【遗传学】第二章 孟德尔定律
第二章孟德尔遗传定律
图1 孟德尔选取豌豆作为遗传研究材料
♂
杂交
♀
图2 豌豆杂交方法
表1 孟德尔的豌豆7对性状杂交实验的结果
豌豆表型
圆形×皱缩 种子
黄色×绿色 种子
紫花×白花
膨大×缢缩 豆荚
绿色×黄色 豆荚
花腋生×花 顶生
高植株×矮 植株
F1 圆形 黄色 紫花 鼓胀 绿色 腋生 高植株
F2 5474圆
1850皱
F2比例 2.96:1
%时,就可认为一次试验中,它不能属于 随机误差,而主要是试验处理效应。
四、用卡平方来测定适合度
卡平方:X 2是经过统计学处理后计算
出来的一个指数,用来代表实得数与理 论预期数的总偏差。
X2(N)=∑ (O-E)2/E X2(N)=∑[(实得数-预期数)2/预期数]
df=n-1
卡方测验的步骤:
建立假说(提出零假设H0:μ1=μ2和备择假说 HA: μ1≠μ2 );
P
黄圆 × 绿皱
F1
F2 黄圆
315粒 (9/16)
黄圆 U
黄皱
101粒 (3/16)
绿圆
108粒 (3/16)
绿皱
32粒 (1/16)
结果:
两对性状均符合分离规律。
黄色:绿色=(315+101):(108+32)=416:140≈3:1 圆粒:皱粒=(315+108):(101+32)=423:133≈3:1
表现型比例
Aa × Aa Bb × Bb
化
3/4A 27ABC
3/4B
9ABc 9AbC
1/4b
3Abc
1/4a 9aBC
3/4B
Cc × Cc (8种)
02第二章孟德尔遗传
青年时代的孟德尔深受一些伟大的科学 家,特别是奥地利物理学家顿普赖 (Doppler) 、大化学家拉德希尔 (Lindenthal) 和植物生 理学家安哥 (Unger) 的影响。十九世纪初 , 物 理学是高度数学化的 ,Mendle 的统计思想与此 有关. 孟德尔在研究遗传现象的过程中,道尔 顿的原子学说使他联想到遗传因子(基因) 的稳定性和不可分割的离子性。孟德尔又把 它擅长的数学方法用于分析杂交实验,从而 揭示了分离规律和独立分配规律 ,这是孟德尔 超前的伟大创举。
孟德尔在研究生物的遗传变异时 应用了科学的研究方法,进行复杂 问题简单化研究,孟德尔以前研究 生物的遗传变异是从生物个体整体 上研究,孟德尔是将生物个体分解 为部分,分解为单个性状来进行研 究,首先研究生物个体单个性状的 遗传和变异规律,在获得了可靠的 研究结果后,依次为基础,研究多 个性状的遗传变异规律。
4.相对遗传因子具有显隐性关系。显性因子 对隐性因子有掩盖作用(显性定律)。 5.雌雄配子在受精结合时的机率是均等的。
图4-2
孟德尔对分离现象的解释
分离规律的实质
来自双亲的成对遗传因子 ( 等位基因 ) 在配子形成过程中 彼此分离,互不干扰,进入不 同的配子,而每个配子中只具 有成对遗传因子的一个。
纯合体与杂合体
纯合体:生物个体基因型中,成对基因都相同的 个体叫纯合体。 例: AA AAbb aaBBCCdd 杂合体:生物个体基因型中,有一对或者一对以 上基因不相同的个体叫杂合体。 例: Aa AaBB aaBBCcDD
第二节 独立分配规律
一、两对相对性状的遗传
为了研究两对相对性状的遗 传,孟德尔仍以豌豆为材料 ,选取具有两对相对性状差 异的纯合亲本进行杂交
性 状 在 F3 表现显性:隐性=3:1 在 F3 完全表现显性性 的株数及其比例 花色 种子形状 子叶颜色 豆荚形状 未熟豆荚色 花着生位置 植株高度 64(1.80) 372(1.93) 353(2.13) 71(2.45) 60(1.50) 67(2.03) 72(2.57) 状的株数及其比例 36(1) 193(1) 166(1) 29(1) 40(1) 33(1) 28(1) 100 565 519 100 100 100 100 F3 株系总数
遗传学-孟德尔遗传定律2ppt课件
(A1_A2_, A1_a2a2, a1a1A2_ ) a1a1a2a2
三角形
卵形
15
:1
Hale Waihona Puke 孟德尔第一定律及其遗传分析
孟德尔第二定律及其遗传分析
基因的作用与环境的关系
基因型与表现型:表型模拟、外显率、表现度 等位基因间的相互作用:不完全显性、并显性、
镶嵌显性、致死基因、复等位基因 非等位基因间的相互作用:基因互作、互补基
生物的多数性状都不是单个基因决定的, 几乎都是基因相互作用的结果.
