,现在有一辆马车,车速是人步行的3倍,马车每次可以乘坐9人,在A地先将第一批学生送到B地,其余的学生同时向B地前进;车到B地后立即返回,在途中与步行的学生相遇后,再接9名学生前往B地,余下的学生继续向B地前进...多次往返后,当全体学生到达B地时,马车共行了多少千米?答案:10*(1+2/3*3/4*2+1/3*3/4*2+1/6*3/4*2+1/8*3/4*2)=10*47/16=235/8千米奥数接送问题例题2:某工厂每天早晨都派小汽车接专家上班.有一天,专家为了早些到厂,比平时提前一小时出发,步行去工厂,走了一段时间后遇到来接他的汽车,他上车后汽车立即调头继续前进,进入工厂大门时,他发现只比平时早到10分钟,问专家在路上步行了多长时间才遇到汽车?(设人和汽车都作匀速运动,他上车及调头时间不记)解析:设专家从家中出发后走到M处(如图1)与小汽车相遇。
由于正常接送必须从B→A→B,而现在接送是从B→M→B恰好提前10分钟;则小汽车从M→A→M刚好需10分钟;于是小汽车从M→A只需5分钟。
这说明专家到M处遇到小汽车时再过5分钟,就是以前正常接送时在家的出发时间,故专家的行走时间再加上5分钟恰为比平时提前的1小时,从而专家行走了:60一5=55(分钟)。
奥数接送问题例题3:甲乙两辆汽车分别从A.B两成出发,相向而行,甲车和乙车的速度比是5:4,到两车相遇时距离中点48千米,两城之间的路程是多少千米?甲乙两辆汽车分别从A.B两成出发,相向而行,甲车和乙车的速度比是5:4,到两车相遇时距离中点48千米,两城之间的路程是多少千米?解析:相遇时甲乙的行程比也是:5:4,即甲行了全程的:5/(4+5)=5/9,乙行了:4/9 又相遇时甲比乙多行了:48*2=96千米所以路程是:96/(5/9-4/9)=864千米.奥数接送问题例题4:有两个班的小学生要到少年宫参加活动,但只有一辆车接送。
【小学奥数精编】接送问题.学生版
1、准确画出接送问题的过程图——标准:每个量在相同时间所走的路程要分清2、理解运动过程,抓住变化规律3、运用行程中的比例关系进行解题一、 校车问题——行走过程描述 队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。
二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
知识精讲教学目标接送问题模块一、汽车接送问题——接一个人【例1】某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【巩固】张工程师每天早上8点准时被司机从家接到厂里。
一天,张工程师早上7点就出了门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前20分钟。
这天,张工程师还是早上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了接他的汽车,那么这次他比平常要提前分钟到厂。
【例2】李经理的司机每天早上7点30分到达李经理家接他去公司。
有一天李经理7点从家里出发去公司,路上遇到从公司按时来接他的车,再乘车去公司,结果比平常早到5分钟。
则李经理乘车的速度是步行速度的倍。
(假设车速、步行速度保持不变,汽车掉头与上下车时间忽略不计)模块二、汽车接送问题——接两个人或多人(一)、车速不变、人速不变【例3】(难度级别※※※)A、B两个连队同时分别从两个营地出发前往一个目的地进行演习,A连有卡车可以装载正好一个连的人员,为了让两个连队的士兵同时尽快到达目的地,A连士兵坐车出发一定时间后下车让卡车回去接B连的士兵,两营的士兵恰好同时到达目的地,已知营地与目的地之间的距离为32千米,士兵行军速度为8千米/小时,卡车行驶速度为40千米每小时,求两营士兵到达目的地一共要多少时间?【巩固】 甲班与乙班学生同时从学校出发去公园,两班的步行速度相等都是4千米/小时,学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生.为了使两班学生在最短时间内到达公园,设两地相距150千米,那么各个班的步行距离是多少?【例 4】 (难度级别 ※※)甲、乙、丙三个班的学生一起去郊外活动,他们租了一辆大巴,但大巴只够一个班的学生坐,于是他们计划先让甲班的学生步行,乙丙两班的学生步行,甲班学生搭乘大巴一段路后,下车步行,然后大巴车回头去接乙班学生,并追赶上步行的甲班学生,再回头载上丙班学生后一直驶到终点,此时甲、乙两班也恰好赶到终点,已知学生步行的速度为5千米/小时,大巴车的行驶速度为55千米/小时,出发地到终点之间的距离为8千米,求这些学生到达终点一共所花的时间.【例 5】 海淀区劳动技术学校有100名学生到离学校33千米的郊区参加采摘活动,学校只有一辆限乘25人的中型面包车.为了让全体学生尽快地到达目的地.决定采取步行与乘车相结合的办法.已知学生步行的速度是每小时5千米,汽车行驶的速度是每小时55千米.请你设计一个方案,使全体学生都能到达目的地的最短时间是多少小时?1份【例6】甲、乙两班学生到离校39千米的博物馆参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达博物馆,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去博物馆,汽车则从某地立即返回去接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的10倍,那么汽车应在距博物馆多少千米处返回接乙班学生,才能使两班同时到达博物馆?A B C D【例7】甲、乙两班学生到离校24千米的飞机场参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达飞机场,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去飞机场,汽车则从某地立即返回接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的7倍,那么汽车应在距飞机场多少千米处返回接乙班学生,才能使两班同时到达飞机场?【例8】A、B两地相距22.4千米.有一支游行队伍从A出发,向B匀速前进;当游行队伍队尾离开A时,甲、乙两人分别从A、B两地同时出发.乙向A步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上队头时恰与乙相遇在距B地5.6千米处;当甲第7次追上队头时,甲恰好第一次到达B地,那么此时乙距A地还有__________千米.【例 9】A、B两地相距22.4千米.有一支游行队伍从A出发,向B匀速前进;当游行队伍队尾离开A时,甲、乙两人分别从A、B两地同时出发.乙向A步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上队头时恰与乙相遇在距B地5.6千米处;当甲第7次追上队头时,甲恰好第一次到达B地,那么此时乙距A地还有______千米.(二)车速不变、人速变【例10】(难度级别※※)甲班与乙班学生同时从学校出发去公园,甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米。
小学奥数知识点拨 精讲试题 题库 接送问题.学生版
接送问题教学目标1、准确画出接送问题的过程图——标准:每个量在相同时间所走的路程要分清2、理解运动过程,抓住变化规律3、运用行程中的比例关系进行解题知识精讲一、校车问题——行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。
二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
模块一、汽车接送问题——接一个人【例 1】某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【巩固】张工程师每天早上点准时被司机从家接到厂里。
一天,张工程师早上点就出了门,开始步行87去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前分钟。
20这天,张工程师还是早上点出门,但分钟后他发现有东西没有带,于是回家去取,再出门715后在路上遇到了接他的汽车,那么这次他比平常要提前分钟到厂。
【例 2】李经理的司机每天早上7点30分到达李经理家接他去公司。
有一天李经理7点从家里出发去公司,路上遇到从公司按时来接他的车,再乘车去公司,结果比平常早到5分钟。
则李经理乘车的速度是步行速度的倍。
