光的偏振典型习题

合集下载

光的偏振与双折射实验练习题

光的偏振与双折射实验练习题

光的偏振与双折射实验练习题一、选择题1、下列关于光的偏振现象的说法中,正确的是()A 自然光通过偏振片后成为偏振光B 只有横波才有偏振现象C 除了光源直接发出的光以外,我们通常看到的绝大部分光都是偏振光D 光的偏振现象证明光是一种纵波2、一束自然光相继通过两个偏振片,两个偏振片的偏振化方向夹角为 30°,则通过第二个偏振片后的光强与通过第一个偏振片后的光强之比为()A 3 : 4B 3 : 8C 1 : 2D 1 : 43、光的偏振现象说明()A 光是一种电磁波B 光是一种横波C 光是一种纵波D 光是一种概率波4、对于双折射现象,以下说法正确的是()A 双折射现象中,寻常光和非常光的传播速度相同B 双折射现象只发生在晶体中C 双折射现象中,寻常光遵守折射定律,非常光不遵守折射定律D 双折射现象说明晶体是各向同性的5、当自然光以布儒斯特角入射到两种介质的分界面上时,反射光为()A 自然光B 部分偏振光C 完全偏振光D 椭圆偏振光二、填空题1、光的偏振是指光的________在垂直于光传播方向的平面内沿着特定方向振动的现象。

2、一束光通过一个偏振片后,光强变为原来的一半,这束光为________光。

3、双折射现象中,寻常光的折射率________非常光的折射率。

(填“大于”“小于”或“等于”)4、当自然光入射到各向同性介质的表面时,反射光和折射光都是________光。

三、简答题1、简述光的偏振现象,并举例说明其在生活中的应用。

2、解释什么是双折射现象,以及产生双折射现象的条件。

3、说明如何利用偏振片来检测光的偏振状态。

四、计算题1、一束自然光以 60°的入射角射到一平板玻璃表面上,反射光为完全偏振光,求玻璃的折射率。

2、有一束光强为 I₀的自然光,相继通过两个偏振片,两个偏振片的偏振化方向夹角为 45°,求通过第二个偏振片后的光强。

3、某种晶体对于波长为 5893nm 的钠黄光产生双折射,寻常光的折射率为1658,非常光的折射率为1486。

光的偏振习题(附答案)-(1)

光的偏振习题(附答案)-(1)

光的偏振习题(附答案)-(1)解:由于e光在方解石中的振动方向与光轴相同, o光在方解石中的振动方向与光轴垂直, 所以e光和o光在方解石内的波面在垂直于光轴的平面中的截线都是圆弧. 但v e > v o ,所以e波包围o波.由图可知, 本题中对于e光仍满足折射定律sin sine ei nγ=由于 e 光在棱镜内折射线与底边平行,30eγ=︒sin sin30 1.490.50.745ei n==⨯=入射角4810oi'=又因为sin sino oi nγ=sin sin4810sin0.4491.66oooinγ'∴===故o光折射角2640ooγ'=1.有三个偏振片堆叠在一起, 第一块与第三块的偏振化方向相互垂直, 第二块和第一块的偏振化方向相互平行, 然后第二块偏振片以恒定角速度ω绕光传播的方向旋转, 如图所示. 设入射自然光的光强为I0. 求此自然光通过这一系统后, 出射光的光强.解:经过P1, 光强由I0变为I0/2, P2以ω转动, P1, P2的偏振化方向的夹角θ=ωt202cos 2I I t ω=P 2以ω转动, P 2, P 3的偏振化方向的夹角β=π/2-ωt22203222000cos cos sin 2(2sin cos )sin 2(1cos 4)8816I I I t t I I I t t t t βωωωωωω==⋅===- 2. 有一束钠黄光以50角入射在方解石平板上, 方解石的光轴平行于平板表面且与入射面垂直, 求方解石中两条折射线的夹角.(对于钠黄光n o =1.658, n e =1.486)解: 在此题的特殊条件下, 可以用折射定律求出o 光, e 光折射线方向. 设i 为入射角, o γ和e γ分别为o 光和e 光的折射角.由折射定律:sin sin o o i n γ=sin sin e e i n γ=sin sin /0.463o o i n γ∴==, 27.5o o γ=sin sin /0.516e e i n γ==, 31.0o e γ=31.027.5 3.5o o o e o γγγ∆=-=-=3. 如图所示的各种情况下, 以非偏振光和偏振光入射两种介质的分界面, 图中i 0为起偏角, i 试画出折射光线和反射光线, 并用点和短线表示他们的偏振状态.4. 如图示的三种透光媒质I 、II 、III, 其折射率分别为n 1=1.33、n 2=1.50、n 3=1,两个交界面相互平行, 一束自然光自媒质I 中入射到I 与II 的交界面上, 若反射光为线偏振光,(1) 求入射角I;(2) 媒质II 、III 交界面上的反射光是不是线偏振光?为什么?解:(1)由布儒斯特定律:()21/ 1.50/1.33tgi n n ==4826o i '=令介质II 中的折射角为γ,则/241.56o i γπ=-=此γ在数值上等于在II 、III 界面上的入射角.若II 、III 界面上的反射光是线偏振光, 则必满足布儒斯特定律()032/ 1.0/1.5tgi n n ==033.69o i =因为0i γ≠, 故II 、III 界面上的反射光不是线偏振光.5. 一块厚0.025mm 的方解石晶片, 表面与光轴平行并放置在两个正交偏振片之间, 晶片的光轴与两偏振片的偏振化方向均成45度角. 用白光垂直入射到第一块偏振片上, 从第二块偏振片出射的光线中, 缺少了那些波长的光.(假定n o =1.658, n e =1.486为常数)解:2()C o e n n d πφλ∆=-2()o e n n d πφπλ⊥∆=-+ 045α=相干相消:(21)k φπ⊥∆=+ 缺少的波长:()o e n n dk λ-=, 6,7,8,9,10k =717,614,538,478,430nm λ=6. 一方解石晶体的表面与其光轴平行, 放在偏振化方向相互正交的偏振片之间, 晶体的光轴与偏振片的偏振化方向成450角. 试求:(1)要使λ = 500nm 的光不能透过检偏器, 则晶片的厚度至少多大?(2)若两偏振片的偏振化方向平行, 要使λ =500nm 的光不能透过检偏器, 晶片的厚度又为多少?(方解石对o 光和e 光的主折射率分别为1.658和1.486.)解:(1)如图(a )所示, 要使光不透过检偏器, 则通过检偏器的两束光须因干涉而相消, 通过P 2时两光的光程差为0()e n n d ∆=-对应的相位差为:02π()2πππe n n d δφλλ-∆=+=+由干涉条件:(21)π(0,1,2......)k k φ∆=+=02π()π(21)πe dn n k λ-+=+当k=1时, 镜片厚度最小, 为760510 2.910(m)()(1.658 1.486)e d n n λ--⨯===⨯-- (2)由图(b)可知当P 1, P 2平行时, 通过P 2的两束光没有附加相位差π, '02π()(21)π(0,1,2..)e d n n k k φλ∴∆=-=+=当k=0时, 此时晶片厚度最小,7065102()2(1.658 1.486)1.4510(m)e d n n λ--⨯==-⨯-=⨯7. 一束平行的线偏振光在真空中的波长为589nm, 垂直入射到方解石晶体上,晶体的光轴与表面平行, 如图所示. 已知方解石晶体对该单色o 光和e 光的折射率分别为1.658、1.486, 方解石晶体中寻常光的波长和非常光的波长分别等于多少?解:方解石晶体中o 光和e 光的波长分别为o o n λλ=658.1589=)nm (2.355=e e n λλ=486.1589=)nm (4.396= 一. 证明与问答题8. (证明题)一块玻璃的折射率为2 1.55n =, 一束自然光以θ角入射到玻璃表面, 求θ角为多少时反射光为完全偏振光?证明在下表面反射并经上表面透射的光也是完全偏振光.解:根据布儒斯特定律201tg n i n =121tg 571017n n θ-'''== 由折射定律:12sin sin n n θγ=π/2θγ+=πsin sin()cos 2θγγ=-=γ角满足布儒斯特定律.9. (问答题)用自然光源以及起偏器和检偏器各一件, 如何鉴别下列三种透明片:偏振片、半波片和1/4波片?答:令自然光先通过起偏器, 然后分别通过三种透明片, 改变起偏器的透振方向, 观察现象, 出现消光的透明片为偏振片, 再通过检偏器, 改变检偏器的透振方向, 出现消光的透明片为半波片.。

现代光学基础 光的偏振习题

现代光学基础 光的偏振习题

第四章 光的偏振(2)一.选择题:(共30分)1.在双缝干涉实验中,用单色自然光,在屏上形成干涉条纹,若在两缝后放一个偏振片,则[ ](A ) 干涉条纹的间距不变,但明纹的亮度加强。

(B ) 干涉条纹的间距不变,但明纹的亮度减弱。

(C ) 干涉条纹的间距不窄,但明纹的亮度减弱。

(D ) 无干涉条纹。

2.光强为I 0的自然光垂直通过两个偏振片,它们的偏振化方向之间的夹角α =600,设偏振片没有吸收,则出射光强I 与入射光强I 0之比为 [ ](A )1/4 (B ) 3/4 (C )1/8 (D )3/83.如果两个偏振片堆叠在一起,且偏振化方向之间夹角为600,假设二者对光无吸收,光强为I 0的自然光垂直入在偏振片上,则出射光强为 [ ](A) I 0/8 (B) 3I 0 /8 (C) I 0 /4 (D) 3 I 0/44.光强为I 0的自然光依次通过两个偏振片和,若的偏振化方向的夹角,则透射偏振光的强度是[ ](A) I 0/4 (B) √3 I 0/4 (C) √3 I 0/2 (D) I 0/8 (E) 3I 0 /85.两偏振片堆叠在一起,一束自然光垂直入射其上时没有光线通过。

当其中一偏振片慢慢转动1800时透射光强度发生变化为: [ ](A) 光强单调增加。

(B) 光强先增加,后有减小至零(C) 光强先增加,后减小,再增加(D) 光强先增加,然后减小,再增加,再减小至零6.一束自然光自空气射向 一块平板玻璃(如图),设入射角等于布儒斯特角i 0 ,则在界面2的反射光 [ ](A) 是自然光(B) 是完全偏振光且光矢量的振动方向垂直入射面 (C) 是完全偏振光且光矢量的振动方向平行入射面(D) 是部分偏振光7.一束单色平面偏振光,垂直投射到一块用方解石(负晶体)制成的四分之一波片(对投射光的频率)上,如图所示,如果入射光的振动面与光轴成450角,则对着光看从波片射出的光是(A) 逆时针方向旋转的圆偏振光(B) 逆时针方向旋转的椭圆偏振光(C) 顺时针方向旋转的圆偏振光(D) 顺时针方向旋转的椭圆偏振光8(A) 线偏振光 (B) 部分偏振光(C) 和原来旋转方向相同的圆偏振光(D) 和原来旋转方向相反的圆偏振光9(对投射光的频率)上,如图所示 成300角,则对着光看从波片射出的光是(A) 逆时针方向旋转的圆偏振光(B) 逆时针方向旋转的椭圆偏振光(C) 顺时针方向旋转的圆偏振光(D) 顺时针方向旋转的椭圆偏振光10.一束单色线偏振光其偏振化方向与1/4波片的光轴夹角α =π/4。