1.基因互作 不同对的基因相互作用,出现了新的性状,
这就叫基因互作。
如:家鸡冠型的遗传
胡桃冠
玫瑰冠
豌豆冠
单片冠
RRpp 玫瑰冠
rrPP 豌豆冠
RrPp 胡桃冠
胡桃冠
9R_P_
玫瑰冠
3R_pp
豌豆冠
3rrP_
单片冠
1rrpp
2.互补基因(complementary gene)
血清
血细胞
AB IAIB A B
—
不能使任一血型 可被O,A,B型的 的红细胞凝集 血清凝集
IAIA
A IAi
A
IBIB
B IBi
B
可使B及AB型的 可被O及B型的
红细胞凝集
血清凝集
可使A及AB型的 可被O及A型的
红细胞凝集
血清凝集
O ii
—
可使A,B及AB型 不能被任一血 的红细胞凝集 型的血清凝集
F1
白花
IiKk
↓
F2
白花 白花 黄花 白花
第二章孟德尔遗传规律精品文档
F2 代基因型 YYRR yyRR YYrr yyrr YyRR Yyrr YYRr yyRr YyRr
所占比例 1/16 1/16 1/16 1/16 2/16 2/16 2/16 2/16 4/16
四、多对基因的自由组合
当具有3个和3个以上不同相对性状的植株杂交时,只要控制各个性 状的基因分别位于非同源的染色体上,它们的遗传都符合独立分配规律。
一、一对性状的杂交试验
几个概念: 1.性状:生物体所表现的形态特 征和生理特性,在遗传学上统称 为性状。 2.单位性状:每一种性状作为一 个研究对象,称为单位性状。 例如:豌豆的花色、种子形状、 株高、子叶颜色、豆荚形状及豆 荚颜色(未成熟)。 3.相对性状:遗传学中将同一单 位性状的相对差异称为相对性状。 如红花与白花、高秆与矮秆等。
七、显性的表现类型
完全显性:具有相对性状差异的纯合亲本杂交,F1 只出现亲本之一的性状,这称为完全显性。F2表 型呈3:1分离。
1
玉米蛋白质层有色与无色的分离
不完全显性:若具有相对性状 差异的纯合亲本杂交,F1 呈 现双亲性状的中间型,这称 为不完1 全显性。 F2表型呈 1:2:1分离。
1
马的毛色
1Tt
1Tt
1Tt
1Aa 1tt
1Aa 1tt
1RR
2Rr
1rr
1Tt
1Tt
1aa
1aa
1Aa 1tt 1Tt
1aa
1tt
1tt
1tt
1RRAaTt、1RRAatt、1RRaaTt、1RRaatt、 2RrAaTt、2RrAatt、2RraaTt、2Rraatt、 1rrAaTt、1rrAatt、1rraaTt、1rraatt 。
遗传学第二章遗传基本规律
P 红色胚乳蛋白质层 (CCprpr) X白色胚乳蛋白质层(ccPrPr)
↓
F1
紫色(CcPrpr)
↓
F2 9紫色(9C_Pr_)+3红色(C_prpr):4白色(3ccPr_+1ccprpr)
鸭趾草品红花植株与白花植株杂交,F1为紫花株, F2为9紫:3品红:4白花。
↓ 13白色(9C_I_+3C_ii+1ccii):3有色( ccI_ )
贝特森发现性状连锁
2.4 连锁与互换规律
P
紫长 × 红圆 (相引相)
PPLL ppll
F1
紫长
PpLl
F2
紫长 紫圆 红长 红圆
P_L_ P_ll ppL_ ppll
观察数: 284
21
21 55
理论数: 215
71
71 24
分析其基因型,上列杂交的遗传图解是: PPrr×ppRR→F1 :PpRr;→F2: PPRR(1),PpRR(2),PPRr(2),PpRr(4) PPrr(1),Pprr(2) ppRR(1),ppRr(2) pprr(1)
二、有互作
互补作用:
两种显性基因同时存在时,决定某种性状,而一种显性基因单独存在,和没 有显性基因存在时,决定另一种性状表现。