(假设车速、步行速度保持不变,汽车掉头与上下车时间忽略不计)模块二、汽车接送问题——接两个人或多人(一)、车速不变、人速不变【例 3】(难度级别※※※)A、B两个连队同时分别从两个营地出发前往一个目的地进行演习,A连有卡车可以装载正好一个连的人员,为了让两个连队的士兵同时尽快到达目的地,A连士兵坐车出发一定时间后下车让卡车回去接B连的士兵,两营的士兵恰好同时到达目的地,已知营地与目的地之间的距离为32千米,士兵行军速度为8千米/小时,卡车行驶速度为40千米每小时,求两营士兵到达目的地一共要多少时间?4【巩固】甲班与乙班学生同时从学校出发去公园,两班的步行速度相等都是千米/小时,学校有一辆汽车,它的速度是每小时千米,这辆汽车恰好能坐一个班的学生.为了使两班学生在最短时间48内到达公园,设两地相距千米,那么各个班的步行距离是多少?150【例 4】(难度级别※※)甲、乙、丙三个班的学生一起去郊外活动,他们租了一辆大巴,但大巴只够一个班的学生坐,于是他们计划先让甲班的学生步行,乙丙两班的学生步行,甲班学生搭乘大巴一段路后,下车步行,然后大巴车回头去接乙班学生,并追赶上步行的甲班学生,再回头载上丙班学生后一直驶到终点,此时甲、乙两班也恰好赶到终点,已知学生步行的速度为5千米/小时,大巴车的行驶速度为55千米/小时,出发地到终点之间的距离为8千米,求这些学生到达终点一共所花的时间.【例 5】海淀区劳动技术学校有名学生到离学校千米的郊区参加采摘活动,学校只有一辆限乘1003325人的中型面包车.为了让全体学生尽快地到达目的地.决定采取步行与乘车相结合的办法.已知学生步行的速度是每小时千米,汽车行驶的速度是每小时千米.请你设计一个方案,使555全体学生都能到达目的地的最短时间是多少小时?【例 6】甲、乙两班学生到离校39千米的博物馆参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达博物馆,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去博物馆,汽车则从某地立即返回去接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的10倍,那么汽车应在距博物馆多少千米处返回接乙班学生,才能使两班同时到达博物馆?【例 7】甲、乙两班学生到离校24千米的飞机场参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达飞机场,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去飞机场,汽车则从某地立即返回接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的7倍,那么汽车应在距飞机场多少千米处返回接乙班学生,才能使两班同时到达飞机场?A B22.4AB A 【例 8】、两地相距千米.有一支游行队伍从出发,向匀速前进;当游行队伍队尾离开A B A时,甲、乙两人分别从、两地同时出发.乙向步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第次追上5B地,那么【例 9】、两地相距千米.有一支游行队伍从出发,向匀速前进;当游行队伍队尾离开A B22.4AB AA B A时,甲、乙两人分别从、两地同时出发.乙向步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上B B队头时恰与乙相遇在距地5.6千米处;当甲第7次追上队头时,甲恰好第一次到达地,那A么此时乙距地还有______千米.(二)车速不变、人速变【例 10】(难度级别※※)甲班与乙班学生同时从学校出发去公园,甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米。
小学奥数 接送问题 精选练习例题 含答案解析(附知识点拨及考点)
接送问题教学目标1、准确画出接送问题的过程图——标准:每个量在相同时间所走的路程要分清2、理解运动过程,抓住变化规律3、运用行程中的比例关系进行解题知识精讲一、校车问题——行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。
二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
模块一、汽车接送问题——接一个人【例 1】某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【考点】行程问题之接送问题【难度】3星【题型】解答【解析】车下午2时从学校出发,如图,学校工厂PBA在C点与劳模相遇,再返回B点,共用时40分钟,由此可知,在从B到C用了40220÷=分钟,也就是2时20分在C点与劳模相遇.此时劳模走了1小时20分,也就是80分钟.另一方面,汽车走两个AB需要1小时,也就是从B点走到A点需要30分钟,而前面说走完BC需要20分钟,所以走完AC要10分钟,也就是说2=.走完AC,劳模用了80分钟;走BC AC完BC,汽车用了20分钟.劳模用时是汽车的4倍,而汽车行驶距离是劳模的2倍,所以汽车的速度是劳模速度的428⨯=倍.【点拨】复杂的行程问题总要先分析清楚过程.我们不把本题看作是一道相遇问题,因为在路程和速度都不知道的情况下,解相遇问题需要初中代数的知识.直接求出相遇点C到两端A、B的长度关系,再通过时间的倍数关系,就可以解出本题.解这道题,最重要的就是找出劳模和汽车间路程及所有时间的倍数关系.通过汽车的用时推出AC与BC的倍数关系,再得出答案.如何避开运用分数和比例,方法有很多.对于这道题,如果认为学校与工厂间相距为3000米,则做出这道题就更容易了:汽车1分钟走300030100÷=米.AB相距1000米,劳模走了80分钟,所以劳模的速度是每分钟走10008012.5÷=倍.而实际上,3000÷=米,汽车速度是劳模的10012.58米这个附加条件对结果并不起作用,只是使解题人的思路更加清晰.【答案】8倍【巩固】张工程师每天早上8点准时被司机从家接到厂里。
小学奥数 行程问题之接送问题 完整版例题讲解 带详细解析
接送问题一、校车问题——行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。
二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
模块一、汽车接送问题——接一个人【例1】某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【解析】车下午2时从学校出发,如图,学校工厂PC BA在C点与劳模相遇,再返回B点,共用时40分钟,由此可知,在从B到C用了40÷2=20分钟,也就是2时20分在C点与劳模相遇.此时劳模走了1小时20分,也就是80分钟.另一方面,汽车走两个AB需要1小时,也就是从B点走到A点需要30分钟,而前面说走完BC 需要20分钟,所以走完AC要10分钟,也就是说BC=2AC.走完AC,劳模用了80分钟;走完BC,汽车用了20分钟.劳模用时是汽车的4倍,而汽车行驶距离是劳模的2倍,所以汽车的速度是劳模速度的4×2=8倍.【巩固1】张工程师每天早上8点准时被司机从家接到厂里。
一天,张工程师早上7点就出了门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前20分钟。
这天,张工程师还是早上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了知识精讲接他的汽车,那么这次他比平常要提前分钟到厂。
小学奥数 典型行程问题 接送问题.学生版
1、准确画出接送问题的过程图——标准:每个量在相同时间所走的路程要分清2、理解运动过程,抓住变化规律3、运用行程中的比例关系进行解题一、 校车问题——行走过程描述 队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。
二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
模块一、汽车接送问题——接一个人【例 1】 某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【巩固】 张工程师每天早上8点准时被司机从家接到厂里。
一天,张工程师早上7点就出了门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前20分钟。
