初中数学角,角平分线练习题(附答案)

合集下载

【中考数学必备专题】几何辅助线大揭秘 之角平分线问题(含答案)

【中考数学必备专题】几何辅助线大揭秘 之角平分线问题(含答案)

【中考数学必备专题】几何辅助线大揭秘之角
平分线问题
一、证明题(共3道,每道40分)
1.已知,如图,△ABC的外角∠CBD和∠BCE的平分线相交于点F.求证:点F在∠DAE的平分线上.
答案:∵BF是∠CBD的平分线∴FG=FI ∵CF是∠BCE的平分线∴FH=FI ∴FG=FH ∴点F在∠DAE的平分线上
解题思路:过F作FG⊥AD于点G,FH⊥AE于点H,FI⊥BC于点I,如图只要证明FG=FH即可
试题难度:三颗星知识点:三角形角平分线
2.如图,在△ABC中,AD为∠BAC的平分线,∠B=2∠C.求证:AC=AB+BD.
答案:∵AD是∠BAC的平分线∴∠BAD=∠EAD 在△ABD和△AED中AB=AE ∠BAD=∠EAD AD=AD ∴△ABD≌△AED(SAS)∴BD=ED,∠B=∠AED ∵∠AED=∠B=2∠C ∴∠CDE=∠AED ﹣∠C=∠C ∴DE=CE ∴BD=CE ∵AC=AE+CE ∴AC=AB+BD
解题思路:在AC上截取AE=AB,连接DE,如图只要证明BD=CE即可
试题难度:三颗星知识点:三角形角平分线
3.已知:如图,在△ABC中,BE平分∠ABC,AD⊥BE,垂足为点D.求证:∠BAD=∠DAE+∠C.
答案:∵BE平分∠ABC,AD⊥BE ∴△ABF为等腰三角形(三线合一)∴∠BAD=∠BFD ∵∠BFD 为△ACF的外角∴∠BFD=∠DAE+∠C ∴∠BAD=∠DAE+∠C
解题思路:延长AD与BC交于点F,如图只要证明∠BFD=∠BAD即可
试题难度:三颗星知识点:三角形角平分线。

角平分线专项练习30题(有答案)ok

角平分线专项练习30题(有答案)ok

角平分线专项练习30题(有答案)1.如图,在△ABC中,∠C=90°,AB=2AC,AD平分∠BAC,求证:点D在AB的垂直平分线上.2.如图,在△ABC中,PD⊥AC,PE⊥AB,PF⊥BC,PD=PE=PF,求证:∠BPC=90°+∠BAC.3.如图已知:BD⊥AC,CE⊥AB,垂足分别是D、E,BD、CE交于F,且CF=FB,求证:AF平分∠BAC.4.如图,已知BE⊥AC于E,CF⊥AB于F,BE、CF相交于点D,若AB=AC.求证:AD平分∠BAC.5.如图,在△ABC中,∠BAC=90°,BE平分∠ABC,DE⊥BC于D,DE=DC.求证:BC=AB+AE.6.已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)求证:AM平分∠BAD;(2)试说明线段DM与AM有怎样的位置关系?(3)线段CD、AB、AD间有怎样的关系?直接写出结果.7.如图,CD是Rt△ABC斜边上的高,∠BAC的平分线分别交BC、CD于点E、F.(1)求证:△ACF∽△ABE;(2)若AC=6cm,AF=3cm,AB=10cm,求出AE的长度.8.如图,CD∥AB,∠ABC,∠BCD的角平分线交于E点,且E在AD上,CE交BA的延长线于F点.(1)BE与CF互相垂直吗?若垂直,请说明理由;(2)若CD=3,AB=4,求BC的长.9.如图,直线MN分别交直线AB,CD于点E,F,EG平分∠BEF,若∠1=50°,∠2=65°,(1)求证:AB∥CD;(2)在(1)的条件下,求∠AEM的度数.10.如图,AD平分∠MAN,BD⊥AM,CD⊥AN,垂足分别为B、C,E为线段AB上一点,(1)用尺规在射线AN上找一点F,使△CDF与△BDE全等(保留作图痕迹);(2)若BE=3,请写出此时线段AE与AF的数量关系,并说明理由.11.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,(1)分别作出D到BA、BC的距离DE、DF;(2)求证:∠A+∠C=180°.12.已知:如图,△ABC中,∠ABC=90°,BD⊥AC于D,AE平分∠BAC,EF∥DC,交BC于F,求证:BE=FC.13.如图,四边形AOBC中,AC=BC,∠A+∠OBC=180°,CD⊥OA于D.(1)求证:OC平分∠AOB;(2)若OD=3DA=6,求OB的长.14.如图,点D、B分别在∠A的两边上,C是∠DAB内一点,AB=AD,BC=CD,CE⊥AD于E,CF⊥AF于F,求证:CE=CF.15.如图,已知:在四边形ABCD中,过C作CE⊥AB于E,并且CD=CB,∠ABC+∠ADC=180°,(1)求证:AC平分∠BAD;(2)若AE=3BE=9,求AD的长;(3)△ABC和△ACD的面积分别为36和24,求△BCE的面积.16.如图,在△ABC中,AB>AC,E为BC边的中点,AD为∠BAC的平分线,过E作AD的平行线,交AB于F,交CA的延长线于G.求证:BF=CG.17.如图,AE平分∠BAC,BD=DC,DE⊥BC,EM⊥AB,EN⊥AC.求证:BM=CN.18.如图,△ABC中,∠B的平分线与∠C的外角的平分线交于P点,PD⊥AC于D,PH⊥BA于H,求证:AP平分∠HAD.19.如图,△ABC中,若AD平分∠BAC,过D点作DE⊥AB,DF⊥AC,分别交AB、AC于E、F两点.求证:AD⊥EF.(2)若∠MON=80°,求∠PAB的度数.21.如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,PA=PC.(1)求证:∠PCB+∠BAP=180°;(2)若BC=12cm,AB=6cm,PA=5cm,求BP的长.22.如图,△ABC中,AD是它的角平分线,P是AD上的一点,PE∥AB交BC与E,PF∥AC交BC与F.求证:D 到PE的距离与D到PF的距离相等.23.如图,在△ABC中,AD平分∠BAC,DG⊥BC且平分BC于点G,DE⊥AB于E,DF⊥AC于F.证明:BE=CF;(提示:连接线段BD、CD)25.如图,已知∠ABC=40°,∠ACB=60°,BO,CO平分∠ABC和∠ACB,DE过O点,且DE∥BC,求∠BOC的度数.26.四边形ABCD中,AC平分∠BAD,CE⊥AB于E,∠ADC+∠B=180°求证:2AE=AB+AD.27.如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)说明BE=CF的理由;(2)如果AB=5,AC=3,求AE、BE的长.(2)ED=BC+BD.29.如图,在△ABC中,∠C=90°,M为AB的中点,DM⊥AB,CD平分∠ACB,求证:MD=AM.30.如图,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,M为OP上任一点,连接CM、DM,则有CM与DM相等,试说明你的理由.参考答案:1.证明:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴CD=DE,在△ADC和△ADE中,,∴△ADC≌△ADE(HL),∴AE=AC,∵AB=2AC,∴BE=AB﹣AE=2AC﹣AE=AE,∴点D在AB的垂直平分线上.2.证明:连接AP,且延长至G,∵PD⊥AC,PE⊥AB,PF⊥BC,PD=PE=PF,∴点P是△ABC三角平分线的交点,∴AP平分∠BAC,∴∠CAG=∠BAG=∠BAC,∵CP平分∠ACB,BP平分∠ABC,∴∠ACP=∠ACB,∠ABP=∠ABC,∴∠CPG=∠BAG+∠ABP=(∠BAC+∠ACB),∠BPG=∠BAG+∠ABP=(∠BAC+∠BC),∴∠BPC=∠CPG+∠BPG=(∠BAC+∠ACB)+(∠BAC+∠ABC)=∠BAC+(180°﹣∠BAC)=90°+∠BAC.3.证明:∵BD⊥AC,CE⊥AB,∠CDF=∠BEF=90°,在△CDF与△BEF中,,∴DF=EF,又∵BD⊥AC,CE⊥AB,∴AF平分∠BAC(到角的两边距离相等的点在角的平分线上)4.解:方法一:连接BC,∵BE⊥AC于E,CF⊥AB于F,∴∠CFB=∠BEC=90°,∵AB=AC,∴∠ABC=∠ACB,在△BCF和△CBE中∵∴△BCF≌△CBE(AAS),∴BF=CE,在△BFD和△CED中∵,∴△BFD≌△CED(AAS),∴DF=DE,∴AD平分∠BAC.方法二:先证△AFC≌△AEB,得到AE=AF,再用(HL)证△AFD≌△三AED,得到∠FAD=∠EAD,所以AD平分∠BAC.5.解:∵∠BAC=90°,BE平分∠ABC,DE⊥BC于D,∴AE=DE,∵BE是公共边,∴△BDE≌△BAE(HL),∴BD=BA,AE=DE=DC,∴BC=BD+DC=AB+AE6.(1)证明:作ME⊥AD于E,∵MC⊥DC,ME⊥DA,MD平分∠ADC,∴ME=MC,∵M为BC中点,∴MB=MC,又∵ME=MC,∴ME=MB,又∵ME⊥AD,MB⊥AB,∴AM平分∠DAB.(2)解:DM⊥AM,理由是:∵DM平分∠CDA,AM平分∠DAB,∴∠1=∠2,∠3=∠4,∴∠1+∠3=90°,∴∠DMA=180°﹣(∠1+∠3)=90°,即DM⊥AM.(3)解:CD+AB=AD,理由是:∵ME⊥AD,MC⊥CD,∴∠C=∠DEM=90°,在Rt△DCM和Rt△DEM中∴Rt△DCM≌Rt△DEM(HL),∴CD=DE,同理AE=AB,∵AE+DE=AD,∴CD+AB=AD.7.(1)证明:∵∠ACB=90°,∠CDB=90°,∴∠ACD=90°﹣∠DCB,∠B=90°﹣∠DCB,∴∠ACD=∠B,(2分)∵AE平分∠CAB,∴∠CAE=∠EAB,(3分)∴△ACF∽△ABE;(7分)(2)解:∵△ACF∽△ABE,∴,(9分)∴AE===5cm8.解:(1)垂直.∵CD∥AB,∴∠ABC+∠BCD=180°,∵∠ABC,∠BCD的角平分线交于E点,∴∠ABE=∠EBC,∠DCE=∠ECB,∴∠EBC+∠ECB=∠ABC+∠BCD=(∠ABC+∠BCD)=90°,∴∠CEB=90°,∴BE与CF互相垂直.(2)∵∠CEB=90°,∴∠FEB=90°,在△FBE和△CBE中,∵,∴△FBE≌△CBE(ASA),∴BF=BC,EF=EC,∵CD∥AB,∴∠DCE=∠AFE,∵∠FEA=∠CED,∴△DCE≌△AFE,∴DC=AF,∵CD=3,AB=4,BF=AF+AB,∴BF=BC=7.9.(1)证明:∵∠1+∠2+∠FEG=180°,∵∠1=50°,∠2=65°,∴∠FEG=65°,∵EG平分∠BEF,∴∠BEF=2∠FEG=130°,∴∠BEF+∠1=180°,∴AB∥CD.(2)∵∠AEM=∠BEF,∵∠BEF=130°,∴∠AEM=130°,答:∠AEM的度数是130°10.解:(1)以D为圆心,DE为半径交AN于F1或F2,如图,∵AD平分∠MAN,BD⊥AM,CD⊥AN,∴DB=DC,∵DE=DF,∴Rt△CDF≌Rt△BDE(HL);(2)∵DB=DC,DA=DA,∴Rt△DBA≌Rt△DCA(HL);∴AB=AC,∵Rt△CDF≌Rt△BDE,∴BE=CF,∴当F点在F1时,AF=AE;当F点在F2时,AF2=AC+CF2=AB+CF2=AE+BE+BE,∴AF﹣AE=2BE=6.11.解:(1)如图所示:.(2)证明:∵BD平分∠ABC,DE⊥BA,DF⊥BC,∴DE=DF,∠E=∠DFC=90°,∴在Rt△DEA和Rt△DFC中∴Rt△DEA≌Rt△DFC(HL),∴∠C=∠EAD,∵∠BAD+∠EAD=180°,∴∠BAD+∠C=180°12.证明:过点E作EG⊥AB于点G,过F点作FH⊥AC于点H,∵△ABC中,∠ABC=90°,∴∠C+∠BAC=90°,∵BD⊥AC于D,∴∠ADB=90°,∴∠BAC+∠ABD=90°,∴∠C=∠ABD,∵点E在∠BAC的平分线上,∴GE=DE,∵EF∥DC且BD⊥AC于D,FH⊥AC于D∴ED=FH,∴GE=FH,在△BEG与△CFH中,,∴△BEG≌△CFH(AAS),∴BE=CF.13.证:(1)作CE⊥OB于E,∵∠A+∠OBC=180°,∠OBC+∠CBE=180°∴∠A=∠CBE,在△ACD和△BCE中,,∴△ACD≌△BCE(AAS),∴CD=CE,∴OC平分∠AOB.(2)∵OD=3DA=6,∴AD=BE=2,在Rt△ODC和Rt△OEC中∵∴Rt△ODC≌Rt△OEC(HL),∴OE=OD=6,∴OB=OE﹣BE=4.14.证明:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,∵CE⊥AD于E,CF⊥AF于F,∴CE=CF15.解:(1)作CF⊥AD的延长线于F,∴∠F=90°.∵CE⊥AB,∴∠CEA=∠CEB=90°,∴∠F=∠CEA=∠CEB.∵∠ADC+∠CDF=180°,且∠ABC+∠ADC=180°∴∠CDF=∠B.在△CDF和△CEB中,∴△CDF≌△CEB(AAS),∴CF=CE.∵CF⊥AD,CE⊥AB,∴AC平分∠BAD;(2)在Rt△CAF和Rt△CAE中,∴Rt△CAF≌Rt△CAE(HL),∴AF=AE.∵△CDF≌△CEB,∴DF=EB.∵3BE=9,∴BE=3,∴DF=3.∵AD=AF﹣DF,∴AD=AE﹣DF.∵AE=9,∴AD=9﹣3=6;(3)∵△CAF≌△CAE,△CDF≌△CEB,∴S△CAF=S△CAE,S△CDF=S△CEB..设△BCE的面积为x,则△CDF的面积为x,由题意,得24+x=36﹣x,∴x=6,答:△BCE的面积为6.16.证明:延长FE至Q,使EQ=EF,连接CQ,∵E为BC边的中点,∴BE=CE,∵在△BEF和CEQ中,∴△BEF≌△CEQ,∴BF=CQ,∠BFE=∠Q,∵AD平分∠BAC,∴∠CAD=∠BAD,∵EF∥AD,∴∠CAD=∠G,∠BAD=∠GFA,∴∠G=∠GFA,∴∠GFA=∠BFE,∵∠BFE=∠Q(已证),∴∠G=∠Q,∴CQ=CG,∵CQ=BF,∴BF=CG.17.证明:连接BE、EC,∵BD=DC,DE⊥BC∵BE=EC.∵AE平分∠BAC,EM⊥AB,EN⊥AC,EM=EN,∠EMB=∠ENC=90°.在Rt△BME和Rt△CNE中,∵BE=EC,EM=EN,∴Rt△BME≌Rt△CNE(HL)∴BM=CN.18.证明:过P作PF⊥BE于F,∵BP平分∠ABC,PH⊥BA于H,PF⊥BE于F,∴PH=PF(角平分线上的点到角的两边距离相等).又∵CP平分∠ACE,PD⊥AC于D,PF⊥BE于F,∴PF=PD(角平分线上的点到角的两边距离相等).∴PD=PH(等量代换).∴AP平分∠HAD(到角的两边距离相等的点在这个角的平分线上).19.证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠EAD=∠FAD,∠AED=∠AFD=90°,∵∠AED+∠EAD+∠EDA=180°,∠FAD+∠AFD+∠ADF=180°,∴∠EDA=∠FDA,∵DE=DF,∴AD⊥EF三线合一)20.(1)证明:∵∠PAB=∠PBA,∴PA=PB,∵PA⊥OM于A,PB⊥ON于B,∴OP平分∠MON(到角的两边距离相等的点在角的平分线上);(2)解:∵∠MON=80°,PA⊥OM于A,PB⊥ON于B,∴∠APB=360°﹣90°×2﹣80°=100°,∵∠PAB=∠PBA,∴∠PAB=(180°﹣100°)=40°21.证明:(1)如图,过点P作PE⊥AB于E,∵∠1=∠2,PF⊥BC,∴PE=PF,在△APE和△CPF中,,∴△APE≌△CPF(HL),∴∠PAE=∠PCB,∵∠PAE+∠PAB=180°,∴∠PCB+∠BAP=180°;(2)∵△APE≌△CPF,∴AE=FC,∵BC=12cm,AB=6cm,∴AE=×(12﹣6)=3cm,BE=AB+AE=6+3=9cm,在Rt△PAE中,PE==4cm,在Rt△PBE中,PB==cm.22.证明:∵PE∥AB,PF∥AC,∴∠EPD=∠BAD,∠DPF=∠CAD,∵△ABC中,AD是它的角平分线,∴∠BAD=∠CAD,∴∠EPD=∠DPF,即DP平分∠EPF,∴D到PE的距离与D到PF的距离相等23.证明:连接BD,CD,∵AD平分∠BAC,且DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,∵DG⊥BC且平分BC,∴BD=CD,在Rt△BED与Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴BE=CF.24.证明:∵DE⊥AB的延长线于点E,DF⊥AC于点F,∴∠BED=∠CFD,∴△BDE与△CDE是直角三角形,∵,∴Rt△BDE≌Rt△CDF,∴DE=DF,∴AD是∠BAC的平分线25.解:∵∠ABC=40°,∠ACB=60°,BO,CO平分∠ABC和∠ACB,∴∠OBC+∠OCB=(∠ACB+∠ABC)=50°;∴∠BOC=180°﹣50°=130°26.证明:过C作CF⊥AD于F,∵AC平分∠BAD,∴∠FAC=∠EAC,∵CE⊥AB,CF⊥AD,∴∠DFC=∠CEB=90°,∴△AFC≌△AEC,∴AF=AE,CF=CE,∵∠ADC+∠B=180°∴∠FDC=∠EBC,∴△FDC≌△EBC∴DF=EB,∴AB+AD=AE+EB+AD=AE+DF+AD=AF+AE=2AE∴2AE=AB+AD27.(1)证明:连接BD,CD,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,∵DG⊥BC且平分BC,∴BD=CD,在Rt△BED与Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴BE=CF;(2)解:在△AED和△AFD中,,∴△AED≌△AFD(AAS),∴AE=AF,设BE=x,则CF=x,∵AB=5,AC=3,AE=AB﹣BE,AF=AC+CF,∴5﹣x=3+x,解得:x=1,∴BE=1,AE=AB﹣BE=5﹣1=4.28.证明:(1)由三角形的外角性质,∠BAD+∠ABD=∠1+∠EDC,∵∠1=90°﹣∠EDC,∴∠BAD+90°=90°﹣∠EDC,∴∠BAD=∠EDC,延长DB至F,使BF=BD,则AB垂直平分DF,∴∠BAD=∠DAF,AD=AF,∴∠DAF=∠EDC,∠2=∠F,在△ADF中,∠F+∠DAF=∠1+∠EDC,∴∠1=∠F,∴∠1=∠2;(2)在△AED和△ACF中,,∴△AED≌△ACF(ASA),∴ED=CF,∵CF=BC+BF=BC+DB,∴ED=BC+BD.29.证明:如图,连接CM,设AB、CD相交于点E,则CM是斜边上的中线,MC=MB=AM,∴∠MCB=∠B,∵CD平分∠ACB,∠C=90°,∴∠BCD=×90°=45°,∴∠MCD=∠MCB﹣45°=∠B﹣45°,又∵∠DEM=∠BEC=180°﹣∠B﹣45°=135°﹣∠B,∴∠D=90°﹣∠DEM=∠B﹣45°,∴∠D=∠MCD,∴MD=MC,∴MD=AM.30.解:∵OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,∴PC=PD,∵OM是公共边,∴△POC≌△POD(HL),∴OC=OD,∴△COM≌△DOM(SAS),∴CM=DM。