第二章 遗传学三大基本定律
孟德尔定律: 分离与自由 组合
遗传数据的 统计学处理
孟德尔定律 的扩展
连锁与互换 规律
遗传的染色 体学说
遗传学基本 定律在遗传 学发展中的 作用
2.1 孟德尔定律:分离与自由组合
2.2 遗传数据的统计学处理
X2=Σ[(实得数-预期数)2/预期数] 适合度检验或卡平方检验 根据X2表中X2值及自由度n查P
遗传学:第二章 孟德尔遗传定律
基因座(locus):基因在染色体上座位。
• 1.3.2 Rule of Independent Assortment
Rule of Segregation(Mendel’s second law) 两对基因在杂合状态时,保持其独立性,互不污 染。形成配子时,同一对基因各自独立分离,不 同对基因则自由组合。
即基因是成双成对存在的。 ➢ 每一对基因均等地分配到配子中去。 ➢ 每一个配子(gametes)只含有每对基因中的一个。 ➢ 每一对基因中,一个来自父本,一个来自母本。
在形成下一代新的个体(或合子)时,配子的结合 是随机的。
• Rule of Segregation(Mendel’s first law) 控制性状的一对等位基因在杂合状态时互不污染,保持其独
表现型(phenotype ) :生物体某特定基因所表现出来的性 状(可以观察到的各种形态特征、基因的化学产物、各种 行为特征等,如花的颜色、血型、抗性)。
纯合体(homozygote):基因座上有两个相同的等位基因, 就这个基因座而言,这种个体或细胞称为纯合体,或称基因 的同质结合,如AA、aa。
二、自交法
• 1.2.4 分离规律的意义
➢ 具有普遍性,不仅植物中广泛存在,在其他二倍 体生物中都符合这一定律
人类单基因遗传性状和遗传病约有4344种(1988), 如虹膜的颜色、头发的颜色及形状(曲直),眼、口、鼻的 形态,能否尝出苯硫脲(PTC)的苦味等都是遗传的性状。
第二章 孟德尔定律
二、自由组合规律
Hale Waihona Puke 1. 两对相对性状的遗传实验P 黄 满 (圆 ) × 绿 皱
(子叶) (籽粒) ↓ (子叶) (籽粒) F1 F2 实际种子数 分离比 黄满 ↓ 黄满 黄皱 绿满 绿皱 315 101 108 32 9 : 3 : 3 : 1
黄 : 绿=(315+101):(108+32) 满 : 皱=(315+108):(101+32)
成对基因不同,为杂质结合。如Cc或称杂合体。
虽然Cc与CC的表现型一致,但其遗传行为不同。可用 自交鉴定: CC纯合体 稳定遗传; Cc 杂合体 不稳定遗传;
cc 纯合体 稳定遗传。
一、分离定律
1. 性状的显隐性和分离现象
P F1
P=Parent(亲本)
红花
× 白花 红花
G= Gamete(配子)
豌豆:
孟德尔选用豌豆作为实验材料的理由: (1).具有稳定的可以区分的形状;
(2).自花授粉植物,而且闭花授粉; (3).豌豆豆荚成熟后度留在豆荚,便于各种类型籽粒的准确计数
杂 交
亲本(代)P1
×
亲本(代)P2
如:正交: P1/P2; 反交P2/P1;
测交
自 交
F2
子二代(杂种二代)
测交一代
×
yr YyRr Yyrr yyRr yyrr 1 yyrr
基因型
1 YYRR 2 YYRr 2 YyRR 4 YyRr
表型
9黄满
: 3黄皱 : 3绿满 : 1绿皱
P
黄满 YYRR
×
绿皱 yyrr × 绿皱 yyrr
F1代测交
黄满
遗传学第三版答案 2 孟德尔遗传
第二章孟德尔定律1、为什么分离现象比显、隐性现象有更重要的意义?答:(1)分离现象是普遍的,而显、隐性现象是相对的。