第16章光的偏振习题答案

第16章光的偏振习题答案

三、计算题 1.一束混合光包含线偏振光和自然光,令其通过旋转 着的偏振片,若测得出射光的最大光强为I1,最小光 强为I2。则混合光中自然光的光强和偏振光的光强各 为多少? 解:设混合光中自然光光强为I自,偏振光的光强为I偏 出射光最大光强:I1=1/2*I自+ I偏 出射光最小光强:I2=1/2*I自+ 0 混合光中自然光的光强: I自=2I2 混合光中偏振光的光强: I偏=I1-I2
3. 将三个偏振片堆迭在一起,第二个与第三个偏振片 的通光方向与第一个偏振片成45°和90°角,如果强 度为I0的自然光入射到这一堆偏振片上,则通过第一、 二和第三个偏振片后的光强分别为 I0/2 、 I0/4 、 I0/8 ,若将第三个偏振片抽走,则光强 变为 I0/4 。
4.一束平行的自然光,以60°角入射到玻璃表面上, 若反射光束是完全偏振的,则透射光束的折射角是 30o ;玻璃的折射率为 1.73 。
7.如果一个半波片或1/4波片的光轴与起偏器的偏振化方向成 30°角,则从二分之一波片和四分之一波片投射出的光分别是 A.线偏振光;圆偏振光。 B.线偏振光;椭圆偏振光。 C.圆偏振光;椭圆偏振光。 D.椭圆偏振光;圆偏振光。 8. 在单轴晶体中,e光是否总是以c/ne 的速率传播?哪个方向以 c/n0的速率传播? ( ) A. 是; //光轴方向 C.不是;//光轴方向 B. 是; ⊥光轴方向 D. 不是;⊥光轴方向
A.折射光为平面偏振光B.反射光为平面偏振光 C.入射角的正切等于玻璃折射率D.反射与折射线夹角为90.
6.仅用检偏器观察一束光时,光强有一最大但无消光位置。在检 偏器前加一四分之一波片,使其光轴与上述强度为最大的位置平 行。通过检偏器观察时有一消光位置,这束光是( ) A.部分偏振光 C.线偏振光 B. D. 圆偏振光 椭圆偏振光

11章光的偏振。习题答案

11章光的偏振。习题答案

第11章 光的偏振 习题11.1 一束光强为I 0的自然光,相继通过三个偏振片P 1、P 2、P 3后,出射光的光强为I = I 0/8。

已知P 1和P 3的偏振化方向互相垂直。

若以入射光为轴,旋转P 2,问P 2最少要转过多大角度,才能使出射光的光强为零?解 首先求P 2 与P 3 的偏振化方向之间夹角为多大时,穿过第三个偏振片的透射光强为301=8I I (1)自然光通过P 1后光强变为1012I I =(2) 设P 2 与P 1的偏振化方向之间夹角为θ,则由马吕斯定律可得透过P 2 的光强为222101cos cos 2I I I θθ==(3) 又由马吕斯定律可得透过P 3后的光强为()2222320011cos 90cos sin sin 228I I I I θθθθ=−==D (4) 将式(1)和式(4)联立求解,可得P 2 与P 1的偏振化方向之间夹角为θ=45º若以入射光为轴,旋转P 2,使出射光的光强为零,则由马吕斯定律得到()2222320011cos 90cos sin sin 2028I I I I αααα=−===D (5) 求解式(5)可得到P 2最少要转过的角度为α=45 º11.2 有三个偏振片堆叠在一起,第一块与第三块的偏振化方向互相垂直,第二块与第一块的偏振化方向互相平行。

设入射自然光的光强为I 0,若第二块偏振片以恒定角速度ω绕光的传播方向旋转,如图11-1所示。

试证明,此自然光通过这一系统后,出射光的光强为0(1cos 4)16I I t ω=−。

图11-1 题11.2图证 如图11-1所示,P 1的偏振化方向垂直于P 3的偏振化方向。

设入射自然光的光强为I 0,则通过P 1后强度为I 0/2。

若在时刻t , P 2的偏振化方向 与 P 1的偏振化方向的夹角为t ωθ=,则P 2 与P 3的夹角为θ−D 90。

根据马吕斯定律可得此时出射光强为222101cos cos 2I I I t θω==(1) ()()()2232222020200cos 90sin 1cos sin 212cos sin 81sin 2811cos 416I I I I t t I t t I t I t θθωωωωωω=−===⋅=⋅=−D11.3 使自然光通过两个偏振化方向相交60˚的偏振片,透射光的光强为I 。

光的偏振习题

光的偏振习题
方解石主截面
C 光在垂直光轴 方向的折射率 合称 和 晶 体的主折射率
C
对于方解石

o、e光的方向 1, 2, 图中入射平行光束中两条光线 时刻1到达 A,2到达B; 时刻1在晶体内的 和 波面到达图中的圆和椭圆处,2则刚到达 晶面上的D点。试定性画出晶体内 和 的传播
方向。
光轴
方解石主截面
的传播方向 垂直于 D到圆的切线
两椭圆切线为 e光束波阵面。
C
O光
传播方向相同 速度大小不同 振动相互垂直
O光
e光
e光
屋拉斯顿棱镜
波片
一、波片(或波晶片)
光轴方向
双折射晶体 波片
是从双折射单轴晶体 中切割下来的平行平面 薄片,其表面与晶体光 轴方向平行。
波片的主要参数是:
波片的厚度 波片的晶体对波长为 光的主折射率 的单色
两偏振片透振方向正交 两偏振片透振方向平行 相位差 相位差 白光中的各种波长不可能同时满足同一情况的相长干涉或相消干涉条件
白光
1
若 1 满足 的相长干涉条 件,对于 则满足相 消或 减弱 条件ห้องสมุดไป่ตู้

2 满足
白光
2
的相长干涉条件, 对于 则满 足相 消条件
此类现象称为 色偏振
的传播方向
CC
垂直于 D到椭圆的切线
续上 若将方解石沿着平行于光轴的方向磨出一个平面 用一平行光束垂直于此平面入射。试根据方解石 内 O光 和 光 的波面特点,定性画出 O光 、 光
e
e
的传播方向和任一时刻两光束的波阵面。
作o、e 光波面图, e 光最大速 C 度在垂直光 轴方向。 两圆切线为o 光束波阵面。

光的偏振习题(附答案)

光的偏振习题(附答案)

光的偏振(附答案)一. 填空题1. 一束光垂直入射在偏振片P 上,以入射光为轴旋转偏振片,观察通过偏振片P 的光强的变化过程. 若入射光是自然光或圆偏振光, 则将看到光强不变;若入射光是线偏振光, 则将看到明暗交替变化, 有时出现全暗;若入射光是部分偏振光或椭圆偏振光, 则将看到明暗交替变化, 但不出现全暗.2. 圆偏振光通过四分之一波片后, 出射的光一般是线偏振光.3. 要使一束线偏振光通过偏振片之后振动方向转过90度角,则至少需要让这束光通过2块理想偏振片,在此情况下,透射光强最大是原来的1/4 倍.4. 两个偏振片叠放在一起,强度为I 0的自然光垂直入射其上,若通过两个偏振片后的光强为I/8,则此两偏振片的偏振化方向间的夹角为(取锐角)是60度,若在两片之间再插入一片偏振片, 其偏振化方向间的夹角(取锐角)相等,则通过三个偏振片后的投射光强度为9/32 I 0.5. 某种透明媒质对于空气的临界角(指全反射)等于450, 则光从空气射向此媒质的布儒斯特角是54.70, 就偏振状态来说反射光为完全偏振光, 反射光矢量的振动方向垂直入射面, 透射光为部分偏振光.6. 一束自然光从空气透射到玻璃表面上(空气折射率为1), 当折射角为300时, 反射光是完全偏振光, 则此玻璃的折射率等于1.732.7. 一束钠自然黄光(λ=589.3×10-9m)自空气(设n=1)垂直入射方解石晶片的表面,晶体厚度为0.05 mm, 对钠黄光方解石的主折射率n 0=1.6584、n e =1.4864, 则o 、e 两光透过晶片后的光程差为 8.6 μm , o 、e 两光透过晶片后的相位差为91.7 rad.8. 在杨氏双缝干涉实验中, 若用单色自然光照射狭缝S, 在屏幕上能看到干涉条纹. 若在双缝S 1和 S 2后分别加一个同质同厚度的偏振片P 1、P 2, 则当P 1与P 2的偏振化方向互相平行或接近平行时, 在屏幕上仍能看到清晰的干涉条纹.二. 计算题9. 有一束自然光和线偏振光组成的混合光, 当它通过偏振片时改变偏振片的取向, 发现透射光强可以变化7倍. 试求入射光中两种光的光强度各占总入射光强的比例.解:设入射光的光强为0I , 其中线偏振光的光强为01I ,自然光的光强为02I .在该光束透过偏振片后, 其光强由马吕斯定律可知:201021cos 2I I I α=+ 当α=0时, 透射光的光强最大,max 010212I I I =+,当α=π/2时, 透射光的光强最小,min 0212I I =max min 0102020102177322I I I I I I I =∴+=⇒=入射总光强为:00102I I I =+01020031,44I I I I ∴== 10. 如图所示, 一个晶体偏振器由两个直角棱镜组成(中间密合). 其中一个直角棱镜由方解石晶体制成, 另一个直角棱镜由玻璃制成, 其折射率n 等于方解石对e 光的折射率n e . 一束单色自然光垂直入射, 试定性地画出折射光线, 并标明折射光线光矢量的振动方向. (方解石对o 光和e 光的主折射率分别为1.658和1.486.)解:由于玻璃的折射率n 等于方解石对e 光的折射率, 因此e 光进入方解石后传播方向不变. 而n=n e >n o , 透过因此o 光进入方解石后的折射角<450, 据此得光路图.11. 用方解石割成一个正三角形棱镜, 其光轴与棱镜的棱边平行, 亦即与棱镜的正三角形横截面垂直. 如图所示. 今有一束自然光入射于棱镜, 为使棱镜内的 e 光折射线平行于棱镜的底边, 该入射光的入射角i 应为多少? 并在图中画出 o 光的光路并标明o 光和e 光的振动方向. 已知n e = 1.49 (主折射率, n o =1.66.解:由于e 光在方解石中的振动方向与光轴相同, o 光在方解石中的振动方向与光轴垂直, 所以e 光和o 光在方解石内的波面在垂直于光轴的平面中的截线都是圆弧. 但 v e > v o ,所以e 波包围o 波.由图可知, 本题中对于e 光仍满足折射定律sin sin e e i n γ=由于 e 光在棱镜内折射线与底边平行,30e γ=︒ 0sin sin 30 1.490.50.745e i n ==⨯=入射角 4810o i '= 又因为sin sin o o i n γ= sin sin 4810sin 0.4491.66o o o i n γ'∴===故o 光折射角2640o o γ'=12. 有三个偏振片堆叠在一起, 第一块与第三块的偏振化方向相互垂直, 第二块和第一块的偏振化方向相互平行, 然后第二块偏 振片以恒定角速度ω绕光传播的方向旋转, 如图所示. 设入射自然光的光强为I 0. 求此自然光通过这一系统后, 出射光的光强.解:经过P 1, 光强由I 0变为I 0/2, P 2以ω转动, P 1, P 2的偏振化方向的夹角θ=ωt202cos 2I I t ω=P 2以ω转动, P 2, P 3的偏振化方向的夹角β=π/2-ωt22203222000cos cos sin 2(2sin cos )sin 2(1cos 4)8816I I I t t I I I t t t t βωωωωωω==⋅===- 13. 有一束钠黄光以50角入射在方解石平板上, 方解石的光轴平行于平板表面且与入射面垂直, 求方解石中两条折射线的夹角.(对于钠黄光n o =1.658, n e =1.486)解: 在此题的特殊条件下, 可以用折射定律求出o 光, e 光折射线方向. 设i 为入射角, o γ和e γ分别为o 光和e 光的折射角.由折射定律:sin sin o o i n γ=sin sin e e i n γ=sin sin /0.463o o i n γ∴==, 27.5o o γ=sin sin /0.516e e i n γ==, 31.0o e γ=31.027.5 3.5o o o e o γγγ∆=-=-=14. 如图所示的各种情况下, 以非偏振光和偏振光入射两种介质的分界面, 图中i 0为起偏角, i 试画出折射光线和反射光线, 并用点和短线表示他们的偏振状态.15. 如图示的三种透光媒质I 、II 、III, 其折射率分别为n 1=1.33、n 2=1.50、n 3=1, 两个交界面相互平行, 一束自然光自媒质I 中入射到I 与II 的交界面上, 若反射光为线偏振光,(1) 求入射角I;(2) 媒质II 、III 交界面上的反射光是不是线偏振光?为什么?解:(1)由布儒斯特定律:()21/ 1.50/1.33tgi n n ==4826o i '=令介质II 中的折射角为γ,则/241.56o i γπ=-=此γ在数值上等于在II 、III 界面上的入射角.若II 、III 界面上的反射光是线偏振光, 则必满足布儒斯特定律()032/ 1.0/1.5tgi n n ==033.69o i =因为0i γ≠, 故II 、III 界面上的反射光不是线偏振光.16. 一块厚0.025mm 的方解石晶片, 表面与光轴平行并放置在两个正交偏振片之间, 晶片的光轴与两偏振片的偏振化方向均成45度角. 用白光垂直入射到第一块偏振片上, 从第二块偏振片出射的光线中, 缺少了那些波长的光.(假定n o =1.658, n e =1.486为常数)解: 2()C o e n n d πφλ∆=-2()o e n n d πφπλ⊥∆=-+ 045α=相干相消:(21)k φπ⊥∆=+缺少的波长:()o e n n dk λ-=, 6,7,8,9,10k =717,614,538,478,430nm λ=17. 一方解石晶体的表面与其光轴平行, 放在偏振化方向相互正交的偏振片之间, 晶体的光轴与偏振片的偏振化方向成450角. 试求:(1)要使λ = 500nm 的光不能透过检偏器, 则晶片的厚度至少多大?(2)若两偏振片的偏振化方向平行, 要使λ =500nm 的光不能透过检偏器, 晶片的厚度又为多少?(方解石对o 光和e 光的主折射率分别为1.658和1.486.)解:(1)如图(a )所示, 要使光不透过检偏器, 则通过检偏器的两束光须因干涉而相消, 通过P 2时两光的光程差为0()e n n d ∆=-对应的相位差为:02π()2πππe n n d δφλλ-∆=+=+由干涉条件:(21)π(0,1,2......)k k φ∆=+=02π()π(21)πe d n n k λ-+=+当k=1时, 镜片厚度最小, 为760510 2.910(m)()(1.658 1.486)e d n n λ--⨯===⨯-- (2)由图(b)可知当P 1, P 2平行时, 通过P 2的两束光没有附加相位差π, '02π()(21)π(0,1,2..)e d n n k k φλ∴∆=-=+=当k=0时, 此时晶片厚度最小,7065102()2(1.658 1.486)1.4510(m)e d n n λ--⨯==-⨯-=⨯18. 一束平行的线偏振光在真空中的波长为589nm, 垂直入射到方解石晶体上,晶体的光轴与表面平行, 如图所示. 已知方解石晶体对该单色o 光和e 光的折射率分别为1.658、1.486, 方解石晶体中寻常光的波长和非常光的波长分别等于多少?解:方解石晶体中o 光和e 光的波长分别为o o n λλ=658.1589=)nm (2.355=e e n λλ=486.1589=)nm (4.396= 三. 证明与问答题19. (证明题)一块玻璃的折射率为2 1.55n =, 一束自然光以θ角入射到玻璃表面, 求θ角为多少时反射光为完全偏振光?证明在下表面反射并经上表面透射的光也是完全偏振光.解:根据布儒斯特定律201tg n i n =121tg 571017n n θ-'''== 由折射定律:12sin sin n n θγ=π/2θγ+=πsin sin()cos 2θγγ=-=γ角满足布儒斯特定律.20. (问答题)用自然光源以及起偏器和检偏器各一件, 如何鉴别下列三种透明片:偏振片、半波片和1/4波片?答:令自然光先通过起偏器, 然后分别通过三种透明片, 改变起偏器的透振方向, 观察现象, 出现消光的透明片为偏振片, 再通过检偏器, 改变检偏器的透振方向, 出现消光的透明片为半波片.。