这天,张工程师还是早上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了接他的汽车,那么这次他比平常要提前 分钟到厂。
知识精讲教学目标接送问题【例2】李经理的司机每天早上7点30分到达李经理家接他去公司。
有一天李经理7点从家里出发去公司,路上遇到从公司按时来接他的车,再乘车去公司,结果比平常早到5分钟。
则李经理乘车的速度是步行速度的倍。
(假设车速、步行速度保持不变,汽车掉头与上下车时间忽略不计)模块二、汽车接送问题——接两个人或多人(一)、车速不变、人速不变【例3】A、B两个连队同时分别从两个营地出发前往一个目的地进行演习,A连有卡车可以装载正好一个连的人员,为了让两个连队的士兵同时尽快到达目的地,A连士兵坐车出发一定时间后下车让卡车回去接B连的士兵,两营的士兵恰好同时到达目的地,已知营地与目的地之间的距离为32千米,士兵行军速度为8千米/小时,卡车行驶速度为40千米每小时,求两营士兵到达目的地一共要多少时间?【巩固】甲班与乙班学生同时从学校出发去公园,两班的步行速度相等都是4千米/小时,学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生.为了使两班学生在最短时间内到达公园,设两地相距150千米,那么各个班的步行距离是多少?【例4】甲、乙、丙三个班的学生一起去郊外活动,他们租了一辆大巴,但大巴只够一个班的学生坐,于是他们计划先让甲班的学生步行,乙丙两班的学生步行,甲班学生搭乘大巴一段路后,下车步行,然后大巴车回头去接乙班学生,并追赶上步行的甲班学生,再回头载上丙班学生后一直驶到终点,此时甲、乙两班也恰好赶到终点,已知学生步行的速度为5千米/小时,大巴车的行驶速度为55千米/小时,出发地到终点之间的距离为8千米,求这些学生到达终点一共所花的时间.【例5】海淀区劳动技术学校有100名学生到离学校33千米的郊区参加采摘活动,学校只有一辆限乘25人的中型面包车.为了让全体学生尽快地到达目的地.决定采取步行与乘车相结合的办法.已知学生步行的速度是每小时5千米,汽车行驶的速度是每小时55千米.请你设计一个方案,使全体学生都能到达目的地的最短时间是多少小时?【例6】甲、乙两班学生到离校39千米的博物馆参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达博物馆,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去博物馆,汽车则从某地立即返回去接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的10倍,那么汽车应在距博物馆多少千米处返回接乙班学生,才能使两班同时到达博物馆?【例7】甲、乙两班学生到离校24千米的飞机场参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达飞机场,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去飞机场,汽车则从某地立即返回接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的7倍,那么汽车应在距飞机场多少千米处返回接乙班学生,才能使两班同时到达飞机场?【例8】A、B两地相距22.4千米.有一支游行队伍从A出发,向B匀速前进;当游行队伍队尾离开A 时,甲、乙两人分别从A、B两地同时出发.乙向A步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上队头时恰与乙相遇在距B地5.6千米处;当甲第7次追上队头时,甲恰好第一次到达B地,那么此时乙距A地还有__________千米.时,甲、乙两人分别从A、B两地同时出发.乙向A步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上队头时恰与乙相遇在距B地5.6千米处;当甲第7次追上队头时,甲恰好第一次到达B地,那么此时乙距A地还有______千米.(二)车速不变、人速变【例10】甲班与乙班学生同时从学校出发去公园,甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米。
小学奥数3-2-9 接送问题.专项练习及答案解析
1、准确画出接送问题的过程图——标准:每个量在相同时间所走的路程要分清2、理解运动过程,抓住变化规律3、运用行程中的比例关系进行解题一、 校车问题——行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。
二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
模块一、汽车接送问题——接一个人【例 1】 某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【考点】行程问题之接送问题 【难度】3星 【题型】解答 知识精讲教学目标接送问题【解析】车下午2时从学校出发,如图,学校工厂PBA在C点与劳模相遇,再返回B点,共用时40分钟,由此可知,在从B到C用了40220÷=分钟,也就是2时20分在C点与劳模相遇.此时劳模走了1小时20分,也就是80分钟.另一方面,汽车走两个AB需要1小时,也就是从B点走到A点需要30分钟,而前面说走完BC需要20分钟,所以走完AC要10分钟,也就是说2BC AC=.走完AC,劳模用了80分钟;走完BC,汽车用了20分钟.劳模用时是汽车的4倍,而汽车行驶距离是劳模的2倍,所以汽车的速度是劳模速度的428⨯=倍.【点拨】复杂的行程问题总要先分析清楚过程.我们不把本题看作是一道相遇问题,因为在路程和速度都不知道的情况下,解相遇问题需要初中代数的知识.直接求出相遇点C到两端A、B的长度关系,再通过时间的倍数关系,就可以解出本题.解这道题,最重要的就是找出劳模和汽车间路程及所有时间的倍数关系.通过汽车的用时推出AC与BC的倍数关系,再得出答案.如何避开运用分数和比例,方法有很多.对于这道题,如果认为学校与工厂间相距为3000米,则做出这道题就更容易了:汽车1分钟走300030100÷=米.AB相距1000米,劳模走了80分钟,所以劳模的速度是每分钟走10008012.5÷=米,汽车速度是劳模的÷=倍.而实际上,3000米这个附加条件对结果并不起作用,只是使解题人的思10012.58路更加清晰.【答案】8倍【巩固】张工程师每天早上8点准时被司机从家接到厂里。
小学奥数接送问题的解题思路
小学奥数接送问题的解题思路奥数接送问题例题1:如果A、B两地相距10千米,一个班有学生45人,由A地去B 地,现在有一辆马车,车速是人步行的3倍,马车每次能够乘坐9人,在A地先将第一批学生送到B地,其余的学生同时向B地前进;车到B地后立即返回,在途中与步行的学生相遇后,再接9名学生前往B地,余下的学生继续向B地前进...多次往返后,当全体学生到达B地时,马车共行了多少千米?答案:10*(1+2/3*3/4*2+1/3*3/4*2+1/6*3/4*2+1/8*3/4*2)=10*47/16=235/8千米奥数接送问题例题2:某工厂每天早晨都派小汽车接专家上班.有一天,专家为了早些到厂,比平时提前一小时出发,步行去工厂,走了一段时间后遇到来接他的汽车,他上车后汽车立即调头继续前进,进入工厂大门时,他发现只比平时早到10分钟,问专家在路上步行了多长时间才遇到汽车?(设人和汽车都作匀速运动,他上车及调头时间不记)解析:设专家从家中出发后走到M处(如图1)与小汽车相遇。
因为正常接送必须从B→A→B,而现在接送是从B→M→B恰好提前10分钟;则小汽车从M→A→M刚好需10分钟;于是小汽车从M→A只需5分钟。
这说明专家到M处遇到小汽车时再过5分钟,就是以前正常接送时在家的出发时间,故专家的行走时间再加上5分钟恰为比平时提前的1小时,从而专家行走了:60一5=55(分钟)。
奥数接送问题例题3:甲乙两辆汽车分别从A.B两成出发,相向而行,甲车和乙车的速度比是5:4,到两车相遇时距离中点48千米,两城之间的路程是多少千米?甲乙两辆汽车分别从A.B两成出发,相向而行,甲车和乙车的速度比是5:4,到两车相遇时距离中点48千米,两城之间的路程是多少千米?解析:相遇时甲乙的行程比也是:5:4,即甲行了全程的:5/(4+5)=5/9,乙行了:4/9又相遇时甲比乙多行了:48*2=96千米所以路程是:96/(5/9-4/9)=864千米.奥数接送问题例题4:有两个班的小学生要到少年宫参加活动,但只有一辆车接送。
(精品)小学奥数3-2-9 接送问题.专项练习