分离现象是生物界普遍存在的一种遗传现象,而显、隐性现象的出现是相对的、有条件的;(2)只有遗传因子的分离和重组,才能表现出性状的显隐性。
也就是说只有存在分离现象,才会有显、隐性现象的发生。
因此,分离现象比显、隐性现象具有更重要的意义。
2、在番茄中,红果色(R)对黄果色(r)是显性,问下列杂交可以产生哪些基因型,哪些表现型,它们的比例如何?(1)RR×rr(2)Rr×rr(3)Rr×Rr(4)Rr×RR (5)rr×rr 答:1 RR×rr后代基因型Rr;表现型红果色。
2 Rr×rr后代基因型Rr︰rr=1︰1;表现型红果色︰黄果色=1︰1。
3 Rr×Rr后代基因型RR︰Rr︰rr=1︰2︰1;表现型红果色︰黄果色=3︰1。
4 Rr×RR后代基因型RR︰Rr=1︰1;表现型红果色。
5 rr×rr后代基因型rr;表现型黄果色。
3、下面是紫茉莉的几组杂交,基因型和表型已写明。
问它们产生哪些配子?杂种后代的基因型和表型怎样?(1)Rr × RR(2)rr × Rr(3)Rr × Rr粉红红色白色粉红粉红粉红答:1 Rr × RR产生配子1/2R,1/2r×R;后代基因型RR︰Rr=1︰1;表现型红色︰粉红=1︰1。
2 rr × Rr产生配子r×1/2R,1/2r;后代基因型Rr ︰rr=1︰1;表现型粉红︰白色=1︰1。
3 Rr × Rr产生配子1/2R,1/2r×1/2R,1/2r;后代基因型RR︰Rr︰rr=1︰2︰1;表现型红色︰粉红︰白色=1︰2︰1。
4、在南瓜中,果实的白色(W)对黄色(w)是显性,果实盘状(D)对球状(d)是显性,这两对基因是自由组合的。
现代遗传学2 孟德尔定律
实验材料:豌豆、紫茉莉、 玉米、菜豆等
发表论文:1865年在布隆博物 学会上报告,1866年在学会会 刊上发表“植物杂交实验”
定律:分离率和自由组合率
遗传学奠基人— —孟德尔
孟德尔的花园,80年代
第一节 遗传学分 析中常用名词
1.基因(gene):1909年Johhannsen提出, 代替孟德尔的遗传因子,经典遗传学认 为一个基因决定一个性状。
配子
RY
rY
Ry
ry
RY
RRYY RrYY RRYy RrYy
rY
RrYY rrYY RrYy rrYy
Ry
RRYy RrYy RRyy Rryy
ry
RrYy rrYy Rryy
rryy
•黄色对绿色显性,黄色:绿色=3:1 •圆形对皱缩显性,圆形:皱缩=3:1 结论:每对基因间可彼此分离,两 对基因间又可自由组合。
5.纯合体和杂合体:同源染色体同一基 因座位上具有相同等位基因的个体或细 胞称为纯合体;反之,带有不同形式等 位基因的个体或细胞称为杂合体
6.表(现)型与基因型:表型是指个体 在生长发育过程中表现出来的性状;基 因型则指个体或细胞的遗传组成。
7.显性性状与隐性性状、显性基因与隐 性基因:杂合体所表现出来的性状称显 性性状;杂合体不表现,而只在纯合体 才表现的性状称隐性性状。显性性状相 对应的基因称显性基因;隐性性状相对 应的基因称隐性基因。
Aa X Aa (Mon.) (Mon.)
¼ AA ½ Aa ¼ aa (野生) (Mon) (死亡)
第三节 自由组合定律
黄色 饱满 X 绿色 皱缩
黄色饱满
315 黄色饱满 : 108 绿色饱满: 101黄色皱缩 : 32 绿色皱缩
第二章 孟德尔定律
1bb × 2Cc= 2AabbCc
× 1cc = 1Aabbcc
Generation of the F2 trihybrid phenotypic ratio using the forked-line
method.