【微专题】2023学年八年级数学上册常考点微专题提分精练(人教版) 两外角平分线问题(解析版)

【微专题】2023学年八年级数学上册常考点微专题提分精练(人教版) 两外角平分线问题(解析版)

两外角平分线问题类型一三角形两外角平分线问题1.如图所示在△ABC中分别延长△ABC的边AB AC到D E △CBD与△BCE的平分线相交于点P 爱动脑筋的小明在写作业时发现如下规律:①若△A=50° 则△P=65°=90°-502︒;②若△A=90° 则△P=45°=90°-902︒;③若△A=100° 则△P=40°=90°-1002︒.(1)根据上述规律若△A=150° 则△P=________;(2)请你用数学表达式写出△P与△A的关系;(3)请说明(2)中结论的正确性.【答案】(1)15°;(2)△P=90°-12△A;(3)见解析.【解析】【详解】【试题分析】(1)按照规律求解即可;(2)根据题意中的规律写出等量关系;(3)根据外角的性质证明.【试题解析】(1) △P=90°-1502︒=15°;(2)△P=90°-△A;(3)因为△DBC是△ABC的一个外角所以△DBC=△A+△ACB.因为BP 是△DBC 的平分线所以△PBC =△A +△ACB.同理可得△PCB =△A +△ABC.因为△P +△PBC +△PCB =180°所以△P =180°-(△PBC +△PCB)=180°-=180°-=90°-△A.【方法点睛】本题目是一道规律探究题 先猜想后证明 主要利用外角的性质 三角形的内角和来证明. 2.如图 BP 、CP 是ABC ∆的外角角平分线 若60P ∠=︒ 则A ∠的大小为( )A .30B .60︒C .90︒D .120︒【答案】B【解析】【分析】 首先根据三角形内角和与△P 得出△PBC+△PCB 然后根据角平分线的性质得出△ABC 和△ACB 的外角和 进而得出△ABC+△ACB 即可得解.【详解】△60P ∠=︒△△PBC+△PCB=180°-△P=180°-60°=120°△BP 、CP 是ABC ∆的外角角平分线△△DBC+△ECB=2(△PBC+△PCB )=240°△△ABC+△ACB=180°-△DBC+180°-△ECB=360°-240°=120°△△A=60°故选:B.【点睛】此题主要考查角平分线以及三角形内角和的运用熟练掌握即可解题.3.如图在△ABC中△ABC和△ACB的外角平分线交于点O设△A=m则△BOC =()A.B.C.D.【答案】B【解析】【分析】根据三角形的内角和可得△ABC+△ACB根据角的和差可得△DBC+△BCE根据角平分线的定义可得△OBC+△OCB根据三角形的内角和可得答案.【详解】解:如图:由三角形内角和定理得△ABC+△ACB=180°-△A=180°-m由角的和差得△DBC+△BCE=360°-(△ABC+△ACB)=180°+m由△ABC和△ACB的外角平分线交于点O得△OBC+△OCB=12(△DBC+△BCE)=90°+12m由三角形的内角和得△O =180°-(△OBC +△OCB )=90°-12m .故选:B .【点睛】本题考查了三角形内角和定理 利用三角形内角和定理 角的和差 角平分线的定义是解题关键. 4.如图 已知在ABC ∆中 B 、C ∠的外角平分线相交于点G 若ABC m ∠=︒ ACB n ∠=︒ 求BGC ∠的度数.【答案】()12BGC m n ∠=+ 【解析】【分析】 运用角平分线的知识列出等式求解即可.解答过程中要注意代入与之有关的等量关系.【详解】解:△B 、△C 的外角平分线相交于点G在BCG ∆中△BGC=180°-(12△EBC+12△BCF )=180°-12(△EBC+△BCF )=180°-12(180°-△ABC+180°-△ACB )=180°-12(180°-m°+180°-n°); =()12+m n 【点睛】本题考查的是三角形内角和定理以及角平分线的知识.此类题的关键是找出与之相关的等量关系简化计算得出.5.如图 点P 是ABC ∆的外角BCE ∠和CBF ∠的角平分线交点 延长BP 交AC 于G 请写出A ∠和CPG ∠【答案】1902CPG A ∠=︒+∠ 【解析】【分析】先根据三角形外角的性质及角平分线的性质即可用含A ∠的式子表示出CBP ∠和BCP ∠的和 再利用三角形外角的性质即可得到A ∠和CPG ∠的数量关系.【详解】解:△180ACB ABC A ∠+∠=︒-∠,△1802(180)180ECB FBC A A ∠+∠=︒⨯-︒-∠=︒+∠,△点P 是ABC ∆的外角BCE ∠和CBF ∠的角平分线交点△CBP ∠+BCP ∠=11(180)9022A A ︒+∠=︒+∠ 又△CPG ∠=CBP ∠+BCP ∠ △1902CPG A ∠=︒+∠. 【点睛】本题考查了三角形内角和定理、三角形外角和的性质及角平分线的性质.熟练应用三角形外角的性质是解题的关键.6.如图 已知射线OE ⊥射线OF B 、A 分别为OE 、OF 上一动点 ABE ∠、BAF ∠的平分线交于C 点.问B 、A 分别在OE 、OF 上运动的过程中 C ∠的度数是否改变?若不变 求出其值;若改变 说明理由.【答案】不变 45C ∠=︒.【解析】根据三角形的内角和定理、角平分线定义和三角形的外角的性质可以得到△C=90°-12△O . 【详解】解:△C 的度数不会改变.△△ABE 、△BAF 的平分线交于C △△CAB=12△FAB △CBA=12△EBA △△C=180°-(△CAB +△CBA )=180°-12(△ABE+△BAF ) =180°-12(△O+△OAB+△BAF ) =180°-12(△O+180°) =90°-12△O=45°. 【点睛】本题考查了三角形的内角和定理 角平分线的定义 三角形外角的性质定理 熟练掌握相关的性质是解题的关键.类型二 多边形两外角平分线问题7.如图 已知点P 是四边形ABCD 的外角CDE ∠和外角DCF ∠的平分线的交点.若149A ∠=︒ 91B ∠=︒ 求P ∠的度数.【答案】60°【解析】【分析】根据四边形的内角和公式即可求出120BCD CDA ∠+∠=︒ 然后根据平角的定义即可求出240CDE DCF ∠+∠=︒ 再根据角平分线的定义即可求出120CDP DCP ∠+∠=︒ 最后根据三角形的内角和定理即可求出结论.【详解】解:因为360A B BCD CDA ∠+∠+∠+∠=︒ 149A ∠=︒ 91B ∠=︒所以120BCD CDA ∠+∠=︒.因为180CDE CDA ∠+∠=︒ 180BCD DCF ∠+∠=︒所以240CDE DCF ∠+∠=︒.因为点P 是四边形ABCD 的外角CDE ∠和外角DCF ∠的平分线的交点 所以12CDP CDE ∠=∠ 12DCP DCF ∠=∠. 所以120CDP DCP ∠+∠=︒所以()18060P CDP DCP ∠=︒-∠+∠=︒.【点睛】此题考查的是四边形的内角和公式、三角形的内角和定理和角平分线的定义 掌握四边形的内角和是360°、三角形的内角和是180°和角平分线的定义是解决此题的关键.8.如图 五边形ABCDE 中 BCD ∠、EDC ∠的外角分别是FCD ∠、GDC ∠ CP 、DP 分别平分FCD ∠和GDC ∠且相交于点P 若140A ∠=︒ 120B ∠=︒ 90E ∠=︒ 则P ∠=__________︒.【答案】95【解析】【分析】根据多边形的内角和定理:()2180-︒n 可得出△BCD 、△EDC 的和 从而得出相邻两外角和 然后根据角平分线及三角形内角和定理即可得出答案.【详解】解:多边形的内角和定理可得五边形ABCDE 的内角和为:()52180-︒=540°△△BCD+△EDC=540°-140°-120°-90°=190°△△FCD+△GDC=360°-190°=170°又△CP 和DP 分别是△BCD 、△EDC 的外角平分线 △()170851122PCD PDC FCD GDC ∠+∠=∠+∠=⨯︒=︒根据三角形内角和定理可得:△CPD=180°-85°=95°.故答案为:95.【点睛】本题主要考查了多边形内角和定理、角平分线的性质、三角形内角和定理 熟悉相关性质是解题的关键. 9.(1)问题发现:由“三角形的一个外角等于与它不相邻的两个内角的和”联想到四边形的外角 如图① 1∠ 2∠是四边形ABCD 的两个外角△四边形ABCD 的内角和是360°△()34360A D ∠+∠+∠+∠=︒又△1324360∠+∠+∠+∠=︒由此可得1∠ 2∠与A ∠ D ∠的数量关系是______;(2)知识应用:如图② 已知四边形ABCD AE DE 分别是其外角NAD ∠和MDA ∠的平分线 若230B C ∠+∠=︒ 求E ∠的度数; (3)拓展提升:如图③ 四边形ABCD 中 90A C ∠=∠=︒ CDN ∠和CBM ∠是它的两个外角 且14CDP CDN ∠=∠ 14CBP CBM ∠=∠ 求P ∠的度数.【答案】(1)1∠+2∠=A ∠+D ∠;(2)65°;(3)45°【解析】【分析】(1)根据平角的定义即可解答;(2)根据(1)的结论求出MDA NAD ∠+∠ 再根据角平分线的定义求出ADE DAE ∠+∠ 然后利用三角形的内角和定理列式进行计算即可得解;(3)由四边形内角和定理得180ABC ADC ∠+∠=︒ 可求得180MBC NDC ∠+∠=︒ 再由14CDP CDN ∠=∠ 14CBP CBM ∠=∠可求得45PBC PDC ∠+∠=︒ 最后利用四边形内角和定理求出P ∠. 【详解】解:(1)如图① 1∠ 2∠是四边形ABCD 的两个外角△四边形ABCD 的内角和是360°△()34360A D ∠+∠+∠+∠=︒又△1324360∠+∠+∠+∠=︒△1∠+2∠=A ∠+D ∠故答案为:1∠+2∠=A ∠+D ∠;(2)△230B C ∠+∠=︒△=230MDA NAD ∠+∠︒△AE 、DE 分别是△NAD 、△MDA 的平分线△△ADE =11,22MDA DAE NAD ∠∠=∠ △11()23011522ADE DAE MDA NAD ∠+∠=∠+∠=⨯︒=︒ △180()18011565E ADE DAE ∠=︒-∠+∠=︒-︒=︒;(3)△90A C ∠=∠=︒△180ABC ADC ∠+∠=︒△180MBC NDC ∠+∠=︒ △14CDP CDN ∠=∠ 14CBP CBM ∠=∠ △()111804544CDP CBP CDN CBM ∠+∠=∠+∠=⨯︒=︒ △18045225ABP ADP MBC CBP NDC CDP ∠+∠=∠+∠+∠+∠=︒+︒=︒△360()3609022545P A ABP ADP ∠=︒-∠-∠+∠=︒-︒-︒=︒【点睛】本题考查了四边形的两个外角和等于与它不相邻的两个内角的和的性质 四边形的内角和定理 角平分线的定义 熟记性质并读懂题目信息是解题的关键.10.已知如图 四边形ABCD BE 、DF 分别平分四边形的外角△MBC 和△NDC 若△BAD =α △BCD =β (1)如图1 若α+β=150° 求△MBC +△NDC 的度数;(2)如图1 若BE 与DF 相交于点G △BGD =45° 请写出α、β所满足的等量关系式;(3)如图2 若α=β 判断BE 、DF 的位置关系 并说明理由.【答案】(1)150°;(2)β﹣α=90°;(3)平行 理由见解析【解析】【分析】(1)利用角平分线的定义和四边形的内角和以及α+β=150°推导即可;(2)利用角平分线的定义和四边形的内角和以及三角形的内角和转化即可;(3)利用角平分线的定义和四边形的内角和以及三角形的外角的性质计算即可.【详解】解:(1)在四边形ABCD 中 △BAD +△ABC +△BCD +△ADC =360°△△ABC +△ADC =360°﹣(α+β)△△MBC +△ABC =180° △NDC +△ADC =180°△△MBC +△NDC =180°﹣△ABC +180°﹣△ADC =360°﹣(△ABC +△ADC )=360°﹣[360°﹣(α+β)]=α+β △α+β=150°△△MBC +△NDC =150°(2)β﹣α=90°理由:如图1 连接BD由(1)有△MBC+△NDC=α+β△BE、DF分别平分四边形的外角△MBC和△NDC△△CBG=12△MBC△CDG=12△NDC△△CBG+△CDG=12△MBC+12△NDC=12(△MBC+△NDC)=12(α+β)在△BCD中在△BCD中△BDC+△DBC=180°﹣△BCD=180°﹣β 在△BDG中△BGD=45°△△GBD+△GDB+△BGD=180°△△CBG+△CBD+△CDG+△BDC+△BGD=180°△(△CBG+△CDG)+(△BDC+△CDB)+△BGD=180°△12(α+β)+180°﹣β+45°=180°△β﹣α=90°(3)平行理由:如图2 延长BC交DF于H由(1)有△MBC+△NDC=α+β△BE、DF分别平分四边形的外角△MBC和△NDC△△CBE=12△MBC△CDH=12△NDC△△CBE+△CDH=12△MBC+12△NDC=12(△MBC+△NDC)=12(α+β)△△BCD=△CDH+△DHB△△CDH=△BCD﹣△DHB=β﹣△DHB△△CBE+β﹣△DHB=12(α+β)△α=β△△CBE+β﹣△DHB=12(β+β)=β△△CBE=△DHB△BE△DF.【点睛】此题是三角形综合题主要考查了平角的意义四边形的内角和三角形内角和三角形的外角的性质角平分线的意义用整体代换的思想是解本题的关键整体思想是初中阶段的一种重要思想要多加强训练.类型三综合解答11.如图点M是△ABC两个内角平分线的交点点N是△ABC两外角平分线的交点如果△CMB:△CNB=3:2 那么△CAB=_________.【答案】36°【解析】【详解】试题分析:由题意得:△NCM=△MBN=12×180°=90°△可得△CMB+△CNB=180°又△CMB:△CNB=3:2 △△CMB=108°△12(△ACB+△ABC)=180°-△CMB=72°△△CAB=180°-(△ACB+△ABC)=36°.考点:1.三角形内角和定理;2.三角形的外角性质.12.如图 在△ABC 中 △ABC △ACB 的平分线交于点O D 是△ACF 与△ABC 平分线的交点 E 是△ABC 的两外角平分线的交点 若△BOC =130° 则△D 的度数为 ( )A .25°B .30°C .40°D .50°【答案】C【解析】【分析】 根据角平分线的定义和平角定义可得△OCD =△ACO +△ACD =90° 根据外角的性质可得BOC OCD D ∠=∠+∠ 继而即可求解.【详解】解:△CO 平分ACB ∠ CD 平分ABC ∠的外角 △12ACO ACB ∠=∠ 12ACD ACF ∠=∠ △180ACB ACF ∠+∠=︒ △()1902OCD ACO ACD ACB ACF ∠=∠+∠=∠+∠=︒ △BOC OCD D ∠=∠+∠△1309040D BOC OCD ∠=∠-∠=︒-︒=︒故选择C .【点睛】本题考查角平分线的定义 平角定义 三角形的外角性质 解题的关键是根据角平分线定义和平角定义可得△OCD=90° 根据外角的性质求得BOC OCD D∠=∠+∠.13.如图在△ABC中△A=60° BD、CD分别平分△ABC、△ACB M、N、Q分别在DB、DC、BC的延长线上BE、CE分别平分△MBC、△BCN BF、CF分别平分△EBC、△ECQ 则△F=________.【答案】15°【解析】【分析】先由BD、CD分别平分△ABC、△ACB得到△DBC=12△ABC △DCB=12△ACB 在△ABC中根据三角形内角和定理得△DBC+△DCB=12(△ABC+△ACB)=12(180°-△A)=60° 则根据平角定理得到△MBC+△NCB=300°;再由BE、CE分别平分△MBC、△BCN得△5+△6=12△MBC △1=12△NCB 两式相加得到△5+△6+△1=12(△NCB+△NCB)=150° 在△BCE中根据三角形内角和定理可计算出△E=30°;再由BF、CF分别平分△EBC、△ECQ得到△5=△6 △2=△3+△4 根据三角形外角性质得到△3+△4=△5+△F △2+△3+△4=△5+△6+△E 利用等量代换得到△2=△5+△F 2△2=2△5+△E再进行等量代换可得到△F=12△E.【详解】解:△BD、CD分别平分△ABC、△ACB △A=60°△△DBC=12△ABC △DCB=12△ACB△△DBC+△DCB=12(△ABC+△ACB)=12(180°-△A)=12×(180°-60°)=60°△△MBC+△NCB=360°-60°=300°△BE、CE分别平分△MBC、△BCN△△5+△6=12△MBC △1=12△NCB△△5+△6+△1=12(△NCB+△NCB)=150°△△E=180°-(△5+△6+△1)=180°-150°=30°△BF 、CF 分别平分△EBC 、△ECQ△△5=△6 △2=△3+△4△△3+△4=△5+△F △2+△3+△4=△5+△6+△E即△2=△5+△F 2△2=2△5+△E△2△F=△E △△F=12△E=12×30°=15°.故答案为:15°.【点睛】本题考查了三角形内角和定理:三角形内角和是180°.也考查了三角形外角性质.14.已知BM 、CN 分别是△1A BC 的两个外角的角平分线 2BA 、2CA 分别是1A BC ∠ 和1A CB ∠的角平分线 如图①;3BA 、3CA 分别是1A BC ∠和1A CB ∠的三等分线(即3113A BC A BC ∠=∠ 3113A CB ACB ∠=∠) 如图②;依此画图 n BA 、n CA 分别是1A BC ∠和1A CB ∠的n 等分线(即11n A BC A BC n ∠=∠ 11n A CB ACB n ∠=∠) 且n 为整数. 2n ≥(1)若1A ∠=70︒ 求2A ∠的度数;(2)设1A α∠= 请用α和n 的代数式表示n A ∠的大小 并写出表示的过程;(3)当3n ≥时 请直接写出n MBA ∠+n NCA ∠与n A ∠的数量关系.【答案】(1)02125A ∠=;(2)001=180(180)n A nα∠-- 过程见解析; (3)02()(2)=180n n n MBA NCA n A n ∠+∠+-∠【解析】【详解】(1)先根据三角形内角和定理求出11A BC A CB ∠+∠ 根据角平分线求出22A BC A CB ∠+∠ 再根据三角形内角和定理求出2A ∠即可;(2)先根据三角形内角和定理求出1A BC ∠+1A CB ∠ 根据n 等分线求出n n A BC A CB ∠+∠ 再根据三角形内角和定理得出180()n n n A A BC A CB ∠=︒-∠+∠ 代入求出即可(3) 试题分析:试题解析:(1)1=70A ∠︒1118070110A BC ACB ∴∠+∠=︒-︒=︒ △2BA 、2CA 分别是1A BC ∠和1A CB ∠的角平分线 △221110552A BC A CB ∠+∠=⨯︒=︒ △218055125A ∠=︒-︒=︒.(2)在△1A BC 中 1A BC ∠+1180ACB α∠=︒-11n A BC A BC n ∠=∠ 11n A CB ACB n∠=∠ ()()1111180n n A BC A CB A BC ACB n n α∴∠+∠=∠+∠=︒- 180()n n n A A BC A CB ∠=︒-∠+∠()1180180n A nα∴∠=︒-︒- (3)()()22180.n n n MBA NCA n A n ∠+∠+-⋅∠=︒点睛:本题以三角形为载体主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质、角平分线的性质、三角形的内角和是180 的性质熟记性质然灵活运用有关性质来分析、推理、解答是解题的关键.。