1、准确画出接送问题的过程图——标准:每个量在相同时间所走的路程要分清2、理解运动过程,抓住变化规律3、运用行程中的比例关系进行解题一、 校车问题——行走过程描述 队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。
二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
模块一、汽车接送问题——接一个人【例 1】 某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【巩固】 张工程师每天早上8点准时被司机从家接到厂里。
一天,张工程师早上7点就出知识精讲教学目标接送问题了门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前20分钟。
这天,张工程师还是早上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了接他的汽车,那么这次他比平常要提前分钟到厂。
【例2】李经理的司机每天早上7点30分到达李经理家接他去公司。
有一天李经理7点从家里出发去公司,路上遇到从公司按时来接他的车,再乘车去公司,结果比平常早到5分钟。
则李经理乘车的速度是步行速度的倍。
(假设车速、步行速度保持不变,汽车掉头与上下车时间忽略不计)模块二、汽车接送问题——接两个人或多人(一)、车速不变、人速不变【例3】(难度级别※※※)A、B两个连队同时分别从两个营地出发前往一个目的地进行演习,A连有卡车可以装载正好一个连的人员,为了让两个连队的士兵同时尽快到达目的地,A连士兵坐车出发一定时间后下车让卡车回去接B连的士兵,两营的士兵恰好同时到达目的地,已知营地与目的地之间的距离为32千米,士兵行军速度为8千米/小时,卡车行驶速度为40千米每小时,求两营士兵到达目的地一共要多少时间?【巩固】甲班与乙班学生同时从学校出发去公园,两班的步行速度相等都是4千米/小时,学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生.为了使两班学生在最短时间内到达公园,设两地相距150千米,那么各个班的步行距离是多少?【例 4】 (难度级别 ※※)甲、乙、丙三个班的学生一起去郊外活动,他们租了一辆大巴,但大巴只够一个班的学生坐,于是他们计划先让甲班的学生步行,乙丙两班的学生步行,甲班学生搭乘大巴一段路后,下车步行,然后大巴车回头去接乙班学生,并追赶上步行的甲班学生,再回头载上丙班学生后一直驶到终点,此时甲、乙两班也恰好赶到终点,已知学生步行的速度为5千米/小时,大巴车的行驶速度为55千米/小时,出发地到终点之间的距离为8千米,求这些学生到达终点一共所花的时间.【例 5】 海淀区劳动技术学校有100名学生到离学校33千米的郊区参加采摘活动,学校只有一辆限乘25人的中型面包车.为了让全体学生尽快地到达目的地.决定采取步行与乘车相结合的办法.已知学生步行的速度是每小时5千米,汽车行驶的速度是每小时55千米.请你设计一个方案,使全体学生都能到达目的地的最短时间是多少小时?1份【例6】甲、乙两班学生到离校39千米的博物馆参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达博物馆,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去博物馆,汽车则从某地立即返回去接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的10倍,那么汽车应在距博物馆多少千米处返回接乙班学生,才能使两班同时到达博物馆?A B C D【例7】甲、乙两班学生到离校24千米的飞机场参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达飞机场,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去飞机场,汽车则从某地立即返回接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的7倍,那么汽车应在距飞机场多少千米处返回接乙班学生,才能使两班同时到达飞机场?【例8】A、B两地相距22.4千米.有一支游行队伍从A出发,向B匀速前进;当游行队伍队尾离开A时,甲、乙两人分别从A、B两地同时出发.乙向A步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上队头时恰与乙相遇在距B地5.6千米处;当甲第7次追上队头时,甲恰好第一次到达B地,那么此时乙距A地还有__________千米.【例 9】A、B两地相距22.4千米.有一支游行队伍从A出发,向B匀速前进;当游行队伍队尾离开A时,甲、乙两人分别从A、B两地同时出发.乙向A步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上队头时恰与乙相遇在距B地5.6千米处;当甲第7次追上队头时,甲恰好第一次到达B地,那么此时乙距A地还有______千米.(二)车速不变、人速变【例10】(难度级别※※)甲班与乙班学生同时从学校出发去公园,甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米。
小学奥数接送问题
接送问题教学目标1、准确画出接送问题的过程图——标准:每个量在相同时间所走的路程要分清2、理解运动过程,抓住变化规律3、运用行程中的比例关系进行解题知识精讲一、校车问题——行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。
二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
模块一、汽车接送问题——接一个人【例 1】某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【巩固】(2008年“陈省身杯”国际青少年数学邀请赛)张工程师每天早上8点准时被司机从家接到厂里。
一天,张工程师早上7点就出了门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前20分钟。
这天,张工程师还是早上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了接他的汽车,那么这次他比平常要提前分钟到厂。
模块二、汽车接送问题——接两个人或多人(一)、车速不变、人速不变【例 2】 (难度级别 ※※※)A 、B 两个连队同时分别从两个营地出发前往一个目的地进行演习,A 连有卡车可以装载正好一个连的人员,为了让两个连队的士兵同时尽快到达目的地,A 连士兵坐车出发一定时间后下车让卡车回去接B 连的士兵,两营的士兵恰好同时到达目的地,已知营地与目的地之间的距离为32千米,士兵行军速度为8千米/小时,卡车行驶速度为40千米每小时,求两营士兵到达目的地一共要多少时间?【巩固】 甲班与乙班学生同时从学校出发去公园,两班的步行速度相等都是4千米/小时,学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生.为了使两班学生在最短时间内到达公园,设两地相距150千米,那么各个班的步行距离是多少?【例 3】 (难度级别 ※※)甲、乙、丙三个班的学生一起去郊外活动,他们租了一辆大巴,但大巴只够一个班的学生坐,于是他们计划先让甲班的学生步行,乙丙两班的学生步行,甲班学生搭乘大巴一段路后,下车步行,然后大巴车回头去接乙班学生,并追赶上步行的甲班学生,再回头载上丙班学生后一直驶到终点,此时甲、乙两班也恰好赶到终点,已知学生步行的速度为5千米/小时,大巴车的行驶速度为55千米/小时,出发地到终点之间的距离为8千米,求这些学生到达终点一共所花的时间.【例 4】 海淀区劳动技术学校有100名学生到离学校33千米的郊区参加采摘活动,学校只有一辆限乘25人的中型面包车.为了让全体学生尽快地到达目的地.决定采取步行与乘车相结合的办法.已知学生步行的速度是每小时5千米,汽车行驶的速度是每小时55千米.