大学物理光的偏振[试题]

大学物理光的偏振[试题]

练习 二十一 光的偏振一、选择题1、两偏振片堆叠在一起,一束自然光垂直入射时没有光线通过。

当其中一偏振片慢慢转动180°时透射光强度发生的变化为 [ C ]() 光强单调增加; (B) 光强先增加,然后减小,再增加,再减小至零(C) 光强先增加,后又减小至零; (D) 光强先增加,后减小,再增加。

2、两偏振片组成起偏器及检偏器,当它们的偏振化方向成60o 时观察一个强度为I 0的自然光光源;所得的光强是 [ B ]()I 0/2 ; (B) I 0/8; (C) I 0/6; (D)3 I 0/4.3、光强为I 0自然光垂直照射到两块互相重叠的偏振片上,观察到的光强为零时 ,两块偏振片的偏振化方向成 [ D ]() 30°; (B) 45°; (C) 60°; (D) 90°。

4、自然光垂直照射到两块互相重叠的偏振片上,如果透射光强为入射光强的一半,两偏振片的偏振化方向间的夹角为多少?如果透射光强为最大透射光强的一半,则两偏振片的偏振化方向间的夹角又为多少? [ D ]() 45°, 45° ; (B) 45°, 0° ; (C) 0°, 30° ; (D) 0°, 45°。

5、一束光强为I 0的自然光垂直穿过两个偏振片,且两偏振片的振偏化方向成60°角,若不考虑偏振片的反射和吸收,则穿过两个偏振片后的光强I 为 [ B ]()420I ; (B) 08I ; (C) 20I ; (D) 20I 。

7、自然光以60o 的入射角照射到某两介质交界面时,反射光为完全偏振光,则折射光为[ D ]、完全偏振光且折射角是300B、部分偏振光且只是在该光由真空入射到折射率为1.732的介质时,折射角为300C、部分偏振光,但须知两种介质的折射率才能确定折射;D、部分偏振光且折射角是3008、自然光以布儒斯特角由空气入射到一玻璃表面上,反射光是[ C ]() 在入射面内振动的完全偏振光(B) 平行于入射面的振动占优势的部分偏振光(C) 垂直于入射振动的完全偏振光(D) 垂直于入射面的振动占优势的部分偏振光9、一束光强为I0自然光,相继通过三个偏振片P1、P2、P3后,出射光的光强I = I0/8,已知P1和P3的偏振化方向相互垂直,若以入射光线为轴,旋转P2,要使出射光的光强为零,P2最少要转过的角度是[ B ](A)30°(B)45°(C)60°(D)90°二、填空题1、检验自然光、线偏振光和部分偏振光时,使被检验光入射到偏振片上,然后旋转偏振片。

光的偏振习题(附答案)

光的偏振习题(附答案)