初三数学中考复习 三角形的角平分线 专题练习及答案

初三数学中考复习 三角形的角平分线 专题练习及答案

三角形的角平分线1. 在Rt△ABC中,∠C=90°,若BC=10,AD平分∠BAC交BC于点D,且BD∶CD=3∶2,则点D到线段AB的距离为( )A. 3B. 4C. 5D. 62. 如图,已知DB⊥AN于点B,交AE于点O,OC⊥AM于点C,且OB=OC,若∠EAN=25°,则∠ADB等于( )A. 40°B. 50°C. 60°D. 75°3. 如图,AB∥CD,AD⊥DC,AE⊥BC,垂足分别为D,E,∠DAC=35°,AD=AE,则∠B等于( )A.50° B.60° C.70° D.80°4. 如图,在△ABC中,∠B=30°,AD平分∠BAC,DE垂直平分AB,垂足为E,若BD=6cm,则CD等于( )A. 1cmB. 2cmC. 3cmD. 5cm5. 如图,BO,CO分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=3.若△ABC 的周长是22,则△ABC的面积是( )A. 28B. 30C. 32D. 336. 如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法中正确的个数是( )①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的垂直平分线上;④S△DAC∶S△ABC=1∶3.A.1个 B.2个 C.3个 D.4个7. 如图,AB∥CD,AD⊥DC,AE⊥BC,垂足分别为D,E,∠DAC=35°,AD=AE,则∠B等于( )A.50° B.60° C.70° D.80°8. 如图,O为△ABC内任意一点,OD⊥AB于点D,OE⊥AC于点E,OF⊥BC于点F,若OD=OE=OF,连接OA,OB,OC,下列结论不一定正确的是( )A.△BOD≌△BOF B.∠OAD=∠OBF C.∠COE=∠CO F D.AD=AE 9. 如图,在△ABC中,∠ABC=120°,∠C=26°,且DE⊥AB,DF⊥AC,DE =DF,则∠ADC的度数为____.10. 如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为11. 如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=12. 如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线.若CD=3cm,则BD的长为____cm.13. 如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB 于点E,且AB=6cm,则△BED的周长是____ cm.14. 如图,在△ABC中,∠BAC=60°,点D在BC上,DE⊥AB于点E,DF⊥AC 于点F,且DE=DF,若DE=4,则AD=____.15. 在△ABC中,∠C=90°,O为△ABC三条角平分线的交点,OD⊥BC于点D,OE⊥AC于点E,OF⊥AB于点F,且AB=10 cm,BC=8 cm,AC=6 cm,则点O到三边AB,AC,BC的距离分别为 cm, cm, cm 16. 如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=1,则EF=____.17. 如图,△ABC是等边三角形,P是∠ABC的平分线上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为18. 如图,已知BE⊥AC,CF⊥AB,垂足分别为E,F,BE,CF相交于点D,若BD=CD,求证:AD平分∠BAC.19. 如图,已知BD是∠ABC的平分线,AB=BC,点P在射线BD上,PM⊥AD 于点M,PN⊥CD于点N.求证:PM=PN.20. 如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,求AC的长.参考答案:11 1---8 BACCD DCB9. 137°10. 211. 312. 613. 614. 815. 2 2 216. 2 17. 318. 解:在△BDF 和△CDE 中,∠BFD =∠CED =90°,∠FDB =∠EDC ,BD =CD ,∴△BDF ≌△CDE(AAS),∴DF =DE ,又∵DF ⊥AB ,DE ⊥AC ,∴AD 平分∠BAC19. 解:在△ABD 和△CBD 中,AB =CB ,∠ABD =∠CBD ,BD =BD ,∴△ABD ≌△CBD(SAS),∴∠ADB =∠CDB ,又∵∠ADB +∠ADP =∠CDB +∠CDP =180°,∴∠ADP =∠CDP ,∴DP 平分∠ADC ,又∵PM ⊥AD ,PN ⊥CD ,∴PM =PN20. 解:过点D 作DF⊥AC,∵AD 是∠BAC 平分线,DE ⊥AB ,∴DF =DE =2,∵S △ABD =4×22=4,∴S △ACD =7-4=3, ∴2AC 2=3,即AC =3。

【初中数学】人教版八年级上册第1课时 角的平分线的性质(练习题)

【初中数学】人教版八年级上册第1课时 角的平分线的性质(练习题)