3.利用概率来计算 AA Bb cc DD Ee×Aa Bb CC dd Ee
孟德尔的功绩
采用32个品种 观察了7对性状, 经8年研究,发现了2个定律:分离定律
和自由组合定律,创立了“ 遗传学 ”
植物杂交试验的符号表示
P:亲本(parent),杂交亲本;
♀:作为母本,提供胚囊的亲本;
♂:作为父本,提供花粉粒的杂交亲本。
×:表示人工杂交过程;
F1:表示杂种第一代(first filial generation); :表示自交,采用自花授粉方式传粉受精产生后代。
P
AA×Aa Bb×Bb cc×CC DD×dd Ee×Ee
↓
↓
↓
↓
↓
要求的基因型 AA
BB
Cc
Dd
ee
↓
↓
↓
↓
↓
概率 P = 1/2 × 1/4 × 1 × 1 × 1/4 = 1/32
要求的表型
A
↓
概率
P =1 ×
B
C
De
↓
↓↓↓
3/4 × 1 × 1 × 1/4 = 3/16
四 .二项分布和二项展开法
F2:F1代自交得到的种子及其所发育形成的生物个体称
为杂种二代,即F2。由于F2总是由F1自交得到的所以
在类似的过程中符号往往可以不标明。
第一节 分离定律
(Law of segregation)
遗传学第2章孟德尔定律
2、分离比实现的细胞学基础 (1)在减数分裂和受精时各成对同源染色体进行有规 律的分离和组合,而控制相对性状的成对基因分别位于 两条同源染色体的对等位点上。 (2)等位基因随同源染色体行为而分离、重组。
2019/7/8
2.1.3孟德尔假设
1、性状是由遗传因子(genetic factor)控制的。(即遗 传因子控制性状)。 2、遗传因子在体细胞中是成对的,一个来自母本,一 个来自父本,在形成配子时,成对的遗传因子彼此分离, 并且各自分配到不同的配子中去,每一个配子中只含有 成对因子中的一个(配子是精纯的)。
2019/7/8
孟德尔 Gregor Mendel(1822—1884年)是奥地利布
隆城(现在是捷克的布尔诺)的神甫,他利用部分 时间进行生物学实验。他看到当时杂交育种方法已 在园艺方面广泛应用,具有相当成就,但还未能总 结出一种“杂交形成与发展的普遍适用的规律”。
2019/7/8
为了解决杂交中的遗传问题,他1856—1864年间进 行了大量的试验工作,以豌豆为主要材料,辅以菜 豆、石竹等其它材料,发现了前人未认识到的规律, 这规律后来称为孟德尔定律(Mendel’s laws)。通 常分为分离定律和自由组合定律。
224
F1 和F2 性状表现不受亲本组合方式影响
2019/7/8
Mendel studied inheritance of seven phenotypes in pea.
性状
成熟种子形状 子 叶颜色
花
色
豆 荚形状
未熟豆荚颜色
荚(花)位置
茎 的长度
2019/7/8
显性 5474 圆 6022 黄 705 红 822 饱满 428 绿 651 腋生 787 高
孟德尔遗传定律详细
基因型(genotype) 指生物个体基因组 合,表示生物个体 的遗传组成,又称 遗传型;
表现型(phenotype) 指生物个体的性状 表现,简称表型。
结论:分离规律对杂种F1基因型(Cc)及其分离 行为的推测是正确的。
36
纯合体(如CC)只产 1. F2基因型及其自交后代表现推测
生一种类型的配子, 其自交后代也都是 纯合体,不会发生 性状分离现象;
1) (1/4)表现隐性性状F2个体基因型 为隐性纯合,如白花F2为cc;
2) (3/4)表现显性性状F2个体中:1/3 是纯合体(CC)、2/3是杂合体(Cc);
19
20
分离规律的细胞学基础
21
22
三、基因型(genotype)和表现型(phenotype)
基本概念 (一)、 基因型与表现型的相互关系 (二)、 纯合(homozygous)与杂合(heterozygous) (三)、 生物个体基因型的推断
精选可编辑ppt
23
根据遗传因子假说,生物世代 间所传递的是遗传因子,而不 是性状本身;生物个体的性状 由细胞内遗传因子组成决定; 因此,对生物个体而言就存在 遗传因子组成和性状表现两方 面特征。
体称为杂种二代,即F2。由于F2总是由F1自交得到 的所以在类似的过程中符号往往可以不标明。
7
1. 试验方法
8
F1(杂种一代)的花色全部 P 为红色;
红花(♀) × 白花(♂) ↓
F1
F2(杂种二代)有两种类型
的植株,一种开红花, 一种开白花;并且红花 F2
遗传学第二章-孟德尔遗传定律
相对性状:指同一性状的相对差异 • 34个豌豆品种,选出22种试验,最后选出7对相对性状
–Height: tall vs dwarf –Seed shape: round vs wrinkled –Seed color: yellow vs green –Flower position: axial vs terminal –Pod color: green vs yellow –Pod shape: inflated vs constricted
对独立有差别的相对性状,求杂交后代中出现
AABbCCDdeeffgg的个体的概率是多少?