光的偏振(附答案)一. 填空题1. 一束光垂直入射在偏振片P 上,以入射光为轴旋转偏振片,观察通过偏振片P 的光强的变化过程. 若入射光是自然光或圆偏振光, 则将看到光强不变;若入射光是线偏振光, 则将看到明暗交替变化, 有时出现全暗;若入射光是部分偏振光或椭圆偏振光, 则将看到明暗交替变化, 但不出现全暗.2. 圆偏振光通过四分之一波片后, 出射的光一般是线偏振光.3. 要使一束线偏振光通过偏振片之后振动方向转过90度角,则至少需要让这束光通过2块理想偏振片,在此情况下,透射光强最大是原来的1/4 倍.4. 两个偏振片叠放在一起,强度为I 0的自然光垂直入射其上,若通过两个偏振片后的光强为I/8,则此两偏振片的偏振化方向间的夹角为(取锐角)是60度,若在两片之间再插入一片偏振片, 其偏振化方向间的夹角(取锐角)相等,则通过三个偏振片后的投射光强度为9/32 I 0.5. 某种透明媒质对于空气的临界角(指全反射)等于450, 则光从空气射向此媒质的布儒斯特角是54.70, 就偏振状态来说反射光为完全偏振光, 反射光矢量的振动方向垂直入射面, 透射光为部分偏振光.6. 一束自然光从空气透射到玻璃表面上(空气折射率为1), 当折射角为300时, 反射光是完全偏振光, 则此玻璃的折射率等于1.732.7. 一束钠自然黄光(λ=589.3×10-9m)自空气(设n=1)垂直入射方解石晶片的表面,晶体厚度为0.05 mm, 对钠黄光方解石的主折射率n 0=1.6584、n e =1.4864, 则o 、e 两光透过晶片后的光程差为 8.6 μm , o 、e 两光透过晶片后的相位差为91.7 rad.8. 在杨氏双缝干涉实验中, 若用单色自然光照射狭缝S, 在屏幕上能看到干涉条纹. 若在双缝S 1和 S 2后分别加一个同质同厚度的偏振片P 1、P 2, 则当P 1与P 2的偏振化方向互相平行或接近平行时, 在屏幕上仍能看到清晰的干涉条纹.二. 计算题9. 有一束自然光和线偏振光组成的混合光, 当它通过偏振片时改变偏振片的取向, 发现透射光强可以变化7倍. 试求入射光中两种光的光强度各占总入射光强的比例.解:设入射光的光强为0I , 其中线偏振光的光强为01I ,自然光的光强为02I .在该光束透过偏振片后, 其光强由马吕斯定律可知:201021cos 2I I I α=+ 当α=0时, 透射光的光强最大,max 010212I I I =+,当α=π/2时, 透射光的光强最小,min 0212I I =max min 0102020102177322I I I I I I I =∴+=⇒=入射总光强为:00102I I I =+01020031,44I I I I ∴== 10. 如图所示, 一个晶体偏振器由两个直角棱镜组成(中间密合). 其中一个直角棱镜由方解石晶体制成, 另一个直角棱镜由玻璃制成, 其折射率n 等于方解石对e 光的折射率n e . 一束单色自然光垂直入射, 试定性地画出折射光线, 并标明折射光线光矢量的振动方向. (方解石对o 光和e 光的主折射率分别为1.658和1.486.)解:由于玻璃的折射率n 等于方解石对e 光的折射率, 因此e 光进入方解石后传播方向不变. 而n=n e >n o , 透过因此o 光进入方解石后的折射角<450, 据此得光路图.11. 用方解石割成一个正三角形棱镜, 其光轴与棱镜的棱边平行, 亦即与棱镜的正三角形横截面垂直. 如图所示. 今有一束自然光入射于棱镜, 为使棱镜内的 e 光折射线平行于棱镜的底边, 该入射光的入射角i 应为多少? 并在图中画出 o 光的光路并标明o 光和e 光的振动方向. 已知n e = 1.49 (主折射率, n o =1.66.解:由于e 光在方解石中的振动方向与光轴相同, o 光在方解石中的振动方向与光轴垂直, 所以e 光和o 光在方解石内的波面在垂直于光轴的平面中的截线都是圆弧. 但 v e > v o ,所以e 波包围o 波.由图可知, 本题中对于e 光仍满足折射定律sin sin e e i n γ=由于 e 光在棱镜内折射线与底边平行,30e γ=︒ 0sin sin 30 1.490.50.745e i n ==⨯=入射角 4810o i '= 又因为sin sin o o i n γ= sin sin 4810sin 0.4491.66o o o i n γ'∴===故o 光折射角2640o o γ'=12. 有三个偏振片堆叠在一起, 第一块与第三块的偏振化方向相互垂直, 第二块和第一块的偏振化方向相互平行, 然后第二块偏 振片以恒定角速度ω绕光传播的方向旋转, 如图所示. 设入射自然光的光强为I 0. 求此自然光通过这一系统后, 出射光的光强.解:经过P 1, 光强由I 0变为I 0/2, P 2以ω转动, P 1, P 2的偏振化方向的夹角θ=ωt202cos 2I I t ω=P 2以ω转动, P 2, P 3的偏振化方向的夹角β=π/2-ωt22203222000cos cos sin 2(2sin cos )sin 2(1cos 4)8816I I I t t I I I t t t t βωωωωωω==⋅===- 13. 有一束钠黄光以50角入射在方解石平板上, 方解石的光轴平行于平板表面且与入射面垂直, 求方解石中两条折射线的夹角.(对于钠黄光n o =1.658, n e =1.486)解: 在此题的特殊条件下, 可以用折射定律求出o 光, e 光折射线方向. 设i 为入射角, o γ和e γ分别为o 光和e 光的折射角.由折射定律:sin sin o o i n γ=sin sin e e i n γ=sin sin /0.463o o i n γ∴==, 27.5o o γ=sin sin /0.516e e i n γ==, 31.0o e γ=31.027.5 3.5o o o e o γγγ∆=-=-=14. 如图所示的各种情况下, 以非偏振光和偏振光入射两种介质的分界面, 图中i 0为起偏角, i 试画出折射光线和反射光线, 并用点和短线表示他们的偏振状态.15. 如图示的三种透光媒质I 、II 、III, 其折射率分别为n 1=1.33、n 2=1.50、n 3=1, 两个交界面相互平行, 一束自然光自媒质I 中入射到I 与II 的交界面上, 若反射光为线偏振光,(1) 求入射角I;(2) 媒质II 、III 交界面上的反射光是不是线偏振光?为什么?解:(1)由布儒斯特定律:()21/ 1.50/1.33tgi n n ==4826o i '=令介质II 中的折射角为γ,则/241.56o i γπ=-=此γ在数值上等于在II 、III 界面上的入射角.若II 、III 界面上的反射光是线偏振光, 则必满足布儒斯特定律()032/ 1.0/1.5tgi n n ==033.69o i =因为0i γ≠, 故II 、III 界面上的反射光不是线偏振光.16. 一块厚0.025mm 的方解石晶片, 表面与光轴平行并放置在两个正交偏振片之间, 晶片的光轴与两偏振片的偏振化方向均成45度角. 用白光垂直入射到第一块偏振片上, 从第二块偏振片出射的光线中, 缺少了那些波长的光.(假定n o =1.658, n e =1.486为常数)解: 2()C o e n n d πφλ∆=-2()o e n n d πφπλ⊥∆=-+ 045α=相干相消:(21)k φπ⊥∆=+缺少的波长:()o e n n dk λ-=, 6,7,8,9,10k =717,614,538,478,430nm λ=17. 一方解石晶体的表面与其光轴平行, 放在偏振化方向相互正交的偏振片之间, 晶体的光轴与偏振片的偏振化方向成450角. 试求:(1)要使λ = 500nm 的光不能透过检偏器, 则晶片的厚度至少多大?(2)若两偏振片的偏振化方向平行, 要使λ =500nm 的光不能透过检偏器, 晶片的厚度又为多少?(方解石对o 光和e 光的主折射率分别为1.658和1.486.)解:(1)如图(a )所示, 要使光不透过检偏器, 则通过检偏器的两束光须因干涉而相消, 通过P 2时两光的光程差为0()e n n d ∆=-对应的相位差为:02π()2πππe n n d δφλλ-∆=+=+由干涉条件:(21)π(0,1,2......)k k φ∆=+=02π()π(21)πe d n n k λ-+=+当k=1时, 镜片厚度最小, 为760510 2.910(m)()(1.658 1.486)e d n n λ--⨯===⨯-- (2)由图(b)可知当P 1, P 2平行时, 通过P 2的两束光没有附加相位差π, '02π()(21)π(0,1,2..)e d n n k k φλ∴∆=-=+=当k=0时, 此时晶片厚度最小,7065102()2(1.658 1.486)1.4510(m)e d n n λ--⨯==-⨯-=⨯18. 一束平行的线偏振光在真空中的波长为589nm, 垂直入射到方解石晶体上,晶体的光轴与表面平行, 如图所示. 已知方解石晶体对该单色o 光和e 光的折射率分别为1.658、1.486, 方解石晶体中寻常光的波长和非常光的波长分别等于多少?解:方解石晶体中o 光和e 光的波长分别为o o n λλ=658.1589=)nm (2.355=e e n λλ=486.1589=)nm (4.396= 三. 证明与问答题19. (证明题)一块玻璃的折射率为2 1.55n =, 一束自然光以θ角入射到玻璃表面, 求θ角为多少时反射光为完全偏振光?证明在下表面反射并经上表面透射的光也是完全偏振光.解:根据布儒斯特定律201tg n i n =121tg 571017n n θ-'''== 由折射定律:12sin sin n n θγ=π/2θγ+=πsin sin()cos 2θγγ=-=γ角满足布儒斯特定律.20. (问答题)用自然光源以及起偏器和检偏器各一件, 如何鉴别下列三种透明片:偏振片、半波片和1/4波片?答:令自然光先通过起偏器, 然后分别通过三种透明片, 改变起偏器的透振方向, 观察现象, 出现消光的透明片为偏振片, 再通过检偏器, 改变检偏器的透振方向, 出现消光的透明片为半波片.。

光的偏振习题答案及解法

光的偏振习题答案及解法

光的偏振习题答案及解法————————————————————————————————作者:————————————————————————————————日期:光的偏振习题、答案及解法一、 选择题1. 在双缝干涉实验中,用单色自然光照色双缝,在观察屏上会形成干涉条纹若在两缝封后放一个偏振片,则(B ) A 、 干涉条纹的间距不变,但明纹的亮度加强; B 、 干涉条纹的间距不变,但明纹的亮度减弱; C 、干涉条纹的间距变窄,但明纹的亮度减弱; D 、 没有干涉条纹。

2.一束光是自然光和线偏振光的混合光,让它垂直通过一偏振片,若以入射光束为轴旋转偏振片,测得透射光强度最大值是最小值的7倍,那么入射光束中自然光与线偏振光的光强比值为(B ) A 、 21 ; B 、 31 ; C 、 41 ; D 、 51 。

参考答案:()θηη200cos 12-+=I I I ()ηη-+=1200max I I I η20min I I = ()7212000minmax=-+=ηηηI I I I I ηη-=27 31=η 3.若一光强为0I 的线偏振光先后通过两个偏振片1P 和2P 。

1P 和2P 的偏振化方向与原入射光矢量振动方向的夹角分别为090和α,则通过这两个偏振片后的光强I (A ) A 、)2(sin 4120a I ; B 、 0 ; C 、 a I 20cos 41 ; D 、 a I 20sin 41。

参考答案: ⎪⎭⎫ ⎝⎛-=απα2cos cos 220I I )2(sin 4120a I I =4.一光强为0I 的自然光垂直通过两个偏振片,且两偏振片偏振化方向成030则穿过两个偏振片后的光强为(D )A 、 430I ;B 、 40I ;C 、 80I ;D 、 830I 。

参考答案: 836cos 2cos 202020II I I ===πα 5.一束光强为0I 自然光,相继通过三个偏振片321P P 、、P 后,出射光的光强为8I I =。