人教版八年级上册第1课时角的平分线的性质(348) 1.如图,已知∠1=∠2,BA<BC,P为BN上的一点,PF⊥BC于点F,PA=PC.求证:∠PCB+∠BAP=180∘2.证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC=∠BOC,点P在OC上,. 求证:.请你补全已知和求证,并写出证明过程.3.如图,已知AD//BC,∠D=90∘.(1)如图①,若∠DAB的平分线与∠CBA的平分线交于点P,CD经过点P.试问:P是线段CD的中点吗?为什么?(2)如图②,如果P是DC的中点,BP平分∠ABC,∠CPB=35∘,求∠PAD的度数4.如图OP是∠AOB的平分线,点P到OA的距离为3,N是OB上的任意一点,则线段PN的取值范围为()A.PN<3B.PN>3C.PN≥3D.PN≤35.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE等于()A.2cmB.3cmC.4cmD.5cm6.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长为()A.3B.4C.6D.57.如图,在△ABC中,∠C=90∘,AD平分∠BAC,过点D作DE⊥AB于点E,测得BC=9,BE=3,则△BDE的周长是.8.如图,在△ABC中,两条外角平分线交于点P,PM⊥AC交AC的延长线于点M.若PM=6cm,则点P到AB的距离为.9.如图,已知AB//CD,O是∠BAC与∠ACD的平分线的交点.OE⊥AC于点E,OE=2,则AB与CD之间的距离为.10.如图,已知点B,D分别在∠DAB的两边上,C为∠DAB的内部的一点,且AB=AD,DC=BC,CE⊥AD交AD的延长线于点E,CF⊥AB交AB的延长线于点F.试判断CE与CF是否相等,并说明理由.11.如图,利用尺规作∠AOB的平分线OC,其作法如下:①以O为圆心,任意长为半径画弧,分别交OA,OB于点D,E;DE的长为半径画弧,两弧在∠AOB的内部交于点②分别以D,E为圆心,以大于12C;③画射线OC,则OC就是∠AOB的平分线.这样作图的原理是一种三角形全等的判定方法,这种判定方法是()A.SSSB.SASC.ASAD.AAS12.如图,OP为∠AOB的平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,则下列结论错误的是()A.PC=PDB.∠CPD=∠DOPC.∠CPO=∠DPOD.OC=OD13.求证:直角三角形的两锐角互余14.如图,在△ABC中,∠C=90∘,∠CAB=50∘,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB,AC于点E,F;EF的长为半径画弧,两弧相交于点G;②分别以点E,F为圆心,大于12③作射线AG,交BC边于点D.则∠ADC的度数为()A.40∘B.55∘C.65∘D.75∘15.如图,AB∥CD,以点A为圆心,小于AC长为半径画圆弧,分别交AB,AC于E,EF的长为半径画圆弧,两条圆弧交于点G,F两点,再分别以E,F为圆心,大于12作射线AG交CD于点H.若∠C=140∘,则∠AHC的大小是()A.20∘B.25∘C.30∘D.40∘参考答案1.【答案】:证明:如图,过点P 作PE ⊥BA 交BA 的延长线于点E . ∵∠1=∠2,PF ⊥BC 于点F ,∴PE =PF ,∠PEA =∠PFC =90∘.在Rt △PEA 与Rt △PFC 中,PA =PC ,PE =PF ,∴Rt △PEA ≌Rt △PFC(HL ),∴∠PAE =∠PCB .∵∠PAE +∠BAP =180∘,∴∠PCB +∠BAP =180∘.2.【答案】:解:PD ⊥OA ,PE ⊥OB ,垂足分别为D,E 求证:PD =PE证明:∵PD ⊥OA ,PE ⊥OB ,∴∠PDO =∠PEO =90∘.在△PDO 和△PEO 中,{∠PDO =∠PEO ,∠AOC =∠BOC ,OP =OP.∴△PDO ≌△PEO(AAS ),∴PD =PE .3(1)【答案】解:P 是线段CD 的中点.理由如下: 如图,过点P 作PE ⊥AB 于点E .∵AD//BC ,∠D =90∘,∴∠C =180∘−∠D =90∘,即PC ⊥BC .∵∠DAB 的平分线与∠CBA 的平分线交于点P ,∴PD =PE ,PC =PE ,∴PC=PD,∴P是线段CD的中点.(2)【答案】解:如图,过点P作PE⊥AB于点E.∵AD//BC,∠D=90∘,∴∠C=180∘−∠D=90∘,即PC⊥BC.在△PBE与△PBC中,{∠PEB=∠C,∠PBE=∠PBC,PB=PB.∴△PBE≌△PBC(AAS),∴∠EPB=∠CPB=35∘,PE=PC.∵PC=PD,∴PD=PE.在Rt△PAD与Rt△PAE中,{PA=PA,PD=PE∴Rt△PAD≌Rt△PAE(HL),∴∠APD=∠APE.∵∠APD+∠APE=180∘−2×35∘=110∘,∴∠APD=55∘,∴∠PAD=90∘−∠APD=35∘.4.【答案】:C【解析】:作PM⊥OB于点M.∵OP是∠AOB的平分线,PE⊥OA,PM⊥OB,∴PM=PE=3,∴PN≥3. 故选 C5.【答案】:B【解析】:因为BE平分∠ABC,∠ACB=90°,DE⊥AB于点D,所以DE=EC,AE+DE=AE+EC=AC=3cm.故选 B.6.【答案】:A【解析】:如图,过点D作DF⊥AC于点F.∵AD是△ABC中∠BAC的平分线,DE⊥AB,∴DE=DF=2.由图可知S△ABC=S△ABD+S△ACD,即12×4×2+12AC×2=7,解得AC=3.故选A.7.【答案】:12【解析】:解:∵∠C=90∘,∴AC⊥CD.∵AD平分∠BAC,DE⊥AB,∴DE=CD.∵BC=9,BE=3,∴△BDE的周长=BE+BD+DE=BE+BD+CD=BE+BC=3+9=12.8.【答案】:6cm【解析】:如图,过点P作PN⊥BC于点N,PQ⊥AB,交AB的延长线于点Q.∵PB,PC分别是∠ABC与∠ACB的外角平分线,PM⊥AC,∴PN=PM,PQ=PN,∴PQ=PM.∵PM=6cm,∴PQ=6cm,即点P到AB的距离为6cm.9.【答案】:4【解析】:如图,过点O作MN,使MN⊥AB于M,交CD于N.∵AB//CD,∴MN⊥CD.∵AO是∠BAC的平分线,OM⊥AB,OE⊥AC,OE=2,∴OM=OE=2.∵CO是∠ACD的平分线,OE⊥AC,ON⊥CD,∴ON=OE=2,∴MN=OM+ON=4,即AB与CD之间的距离是4.10.【答案】:解:CE=CF.理由:∵AD=AB,DC=BC,AC=AC,∴△ACD≌△ACB,∴∠DAC=∠BAC,∴AC为∠EAF的平分线.∵CE⊥AE,CF⊥AF,∴CE=CF(角平分线上的点到角两边的距离相等).11.【答案】:A12.【答案】:B【解析】:∵OP为∠AOB的平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,∴PC=PD,故A项正确.在Rt△OCP与Rt△ODP中,∵OP=OP,PC=PD,∴Rt△OCP≌Rt△ODP,∴∠CPO=∠DPO,OC=OD,故C,D两项正确.不能得出∠CPD=∠DOP,故B项错误.故选B13.【答案】:已知:在△ABC中,∠C=90∘.求证:∠A+∠B=90∘.证明:∵∠A+∠B+∠C=180∘,而∠C=90∘,∴∠A+∠B=90∘,即∠A与∠B互余.14.【答案】:C【解析】:根据作图方法可得AG是∠CAB的平分线,∵∠CAB=50∘,∠CAB=25∘,∴∠CAD=12∵∠C=90∘,∴∠CDA=90∘−25∘=65∘.故选C.15.【答案】:A【解析】:解:由题意可得AH平分∠CAB.∵AB∥CD,∴∠C+∠CAB=180∘,∠HAB=∠AHC.∵∠ACD=140∘,∴∠CAB=40∘.∵AH平分∠CAB,∴∠HAB=20∘,∴∠AHC=20∘.。