六、自由组合规律的意义
1、理论上:
从一个角度揭示了生物多样性的原因所在。
2、实践上:
对育种工作有积极的指导意义:根据自由组合规律,预测杂种后 代各种类型出现的比例,确定育种的规模,适当安排群体的大小。
3、在遗传病的研究上:
例题
研究正常性状或遗传病的传递,并可预期一定婚配后其子女各
种类型出现的频率。
例题
• 水稻无芒抗病品种的选育。已知有芒A对无芒a为显性, 抗稻瘟病R对染病r为显性,现选用真实遗传有芒抗病 和无芒不抗病为亲本进行杂交,问要在F3中得到10株 无芒抗病的能真实遗传的植株,至少需要种植多少F2 植株?
• 父亲是并指患者,母亲正常,婚后生过一个先天性聋 哑患儿,现问以后所生子女的发病情况及父母的基因 型(并指是显性性状,用S表示,聋哑是隐性遗传病, 用d表示)。
3 green and round
yyR_ : yyRR yyRr
1 green and wrinkled yyrr
三、自由组合假说的验证
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章孟德尔定律本章重点:掌握遗传学的几个基本概念,例如,显性、隐性、基因型、表型、基因、基因座、野生型基因、突变型基因、等位基因、纯合体、杂合体、显性基因、隐性基因等等学习应用孟德尔的分离定律和自由组合定律(独立分配定律)解释一些遗传现象了解遗传学常用的统计处理方法学时:7格雷戈尔.约翰.孟德尔(Gregor Johann Mendel) “植物杂交试验”论文1865年2月8日在Brunn自然科学学会上宣读,并于1866年刊登在Brunn植物学会会刊上。
Put forth the basic principles of inheritance ,publishing his findings in 1866 ,the significance of his work did not become widely appreciated until 1900.第一节分离定律(Law of segregation)一、孟德尔遗传分析的方法(一)严格选材(二)精心设计(单因子分析法)(三)定量分析法(对杂交后代分类、计数和归纳)(四)首创了测交方法(用以证明因子分离假设的正确性)二、孟德尔实验分析(一)关键名词1.基因(gene):孟德尔遗传分析中指的遗传因子。
基因位于染色体上,是具有特定核苷酸顺序的片段,是储存遗传信息的功能单位。
2.基因座(locus):基因在染色体上所处的位置。
3.等位基因(alleles):在同源染色体上占据相同座位的两个不同形式的基因,是由突变所造成的许多可能的状态之一。
4.显性基因(dominant):在杂合状态中,能够表现其表型效应的基因,一般以大写字母表示。
5.隐性基因(recessive):在杂合状态中,不表现其表型效应的基因,一般以小写字母表示。
6.基因型(genotype):个体或细胞的特定基因的组成。
7.表型(phenotype):生物体某特定基因所表现的性状(可以观察到的各种形体特征、基因的化学产物、各种行为特性等)。
8.纯合体(homozygote):基因座上有两个相同的等位基因,就这个基因座而言,这种个体或细胞称为纯合体。
9.杂合体(hoterozygote):基因座上有两个不同的等位基因。
10.真实遗传(true breeding):子代性状永远与亲代性状相同的遗传方式。
11.回交(backcross):杂交产生的子一代个体再与其亲本进行交配的方式。
12.测交(testcross):杂交产生的子一代个体再与其隐性(或双隐性)亲本进行交配的方式,用以测验子代个体的基因型的一种回交。
13 性状:在遗传学研究中通常把生物个体的形态、结构、生理生化等特性统称为~。
14 单位性状:在研究性状遗传时,把植株所表现的性状总体区分为各个单位作为研究对象,这样区分开来的性状称为~。