请你设计一个方案,使全体学生都能到达目的地的最短时间是多少小时?1份【例 5】 甲、乙两班学生到离校39千米的博物馆参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达博物馆,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去博物馆,汽车则从某地立即返回去接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的10倍,那么汽车应在距博物馆多少千米处返回接乙班学生,才能使两班同时到达博物馆?A B C D【例 6】(难度级别※※※※)甲、乙两班学生到离校24千米的飞机场参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达飞机场,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去飞机场,汽车则从某地立即返回接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的7倍,那么汽车应在距飞机场多少千米处返回接乙班学生,才能使两班同时到达飞机场?【例 7】(2008年“迎春杯”六年级初赛)A、B两地相距22.4千米.有一支游行队伍从A出发,向B匀速前进;当游行队伍队尾离开A时,甲、乙两人分别从A、B两地同时出发.乙向A步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上队头时恰与乙相遇在距B地5.6千米处;当甲第7次追上队头时,甲恰好第一次到达B地,那么此时乙距A地还有__________千米.(二)车速不变、人速变【例 8】(难度级别※※)甲班与乙班学生同时从学校出发去公园,甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米。
【精品】小学奥数3-2-9 接送问题.专项检测
1、准确画出接送问题的过程图——标准:每个量在相同时间所走的路程要分清2、理解运动过程,抓住变化规律3、运用行程中的比例关系进行解题一、 校车问题——行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。
二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
模块一、汽车接送问题——接一个人【例 1】 某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【巩固】 张工程师每天早上8点准时被司机从家接到厂里。
一天,张工程师早上7点就出了知识精讲教学目标接送问题门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前20分钟。
这天,张工程师还是早上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了接他的汽车,那么这次他比平常要提前分钟到厂。
【例2】李经理的司机每天早上7点30分到达李经理家接他去公司。
有一天李经理7点从家里出发去公司,路上遇到从公司按时来接他的车,再乘车去公司,结果比平常早到5分钟。
则李经理乘车的速度是步行速度的倍。
(假设车速、步行速度保持不变,汽车掉头与上下车时间忽略不计)模块二、汽车接送问题——接两个人或多人(一)、车速不变、人速不变【例3】(难度级别※※※)A、B两个连队同时分别从两个营地出发前往一个目的地进行演习,A连有卡车可以装载正好一个连的人员,为了让两个连队的士兵同时尽快到达目的地,A连士兵坐车出发一定时间后下车让卡车回去接B连的士兵,两营的士兵恰好同时到达目的地,已知营地与目的地之间的距离为32千米,士兵行军速度为8千米/小时,卡车行驶速度为40千米每小时,求两营士兵到达目的地一共要多少时间?【巩固】甲班与乙班学生同时从学校出发去公园,两班的步行速度相等都是4千米/小时,学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生.为了使两班学生在最短时间内到达公园,设两地相距150千米,那么各个班的步行距离是多少?【例 4】 (难度级别 ※※)甲、乙、丙三个班的学生一起去郊外活动,他们租了一辆大巴,但大巴只够一个班的学生坐,于是他们计划先让甲班的学生步行,乙丙两班的学生步行,甲班学生搭乘大巴一段路后,下车步行,然后大巴车回头去接乙班学生,并追赶上步行的甲班学生,再回头载上丙班学生后一直驶到终点,此时甲、乙两班也恰好赶到终点,已知学生步行的速度为5千米/小时,大巴车的行驶速度为55千米/小时,出发地到终点之间的距离为8千米,求这些学生到达终点一共所花的时间.【例 5】 海淀区劳动技术学校有100名学生到离学校33千米的郊区参加采摘活动,学校只有一辆限乘25人的中型面包车.为了让全体学生尽快地到达目的地.决定采取步行与乘车相结合的办法.已知学生步行的速度是每小时5千米,汽车行驶的速度是每小时55千米.请你设计一个方案,使全体学生都能到达目的地的最短时间是多少小时?1份【例6】甲、乙两班学生到离校39千米的博物馆参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达博物馆,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去博物馆,汽车则从某地立即返回去接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的10倍,那么汽车应在距博物馆多少千米处返回接乙班学生,才能使两班同时到达博物馆?A B C D【例7】甲、乙两班学生到离校24千米的飞机场参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达飞机场,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去飞机场,汽车则从某地立即返回接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的7倍,那么汽车应在距飞机场多少千米处返回接乙班学生,才能使两班同时到达飞机场?【例8】A、B两地相距22.4千米.有一支游行队伍从A出发,向B匀速前进;当游行队伍队尾离开A时,甲、乙两人分别从A、B两地同时出发.乙向A步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上队头时恰与乙相遇在距B地5.6千米处;当甲第7次追上队头时,甲恰好第一次到达B地,那么此时乙距A地还有__________千米.【例 9】A、B两地相距22.4千米.有一支游行队伍从A出发,向B匀速前进;当游行队伍队尾离开A时,甲、乙两人分别从A、B两地同时出发.乙向A步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上队头时恰与乙相遇在距B地5.6千米处;当甲第7次追上队头时,甲恰好第一次到达B地,那么此时乙距A地还有______千米.(二)车速不变、人速变【例10】(难度级别※※)甲班与乙班学生同时从学校出发去公园,甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米。
小学奥数 接送问题 精选例题练习习题(含知识点拨)
接送问题教学目标1、准确画出接送问题的过程图——标准:每个量在相同时间所走的路程要分清2、理解运动过程,抓住变化规律3、运用行程中的比例关系进行解题知识精讲一、校车问题——行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。
二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
模块一、汽车接送问题——接一个人【例 1】某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【巩固】张工程师每天早上8点准时被司机从家接到厂里。
一天,张工程师早上7点就出了门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前20分钟。
这天,张工程师还是早上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了接他的汽车,那么这次他比平常要提前分钟到厂。
【例 2】李经理的司机每天早上7点30分到达李经理家接他去公司。
有一天李经理7点从家里出发去公司,路上遇到从公司按时来接他的车,再乘车去公司,结果比平常早到5分钟。
则李经理乘车的速度是步行速度的倍。