光的偏振计算题及答案

光的偏振计算题及答案

《光的偏振》计算题1. 将三个偏振片叠放在一起,第二个与第三个的偏振化方向分别与第一个的偏振化方向成45︒和90︒角.(1) 强度为I 0的自然光垂直入射到这一堆偏振片上,试求经每一偏振片后的光强和偏振状态.(2) 如果将第二个偏振片抽走,情况又如何?解:(1) 自然光通过第一偏振片后,其强度 I 1 = I 0 / 2 1分通过第2偏振片后,I 2=I 1cos 245︒=I 1/ 4 2分 通过第3偏振片后,I 3=I 2cos 245︒=I 0/ 8 1分 通过每一偏振片后的光皆为线偏振光,其光振动方向与刚通过的偏振片的偏振化方向平行. 2分(2) 若抽去第2片,因为第3片与第1片的偏振化方向相互垂直,所以此时I 3 =0. 1分I 1仍不变. 1分2. 两个偏振片叠在一起,在它们的偏振化方向成α1=30°时,观测一束单色自然光.又在α2=45°时,观测另一束单色自然光.若两次所测得的透射光强度相等,求两次入射自然光的强度之比.解:令I 1和I 2分别为两入射光束的光强.透过起偏器后,光的强度分别为I 1 / 2和I 2 / 2马吕斯定律,透过检偏器的光强分别为 1分1211cos 21αI I =', 2222cos 21αI I =' 2分 按题意,21I I '=',于是 222121cos 21cos 21ααI I = 1分 得 3/2cos /cos /221221==ααI I 1分3. 有三个偏振片叠在一起.已知第一个偏振片与第三个偏振片的偏振化方向相互垂直.一束光强为I 0的自然光垂直入射在偏振片上,已知通过三个偏振片后的光强为I 0 / 16.求第二个偏振片与第一个偏振片的偏振化方向之间的夹角.解:设第二个偏振片与第一个偏振片的偏振化方向间的夹角为θ.透过第一个偏振片后的光强 I 1=I 0 / 2. 1分 透过第二个偏振片后的光强为I 2,由马吕斯定律,I 2=(I 0 /2)cos 2θ 2分 透过第三个偏振片的光强为I 3,I 3 =I 2 cos 2(90°-θ ) = (I 0 / 2) cos 2θ sin 2θ = (I 0 / 8)sin 22θ 3分 由题意知 I 3=I 2 / 16所以 sin 22θ = 1 / 2,()2/2sin 211-=θ=22.5° 2分4. 将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为o 60,一束光强为I 0的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成30°角.(1) 求透过每个偏振片后的光束强度;(2) 若将原入射光束换为强度相同的自然光,求透过每个偏振片后的光束强度.解:(1) 透过第一个偏振片的光强I 1I 1=I 0 cos 230° 2分=3 I 0 / 4 1分透过第二个偏振片后的光强I 2, I 2=I 1cos 260°=3I 0 / 16 2分(2) 原入射光束换为自然光,则I 1=I 0 / 2 1分I 2=I 1cos 260°=I 0 / 8 2分5.强度为I 0的一束光,垂直入射到两个叠在一起的偏振片上,这两个偏振片的偏振化方向之间的夹角为60°.若这束入射光是强度相等的线偏振光和自然光混合而成的,且线偏振光的光矢量振动方向与此二偏振片的偏振化方向皆成30°角,求透过每个偏振片后的光束强度. 解:透过第一个偏振片后的光强为2001cos 212121⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=I I I 30° 2分 =5I 0 / 8 1分 透过第二个偏振片后的光强I 2=( 5I 0 / 8 )cos 260° 1分=5I 0 / 32 1分6.两个偏振片P 1,P 2叠在一起,一束强度为I 0的光垂直入射到偏振片上.已知该入射光由强度相同的自然光和线偏振光混合而成,且入射光穿过第一个偏振片P 1后的光强为0.716 I 0;当将P 1抽出去后,入射光穿过P 2后的光强为0.375I 0.求P 1、P 2的偏振化方向之间的夹角.解:设入射光中线偏振光的光矢量振动方向与P 1的偏振化方向之间的夹角为θ1,已知透过P 1后的光强I 1=0.716I 0,则I 1=0.716 I 0=0.5(I 0 / 2)+0.5(I 0 cos 2θ1) 3分cos 2θ1=0.932 θ1=15.1°(≈15°) 1分设θ2为入射光中线偏振光的光矢量振动方向与P 2的偏振化方向之间的夹角.已知入射光单独穿过P 2后的光强I 2=0.375I 0,则由 ()22000cos 212121375.0θI I I +⎪⎭⎫ ⎝⎛= 得 θ2=60° 2分 以α 表示P 1、P 2的偏振化方间的夹角,α有两个可能值α=θ2+θ1=75° 2分或α=θ2-θ1=45° 2分7. 两个偏振片P 1、P 2叠在一起,其偏振化方向之间的夹角为30°.一束强度为I 0的光垂直入射到偏振片上,已知该入射光由强度相同的自然光和线偏振光混合而成,现测得连续透过两个偏振片后的出射光强与I 0之比为9 /16,试求入射光中线偏振光的光矢量方向. 解:设入射光中线偏振光的光矢量振动方向与P 1的偏振化方向之间的夹角为θ,透过P 1后的光强I 1为 ()θ2001cos 212121I I I +⎪⎭⎫ ⎝⎛= 2分透过P 2后的光强I 2为 I 2=I 1 cos 2 30°()2022/32/cos 21⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=I θ 3分 I 2 / I 1=9 / 16cos 2 θ=1 2分 所以 θ=0°即入射光中线偏振光的光矢量振动方向与P 1的偏振化方向平行.1分8.由两个偏振片(其偏振化方向分别为P 1和P 2)叠在一起,P 1与P 2的夹角为α.一束线偏振光垂直入射在偏振片上.已知入射光的光矢量振动方向与P 2的夹角为A (取锐角),A 角保持不变,如图.现转动P 1,但保持P 1与E ϖ、P 2的夹角都不超过A (即P 1夹在E ϖ和P 2之间,见图).求α等于何值时出射光强为极值;此极值是极大还是极小?解:入射光振动方向E ϖ与P 1、P 2的关系如图.出射光强为 ()αα2202cos cos -=A I I 3分 由三角函数“积化和差”关系,得20221cos 21cos 41⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=αA I I A 3分 因为A 为锐角,α≤A ,所以A A 2121≤-α (见图).所以 021cos 21cos >≥⎪⎭⎫ ⎝⎛-A A α 所以,I 2只在α = A / 2处取得极值,且显然是极大值. 2分 (用求导数的办法找极值点也可以)9.两个偏振片叠在一起,欲使一束垂直入射的线偏振光经过这两个偏振片之后振动方向转过了90°,且使出射光强尽可能大,那么入射光振动方向和两偏振片的偏振化方向之间的夹角应如何选择?这种情况下的最大出射光强与入射光强的比值是多少?解:以P 1、P 2表示两偏振化方向,其夹角记为θ,为了振动方向转过90°,入射光振动方向E ϖ必与P 2垂直,如图. 2分设入射光强为I 0,则出射光强为I 2=I 0 cos 2(90°- θ ) cos 2θ ()θθθ2sin 4/cos sin 20220I I == 3分当2θ=90°即θ=45°时,I 2取得极大值,且 I 2max =I 0 / 4, 2分 即 I 2max / I 0=1 / 4 1分10.两个偏振片P 1、P 2叠在一起,一束单色线偏振光垂直入射到P 1上,其光矢量振动方向与P 1的偏振化方向之间的夹角固定为30°.当连续穿过P 1、P 2后的出射光强为最大出射光强的1 / 4时,P 1、P 2的偏振化方向夹角α是多大?解:设I 0为入射光强,I 为连续穿过P 1、P 2后的透射光强.I =I 0cos 230°cos 2α 2分 显然,α=0时为最大透射光强,即I max =I 0 cos 230°=3I 0 / 4 1分 由 I 0cos 230°cos 2α =I max / 4 可得 cos 2α 1 / 4=, α=60° 2分P 1P 2 E ϖθ1 2 ϖ1 211.两个偏振片P 1、P 2叠在一起,其偏振化方向之间的夹角为30°.由强度相同的自然光和线偏振光混合而成的光束垂直入射在偏振片上.已知穿过P 1后的透射光强为入射光强的2 / 3,求(1) 入射光中线偏振光的光矢量振动方向与P 1的偏振化方向的夹角θ为多大?(2) 连续穿过P 1、P 2后的透射光强与入射光强之比.解:设I 0为自然光强.由题意知入射光强为2 I 0. 1分(1) I 1=2·2 I 0 / 3=0.5 I 0+I 0cos 2θ4 / 3=0.5+cos 2θ所以 θ=24.1° 2分(2) I 1= (0.5 I 0+I 0 cos 224.1°)=2(2 I 0) / 3,I 2=I 1cos 230°=3 I 1 / 4所以I 2 / 2I 0 = 1 / 2 2分12.三个偏振片P 1、P 2、P 3顺序叠在一起,P 1、P 3的偏振化方向保持相互垂直,P 1与P 2的偏振化方向的夹角为α,P 2可以入射光线为轴转动.今以强度为I 0的单色自然光垂直入射在偏振片上.不考虑偏振片对可透射分量的反射和吸收.(1) 求穿过三个偏振片后的透射光强度I 与α角的函数关系式;(2) 试定性画出在P 2转动一周的过程中透射光强I 随α角变化的函数曲线.解:(1) 连续穿过三个偏振片之后的光强为 I =0.5I 0cos 2α cos 2(0.5π-α ) 2分 =I 0sin 2(2α) / 8 1分(2) 画出曲线 2分13.如图,P 1、P 2为偏振化方向相互平行的两个偏振片.光强为I 0的平行自然光垂直入射在P 1上. (1) 求通过P 2后的光强I . (2) 如果在P 1、P 2之间插入第三个偏振片P 3,(如图中虚线所示)并测得最后光强I =I 0 / 32,求:P 3的偏振化方向与P 1的偏振化方向之间的夹角α (设α为锐角). 解:(1) 经P 1后,光强I 1=21I 0 1分 I 1为线偏振光.通过P 2.由马吕斯定律有I =I 1cos 2θ 1分 ∵ P 1与P 2偏振化方向平行.∴θ=0.故 I =I 1cos 20°=I 1=21I 01分 (2) 加入第三个偏振片后,设第三个偏振片的偏振化方向与第一个偏振化方向间的夹角为α.则透过P 2的光强αα2202cos cos 21I I =α40cos 21I = 2分 由已知条件有 32/cos 21040I I =α ∴ cos 4α=1 / 16 2分得 cos α=1 / 2 即 α =60° 1分I I 0 / 8π/4π/23π/45π/4π3π/2α I 0I P P P14.有一平面玻璃板放在水中,板面与水面夹角为θ (见图).设水和玻璃的折射率分别为1.333和1.517.已知图中水面的反射光是完全偏振光,欲使玻璃板面的反射光也是完全偏振光,θ 角应是多大?解:由题可知i 1和i 2应为相应的布儒斯特角,由布儒斯特定律知tg i 1= n 1=1.33; 1分tg i 2=n 2 / n 1=1.57 / 1.333, 2分 由此得 i 1=53.12°, 1分 i 2=48.69°. 1分 由△ABC 可得 θ+(π / 2+r )+(π / 2-i 2)=π 2分 整理得 θ=i 2-r由布儒斯特定律可知,r =π / 2-i 1 2分 将r 代入上式得θ=i 1+i 2-π / 2=53.12°+48.69°-90°=11.8° 1分15.一束自然光自水(折射率为1.33)中入射到玻璃表面上(如图).当入射角为49.5°时,反射光为线偏振光,求玻璃的折射率.解:设n 2为玻璃的折射率,由布儒斯特定律可得 n 2=1.33 tg49.5°3分=1.56 2分16.一束自然光自空气入射到水(折射率为1.33)表面上,若反射光是线偏振光,(1) 此入射光的入射角为多大?(2) 折射角为多大?解:(1) 由布儒斯特定律 tg i 0=1.33得 i 0=53.1°此 i b 即为所求的入射角 3分(2) 若以r 表示折射角,由布儒斯特定律可得r =0.5π-i 0=36.9° 2分17.一束自然光由空气入射到某种不透明介质的表面上.今测得此不透明介质的起偏角为 56°,求这种介质的折射率.若把此种介质片放入水(折射率为1.33)中,使自然光束自水中入射到该介质片表面上,求此时的起偏角.解:设此不透明介质的折射率为n ,空气的折射率为1.由布儒斯特定律可得n =tg 56°=1.483 2分 将此介质片放入水中后,由布儒斯特定律tg i 0=n / 1.33=1.112 i 0=48.03° (=48°2') 3分此i 0即为所求之起偏角.水玻璃(资料素材和资料部分来自网络,供参考。

6_6光的偏振习题

6_6光的偏振习题

Dy 0 Dx0 1 , 2
此图D1, D2, D,是左旋圆偏振波
补充:用矢量波的波函数和Jones列矩阵
按照 D 矢量的波函数:
Dx Dx0 cos(kz t x0 ) Dy Dy0 cos(kz t y0 )
复指数函数形式:
Dx Dx0 exp j ( kz t ) x 0 Dy Dy0 exp j ( kz t ) y 0

都是线偏振光, 光轴
一般 o e ,光轴除外。

正晶体:石英 .no 1.544 ne 1.553 单轴 负晶体 : 方解石.no 1.658 ne 1.486 双轴


四、偏振器件:
⒈尼科耳棱镜:可以作为起偏器,也可以作为检偏器。自然光通过平行尼 科耳时透射光最强;通过正交尼科耳时透射光强为0。 1 2 sin ( n o n e ) tg ⒉沃拉斯顿棱镜: 1 2 2 (n n )d . d — 晶片的厚度。 ⒊波片: ( 2 k 1 ) , ( 2 k 1 ) , ① 4 片: 4 2 能把圆偏振光→线偏振光;也能使线偏振光→椭圆、圆、线偏振光。
2 1 π (2) A2 y x A1
y
A2
o
A1
x
(2)
ˆD0 coskz t ˆ Di jD0 sinkz t
解:
D iD0 cos kz t jD0 cos kz t 2
Dy 0 Dx0 1 , 2
偏振光和偏振器件的琼斯矩阵
一、偏振光的矩阵表示 1、沿z方向传播单色偏振光矩阵表示 因为: 因此: 则有: 最后有:

第九章 光的偏振习题

第九章 光的偏振习题

第九章 光的偏振习题一、择填空题1、按照小说《隐形人》中所述,其主人公发明了一种特殊的化合物,喝了它以后,他就成为光的完全透明体,完全隐形了。

可是小说的作者忽略了一个重要的事实,那就是这位隐形人也看不见周围的东西,这是因为(A )光束正好干涉相消;(B )偏振光的布儒斯特定理;(C )透明的视网膜无法吸收光线;(D )入射光的全反射;(E )对于不同波长的入射光,眼睛的焦距会发生变化。

答案[ ]2、如图1所示,一束自然光入射到折射率分别为n 1和n 2的两种介质的交界面上,发生反射和折射。

已知反射光是完全偏振光,那么折射角r 的值为。

3、(1)如图2a 所示 ,一束自然光入射在方解石晶体的表面上,入射光线与光轴成一定角度。

这时将有 条光线从方解石透射出来;(2)如果把方解石切割成等厚的A 、B 两块,并平行地移开很短一段距离,如图2b 所示,此时光线通过这两块方解石后将有 条光线射出来;(3)在图b 中如把B 块绕光线转过一个角度,此时将有条光线从B 块射出来。

4、将自然光入射到两个主截面互成60°角的尼科耳棱镜上,可得到一偏振光。

若在两个尼科耳之间再放入一块偏振片,使其偏振化方向和两尼科耳的主截面各成30°角,则放入偏振片前入射光强与出射光强之比是 ;放入偏振片前与放入偏振片后两次出射光强之比是 。