15 相对性状:遗传学中如单位性状内有相对差异即称为~。
16 显性性状:F1能表现出来的亲本性状17 隐性性状:F1未能表现出来的亲本性状(二)杂交图式亲本、父母本P等位基因纯系AA 、杂合Aa显隐性AA、BB、aa、bb杂交×子代F1 F2分离segregation独立分配(自由组合)independent assortment圆豆(RR)×皱缩(rr)↓↓R r↘↙F1 圆形(Rr)↓♂配子♀配子F2基因型比1RR:2Rr:1rrF2表型比圆形3:皱缩11.豌豆具有稳定的可以区分的性状。
2.豌豆不但自花授,而且闭花授粉。
3.豌豆的豆荚成熟后,子粒留在豆荚里便于准确计数。
P : 红花X 白花基因型CC cc配子 C cF1代红花基因型Cc配子C,cF2代红花白花基因型CC Cc cc比例 1 +2=3 :1孟德尔基于颗粒遗传的思想,建立了分离定律的理论基础:1.性状是由颗粒性的遗传因子(hereditary factor)(基因gene)决定的。
2.每个植株有一对等位基因控制着他所研究的每一对相对性状。
F1植株至少有一个基因是决定显性性状的,另一个等位基因是决定隐性性状的。
3.每一对基因的成员均等地分离到生殖细胞中去。
4.每一个生殖细胞或配子(gametes)只含有每对基因中的一个。
5.每一对基因中,一个来自父本雄性生殖细胞,一个来自母本雌性生殖细胞。
在形成下一代新的个体(或合子)时,配子的结合是随机的。
分离定律:基因不融合,而是各自分开;如果双亲都是杂种,后代以 3 显性:1隐性的比例分离。
三、分离规律的验证:分离规律假设:体细胞中成对基因在配子形成时将随着减数分裂的进行而互不干扰地分离;配子中只含有成对基因中的一个。
(一)测交法测交法(test cross):也称回交法。
即把被测验的个体与隐性纯合基因型的亲本杂交,根据测交子代(Ft)的表现型和比例测知该个体的基因型。
供测个体×隐性纯合亲本→Ft测交子代。
例如红花×白花红花×白花CC ↓cc Cc ↓ccFt红花红花白花Cc Cc cc比例全部1: 1(二)自交法F2植株个体通过自交产生F3株系,根据F3株系的性状表现,推论F2个体的基因型。
P红花×白花CC↓ccF1红花Cc↓⊗F2红花红花白花CC Cc cc↓↓↓F3红花分离白花1:2: 1试验结果:100株F2红花株↓⊗F3株系全为红花株3红:1白株系数1/3(36株)2/3(64)株)1: 1.8(三)F1花粉鉴定法杂种细胞进行减数分裂形成配子时,由于各对同源染色体分别分配到两个配子中,位于同源染色体的等位基因随之分离→进入不同配子。
这种现象在水稻、小麦、玉米、高粱、谷子等植物中可以通过花粉粒鉴定进行观察。
如玉米、水稻等:糯性×非糯wxwx↓WxWxF1非糯Wxwx↓观察花粉颜色(稀碘液)糯性(wx):非糯(Wx)红棕色兰黑色1:1四、分离比实现的条件:分离规律的表现:以一对相对性状为例:F1在完全显性的条件下→F2为3:1测交时→Ft为1:1PFt在于成对基因的分离和组合,需满足以下条件。
1.研究的生物体必须是二倍体(2n),相对性状差异明显;2.杂种减数分裂时各同源染色体必须以均等的机会分离→形成数目相等的配子→两类配子发育良好,雌雄配子受精机会均等;3.受精后各基因型的合子成活率均等;4.显性作用完全,不受其它基因影响而改变作用方式,即简单的显隐性;5.杂种后代处于相对一致的条件下,试验群体大。
五、分离规律的应用:1.是遗传学中性状遗传最基本的规律,在理论上说明了生物界由于杂交的分离而出现变异的普遍性;2.从本质上说明控制性状的遗传物质是以基因存在,基因在体细胞中成双、在配子中成单,具有高度的独立性;3.在减数分裂配子的形成过程中,成对基因在杂种细胞中彼此互不干扰、独立分离,通过基因重组在子代中继续表现各自的作用。
4.杂种通过自交将产生性状分离,同时导致基因纯合。