(假设车速、步行速度保持不变,汽车掉头与上下车时间忽略不计)模块二、汽车接送问题——接两个人或多人(一)、车速不变、人速不变【例 3】(难度级别※※※)A、B两个连队同时分别从两个营地出发前往一个目的地进行演习,A连有卡车可以装载正好一个连的人员,为了让两个连队的士兵同时尽快到达目的地,A连士兵坐车出发一定时间后下车让卡车回去接B连的士兵,两营的士兵恰好同时到达目的地,已知营地与目的地之间的距离为32千米,士兵行军速度为8千米/小时,卡车行驶速度为40千米每小时,求两营士兵到达目的地一共要多少时间?【巩固】甲班与乙班学生同时从学校出发去公园,两班的步行速度相等都是4千米/小时,学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生.为了使两班学生在最短时间内到达公园,设两地相距150千米,那么各个班的步行距离是多少?【例 4】(难度级别※※)甲、乙、丙三个班的学生一起去郊外活动,他们租了一辆大巴,但大巴只够上丙班学生后一直驶到终点,此时甲、乙两班也恰好赶到终点,已知学生步行的速度为5千米/小时,大巴车的行驶速度为55千米/小时,出发地到终点之间的距离为8千米,求这些学生到达终点一共所花的时间.【例 5】 海淀区劳动技术学校有100名学生到离学校33千米的郊区参加采摘活动,学校只有一辆限乘25人的中型面包车.为了让全体学生尽快地到达目的地.决定采取步行与乘车相结合的办法.已知学生步行的速度是每小时5千米,汽车行驶的速度是每小时55千米.请你设计一个方案,使全体学生都能到达目的地的最短时间是多少小时?1份【例 6】 甲、乙两班学生到离校39千米的博物馆参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达博物馆,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去博物馆,汽车则从某地立即返回去接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的10倍,那么汽车应在距博物馆多少千米处返回接乙班学生,才能使两班同时到达博物馆?A B C D了尽快到达飞机场,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去飞机场,汽车则从某地立即返回接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的7倍,那么汽车应在距飞机场多少千米处返回接乙班学生,才能使两班同时到达飞机场?【例 8】A、B两地相距22.4千米.有一支游行队伍从A出发,向B匀速前进;当游行队伍队尾离开A 时,甲、乙两人分别从A、B两地同时出发.乙向A步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上B地,那么【例 9】A、B两地相距22.4千米.有一支游行队伍从A出发,向B匀速前进;当游行队伍队尾离开A 时,甲、乙两人分别从A、B两地同时出发.乙向A步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上队头时恰与乙相遇在距B地5.6千米处;当甲第7次追上队头时,甲恰好第一次到达B地,那么此时乙距A地还有______千米.(二)车速不变、人速变【例 10】(难度级别※※)甲班与乙班学生同时从学校出发去公园,甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米。
小学奥数3-2-9 接送问题.专项练习及答案解析
1、准确画出接送问题的过程图——标准:每个量在相同时间所走的路程要分清2、理解运动过程,抓住变化规律3、运用行程中的比例关系进行解题一、 校车问题——行走过程描述 队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。
二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
模块一、汽车接送问题——接一个人【例 1】 某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【考点】行程问题之接送问题 【难度】3星 【题型】解答【解析】 车下午2时从学校出发,如图,学校工厂P B A在C 点与劳模相遇,再返回B 点,共用时40分钟,由此可知,在从B 到C 用了40220÷=分钟,也就是2时20分在C 点与劳模相遇.此时劳模走了1小时20分,也就是80分钟. 另一方面,汽车走两个AB 需要1小时,也就是从B 点走到A 点需要30分钟,而前面说走完BC 需要20分钟,所以走完AC 要10分钟,也就是说2BC AC =.走完AC ,劳模用了BC 知识精讲教学目标接送问题2倍,所以汽车的速度是劳模速度的428⨯=倍.【点拨】复杂的行程问题总要先分析清楚过程.我们不把本题看作是一道相遇问题,因为在路程和速度都不知道的情况下,解相遇问题需要初中代数的知识.直接求出相遇点C到两端A、B的长度关系,再通过时间的倍数关系,就可以解出本题.解这道题,最重要的就是找出劳模和汽车间路程及所有时间的倍数关系.通过汽车的用时推出AC与BC的倍数关系,再得出答案.如何避开运用分数和比例,方法有很多.对于这道题,如果认为学校与工厂间相距为3000米,则做出这道题就更容易了:汽车1分钟走300030100÷=米.AB相距1000米,劳模走了80分钟,所以劳模的速度是每分钟走10008012.5÷=÷=米,汽车速度是劳模的10012.58倍.而实际上,3000米这个附加条件对结果并不起作用,只是使解题人的思路更加清晰.【答案】8倍【巩固】张工程师每天早上8点准时被司机从家接到厂里。
小学奥数教程:接送问题_全国通用(含答案)
1、准确画出接送问题的过程图——标准:每个量在相同时间所走的路程要分清2、理解运动过程,抓住变化规律3、运用行程中的比例关系进行解题一、校车问题——行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。
二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
模块一、汽车接送问题——接一个人【例1】某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【考点】行程问题之接送问题【难度】3星【题型】解答【解析】车下午2时从学校出发,如图,学校工厂P C B A在C 点与劳模相遇,再返回B 点,共用时40分钟,由此可知,在从B 到C 用了40220分钟,也就是2时20分在C 点与劳模相遇.此时劳模走了1小时20分,也就是80分钟.另一方面,汽车走两个AB 需要1小时,也就是从B 点走到A 点需要30分钟,而前面说走完BC 需要20分钟,所以走完AC 要10分钟,也就是说2BC AC .走完AC ,劳模用了80分钟;走完BC ,汽车用了20分钟.劳模用时是汽车的4倍,而汽车行驶距离是劳模的2倍,所以汽车的速度是劳模速度的428倍.【点拨】复杂的行程问题总要先分析清楚过程.我们不把本题看作是一道相遇问题,因为在路程和速度都不知道的情况下,解相遇问题需要初中代数的知识.直接求出相遇点C 到两端A 、B 的长度关系,知识精讲教学目标接送问题。
奥数:3-2-9接送问题-题库
教学目标1准确画出接送问题的过程图 一一标准:每个量在相同时间所走的路程要分清 2、 理解运动过程,抓住变化规律 3、 运用行程中的比例关系进行解题校车问题一一行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最 短时间,不要求证明。
二、 常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型: (1 )车速不变-班速不变-班数2个(最常见) (2 )车速不变-班速不变-班数多个 (3 )车速不变-班速变-班数2个 (4)车速变-班速不变-班数2个 三、 标准解法:画图+列3个式子1、 总时间=一个队伍坐车的时间+这个队伍步行的时间;2、 班车走的总路程;3、 一个队伍步行的时间=班车同时出发后回来接它的时间。