5、一单色光通过偏振片P 投射到屏上形成亮点,若将P 以入射光线为轴旋转一周,发图2A B (b)(a)图1i 0现屏上亮点产生明暗交替的变化,由此,判定入射光是A .线偏振光;B .圆偏振光;C .部分偏振光;D .自然光。

答案 [ ]6、波长为λ的平行单色光垂直入射到缝宽为a 的单缝上,在缝后凸透镜的焦平面处有一观察屏,如图3所示。

若在缝前盖上两块偏振片P 1和P 2,两块偏振片各遮盖一半缝宽,而且P 1的偏振化方向与缝平行,而P 2的偏振化方向与缝垂直,试问:(1)屏上的衍射条纹宽度[A] 增为两倍; [B] 减为一半; [C] 不变;答案 [ ](2)自然光通过偏振片后,光强[A] 增强; [B] 减弱; [C] 不变。

光的偏振习题(附答案)-(1)汇编

光的偏振习题(附答案)-(1)汇编

光的偏振(附答案)填空题1. 一束光垂直入射在偏振片P上,以入射光为轴旋转偏振片,观察通过偏振片P 的光强的变化过程•若入射光是自然光或圆偏振光,则将看到光强不变;若入射光是线偏振光,则将看到明暗交替变化,有时出现全暗;若入射光是部_ 分偏振光或椭圆偏振光,则将看到明暗交替变化,但不出现全暗•2. 圆偏振光通过四分之一波片后,出射的光一般是线偏振光.3. 要使一束线偏振光通过偏振片之后振动方向转过90度角,则至少需要让这束光通过2块理想偏振片,在此情况下,透射光强最大是原来的14倍•4. 两个偏振片叠放在一起,强度为I o的自然光垂直入射其上,若通过两个偏振片后的光强为I/8,则此两偏振片的偏振化方向间的夹角为(取锐角)是60度, 若在两片之间再插入一片偏振片,其偏振化方向间的夹角(取锐角)相等,则通过三个偏振片后的投射光强度为9/32 I o.5. 某种透明媒质对于空气的临界角(指全反射)等于45°,贝比从空气射向此媒质的布儒斯特角是54.7°,就偏振状态来说反射光为完全偏振光,反射光矢量的振动方向垂直入射面,透射光为部分偏振光.6. 一束自然光从空气透射到玻璃表面上(空气折射率为1),当折射角为30°时,反射光是完全偏振光,则此玻璃的折射率等于1.732.7. 一束钠自然黄光(入=589.3 X9m)自空气(设n=1)垂直入射方解石晶片的表面,晶体厚度为0.05 mm,对钠黄光方解石的主折射率n o=1.6584 n e =1.4864, 则o、e两光透过晶片后的光程差为86um。

、e两光透过晶片后的相位差为91.7 rad.8. 在杨氏双缝干涉实验中,若用单色自然光照射狭缝S,在屏幕上能看到干涉条纹.若在双缝S1和S2后分别加一个同质同厚度的偏振片P1、P2,则当P1与P2的偏振化方向互相平行或接近平行时,在屏幕上仍能看到清晰的干涉条纹.计算题9. 有一束自然光和线偏振光组成的混合光,当它通过偏振片时改变偏振片的取向,发现透射光强可以变化7倍.试求入射光中两种光的光强度各占总入射光强的比例.解:设入射光的光强为10,其中线偏振光的光强为101,自然光的光强为I 02.在该光束透过偏振片后,其光强由马吕斯定律可知:= I°1COSJ 」|2当口=0时,透射光的光强最大当「二二/2时,透射光的光强最小入射总光强为:I^ I 01 I 0210. 如图所示,一个晶体偏振器由两个直角棱镜组成(中间密合)•其中一个直 角棱镜由方解石晶体制成,另一个直角棱镜由玻璃制成,其折射率n 等于方 解石对e 光的折射率n e . 一束单色自然光垂直入射,试定性地画出折射光线, 并标明折射光线光矢量的振动方向.(方解石对o 光和e 光的主折射率分别 为 1.658 和 1.486.)解:由于玻璃的折射率n 等于方解石对e 光的折射率,因此e 光进入方解石 后传播方向不变.而n=n e >n 。

光的偏振计算题及答案

光的偏振计算题及答案

《光的偏振》计算题1. 将三个偏振片叠放在一起,第二个与第三个的偏振化方向分别与第一个的偏振化方向成45︒和90︒角.(1) 强度为I 0的自然光垂直入射到这一堆偏振片上,试求经每一偏振片后的光强和偏振状态.(2) 如果将第二个偏振片抽走,情况又如何?解:(1) 自然光通过第一偏振片后,其强度 I 1 = I 0 / 2 1分通过第2偏振片后,I 2=I 1cos 245︒=I 1/ 4 2分 通过第3偏振片后,I 3=I 2cos 245︒=I 0/ 8 1分 通过每一偏振片后的光皆为线偏振光,其光振动方向与刚通过的偏振片的偏振化方向平行. 2分(2) 若抽去第2片,因为第3片与第1片的偏振化方向相互垂直,所以此时I 3 =0. 1分I 1仍不变. 1分2. 两个偏振片叠在一起,在它们的偏振化方向成α1=30°时,观测一束单色自然光.又在α2=45°时,观测另一束单色自然光.若两次所测得的透射光强度相等,求两次入射自然光的强度之比.解:令I 1和I 2分别为两入射光束的光强.透过起偏器后,光的强度分别为I 1 / 2和I 2 / 2马吕斯定律,透过检偏器的光强分别为 1分1211cos 21αI I =', 2222cos 21αI I =' 2分 按题意,21I I '=',于是 222121cos 21cos 21ααI I = 1分 得 3/2cos /cos /221221==ααI I 1分3. 有三个偏振片叠在一起.已知第一个偏振片与第三个偏振片的偏振化方向相互垂直.一束光强为I 0的自然光垂直入射在偏振片上,已知通过三个偏振片后的光强为I 0 / 16.求第二个偏振片与第一个偏振片的偏振化方向之间的夹角.解:设第二个偏振片与第一个偏振片的偏振化方向间的夹角为θ.透过第一个偏振片后的光强 I 1=I 0 / 2. 1分 透过第二个偏振片后的光强为I 2,由马吕斯定律,I 2=(I 0 /2)cos 2θ 2分 透过第三个偏振片的光强为I 3,I 3 =I 2 cos 2(90°-θ ) = (I 0 / 2) cos 2θ sin 2θ = (I 0 / 8)sin 22θ 3分 由题意知 I 3=I 2 / 16所以 sin 22θ = 1 / 2,()2/2sin 211-=θ=22.5° 2分4. 将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为o 60,一束光强为I 0的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成30°角.(1) 求透过每个偏振片后的光束强度;(2) 若将原入射光束换为强度相同的自然光,求透过每个偏振片后的光束强度.解:(1) 透过第一个偏振片的光强I 1I 1=I 0 cos 230° 2分=3 I 0 / 4 1分透过第二个偏振片后的光强I 2, I 2=I 1cos 260°=3I 0 / 16 2分(2) 原入射光束换为自然光,则I 1=I 0 / 2 1分I 2=I 1cos 260°=I 0 / 8 2分5.强度为I 0的一束光,垂直入射到两个叠在一起的偏振片上,这两个偏振片的偏振化方向之间的夹角为60°.若这束入射光是强度相等的线偏振光和自然光混合而成的,且线偏振光的光矢量振动方向与此二偏振片的偏振化方向皆成30°角,求透过每个偏振片后的光束强度. 解:透过第一个偏振片后的光强为2001cos 212121⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=I I I 30° 2分 =5I 0 / 8 1分 透过第二个偏振片后的光强I 2=( 5I 0 / 8 )cos 260° 1分=5I 0 / 32 1分6.两个偏振片P 1,P 2叠在一起,一束强度为I 0的光垂直入射到偏振片上.已知该入射光由强度相同的自然光和线偏振光混合而成,且入射光穿过第一个偏振片P 1后的光强为0.716 I 0;当将P 1抽出去后,入射光穿过P 2后的光强为0.375I 0.求P 1、P 2的偏振化方向之间的夹角.解:设入射光中线偏振光的光矢量振动方向与P 1的偏振化方向之间的夹角为θ1,已知透过P 1后的光强I 1=0.716I 0,则I 1=0.716 I 0=0.5(I 0 / 2)+0.5(I 0 cos 2θ1) 3分cos 2θ1=0.932 θ1=15.1°(≈15°) 1分设θ2为入射光中线偏振光的光矢量振动方向与P 2的偏振化方向之间的夹角.已知入射光单独穿过P 2后的光强I 2=0.375I 0,则由 ()22000cos 212121375.0θI I I +⎪⎭⎫ ⎝⎛= 得 θ2=60° 2分 以α 表示P 1、P 2的偏振化方间的夹角,α有两个可能值α=θ2+θ1=75° 2分或α=θ2-θ1=45° 2分7. 两个偏振片P 1、P 2叠在一起,其偏振化方向之间的夹角为30°.一束强度为I 0的光垂直入射到偏振片上,已知该入射光由强度相同的自然光和线偏振光混合而成,现测得连续透过两个偏振片后的出射光强与I 0之比为9 /16,试求入射光中线偏振光的光矢量方向. 解:设入射光中线偏振光的光矢量振动方向与P 1的偏振化方向之间的夹角为θ,透过P 1后的光强I 1为 ()θ2001cos 212121I I I +⎪⎭⎫ ⎝⎛= 2分透过P 2后的光强I 2为 I 2=I 1 cos 2 30°()2022/32/cos 21⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=I θ 3分 I 2 / I 1=9 / 16cos 2 θ=1 2分 所以 θ=0°即入射光中线偏振光的光矢量振动方向与P 1的偏振化方向平行.1分8.由两个偏振片(其偏振化方向分别为P 1和P 2)叠在一起,P 1与P 2的夹角为α.一束线偏振光垂直入射在偏振片上.已知入射光的光矢量振动方向与P 2的夹角为A (取锐角),A 角保持不变,如图.现转动P 1,但保持P 1与E 、P 2的夹角都不超过A (即P 1夹在E 和P 2之间,见图).求α等于何值时出射光强为极值;此极值是极大还是极小?解:入射光振动方向E 与P 1、P 2的关系如图.出射光强为 ()αα2202cos cos -=A I I 3分 由三角函数“积化和差”关系,得20221cos 21cos 41⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=αA I I A 3分 因为A 为锐角,α≤A ,所以A A 2121≤-α (见图).所以 021cos 21cos >≥⎪⎭⎫ ⎝⎛-A A α 所以,I 2只在α = A / 2处取得极值,且显然是极大值. 2分 (用求导数的办法找极值点也可以)9.两个偏振片叠在一起,欲使一束垂直入射的线偏振光经过这两个偏振片之后振动方向转过了90°,且使出射光强尽可能大,那么入射光振动方向和两偏振片的偏振化方向之间的夹角应如何选择?这种情况下的最大出射光强与入射光强的比值是多少?解:以P 1、P 2表示两偏振化方向,其夹角记为θ,为了振动方向转过90°,入射光振动方向E 必与P 2垂直,如图. 2分设入射光强为I 0,则出射光强为I 2=I 0 cos 2(90°- θ ) cos 2θ ()θθθ2sin 4/cos sin 20220I I == 3分当2θ=90°即θ=45°时,I 2取得极大值,且 I 2max =I 0 / 4, 2分 即 I 2max / I 0=1 / 4 1分10.两个偏振片P 1、P 2叠在一起,一束单色线偏振光垂直入射到P 1上,其光矢量振动方向与P 1的偏振化方向之间的夹角固定为30°.当连续穿过P 1、P 2后的出射光强为最大出射光强的1 / 4时,P 1、P 2的偏振化方向夹角α是多大?解:设I 0为入射光强,I 为连续穿过P 1、P 2后的透射光强.I =I 0cos 230°cos 2α 2分 显然,α=0时为最大透射光强,即I max =I 0 cos 230°=3I 0 / 4 1分 由 I 0cos 230°cos 2α =I max / 4 可得 cos 2α 1 / 4=, α=60° 2分P 1P 2 E θ1 21 211.两个偏振片P 1、P 2叠在一起,其偏振化方向之间的夹角为30°.由强度相同的自然光和线偏振光混合而成的光束垂直入射在偏振片上.已知穿过P 1后的透射光强为入射光强的2 / 3,求(1) 入射光中线偏振光的光矢量振动方向与P 1的偏振化方向的夹角θ为多大?(2) 连续穿过P 1、P 2后的透射光强与入射光强之比.解:设I 0为自然光强.由题意知入射光强为2 I 0. 1分(1) I 1=2·2 I 0 / 3=0.5 I 0+I 0cos 2θ4 / 3=0.5+cos 2θ所以 θ=24.1° 2分(2) I 1= (0.5 I 0+I 0 cos 224.1°)=2(2 I 0) / 3,I 2=I 1cos 230°=3 I 1 / 4所以I 2 / 2I 0 = 1 / 2 2分12.三个偏振片P 1、P 2、P 3顺序叠在一起,P 1、P 3的偏振化方向保持相互垂直,P 1与P 2的偏振化方向的夹角为α,P 2可以入射光线为轴转动.今以强度为I 0的单色自然光垂直入射在偏振片上.不考虑偏振片对可透射分量的反射和吸收.(1) 求穿过三个偏振片后的透射光强度I 与α角的函数关系式;(2) 试定性画出在P 2转动一周的过程中透射光强I 随α角变化的函数曲线.解:(1) 连续穿过三个偏振片之后的光强为 I =0.5I 0cos 2α cos 2(0.5π-α ) 2分 =I 0sin 2(2α) / 8 1分(2) 画出曲线 2分13.如图,P 1、P 2为偏振化方向相互平行的两个偏振片.光强为I 0的平行自然光垂直入射在P 1上. (1) 求通过P 2后的光强I . (2) 如果在P 1、P 2之间插入第三个偏振片P 3,(如图中虚线所示)并测得最后光强I =I 0 / 32,求:P 3的偏振化方向与P 1的偏振化方向之间的夹角α (设α为锐角). 解:(1) 经P 1后,光强I 1=21I0 1分 I 1为线偏振光.通过P 2.由马吕斯定律有I =I 1cos 2θ 1分 ∵ P 1与P 2偏振化方向平行.∴θ=0.故 I =I 1cos 20°=I 1=21I 01分 (2) 加入第三个偏振片后,设第三个偏振片的偏振化方向与第一个偏振化方向间的夹角为α.则透过P 2的光强αα2202cos cos 21I I =α40cos 21I = 2分 由已知条件有 32/cos 21040I I =α ∴ cos 4α=1 / 16 2分得 cos α=1 /2 即 α =60° 1分I 014.有一平面玻璃板放在水中,板面与水面夹角为θ (见图).设水和玻璃的折射率分别为1.333和1.517.已知图中水面的反射光是完全偏振光,欲使玻璃板面的反射光也是完全偏振光,θ 角应是多大?解:由题可知i 1和i 2应为相应的布儒斯特角,由布儒斯特定律知tg i 1= n 1=1.33; 1分tg i 2=n 2 / n 1=1.57 / 1.333, 2分 由此得 i 1=53.12°, 1分 i 2=48.69°. 1分 由△ABC 可得 θ+(π / 2+r )+(π / 2-i 2)=π 2分 整理得 θ=i 2-r由布儒斯特定律可知, r =π / 2-i 1 2分 将r 代入上式得θ=i 1+i 2-π / 2=53.12°+48.69°-90°=11.8° 1分15.一束自然光自水(折射率为1.33)中入射到玻璃表面上(如图).当入射角为49.5°时,反射光为线偏振光,求玻璃的折射率.解:设n 2为玻璃的折射率,由布儒斯特定律可得 n 2=1.33 tg49.5°3分=1.56 2分16.一束自然光自空气入射到水(折射率为1.33)表面上,若反射光是线偏振光,(1) 此入射光的入射角为多大?(2) 折射角为多大?解:(1) 由布儒斯特定律 tg i 0=1.33得 i 0=53.1°此 i b 即为所求的入射角 3分(2) 若以r 表示折射角,由布儒斯特定律可得r =0.5π-i 0=36.9° 2分17.一束自然光由空气入射到某种不透明介质的表面上.今测得此不透明介质的起偏角为 56°,求这种介质的折射率.若把此种介质片放入水(折射率为1.33)中,使自然光束自水中入射到该介质片表面上,求此时的起偏角.解:设此不透明介质的折射率为n ,空气的折射率为1.由布儒斯特定律可得n =tg 56°=1.483 2分 将此介质片放入水中后,由布儒斯特定律tg i 0=n / 1.33=1.112i 0=48.03° (=48°2') 3分此i 0即为所求之起偏角.水玻璃。