角平分线练习题

角平分线练习题

角平分线练习题一.选择题〔共22小题〕1.如图,BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,则DF 的长度是〔〕A.2 B.3 C.4 D.62.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=〔〕A.30° B.35° C.45° D.60°3.观察图中尺规作图痕迹,以下说法错误的选项是〔〕A.OE是∠AOB的平分线B.OC=ODC.点C、D到OE的距离不相等 D.∠AOE=∠BOE4.如图,OP是∠AOC的平分线,点B在OP上,BD⊥OC于D,∠A=45°,假设BD=2,则AB长为〔〕A.2 B.2C.2D.35.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,假设CD=2,AB=8,则△ABD的面积是〔〕A.6 B.8 C.10 D.126.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=3,AB=10,则△ABD 的面积等于〔〕A.30 B.24 C.15 D.10=15,7.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD则CD的长为〔〕A.3 B.4 C.5 D.68.如图,BP为∠ABC的平分线,过点D作BC、BA的垂线,垂足分别为E、F,则以下结论中错误的选项是〔〕A.∠DBE=∠DBF B.DE=DF C.2DF=DB D.∠BDE=∠BDF9.如图,OA是∠BAC的平分线,OM⊥AC于点M,ON⊥AB于点N,假设ON=8cm,则OM长为〔〕A.4cm B.5cm C.8cm D.20cm10.在正方形网格中,∠AOB的位置如下图,到∠AOB两边距离相等的点应是〔〕A.M点B.N点C.P点D.Q点11.如图,直线l、l′、l″表示三条相互穿插的公路,现方案建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有〔〕A.一处B.二处C.三处D.四处12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,假设CD=BD,点D到边AB的距离为6,则BC的长是〔〕A.6 B.12 C.18 D.2413.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,有以下结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④AD平分∠CDE;其中正确的选项是〔〕个.A.1 B.2 C.3 D.414.三条公路将A、B、C三个村庄连成一个如图的三角形区域,如果在这个区域修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建的位置是〔〕A.三条高线的交点B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点15.如图,PD⊥AB,PE⊥AC,垂足分别为D、E,且PD=PE,则△APD与△APE全等的理由是〔〕A.SAS B.AAA C.SSS D.HL16.如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D.假设BC=4cm,CD=3cm,则点D到AB的距离是〔〕A.2cm B.3cm C.4cm D.5cm17.如图,OC是∠AOB的平分线,PD⊥DA于点D,PD=2,则P点到OB的距离是〔〕A.1 B.2 C.3 D.418.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,以下结论:①∠AED=90°②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是〔〕A.①②④B.①②③C.②③④D.①③19.如下图,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在〔〕A.△ABC的三条中线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三边的中垂线的交点20.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则以下结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB,其中正确的有〔〕A.2个B.3个C.4个D.1个21.如图,Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,AB=12,CD=3,则△DAB的面积为〔〕A.12 B.18 C.20 D.2422.如图,AD是△ABC的角平分线,DE⊥AB于点E,S=10,DE=2,AB=4,则△ABCAC长是〔〕A.9 B.8 C.7 D.6评卷人得分二.填空题〔共13小题〕=9,23.如图,BD平分∠ABC交AC于点D,DE⊥BC于点E,假设AB=5,BC=6,S△ABC则DE的长为.24.如图,OC为∠AOB的平分线,CM⊥OB,OC=5,OM=4,则点C到射线OA的距离为.25.如图,△ABC的周长是32,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=6,△ABC的面积是.26.如图,△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是.27.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D到AB的距离为.28.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=16,则D到AB 边的距离是.29.如图,在△ABC中,∠BAC=60°,AD平分∠BAC,假设AD=6,DE⊥AB,则DE 的长为.30.如图,直线a、b、c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有处.31.如图,点O在△ABC,且到三边的距离相等,假设∠A=60°,则∠BOC=.32.如图,在Rt△ABC中,∠B=90°,CD是∠ACD的平分线,假设BD=2,AC=8,则△ACD的面积为.33.如图,BD⊥AE于点B,DC⊥AF于点C,且DB=DC,∠BAC=40°,∠ADG=130°,则∠DGF=.34.把命题“角平分线上的点到这个角两边的距离相等〞改写成“如果…,则…、〞的形式:如果,则.35.Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,假设BC=32,且BD:CD=9:7,则D到AB的距离为.评卷人得分三.解答题〔共5小题〕36.如图,DE⊥AB于E,DF⊥AC于F,假设BD=CD、BE=CF.〔1〕求证:AD平分∠BAC;〔2〕直接写出AB+AC与AE之间的等量关系.37.如图:E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:〔1〕∠ECD=∠EDC;〔2〕OE是CD的垂直平分线.38.如图,四边形ABCD中,AC为∠BAD的角平分线,AB=AD,E、F两点分别在AB、AD上,且AE=DF.请完整说明为何四边形AECF的面积为四边形ABCD的一半.39.△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作一直线交AB、AC于E、F.且BE=EO.〔1〕说明OF与CF的大小关系;〔2〕假设BC=12cm,点O到AB的距离为4cm,求△OBC的面积.40.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.〔1〕求证:AC=AE;〔2〕假设点E为AB的中点,CD=4,求BE的长.2018年09月23日tcq372的初中数学组卷参考答案与试题解析一.选择题〔共22小题〕1.如图,BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,则DF 的长度是〔〕A.2 B.3 C.4 D.6【解答】解:∵BG是∠ABC的平分线,DE⊥AB,DF⊥BC,∴DE=DF=6,应选:D.2.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=〔〕A.30° B.35° C.45° D.60°【解答】解:作MN⊥AD于N,∵∠B=∠C=90°,∴AB∥CD,∴∠DAB=180°﹣∠ADC=70°,∵DM平分∠ADC,MN⊥AD,MC⊥CD,∴MN=MC,∵M是BC的中点,∴MC=MB,∴MN=MB,又MN⊥AD,MB⊥AB,∴∠MAB=∠DAB=35°,应选:B.3.观察图中尺规作图痕迹,以下说法错误的选项是〔〕A.OE是∠AOB的平分线B.OC=ODC.点C、D到OE的距离不相等 D.∠AOE=∠BOE【解答】解:根据尺规作图的画法可知:OE是∠AOB的角平分线.A、OE是∠AOB的平分线,A正确;B、OC=OD,B正确;C、点C、D到OE的距离相等,C不正确;D、∠AOE=∠BOE,D正确.应选:C.4.如图,OP是∠AOC的平分线,点B在OP上,BD⊥OC于D,∠A=45°,假设BD=2,则AB长为〔〕A.2 B.2C.2D.3【解答】解:如图,过B点作BE⊥OA于E,∵OP是∠AOC的平分线,点B在OP上,BD⊥OC于D,BD=2,∴BE=BD=2,在直角△ABE中,∵∠AEB=90°,∠A=45°,∴AB=BE=2.应选:C.5.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,假设CD=2,AB=8,则△ABD的面积是〔〕A.6 B.8 C.10 D.12【解答】解:如图,过点D作DE⊥AB于E,∵AB=8,CD=2,∵AD是∠BAC的角平分线,∠C=90°,∴DE=CD=2,∴△ABD的面积=AB•DE=×8×2=8.应选:B.6.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=3,AB=10,则△ABD 的面积等于〔〕A.30 B.24 C.15 D.10【解答】解:如图,过D作DE⊥AB于E,∵AD平分∠BAC,∠C=90°,∴DE=DC=3,∵AB=10,∴△ABD的面积=AB•DE=×10×3=15.应选:C.=15,7.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD则CD的长为〔〕A.3 B.4 C.5 D.6【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,∴S=AB•DE=×10•DE=15,△ABD解得DE=3.应选:A.8.如图,BP为∠ABC的平分线,过点D作BC、BA的垂线,垂足分别为E、F,则以下结论中错误的选项是〔〕A.∠DBE=∠DBF B.DE=DF C.2DF=DB D.∠BDE=∠BDF【解答】解:∵BP为∠ABC的平分线,DE⊥AC,DF⊥AB,∴DE=DF,B正确,不符合题意;在Rt△DBE和Rt△DBF中,,∴Rt△DBE≌Rt△DBF,∴∠DBE=∠DBF,∠BDE=∠BDF,A、D正确,不符合题意,2DF不一定等于DB,C错误,符合题意,应选:C.9.如图,OA是∠BAC的平分线,OM⊥AC于点M,ON⊥AB于点N,假设ON=8cm,则OM长为〔〕A.4cm B.5cm C.8cm D.20cm【解答】解:∵OA是∠BAC的平分线,OM⊥AC,ON⊥AB,∴OM=ON=8cm,应选:C.10.在正方形网格中,∠AOB的位置如下图,到∠AOB两边距离相等的点应是〔〕A.M点B.N点C.P点D.Q点【解答】解:从图上可以看出点M在∠AOB的平分线上,其它三点不在∠AOB的平分线上.所以点M到∠AOB两边的距离相等.应选A.11.如图,直线l、l′、l″表示三条相互穿插的公路,现方案建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有〔〕A.一处B.二处C.三处D.四处【解答】解:如下图,加油站站的地址有四处.应选:D.12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,假设CD=BD,点D到边AB的距离为6,则BC的长是〔〕A.6 B.12 C.18 D.24【解答】解:过D作DE⊥AB于E,∵点D到边AB的距离为6,∴DE=6,∵∠C=90°,AD平分∠BAC,DE⊥AB,∴CD=DE=6,∵CD=DB,∴DB=12,∴BC=6+12=18,应选:C.13.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,有以下结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④AD平分∠CDE;其中正确的选项是〔〕个.A.1 B.2 C.3 D.4【解答】解:∵∠C=90°,AD平分∠BAC,DE⊥AB,∴CD=DE,故①正确;在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED〔HL〕,∴AC=AE,∠ADC=∠ADE,∴AC+BE=AE+BE=AB,故②正确;AD平分∠CDE,故④正确;∵∠B+∠BAC=90°,∠B+∠BDE=90°,∴∠BDE=∠BAC,故③正确;综上所述,结论正确的选项是①②③④共4个.