纯合亲本杂交→杂种自交→性状分离选择→纯合一致的品种。
∴亲本要纯→F1真杂种→F2才会按比例分离:如果F1假杂种→F2不分离。
如果父母本不纯→F1分离。
5.通过性状遗传研究,可以预期后代分离的类型和频率,进行有计划种植,以提高育种效果,加速育种进程。
•如水稻抗稻瘟病抗(显性)×感(隐性)↓F1抗↓F2抗性分离有些抗病株在F3还会分离。
6.良种生产中要防止天然杂交而发生分离退化,去杂去劣及适当隔离繁殖。
7.利用花粉培育纯合体:杂种(2n)↓配子(n)↓加倍纯合二倍体植株(2n)↓品种第二节自由组合定律孟德尔以豌豆为材料,选用具有两对相对性状差异的纯合亲本进行杂交→研究两对相对性状的遗传后提出:独立分配规律(自由组合规律)。
一、两对相对性状的遗传㈠试验结果P黄色子叶、圆粒×绿色子叶、皱粒↓F1黄色子叶、圆粒15株自交结556粒种子↓⊗F2种子黄、圆黄、皱绿、圆绿、皱总数实得粒数31510110832556理论比例9:3:3:116理论粒数312.75104.25104.2534.75556在两对相对性状遗传时:F1出现显性性状;F2会出现4种类型:2种亲本型+2种新的重组型。
(两者成一定比例)㈡结果分析先按一对相对性状杂交的试验结果分析:黄:绿=(315+101):(108+32)=416:140=2.97:1≈3:1圆:皱=(315+108):(101+32)=423:133=3.18:1≈3:1∴两对性状是独立互不干扰地遗传给子代→每对性状的F2分离符合3∶1比例。
F2出现两种重组型个体→说明控制两对性状的基因在从F1遗传给F2时,是自由组合的。
按概率定律,两个独立事件同时出现的概率是分别出现概率的乘积:黄、圆3/4×3/4=9/16黄、皱3/4×1/4=3/16绿、圆1/4×3/4=3/16绿、皱1/4×1/4=1/16(3∶1)2=9∶3∶3∶1二、独立分配现象的解释独立分配规律的要点:控制两对不同性状的等位基因在配子形成过程中,一对等位基因与另一对等位基因的分离和组合互不干扰,各自独立分配到配子之中。
独立分配的实质:控制两对性状的等位基因,分布在不同的同源染色体上;减数分裂时,每对同源染色体上等位基因发生分离,而位于非同源染色体上的基因,可以自由组合。
三、独立分配规律的验证㈠测交法F1×双隐性亲本黄圆YyRr 绿皱yyrr↓配子YR Yr yR yr yr基因型YyRr Yyrr yyRr yyrr表现型黄、圆黄、皱绿、圆绿、皱表现型比例1:1:1:1⇐理论FtF1为♀31272626 ⇐测交结果F1为♂24222526 ⇐测交结果χ2测验,P>5%,符合理论比例,理论与实际结果一致。
㈡自交法按照分离和独立分配规律的理论判断,F2中:♥纯合基因型的植株有4/16(YYRR、yyRR、YYrr、yyrr)经自交→F3,性状不分离;♥一对基因杂合的植株有8/16(YyRR、YYRr、yyRr、Yyrr)经自交→F3,一对性状分离(3∶1),另一对性状稳定;♥二对基因杂合的植株有4/16(YyRr)经自交→F3,二对性状均分离(9∶3∶3∶1)。
孟德尔试验结果:T=529株F2植株群体中(按表现型归类,则)Y_R_Y_rr yyR_yyrr总计3019610230529四、多对相对性状的遗传当具有3对不同性状的植株杂交时,只要决定3对性状遗传的基因分别载在3对非同源染色体上,其遗传仍符合独立分配规律。
例如:黄、圆、红×绿、皱、白YYRRCC↓yyrrccF1黄、圆、红YyRrCc⇐完全显性F1配子类型23=8(YRC、YrC、YRc、yRC、yrC、Yrc、yRc、yrc)F2组合43=64⇐雌雄配子间随机结合F2基因型33=27F2表现型23=8⇐27:9:9:9:3:3:3:13对基因的F1自交相当于(YyRrCc)2=(Yy×Yy)(Rr×Rr)(Cc×Cc)单基因杂交;每一单基因杂种的F2均按3:1比例分离。