大学物理A 练习题 第8章《光的偏振》答案

大学物理A 练习题 第8章《光的偏振》答案

第8章 光的偏振一、选择题1(B),2(B),3(B),4(A),5(B),二、填空题(1). 2, 1/4(2). 1/ 2(3). I 0 / 2, 0(4). 1.48 tan560(5). 遵守通常的折射,不遵守通常的折射. 传播速度,单轴三、计算题1. 有三个偏振片叠在一起.已知第一个偏振片与第三个偏振片的偏振化方向相互垂直.一束光强为I 0的自然光垂直入射在偏振片上,已知通过三个偏振片后的光强为I 0 / 16.求第二个偏振片与第一个偏振片的偏振化方向之间的夹角.解:设第二个偏振片与第一个偏振片的偏振化方向间的夹角为θ.透过第一个偏 振片后的光强 I 1=I 0 / 2.透过第二个偏振片后的光强为I 2,由马吕斯定律,I 2=(I 0 /2)cos 2θ透过第三个偏振片的光强为I 3,I 3 =I 2 cos 2(90°-θ ) = (I 0 / 2) cos 2θ sin 2θ = (I 0 / 8)sin 22θ由题意知 I 3=I 2 / 16所以 sin 22θ = 1 / 2,()2/2sin 211-=θ=22.5°2. 将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为o 60,一束光强为I 0的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成30°角.(1) 求透过每个偏振片后的光束强度;(2) 若将原入射光束换为强度相同的自然光,求透过每个偏振片后的光束强度.解:(1) 透过第一个偏振片的光强I 1I 1=I 0 cos 230°=3 I 0 / 4透过第二个偏振片后的光强I 2, I 2=I 1cos 260°=3I 0 / 16(2) 原入射光束换为自然光,则I 1=I 0 / 2I 2=I 1cos 260°=I 0 / 83. 如图,P 1、P 2为偏振化方向相互平行的两个偏振片.光强为I 0的平行自然光垂直入射在P 1上. (1) 求通过P 2后的光强I . (2) 如果在P 1、P 2之间插入第三个偏振片P 3,(如图中虚线所示)并测得最后光强I =I 0 / 32,求:P 3的偏振化方向与P 1的偏振化方向之间的夹角α (设α为锐角).解:(1) 经P 1后,光强I 1=21I 0 I 1为线偏振光.通过P 2.由马吕斯定律有I =I 1cos 2θ∵ P 1与P 2偏振化方向平行.∴θ=0.故 I =I 1cos 20°=I 1=21I 0 (2) 加入第三个偏振片后,设第三个偏振片的偏振化方向与第一个偏振化方向间的夹角为α.则透过P 2的光强αα2202cos cos 21I I =α40cos 21I = 由已知条件有 32/cos 21040I I =α ∴ cos 4α=1 / 16得 cos α=1 / 2 即 α =60°4.有一平面玻璃板放在水中,板面与水面夹角为θ (见图).设水和玻璃的折射率分别为1.333和1.517.已知图中水面的反射光是完全偏振光,欲使玻璃板面的反射光也是完全偏振光,θ 角应是多大?解:由题可知i 1和i 2应为相应的布儒斯特角,由布儒斯特定律知tg i 1= n 1=1.33;tg i 2=n 2 / n 1=1.57 / 1.333,由此得 i 1=53.12°,i 2=48.69°.由△ABC 可得 θ+(π / 2+r )+(π / 2-i 2)=π整理得 θ=i 2-r由布儒斯特定律可知, r =π / 2-i 1将r 代入上式得θ=i 1+i 2-π / 2=53.12°+48.69°-90°=11.8°.四研讨题1. 为了得到线偏振光,就在激光管两端安装一个玻璃制的“布儒斯特窗”(见图),使其法线与管轴的夹角为布儒斯特角。

14-偏振例题

14-偏振例题

I1
第19页,共19页。
600 A1cosa
A2e
=
3 8
I0
第15页,共19页。
例5: 一厚度为10mm的方解石晶片,
其光轴平行于表面,放置在两正交偏振片 之间,晶片的光轴与第一偏振片的偏振化
方向夹角为450,若要使波长 600nm 的光
通过上述系统后呈现极大,晶片的厚度至
少要磨去多少。
解: I =A22e+A22o+ 2A2e A2ocosΔj
解: C 表示波片的光轴方向
α 表示P2 和C 的夹角
单色自然光经P1后为线 偏振光,振幅为A1 ,经 1/4波片后为圆偏振光
C Ae
α
O
P1 A1
P2 A2o
A2e Ao
第8页,共19页。
两个分振动透过P2 的振幅都只是它们沿 P2 方向的投影。
C
它们的相差为π/2
Ae
以A 表示这两个具有恒定相
应磨去的厚度为
d =10-8.8=1.2mm
第17页,共19页。
例6: 有一波晶片放在正交的起偏器和
检偏器之间,试证明当起偏器的偏振化方向 与波晶片的光轴方向成π/4角度时,从检偏器 进出的光强为最大。
证明: I =A22e+A22o+ 2A2e A2ocosΔj
Δj =
2pd
( no
ne )+ p
波片上,求透射光的偏振状态。
解:圆偏振光可看成由位相差为π/2的两
个互相垂直的振动合成。 (1)经过1/4波片后,两个振动间的位相
差增加或减少π/2,成为
故透射光为平面偏振光。
第11页,共19页。
(2)经过1/8波片后,两个振动间的位相 差增加或减少π/4,成为

大学物理光学光的偏振习题

大学物理光学光的偏振习题
, 由折射定律
4、一束自然光从空气投射到玻璃表面上 (空气折射率n=
1),当折射角 30 时,反射光是线偏振光,求玻璃的折
射率n=? 说明出射光光矢量的振动方向。
解:当 30时,反射光为线偏振光,这时
i0
π 2
n0 sin i0 n sin
n
sin i0
sin
sin ( 300
2 sin 300
2
n0
ne d
光的偏振测试题
1、有三个偏振片平行放置,第一块与第三块的偏振化 方向相互垂直,第二块和第一块的偏振化方向相互平行,
然后第二块偏振片以恒定角速度 绕光 传播方向旋转,
如图所示。设入射自然光的光强为 。试I0 写出此自然光 通过三个偏振片后的出射光光强 、 I1和I2 。I3
I0
I1
I2
入射线偏振光对二分之一波片来说,由于其光振动方 向与波片光轴成450角,所以两相互垂直的光振动分振 幅相等而且同相。通过二分之一波片后,此二分振动 相差为 ,所以其合振动仍然是直线的,即透过的光 仍是线偏振光,不过振动方向与入射线偏振光的振动 方向垂直。
题3解: (1) 入射光的光强
I0 I p In
时才会有全反射。由折射定律:
n2
sin ic
n1
sin
π 2
n2 sin 2 1 n1 sin ic sin ic
设布儒斯特角为i0 , 由布儒斯特定律:
tgi0
n2 n1
Hale Waihona Puke 1 sin icic
i0
tg1(
1 sin ic
) tg1
1
si n 450
54.70
n1 空气 n2> n1