模块一、汽车接送问题一一接一个人【例1】 某校和某工厂之间有一条公路, 该校下午2时派车去该厂接某劳模来做报告,往返需用1小时•这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下 午2时40分到达•问:汽车速度是劳模步行速度的几倍?C在C 点与劳模相遇,再返回 B 点,共用时40分钟,由此可知,在从 B 到C 用了 40"2=20分钟, 也就是2时20分在C 点与劳模相遇.此时劳模走了 1小时20分,也就是80分钟.另一方面,汽车走两个AB 需要1小时,也就是从B 点走到A 点需要30分钟,而前面说走完BC 需要20分钟,所以走完 AC 要10分钟,也就是说BC =2 AC .走完AC ,劳模用了 80分钟;走 完BC ,汽车用了 20分钟.劳模用时是汽车的 4倍,而汽车行驶距离是劳模的 2倍,所以汽车的速度是劳模速度的4 2 =8倍.【点拨】复杂的行程问题总要先分析清楚过程.我们不把本题看作是一道相遇问题,因为在路程和速度都 不知道的情况下,解相遇问题需要初中代数的知识.直接求出相遇点C 到两端A 、B 的长度关系,再通过时间的倍数关系,就可以解出本题.解这道题,最重要的就是找出劳模和汽车间路程及所 有时间的倍【分析】车下午2时从学校出发,如图,工厂A 一学校B数关系.通过汽车的用时推出AC与BC的倍数关系,再得出答案.如何避开运用分数和比例,方法有很多•对于这道题,如果认为学校与工厂间相距为3000米,则做出这道题就更容易了:汽车1分钟走3000 -:-30 =100米.AB相距1000米,劳模走了80分钟,所以劳模的速度是每分钟走1000 "80 =12.5米,汽车速度是劳模的100 -:-12.5 =8倍.而实际上,3000米这个附加条件对结果并不起作用,只是使解题人的思路更加清晰.【巩固】(2008年陈省身杯”国际青少年数学邀请赛)张工程师每天早上8点准时被司机从家接到厂里。
(小学奥数)接送问题
接送問題教學目標1、準確畫出接送問題的過程圖——標準:每個量在相同時間所走的路程要分清2、理解運動過程,抓住變化規律3、運用行程中的比例關係進行解題知識精講一、校車問題——行走過程描述隊伍多,校車少,校車來回接送,隊伍不斷步行和坐車,最終同時到達目的地,即到達目的地的最短時間,不要求證明。
二、常見接送問題類型根據校車速度(來回不同)、班級速度(不同班不同速)、班數是否變化分類為四種常見題型:(1)車速不變-班速不變-班數2個(最常見)(2)車速不變-班速不變-班數多個(3)車速不變-班速變-班數2個(4)車速變-班速不變-班數2個三、標準解法:畫圖+列3個式子1、總時間=一個隊伍坐車的時間+這個隊伍步行的時間;2、班車走的總路程;3、一個隊伍步行的時間=班車同時出發後回來接它的時間。
模組一、汽車接送問題——接一個人【例 1】某校和某工廠之間有一條公路,該校下午2時派車去該廠接某勞模來做報告,往返需用1小時.這位勞模在下午1時便離廠步行向學校走來,途中遇到接他的汽車,便立刻上車駛向學校,在下午2時40分到達.問:汽車速度是勞模步行速度的幾倍?【巩固】張工程師每天早上8點準時被司機從家接到廠裏。
一天,張工程師早上7點就出了門,開始步行去廠裏,在路上遇到了接他的汽車,於是,他就上車行完了剩下的路程,到廠時提前20分鐘。
這天,張工程師還是早上7點出門,但15分鐘後他發現有東西沒有帶,於是回家去取,再出門後在路上遇到了接他的汽車,那麼這次他比平常要提前分鐘到廠。
【例 2】李經理的司機每天早上7點30分到達李經理家接他去公司。
有一天李經理7點從家裏出發去公司,路上遇到從公司按時來接他的車,再乘車去公司,結果比平常早到5分鐘。
則李經理乘車的速度是步行速度的倍。
(假設車速、步行速度保持不變,汽車掉頭與上下車時間忽略不計)模組二、汽車接送問題——接兩個人或多人(一)、車速不變、人速不變【例 3】(難度級別※※※)A、B兩個連隊同時分別從兩個營地出發前往一個目的地進行演習,A連有卡車可以裝載正好一個連的人員,為了讓兩個連隊的士兵同時儘快到達目的地,A連士兵坐車出發一定時間後下車讓卡車回去接B連的士兵,兩營的士兵恰好同時到達目的地,已知營地與目的地之間的距離為32千米,士兵行軍速度為8千米/小時,卡車行駛速度為40千米每小時,求兩營士兵到達目的地一共要多少時間?【巩固】甲班與乙班學生同時從學校出發去公園,兩班的步行速度相等都是4千米/小時,學校有一輛汽車,它的速度是每小時48千米,這輛汽車恰好能坐一個班的學生.為了使兩班學生在最短時間內到達公園,設兩地相距150千米,那麼各個班的步行距離是多少?【例 4】(難度級別※※)甲、乙、丙三個班的學生一起去郊外活動,他們租了一輛大巴,但大巴只夠一個班的學生坐,於是他們計畫先讓甲班的學生步行,乙丙兩班的學生步行,甲班學生搭乘大巴一段路後,下車步行,然後大巴車回頭去接乙班學生,並追趕上步行的甲班學生,再回頭載上丙班學生後一直駛到終點,此時甲、乙兩班也恰好趕到終點,已知學生步行的速度為5千米/小時,大巴車的行駛速度為55千米/小時,出發地到終點之間的距離為8千米,求這些學生到達終點一共所花的時間.【例 5】 海澱區勞動技術學校有100名學生到離學校33千米的郊區參加採摘活動,學校只有一輛限乘25人的中型麵包車.為了讓全體學生儘快地到達目的地.決定採取步行與乘車相結合的辦法.已知學生步行的速度是每小時5千米,汽車行駛的速度是每小時55千米.請你設計一個方案,使全體學生都能到達目的地的最短時間是多少小時?1份【例 6】甲、乙兩班學生到離校39千米的博物館參觀,但只有一輛汽車,一次只能乘坐一個班的學生.為了儘快到達博物館,兩個班商定,由甲班先坐車,乙班先步行,同時出發,甲班學生在途中某地下車後步行去博物館,汽車則從某地立即返回去接在途中步行的乙班學生.如果甲、乙兩班學生步行速度相同,汽車速度是他們步行速度的10倍,那麼汽車應在距博物館多少千米處返回接乙班學生,才能使兩班同時到達博物館?A B C D【例 7】甲、乙兩班學生到離校24千米的飛機場參觀,但只有一輛汽車,一次只能乘坐一個班的學生.為了儘快到達飛機場,兩個班商定,由甲班先坐車,乙班先步行,同時出發,甲班學生在途中某地下車後步行去飛機場,汽車則從某地立即返回接在途中步行的乙班學生.如果甲、乙兩班學生步行速度相同,汽車速度是他們步行速度的7倍,那麼汽車應在距飛機場多少千米處返回接乙班學生,才能使兩班同時到達飛機場?【例 8】A、B兩地相距22.4千米.有一支遊行隊伍從A出發,向B勻速前進;當遊行隊伍隊尾離開A時,甲、乙兩人分別從A、B兩地同時出發.乙向A步行;甲騎車先追向隊頭,追上隊頭後又立即騎向隊尾,到達隊尾後再立即追向隊頭,追上隊頭後又立即騎向隊尾……當甲第5次追上隊頭時恰與乙相遇在距B地5.6千米處;當甲第7次追上隊頭時,甲恰好第一次【例 9】A、B兩地相距22.4千米.有一支遊行隊伍從A出發,向B勻速前進;當遊行隊伍隊尾離開A時,甲、乙兩人分別從A、B兩地同時出發.乙向A步行;甲騎車先追向隊頭,追上隊頭後又立即騎向隊尾,到達隊尾後再立即追向隊頭,追上隊頭後又立即騎向隊尾……當甲第5次追上隊頭時恰與乙相遇在距B地5.6千米處;當甲第7次追上隊頭時,甲恰好第一次到達B地,那麼此時乙距A地還有______千米.(二)車速不變、人速變【例 10】(難度級別※※)甲班與乙班學生同時從學校出發去公園,甲班步行的速度是每小時4千米,乙班步行的速度是每小時3千米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数知识3-2-9接送问题.学生版1、准确画出接送问题的过程图——标准:每个量在相同时间所走的路程要分清2、理解运动过程,抓住变化规律3、运用行程中的比例关系进行解题一、校车问题——行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。
二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
模块一、汽车接送问题——接一个人【例 1】某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【巩固】张工程师每天早上点准时被司机从家接到厂里。
一天,张工程师早上点就出了门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前分钟。
这天,张工程师还是早上点出门,但分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了接他的汽车,那么这次他比平常要提前分钟到厂。
【例 2】李经理的司机每天早上7点30分到达李经理家接他去公司。
有一天李经理7点从家里出发去公司,路上遇到从公司按时来接他的车,再乘车去公司,结果比平常早到5分钟。
则李经理乘车的速度是步行速度的倍。