应选:D.14.三条公路将A、B、C三个村庄连成一个如图的三角形区域,如果在这个区域修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建的位置是〔〕A.三条高线的交点B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点【解答】解:在这个区域修建一个集贸市场,要使集贸市场到三条公路的距离相等,根据角平分线的性质,集贸市场应建在∠A、∠B、∠C的角平分线的交点处.应选:C.15.如图,PD⊥AB,PE⊥AC,垂足分别为D、E,且PD=PE,则△APD与△APE全等的理由是〔〕A.SAS B.AAA C.SSS D.HL【解答】解:∵PD⊥AB,PE⊥AC,∴∠ADP=∠AEP=90°,在Rt△ADP和△AEP中,∴Rt△ADP≌△AEP〔HL〕,应选:D.16.如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D.假设BC=4cm,CD=3cm,则点D到AB的距离是〔〕A.2cm B.3cm C.4cm D.5cm【解答】解:过D作DE⊥AB于E,∵在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,∴DE=DC=3cm,应选:B.17.如图,OC是∠AOB的平分线,PD⊥DA于点D,PD=2,则P点到OB的距离是〔〕A.1 B.2 C.3 D.4【解答】解:如图,过点P作PE⊥OB,∵OC是∠AOB的平分线,点P在OC上,且PD⊥OA,PE⊥OB,∴PE=PD,又PD=2,∴PE=PD=2.应选:B.18.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,以下结论:①∠AED=90°②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是〔〕A.①②④B.①②③C.②③④D.①③【解答】解:过E作EF⊥AD于F,如图,∵AB⊥BC,AE平分∠BAD,∴Rt△AEF≌Rt△AEB∴BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,∴EC=EF=BE,所以③错误;∴Rt△EFD≌Rt△ECD,∴DC=DF,∠FDE=∠CDE,所以②正确;∴AD=AF+FD=AB+DC,所以④正确;∴∠AED=∠AEF+∠FED=∠BEC=90°,所以①正确.应选:A.19.如下图,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在〔〕A.△ABC的三条中线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三边的中垂线的交点【解答】解:∵凉亭到草坪三条边的距离相等,∴凉亭选择△ABC三条角平分线的交点.应选:B.20.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则以下结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB,其中正确的有〔〕A.2个B.3个C.4个D.1个【解答】解:∵AD平分∠BAC∴∠DAC=∠DAE∵∠C=90°,DE⊥AB∴∠C=∠E=90°∵AD=AD∴△DAC≌△DAE∴∠CDA=∠EDA∴①AD平分∠CDE正确;无法证明∠BDE=60°,∴③DE平分∠ADB错误;∵BE+AE=AB,AE=AC∴BE+AC=AB∴④BE+AC=AB正确;∵∠BDE=90°﹣∠B,∠BAC=90°﹣∠B∴∠BDE=∠BAC∴②∠BAC=∠BDE正确.应选:B.21.如图,Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,AB=12,CD=3,则△DAB的面积为〔〕A.12 B.18 C.20 D.24【解答】解:过D作DE⊥AB,∵Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,∴DE=DC=3,∴△DAB的面积=,应选:B.=10,DE=2,AB=4,则22.如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABCAC长是〔〕A.9 B.8 C.7 D.6【解答】解:过D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,=AB×DE=×4×2=4,∵S△ADB∵△ABC的面积为10,∴△ADC的面积为10﹣4=6,∴AC×DF=6,∴AC×2=6,∴AC=6应选:D.二.填空题〔共13小题〕23.如图,BD平分∠ABC交AC于点D,DE⊥BC于点E,假设AB=5,BC=6,S=9,△ABC则DE的长为.【解答】解:作DF⊥AB于F,∵BD平分∠ABC,DE⊥BC,DF⊥AB,∴DE=DF,,即×5×DE+×6×DE=9,∴×AB×DF+×BC×DE=S△ABC解得,DE=,故答案为:.24.如图,OC为∠AOB的平分线,CM⊥OB,OC=5,OM=4,则点C到射线OA的距离为 3 .【解答】解:过C作CF⊥AO,∵OC为∠AOB的平分线,CM⊥OB,∴CM=CF,∵OC=5,OM=4,∴CM=3,∴CF=3,故答案为:3.25.如图,△ABC的周长是32,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=6,△ABC的面积是96 .【解答】解:过O作OM⊥AB,ON⊥AC,连接AO,∵OB,OC分别平分∠ABC和∠ACB,∴OM=ON=OD=6,∴△ABC的面积为:×AB×OM+BC×DO+NO=〔AB+BC+AC〕×DO=32×6=96.故答案为:96.26.如图,△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是42 .【解答】解:过O作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴OE=OD,OD=OF,即OE=OF=OD=4,∴△ABC的面积是:S△AOB +S△AOC+S△OBC=×AB×OE+×AC×OF+×BC×OD=×4×〔AB+AC+BC〕=×4×21=42,故答案为:42.27.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D到AB的距离为4cm .【解答】解:∵BC=10cm,BD:DC=3:2,∴DC=4cm,∵AD是△ABC的角平分线,∠ACB=90°,∴点D到AB的距离等于DC,即点D到AB的距离等于4cm.故答案为4cm.28.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=16,则D到AB 边的距离是16 .【解答】解:过D作DE⊥AB于E,则DE的长度就是D到AB边的距离.∵AD平分∠CAB,∠ACD=90°,DE⊥AB,∴DC=DE=16〔角平分线性质〕,故答案为:16.29.如图,在△ABC中,∠BAC=60°,AD平分∠BAC,假设AD=6,DE⊥AB,则DE的长为 3 .【解答】解:∵∠BAC=60°,AD平分∠BAC,∴∠DAE=∠BAC=30°.在Rt△ADE中,DE⊥AB,∠DAE=30°,∴DE=AD=3.故答案为:3.30.如图,直线a、b、c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有 4 处.【解答】解:∵△ABC角平分线的交点到三角形三边的距离相等,∴△ABC角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4个,∴可供选择的地址有4个.故答案为:4.31.如图,点O在△ABC,且到三边的距离相等,假设∠A=60°,则∠BOC= 120°.【解答】解:∵点O在△ABC,且到三边的距离相等,∴点O是三个角的平分线的交点,∴∠OBC+∠OCB=〔∠ABC+∠ACB〕=〔180°﹣∠A〕=〔180°﹣60°〕=60°,在△BCO中,∠BOC=180°﹣〔∠OBC+∠OCB〕=180°﹣60°=120°.故答案为:120°.32.如图,在Rt△ABC中,∠B=90°,CD是∠ACD的平分线,假设BD=2,AC=8,则△ACD的面积为8 .【解答】解:作DH⊥AC于H,∵CD是∠ACD的平分线,∠B=90°,DH⊥AC,∴DH=DB=2,∴△ACD的面积=×AC×DH=×8×2=8,故答案为:8.33.如图,BD⊥AE于点B,DC⊥AF于点C,且DB=DC,∠BAC=40°,∠ADG=130°,则∠DGF= 150°.【解答】解:∵BD⊥AE于B,DC⊥AF于C,且DB=DC,∴AD是∠BAC的平分线,∵∠BAC=40°,∴∠CAD=∠BAC=20°,∴∠DGF=∠CAD+∠ADG=20°+130°=150°.故答案为:150°34.把命题“角平分线上的点到这个角两边的距离相等〞改写成“如果…,则…、〞的形式:如果一个点在角的平分线上,则它到这个角两边的距离相等.【解答】解:如果一个点在角平分线上,则它到角两边的距离相等.35.Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,假设BC=32,且BD:CD=9:7,则D到AB的距离为14 .【解答】解:如图,过点D作DE⊥AB于E,∵BC=32,BD:CD=9:7,∴CD=32×=14,∵∠C=90°,AD平分∠BAC,∴DE=CD=14,即D到AB的距离为14.故答案为:14.三.解答题〔共5小题〕36.如图,DE⊥AB于E,DF⊥AC于F,假设BD=CD、BE=CF.〔1〕求证:AD平分∠BAC;〔2〕直接写出AB+AC与AE之间的等量关系.【解答】〔1〕证明:∵DE⊥AB于E,DF⊥AC于F,∴∠E=∠DFC=90°,∴△BDE与△CDE均为直角三角形,∵∴△BDE≌△CDF,∴DE=DF,即AD平分∠BAC;〔2〕AB+AC=2AE.证明:∵BE=CF,AD平分∠BAC,∴∠EAD=∠CAD,∵∠E=∠AFD=90°,∴∠ADE=∠ADF,在△AED与△AFD中,∵,∴△AED≌△AFD,∴AE=AF,∴AB+AC=AE﹣BE+AF+CF=AE+AE=2AE.37.如图:E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:〔1〕∠ECD=∠EDC;〔2〕OE是CD的垂直平分线.【解答】证明:〔1〕∵E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴EC=DE,∴∠ECD=∠EDC;〔2〕在Rt△OCE和Rt△ODE中,,∴Rt△OCE≌Rt△ODE〔HL〕,∴OC=OD,又∵OE是∠AOB的平分线,∴OE是CD的垂直平分线.38.如图,四边形ABCD中,AC为∠BAD的角平分线,AB=AD,E、F两点分别在AB、AD上,且AE=DF.请完整说明为何四边形AECF的面积为四边形ABCD的一半.【解答】解:分别作CG⊥AB与G,CH⊥AD与H,∵AC为∠BAD的角平分线,∴CG=CH,∵AB=AD,∴△ABC面积=△ACD面积,又∵AE=DF,∴△AEC面积=△CDF面积,∴△BCE面积=△ABC面积﹣△AEC面积,△BCE面积=△ACD面积﹣△CDF面积,∴△BCE面积=△ACF面积,∵四边形AECF面积=△AEC面积+△ACF面积,四边形AECF面积=△AEC面积+△BCE面积,∴四边形AECF面积=△ABC面积,又∵四边形ABCD面积=△ABC面积+△ACD面积,又∵四边形ABCD面积=2△ABC面积,∴四边形AECF面积为四边形ABCD面积的一半.39.△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作一直线交AB、AC于E、F.且BE=EO.〔1〕说明OF与CF的大小关系;〔2〕假设BC=12cm,点O到AB的距离为4cm,求△OBC的面积.【解答】解:〔1〕OF=CF.理由:∵BE=EO,∴∠EBO=∠EOB,∵△ABC中,∠ABC与∠ACB的平分线交于点O,∴∠EBO=∠OBC,∴∠EOB=∠OBC,∴EF∥BC,∴∠FOC=∠OCB=∠OCF,∴OF=CF;〔2〕过点O作OM⊥BC于M,作ON⊥AB于N,∵△ABC中,∠ABC与∠ACB的平分线交于点O,点O到AB的距离为4cm,∴ON=OM=4cm,=BC•OM=×12×4=24〔cm2〕.∴S△OBC40.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.〔1〕求证:AC=AE;〔2〕假设点E为AB的中点,CD=4,求BE的长.【解答】〔1〕证明:∵在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB,∴CD=DE,∠AED=∠C=90°,∠CAD=∠EAD,在△ACD和△AED中∴△ACD≌△AED,∴AC=AE;〔2〕解:∵DE⊥AB,点E为AB的中点,∴AD=BD,∴∠B=∠DAB=∠CAD,∵∠C=90°,∴3∠B=90°,.∴∠B=30°,∵CD=DE=4,∠DEB=90°,∴BD=2DE=8,由勾股定理得:BE==4.。