光的偏振习题详解

光的偏振习题详解

习题九一、选择题1.自然光从空气连续射入介质1和介质2(折射率分别为1n 和2n )时,得到的反射光a 和b 都是完全偏振光。

已介质1和介质2的折射率之比为31,则光的入射角i 0为[ ](A )30︒; (B )60︒; (C )45︒; (D )75︒。

答案:A解:由题意知,光在两种介质介面上的入射角都等于布儒斯特角,所以有1201tan ,tan tan 1n ni i r n '===,090r i +=︒所以201tan tan(90)n r i n =︒-==由此得09060i ︒-=︒,030i =︒2.一束光强为I 0的自然光,相继通过三个偏振片P 1、P 2、P 3后出射光强为I 0 /8。

已知P 1和P 3的偏振化方向相互垂直。

若以入射光线为轴旋转P 2,要使出射光强为零,则P 2至少应转过的角度是 [ ](A )30°; (B ) 45°; (C )60°; (D ) 90°。

答案:B解:设开始时P 2与另两者之一的夹角为?,则根据马吕斯定律,出射光强为2222000cos cos (90)cos sin 228I I I I αααα=⋅︒-=⋅=即 2sin 21α=,45α=︒说明当P 2转过45°角度后即与另两者之一平行,从而出射光强为零。

3.一束自然光自空气射向一块平板玻璃(如图),入射角i 0等于布儒斯特角,则在界面2的反射光 [ ](A )光强为零;(B )是完全偏振光,且光矢量的振动方向垂直于入射面; (C )是完全偏振光,且光矢量的振动方向平行于入射面;(D )是部分偏振光。

答案:B解:根据起偏时的特性和布儒斯特定律可证明,当光由介质A 入射于介质B 时入射角为起偏振角,则其由介质B 入射于介质A 的角度也是起偏角。

证明如下:设光由空气射入玻璃时的折射角为r ,在表面“2”处由玻璃入射到空气的入射角为i ',则由图可知0i r '=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光的偏振
1.下列关于偏振光的说法中正确的是( )
A.自然光就是偏振光
B.沿着一个特定方向传播的光叫偏振光
C.沿着一个特定方向振动的光叫偏振光
D.单色光就是偏振光
答案:C
解析:自然光包含着在垂直于传播方向上沿一切方向振动的光,而且沿各个方向振动的光波的强度都相同;只有沿着特定方向振动的光才是偏振光。

所以选项C正确。

2.(2010·石家庄市第一中学高二检测)P是一偏振片,P的透振方向(用带箭头的实线表示) 为竖直方向。

下列四种入射光束中哪几种照射P时能在P的另一侧观察到透射光?( )
A.太阳光
B.沿竖直方向振动的光
C.沿水平方向振动的光
D.沿与竖直方向成45°角振动的光
答案:ABD
解析:只要光的振动方向不与偏振片的透振方向垂直,光都能通过偏振片。

太阳光、沿竖直方向振动的光、沿与竖直方向成45°角振动的光均能通过偏振片。

3.在垂直于太阳光的传播方向前后放置两个偏振片P和Q。

在Q的后边放上光屏,以下说法正确的是( )
A.Q不动,旋转偏振片P,屏上光的亮度不变
B.Q不动,旋转偏振片P,屏上光的亮度时强时弱
C.P不动,旋转偏振片Q,屏上光的亮度不变
D.P不动,旋转偏振片Q,屏上光的亮度时强时弱
答案:BD
解析:P是起偏器,它的作用是把太阳光(自然光)转变为偏振光,该偏振光的振动方向与P的透振方向一致,所以当Q与P的透振方向平行时,通过Q的光强最大;当Q与P的透振方向垂直时,通过Q的光强最小,即无论旋转P或Q,屏上的光强都是时强时弱。

4.
如图所示,电灯S发出的光先后经过偏振片A和B,人眼在P 处迎着入射光方向,看不到光亮,则( )
A.图中a光为偏振光
B.图中b光为偏振光
C.以SP为轴将B转过180°后,在P处将看到光亮
D.以SP为轴将B转过90°后,在P处将看到光亮
答案:BD
解析:自然光沿各个方向发散是均匀分布的,通过偏振片后,透射光是只有沿着某一特定方向振动的光。

从电灯直接发出的光为自然光,则A错;它通过A偏振片后,即变为偏振光,则B对;设通过A的光沿竖直方向振动,若B偏振片只能通过沿水平方向振动的偏振光,则P点无光亮,将B转过180°时,P处仍无光亮,即C错;若将B转过90°,则该偏振片将变为能通过竖直方向上振动的光,则偏振光能通过B,即在P处有光亮,D对。

5.将手电筒射出的光照到平面镜上,发生反射后,再用偏振片观察反射光,发现旋转偏振片时有什么现象?说明什么?
答案:当旋转偏振片时,观察到旋转偏振片时亮度变化,说明反射光是偏振光。

6.当戴上偏振片眼镜观察水面时,能够清楚地看到水中的游鱼,试解释其中的道理。

答案:由于水面反射的光对人眼产生干扰,使人不能清楚地看到水面下的物体,从水面反射的光中包含有很多偏振光,偏振片眼镜可不让这些偏振光进入眼睛,则水中的物体,可以比较清楚地被看到。

7.如图所示,杨氏双缝实验中,下述情况能否看到干涉条纹?简单说明理由。

(1)在单色自然光源S后加一偏振片P。

(2)在(1)情况下,再加P1、P2,P1与P2透射光方向垂直。

答案:(1)能。

到达S1、S2的光是从同一线偏振光分解出来的,它们满足相干条件,能看到干涉条纹,且由于线偏振片很薄,对路程差的影响可忽略,干涉条纹的位置与间距和没有P时基本一致,只是强度由于偏振片的吸收作用而减弱。

(2)不能。

由于从P1、P2射出的光方向相互垂直,不满足干涉条
件,故光屏E 被均匀照亮,但无干涉现象。

能力提升
1.一束光由真空入射到平面玻璃上,当其折射角为30°时,反射光和折射光恰好是振动方向互相垂直的偏振光。

因此,可以推断出玻璃的折射率为( ) A. 2 B. 3 C.32 D.33
答案:B
解析:由题意推断此时的入射角为60°,根据公式n =sin60°sin30°
=3。

2.(2012·日照模拟)夜晚,汽车前灯发出的强光将迎面驶来的汽车司机照得睁不开眼,严重影响行车安全。

若考虑将汽车前灯玻璃改用偏振玻璃,使射出的灯光变为偏振光;同时汽车前窗玻璃也采用偏振玻璃,其透振方向正好与灯光的振动方向垂直,但还要能看清自己车灯发出的光所照亮的物体。

假设所有的汽车前窗玻璃和前灯玻璃均按同一要求设置,如下措施中可行的是( )
A .前窗玻璃的透振方向是竖直的,车灯玻璃的透振方向是水平的
B .前窗玻璃的透振方向是竖直的,车灯玻璃的透振方向是竖直的
C .前窗玻璃的透振方向是斜向右上45°,车灯玻璃的透振方向是斜向左上45°
D .前窗玻璃和车灯玻璃的透振方向都是斜向右上45°
答案:D
解析:此题要求自己车灯发出的光经对面车窗反射后仍能进入自己眼中,而对面车灯发出的光不能进入自己的眼中。

若前窗的透振方向竖直、车灯玻璃的透振方向水平,从车灯发出的光照射到物体上反射回的光线将不能透过窗玻璃,司机面前将是一片漆黑,所以A错误;若前窗玻璃与车灯玻璃透振方向均竖直,则对面车灯的光仍能照射得司机睁不开眼,B错误;若前窗玻璃的透振方向是斜向右上45°,车灯玻璃的透振方向是斜向左上45°,则车灯发出的光经物体反射后无法透射进本车窗内,却可以透射进对面车内,C错误,故D正确。

3.
如图所示,一玻璃柱体的横截面为半圆形,让太阳光或白炽灯光通过狭缝S形成细光束从空气射向柱体的O点(半圆的圆心),产生反射光束1和透射光束2。

现保持入射光不变,将半圆柱绕通过O点垂直于纸面的轴线转动,使反射光束1和透射光束2恰好垂直。

在入射光线的方向上加偏振片P,偏振片与入射光线垂直,其透振方向在纸面内,这时看到的现象是( )
A.反射光束1消失
B.透射光束2消失
C.反射光束1和透射光束2都消失
D.偏振片P以入射光线为轴旋转90°角,透射光束2消失
答案:AD
解析:自然光射到界面上,当反射光与折射光垂直时,反射光和折射光的偏振方向相互垂直,且反射光的偏振方向与纸面垂直,折射光的透振方向与纸面平行,因此当在入射光线方向垂直放上透振方向在纸面内的偏振片P时,因垂直于纸面无光;反射光束1消失,A正确,B,C均错误;偏振片转动90°,平行于纸面内的光消失,则透射光束2消失,D正确。

4.“假奶粉事件”曾经闹得沸沸扬扬,奶粉的碳水化合物(糖)的含量是一个重要指标,可以用“旋光法”来测量糖溶液的浓度,从而鉴定糖量。

偏振光通过糖水溶液后,偏振方向会相对于传播方向向左或向右旋转一个角度α,这一角度α称为“旋光度”,α的值只与糖溶液的浓度有关,将α的测量值与标度值相比较,就能确定被测样品的含糖量了,如图所示,S是自然光源,A、B是偏振片,转动B,使到达O处的光最强,最后将被测样品P置于A、B之间,则下列说法中正确的是( )
A.到达O处光的强度会明显减弱
B.到达O处光的强度不会明显减弱
C.将偏振片B转动一个角度,使得O处光强度最大,偏振片B 转过的角度等于α
D.将偏振片A转动一个角度,使得O处光强度最大,偏振片A 转过的角度等于α
答案:ACD
解析:A、B之间不放糖溶液时,自然光通过偏振片A后,变成偏振光,通过B后到O.当在A、B间放糖溶液时,由于溶液的旋光作用,使通过A的偏振光振动方向转动了一定角度,到达O处的光强会明显减弱;但当B转过一个角度,恰好使透振方向与经过糖溶液后的偏振光振动方向一致时,O处光强又为最强,故B的旋转角度即为糖溶液的旋光度;因为A、B的偏振方向一致,故转动偏振片A也可以.
5.光的偏振现象说明光是横波,下列现象中不能反映光的偏振特性的是( )
A.一束自然光相继通过两个偏振片,以光束为轴旋转其中一个偏振片,透射光的强度发生变化
B.一束自然光入射到两种介质的分界面上,当反射光线与折射光线之间的夹角恰好是90°时,反射光是偏振光
C.日落时分,拍摄水面下的景物,在照相机镜头前装上偏振滤光片可以使景像更清晰
D.通过手指间的缝隙观察日光灯,可以看到彩色条纹
答案:D
解析:通过手指的缝隙观察日光灯,看到彩色条纹是光的衍射现象。

D错误。

6.实验证明让一束太阳光入射到平静的水面上,如果入射角合适,其反射光线和折射光线是互相垂直的,且偏振方向也是互相垂直的偏振光。

已知水的折射率为1.33,求这一入射角为多少?
答案:53°
解析:设入射角为θ1,折射角为θ2,反射角为θ′1。

由光的反射
定律知θ′1=θ1;由光的折射定律得n=sinθ1
sinθ2
,由题给条件知θ1+θ2
=90°,故有sinθ2=sin(90°-θ1)=cosθ1,n=sinθ1
cosθ1
=tanθ1,θ1=
arctan1.33=53°。

相关文档
最新文档