(假设车速、步行速度保持不变,汽车掉头与上下车时间忽略不计)模块二、汽车接送问题——接两个人或多人(一)、车速不变、人速不变【例3】(难度级别※※※)A、B两个连队同时分别从两个营地出发前往一个目的地进行演习,A连有卡车可以装载正好一个连的人员,为了让两个连队的士兵同时尽快到达目的地,A连士兵坐车出发一定时间后下车让卡车回去接B连的士兵,两营的士兵恰好同时到达目的地,已知营地与目的地之间的距离为32千米,士兵行军速度为8千米/小时,卡车行驶速度为40千米每小时,求两营士兵到达目的地一共要多少时间?【巩固】甲班与乙班学生同时从学校出发去公园,两班的步行速度相等都是千米/小时,学校有一辆汽车,它的速度是每小时千米,这辆汽车恰好能坐一个班的学生.为了使两班学生在最短时间内到达公园,设两地相距千米,那么各个班的步行距离是多少?【例 4】(难度级别※※)甲、乙、丙三个班的学生一起去郊外活动,他们租了一辆大巴,但大巴只够一个班的学生坐,于是他们计划先让甲班的学生步行,乙丙两班的学生步行,甲班学生搭乘大巴一段路后,下车步行,然后大巴车回头去接乙班学生,并追赶上步行的甲班学生,再回头载上丙班学生后一直驶到终点,此时甲、乙两班也恰好赶到终点,已知学生步行的速度为5千米/小时,大巴车的行驶速度为55千米/小时,出发地到终点之间的距离为8千米,求这些学生到达终点一共所花的时间.【例 5】海淀区劳动技术学校有名学生到离学校千米的郊区参加采摘活动,学校只有一辆限乘人的中型面包车.为了让全体学生尽快地到达目的地.决定采取步行与乘车相结合的办法.已知学生步行的速度是每小时千米,汽车行驶的速度是每小时千米.请你设计一个方案,使全体学生都能到达目的地的最短时间是多少小时?【例6】甲、乙两班学生到离校39千米的博物馆参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达博物馆,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去博物馆,汽车则从某地立即返回去接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的10倍,那么汽车应在距博物馆多少千米处返回接乙班学生,才能使两班同时到达博物馆?【例7】甲、乙两班学生到离校24千米的飞机场参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达飞机场,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去飞机场,汽车则从某地立即返回接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的7倍,那么汽车应在距飞机场多少千米处返回接乙班学生,才能使两班同时到达飞机场?【例 8】、两地相距千米.有一支游行队伍从出发,向匀速前进;当游行队伍队尾离开时,甲、乙两人分别从、两地同时出发.乙向步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第次追上队头时恰与乙相遇在距地千米处;当甲第次追上队头时,甲恰好第一次到达地,那么此时乙距地还有__________千米.【例9】、两地相距千米.有一支游行队伍从出发,向匀速前进;当游行队伍队尾离开时,甲、乙两人分别从、两地同时出发.乙向步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上队头时恰与乙相遇在距地5.6千米处;当甲第7次追上队头时,甲恰好第一次到达地,那么此时乙距地还有______千米.(二)车速不变、人速变【例 10】(难度级别※※)甲班与乙班学生同时从学校出发去公园,甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米。
学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生。
为了使两班学生在最短时间内到达公园,那么甲班学生与乙班学生需要步行的距离之比是多少千米?(三)、车速变、人速不变【例11】甲、乙两班同学到42千米外的少年宫参加活动,但只有一辆汽车,且一次只能坐一个班的同学,已知学生步行速度相同为千米/小时,汽车载人速度是千米/小时,空车速度是千米/小时.如果要使两班同学同时到达,且到达时间最短,那么这个最短时间是多少?【例12】有两个班的小学生要到少年宫参加活动,但只有一辆车接送,第一班的学生坐车从学校出发的同时,第二班学生开始步行;车到途中某处,让第一班学生下车步行,车立刻返回接第二班学生上车并直接开往少年宫,学生步行速度为每小时4公里,载学生时车速每小时40公里,空车时车速为每小时50公里.问:要使两班学生同时到达少年宫,第一班学生要步行全程的几分之几?【例13】某学校学生计划乘坐旅行社的大巴前往郊外游玩,按照计划,旅行社的大巴准时从车站出发后能在约定时间到达学校,搭载满学生在预定时间到达目的地,已知学校的位置在车站和目的地之间,大巴车空载的时候的速度为千米/小时,满载的时候速度为千米/小时,由于某种原因大巴车晚出发了分钟,学生在约定时间没有等到大巴车的情况下,步行前往目的地,在途中搭载上赶上来的大巴车,最后比预定时间晚了分钟到达目的地,求学生们的步行速度.(四)、车速变、人速变【例14】(台湾小学数学竞赛选拔赛决赛)甲、乙二人由地同时出发朝向地前进,、两地之距离为千米.甲步行之速度为每小时千米,乙步行之速度为每小时千米.现有一辆自行车,甲骑车速度为每小时千米,乙骑车的速度为每小时千米.出发时由甲先骑车,乙步行,为了要使两人都尽快抵达目的地,骑自行车在前面的人可以将自行车留置在途中供后面的人继续骑.请问他们从出发到最后一人抵达目的地最少需要多少小时?模块三、汽车接送问题——借车赶路问题【例 15】(难度级别※※※※※)三个人同时前往相距30千米的甲地,已知三人行走的速度相同,都是5千米每小时;现在还有一辆自行车,但只能一个人骑,已知骑车的速度为10千米每小时。
现先让其中一人先骑车,到中途某地后放车放下,继续前进;第二个人到达后骑上再行驶一段后有放下让最后那人骑行,自己继续前进,这样三人同时到达甲地。
问,三人花的时间各为多少?【例16】(全国“华罗庚金杯”少年数学邀请赛)、两地相距120千米,已知人的步行速度是每小时5千米,摩托车的行驶速度是每小时50千米,摩托车后座可带一人.问:有三人并配备一辆摩托车从地到地最少需要多少小时?(保留—位小数)【例 17】兄弟两人骑马进城,全程51千米。
马每时行12千米,但只能由一个人骑。
哥哥每时步行5千米,弟弟每时步行4千米。
两人轮换骑马和步行,骑马者走过一段距离就下鞍拴马(下鞍拴马的时间忽略不计),然后独自步行。
而步行者到达此地,再上马前进。
若他们早晨6点动身,则何时能同时到达城里?【巩固】(难度级别※)甲乙两人同时从学校出发去距离33千米外的公园,甲步行的速度是每小时4千米,乙步行的速度是每小时3千米。
他们有一辆自行车,它的速度是每小时5千米,这辆车只能载一个人,所以先让其中一人先骑车到中途,然后把车放下之后继续前进,等另一个人赶到放车的位置后再骑车赶去,这样使两人同时到达公园。
那么放车的位置距出发点多少千米?【巩固】、两人同时自甲地出发去乙地,、步行的速度分别为米/分、米/分,两人骑车的速度都是米/分,先骑车到途中某地下车把车放下,立即步行前进;走到车处,立即骑车前进,当超过一段路程后,把车放下,立即步行前进,两人如此继续交替用车,最后两人同时到达乙地,那么从甲地到乙地的平均速度是米/分.【例18】A、B两地相距30千米,甲乙丙三人同时从A到B,而且要求同时到达。
现在有两辆自行车,但不许带人,但可以将自行车放在中途某处,后来的人可以接着骑。
已知骑自行车的平均速度为每小时20千米,甲步行的速度是每小时5千米,乙和丙每小时4千米,那么三人需要多少小时可以同时到达?【例19】设有甲、乙、丙三人,他们步行的速度相同,骑车的速度也相同,骑车的速度是步行速度的倍.现甲从地去地,乙、丙从地去地,双方同时出发.出发时,甲、乙为步行,丙骑车.途中,当甲、丙相遇时,丙将车给甲骑,自己改为步行,三人仍按各自原有方向继续前进;当甲、乙相遇时,甲将车给乙骑,自己重又步行,三人仍按各自原有方向继续前进.问:三人之中谁最先达到自己的目的地?谁最后到达目的地?模块四、汽车接送问题——策略问题【例20】两辆同一型号的汽车从同一地点同时出发,沿同一方向同速直线前进,每车最多能带20桶汽油(连同油箱内的油)。
每桶汽油可以使一辆汽车前进60千米,两车都必须返回出发地点,两辆车均可借对方的油,为了使一辆车尽可能地远离出发点,那么这辆车最远可达到离出发点多少千米远的地方?【巩固】(难度等级※※※※)在一个沙漠地带,汽车每天行驶200千米,每辆汽车载运可行驶24天的汽油.现有甲、乙两辆汽车同时从某地出发,并在完成任务后,沿原路返回.为了让甲车尽可能开出更远的距离,乙车在行驶一段路程后,仅留下自己返回出发地的汽油,将其他的油给甲车.求甲车所能开行的最远距离.【例 21】一个旅游者于是10时15分从旅游基地乘小艇出发,务必在不迟于当日13时返回。