初中-数学-人教版-三角形的角平分线、中线和高专题练习

初中-数学-人教版-三角形的角平分线、中线和高专题练习
又∵AB=5cm,AC=3cm,
∴AB-AC=2(cm).
即△ABD与△ACD的周长之差为2cm.
19、【答案】115
【分析】直接根据角平分线平分对应角,三角形内角和为180度进行计算.
【解答】 BP平分∠ABC,CP平分∠ACB,
故答案为115.
20、【答案】③④
【分析】本题考查了三角形的角平分线、三角形的中线、三角形的高的概念,注意:三角形的角平分线、中线、高都是线段,且都是顶点和三角形的某条边相交的交点之间的线段.透彻理解定义是解题的关键.
③写出α与β的数量关系,并说明理由;
(2)如图(2),当E点在CA的延长线上时,其它条件不变,请直接写出α与β的数量关系.
参考答案
1、【答案】C
【分析】根据三角形的高的特点对选项进行一一分析,即可得出答案.
【解答】A、锐角三角形,三条高线交点在三角形内,故错误;
B、钝角三角形,三条高线不会交于一个顶点,故错误;
【解答】①根据三角形的角平分线的概念,知AD是△ABC的角平分线,故此说法不正确;
②根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故此说法不正确;
③根据三角形的高的概念,知CH为△ACD的边AD上的高,故此说法正确;
④根据三角形的角平分线和高的概念,知AH是△ACF的角平分线和高线,故此说法正确.
∴△ABC的面积=2×△BDC的面积=16,
选C.
11、【答案】C
【分析】根据三角形的高线、中线、角平分线的性质逐一判断即可.
【解答】解:A、正确,锐角三角形的三条高线、三条中线、三条角平分线分别交于一点;
B、正确,钝角三角形有两条高线在三角形的外部;
C、错误,直角三角形也有三条高线;

人教版 初中数学八年级上册 12.3角平分线的性质 同步练习(含答案)

人教版 初中数学八年级上册 12.3角平分线的性质 同步练习(含答案)

人教版初中数学八年级上册12.3角平分线的性质同步练习(含答案)一、选择题(本大题共7道小题)1. 如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D.若PD=2,则点P到边OA的距离是()A. 1B. 2C. 3D. 42. 用直尺和圆规作一个角的平分线,示意图如图,则能说明OC是∠AOB的平分线的依据是()A.SSS B.SAS C.AAS D.ASA3. 如图,AO是∠BAC的平分线,OM⊥AC于点M,ON⊥AB于点N.若ON=8 cm,则OM的长为()A.4 cm B.5 cm C.8 cm D.20 cm4. 如图,P是∠AOB的平分线OC上一点,PD⊥OA,垂足为D.若PD=2,则点P到边OB的距离是()A.4 B. 3 C.2 D.15. 下面是黑板上给出的尺规作图题,需要回答横线上符号代表的内容.已知∠AOB.求作:∠AOB的平分线.作法如下:①以点O为圆心,适当长为半径画弧,交OA于点M,交__○__于点N;②分别以点__⊕__为圆心,大于__△__的长为半径画弧,两弧在__⊗__的内部交于点C;③画射线OC,OC即为所求.则下列回答正确的是()A.○表示OA B.⊕表示M,CC.△表示MN D.⊗表示∠AOB6. 如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为60和35,则△EDF的面积为()A.25 B.5.5 C.7.5 D.12.57. 如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D.若CD=4,AB=16,则△ABD的面积是()A.14 B.32 C.42 D.56二、填空题(本大题共5道小题)8. 如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为________.9. 如图,∠B=∠D=90°,根据角平分线的性质填空:(1)若∠1=∠2,则________=________.(2)若∠3=∠4,则________=________.10. 如图,已知∠C=90°,AD平分∠BAC交BC于点D,BD=2CD,DE⊥AB于点E.若DE=5 cm,则BC=________cm.11. 将两块大小一样的含30°角的三角尺ABD和ABC如图所示叠放在一起,使它们的斜边AB重合,直角边不重合,当OD=4 cm时,点O到AB的距离为________ cm.12. 如图,请用符号语言表示“角的平分线上的点到角的两边的距离相等”.条件:____________________________________.结论:PC=PD.三、解答题(本大题共2道小题)13. 探究题如图,P为∠ABC的平分线上的一点,点D和点E分别在AB和BC 上(BD<BE),且PD=PE,试探究∠BDP与∠BEP的数量关系,并给予证明.14. 如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于点E,点F在AC 上,BE=FC.求证:BD=FD.人教版 初中数学八年级上册 12.3角平分线的性质 同步练习-答案一、选择题(本大题共7道小题)1. 【答案】B【解析】如解图,过点P 作PG ⊥OA 于点G ,根据角平分线上的点到角的两边距离相等可得,PG =PD =2.2. 【答案】A3. 【答案】C4. 【答案】C[解析] 如图,过点P 作PE ⊥OB 于点E.∵P 是∠AOB 的平分线OC 上一点,PD ⊥OA ,PE ⊥OB ,∴PE =PD =2.5. 【答案】D6. 【答案】D[解析] 如图,过点D 作DH ⊥AC 于点H.又∵AD 是△ABC 的角平分线,DF ⊥AB , ∴DF =DH.在Rt △ADF 和Rt △ADH 中,⎩⎨⎧AD =AD ,DF =DH ,∴Rt △ADF ≌Rt △ADH(HL). ∴S Rt △ADF =S Rt △ADH .在Rt △DEF 和Rt △DGH 中,⎩⎨⎧DE =DG ,DF =DH ,∴Rt △DEF ≌Rt △DGH(HL). ∴S Rt △DEF =S Rt △DGH .∵△ADG 和△AED 的面积分别为60和35, ∴35+S Rt △DEF =60-S Rt △DGH .∴S Rt △DEF =12.5.7. 【答案】B [解析] 如图,过点D 作DH ⊥AB 于点H.由作法得AP 平分∠BAC.∵DC ⊥AC ,DH ⊥AB ,∴DH =DC =4. ∴S △ABD =12×16×4=32.5道小题)8. 【答案】3 【解析】如解图,过点P 作PD ⊥OA 于点D ,∵OP 为∠AOB 的平分线,PC ⊥OB 于点C ,∴PD =PC ,∵PC =3,∴PD =3,即点P 到点OA 的距离为3.9. 【答案】(1)BC CD (2)AB AD10. 【答案】15[解析] ∵AD 平分∠BAC ,∠C =90°,DE ⊥AB ,∴DC =DE =5cm.∴BD =2CD =10 cm ,则BC =CD +BD =15 cm.11. 【答案】4[解析] 过点O 作OH ⊥AB 于点H.∵∠DAB =60°,∠CAB =30°,∴∠OAD =∠OAH =30°. ∵∠ODA =90°,∴OD ⊥AD.又∵OH∵AB ,∵OH =OD =4 cm.12. 【答案】∵AOP =∵BOP ,PC∵OA 于点C ,PD∵OB 于点D 三、解答题(本大题共2道小题)13. 【答案】解:∠BDP +∠BEP =180°.证明:过点P 作PM ⊥AB 于点M ,PN ⊥BC 于点N. ∵BP 是∠ABC 的平分线, ∴PM =PN.在Rt △DPM 和Rt △EPN 中, ⎩⎨⎧PD =PE ,PM =PN ,∴Rt △DPM ≌Rt △EPN(HL). ∴∠ADP =∠BEP.∵∠BDP +∠ADP =180°, ∵∵BDP +∵BEP =180°.14. 【答案】证明:∵AD 平分∠BAC ,DE ⊥AB ,∠C =90°, ∴DC =DE.在△DCF 和△DEB 中,⎩⎨⎧DC =DE ,∠C =∠BED =90°,FC =BE ,∵∵DCF∵∵DEB(SAS).∵BD =FD.。

初中数学《全等三角形中的角平分线》讲义及练习

初中数学《全等三角形中的角平分线》讲义及练习

板块 考试要求A 级要求B 级要求C 级要求全等三角形的性质及判定 会识别全等三角形掌握全等三角形的概念、判定和性质,会用全等三角形的性质和判定解决简单问题会运用全等三角形的性质和判定解决有关问题全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法:(1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等.(4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.奥数赛点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.重、难点知识点睛中考要求第十讲 全等三角形中的角平分线与角平分线相关的问题角平分线的两个性质:⑴角平分线上的点到角的两边的距离相等; ⑵到角的两边距离相等的点在角的平分线上. 它们具有互逆性.角平分线是天然的、涉及对称的模型,一般情况下,有下列三种作辅助线的方式: 1. 由角平分线上的一点向角的两边作垂线,2. 过角平分线上的一点作角平分线的垂线,从而形成等腰三角形, 3. OA OB =,这种对称的图形应用得也较为普遍,AB OPPOB A A B OP【例1】 如图,已知ABC ∆的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ⊥于D ,且3OD =,求ABC ∆的面积.【解析】 ∵O 点为ABC △中角平分线的交点, ∴O 点到三边距离相等.∴ABC OAB OBC OAC S S S S =++△△△△1()331.52AB BC AC =⨯++⨯=【例2】 在ABC ∆中,D 为BC 边上的点,已知BAD CAD ∠=∠,BD CD =,求证:AB AC =.ADOCB重点:本节的重点是全等三角形的概念和性质以及判定,全等三角形的性质是以后证明三角形问题的基础,也是学好全章的关键。

初中数学鲁教版(五四制)七年级下册第十章 三角形的有关证明5 角平分线-章节测试习题(5)

初中数学鲁教版(五四制)七年级下册第十章 三角形的有关证明5 角平分线-章节测试习题(5)

章节测试题1.【答题】在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D. 如果∠A=30°,AE=6cm,那么CE等于()A. 4cmB. 2cmC. 3cmD. 1cm【答案】C【分析】根据角的平分线的性质解答即可.【解答】∵ED⊥AB,∠A=30°,∴AE=2ED,∵AE=6cm,∴ED=3cm.∵∠ACB=90°,BE平分∠ABC,∴ED=CE,∴CE=3cm.选C.2.【答题】三角形中∠B的平分线和外角的平分线的夹角是().A. 60°B. 90°C. 45°D. 135°【答案】B【分析】根据角的平分线的性质解答即可.【解答】如图,BD平分∠ABF,BE平分∠ABC,∴∠ABD=∠ABF,∠ABE=∠ABC,∴∠DBE=∠DBA+∠ABE=∠ABF+∠ABC=(∠ABF+∠ABC)=90°.选B.3.【答题】如图,AB=AD,CB=CD,AC、BD相交于点O,则下列结论正确的是()A. OA=OCB. 点O到AB、CD的距离相等C. ∠BDA=∠BDCD. 点O到CB、CD的距离相等【答案】D【分析】根据角的平分线的性质解答即可.【解答】∵在△ADC和△ABC中,,∴△ADC≌△ABC,∴∠DCA=∠BCA,∴点O到CB、CD的距离相等.选D.4.【答题】如图,在Rt△ABC中,∠C=90°,BD是∠ABC的平分线,交AC于点D,若CD=n,AB=m,则△ABD的面积是()A. mnB. mnC. 2mnD. mn【答案】B【分析】根据角的平分线的性质解答即可.【解答】作DE⊥AB交AB于点E,∵BD是∠ABC的平分线,∠C=90°,∴CD=DE=n,∴S△ABD=AB·DE=mn.选B.5.【答题】如图,MP⊥NP,MQ为△MNP的角平分线,MT=MP,连接TQ,则下列结论中不正确的是()A. TQ=PQB. ∠MQT=∠MQPC. ∠QTN=90°D. ∠NQT=∠MQT【答案】D【分析】根据角的平分线的性质解答即可.【解答】∵MQ为△MNP的角平分线,∴∠PMQ=∠QMT,∵在△PMQ和△TMQ中,,∴△PMQ≌△TMQ,∴TQ=PQ,∠P=∠QTM=90°,∠MQT=∠MQP,故A、B、C选项正确,D选项错误.选D.6.【答题】三角形中到三边距离相等的点是()A. 三条边的中垂线交点B. 三条高交点C. 三条中线交点D. 三条角平分线的交点【答案】D【分析】根据角的平分线的性质解答即可.【解答】由角平分线的性质不难得出三角形中到三边距离相等的点是三条角平分线的交点.选D.7.【答题】如图,直线l1,l2,l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A. 1处B. 2处C. 3处D. 4处【答案】D【分析】根据角的平分线的性质解答即可.【解答】如图A、B、C、D为三条直线组成的三角形内角和外角的角平分线的交点,由角平分线上的点到角两边距离相等可得在这四点处,货物中转站到三条公路距离相等.选D.8.【答题】如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若AD=5cm,CD=3cm,则点D到AB的距离DE是()A. 5cmB. 4cmC. 3cmD. 2cm【答案】C【分析】根据角的平分线的性质解答即可.【解答】∵点D到AB的距离是DE,∴DE⊥AB,∵BD平分∠ABC,∠C=90°,∴把Rt△BDC沿BD翻折后,点C在线段AB上的点E处,∴DE=CD,∵CD=3cm,∴DE=3cm.选C.9.【答题】如图,在△ABC中,BD平分∠ABC,交AC于点D,BC边上有一点E,连接DE,则AD与DE的关系为()A. AD>DEB. AD=DEC. AD<DED. 不确定【答案】D【分析】根据角的平分线的性质解答即可.【解答】解:∵BD平分∠ABC,∴点D到AB、BC的距离相等,∵AD不是点D到AB的距离,点E是BC上一点,∴AD、DE的大小不确定.选D.10.【答题】如图,已知△ABC,∠C=90°,按下列要求作图(尺规作图,保留作图痕迹):①作∠B的平分线,与AC相交于点D;②在AB边上取一点E,使BE=BC;③连结ED.根据所作图形,可以得到:()A. AD=BDB. ∠A=∠CBDC. △EBD≌△CBDD. AD=BC【答案】C【分析】根据角的平分线的性质解答即可.【解答】本题作完之后的图形为:根据作图,有∠EBD=∠CBD,BC=BE,又BD=BD∴△EBD≌△CBD故选C.11.【答题】如图,已知AB∥CD,PE⊥AB,PF⊥BD,PG⊥CD,垂足分别E、F、G,且PF=PG=PE,则∠BPD=().A. 60°B. 70°C. 80°D. 90°【答案】D【分析】根据角的平分线的判定解答即可.【解答】∵PE⊥AB,PF⊥BD,PF=PE,∴PB平分∠ABD,∴∠PBD=∠ABD,同理∠PDB=∠CDB,∵AB∥CD,∴∠ABD+∠CDB=180°,∴2∠PBD+2∠PDB=180°,∴∠PBD+∠PDB=90°,∴∠BPD=180°-∠PBD-∠PDB=90°.选D.12.【答题】如图,∠1=∠2,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论错误的是()A. PD=PEB. OD=OEC. ∠DPO=∠EPOD. PD=OP【答案】D【分析】根据角的平分线的性质解答即可.【解答】解:根据角平分线的性质可得:PD=PE,根据题意HL判定定理可得:Rt△POE≌Rt△POD,则OD=OE,∠DPO=∠EPO.13.【答题】如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,CD=3,则点D到AB的距离是()A. 1B. 2C. 3D. 4【答案】C【分析】根据角的平分线的性质解答即可.【解答】解:作DE⊥AB于E,∵AD是∠BAC的平分线,∠C=90°,DE⊥AB,∴DE=CD=3.选C.14.【答题】如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,BD:DC=3:2,点D到AB的距离为6,则BC等于()A. 10B. 20C. 15D. 25【答案】C【分析】根据角的平分线的性质解答即可.【解答】解:∵在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,点D到AB的距离为6,∴CD=6∵BD:DC=3:2,∴BD=CD=×6=9,∴BC=6+9=15选C.15.【答题】如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6㎝,则△DEB的周长是()A. 6cmB. 4cmC. 10cmD. 以上都不对【分析】根据角的平分线的性质解答即可.【解答】解:∵CA=CB,∠C=90°,AD平分∠CAB,∴△ACB为等腰直角三角形,BC=AC=AE,∴△ACD≌△AED,∴CD=DE,又∵DE⊥AB于点E,∴△EDB为等腰直角三角形,DE=DB=CD,∴△DEB的周长=DE+EB+DB=CD+DB+EB=CB+EB=AE+EB=AB=6,∴周长为6.选A.16.【答题】如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=3cm,则点D到AB的距离DE是()A.5cmB.4cmC.3cmD.2cm【分析】根据角的平分线的性质解答即可.【解答】解:如图:过D作DE⊥AB于E,∵BD是∠ABC的平分线,∠C=90°,DE⊥AB,∴DE=CD,∵CD=3cm,∴DE=3cm.选C.17.【答题】如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B。

(完整版)七年级上角平分线练习题及答案

(完整版)七年级上角平分线练习题及答案

角平分线相关练习题答案:1、∠DOC=30°解析:由角平分线定义:到角两边距离相等的点在角平分线上,得知,点C在角平分线上,即OC为∠AOB 的角平分线,因为∠AOB=60°,所以∠DOC=∠EOC=30°2、∠BOC=50°解析:由题知,∠AOE=∠BOE=½∠AOB=45°,∠BOD=∠EOD-∠BOE=70°-45°=25°,∠BOC=2∠BOD=50°3、D解析:由角平分线定义和性质得知,角平分线上的点到角两边的距离相等,故A、B、C均正确。

4、S△BDC=½mn解析:通过D点向BC边作垂线段,交BC于点E,则DE为△BDC的高线,由于DA⊥AB且DE⊥BC,BD是角平分线,故得知线段AD=DE=m,S△BDC=½BC×DE=½mn5、A解析:由角平分线性质得知,角平分线上的点到角两边的距离相等,故P到AB的距离=PE=36、∠COE=75°解析:∠AOC=∠BOC=∠BOD=½×90°=45°,因为∠BOD=3∠DOE,所以∠BOE=⅔∠BOD=⅔×45°=30°,∠COE=∠BOC+∠BOE=45°+30°=75°7、∠BOD=75°解析:∠COD=∠AOD=½∠AOC=½(∠AOB-∠BOC)=½(90°-60°)=15°,∠BOD=∠BOC+∠COD=60°+15°=75°8、∠AOC=140°解析:∠AOC=∠AOB+∠BOC=2∠BOD+2∠BOE=2∠BOD+2(∠DOE-∠BOD)=2∠DOE=2×70°=140°。

初中数学三角形的高、中线和角平分线同步练习题5套(含答案)

初中数学三角形的高、中线和角平分线同步练习题5套(含答案)

三角形的高、中线和角平分线同步练习题5套(含答案)(一)1.填空题:(1)从三角形一个顶点向它的对边画______,以______和______为端点的线段叫做三角形这边上的高.如图,若CD 是△ABC 中AB 边上的高,则∠ADC ______∠BDC =______,C 点到对边AB 的距离是______的长.(2)连结三角形的一个顶点和它______的______叫做三角形这边上的中线. 如右图,若BE 是△ABC 中AC 边上的中线,则AE ______.______21EC (3)三角形一个角的______与这个角的对边相交,以这个角的______和______为端点的线段叫做三角形的角平分线.一个角的平分线与三角形的角平分线的区别是________________________________ ______________________________________.如图,若AD 是△ABC 的角平分线,则∠BAD ______∠CAD =21______或∠BAC =2______=2______. 2.已知:△GEF ,分别画出此三角形的高GH ,中线EM ,角平分线FN .3.(1)分别画出△ABC 的三条高AD 、BE 、CF .(∠A 为锐角) (∠A 为直角) (∠A 为钝角)(2)这三条高AD 、BE 、CF 所在的直线有怎样的位置关系?4.(1)分别画出△ABC 的三条中线AD 、BE 、CF .(2)这三条中线AD 、BE 、CF 有怎样的位置关系?(3)设中线AD与BE相交于M点,分别量一量线段BM和ME、线段AM和MD的长,从中你能发现什么结论?5.(1)分别画出△ABC的三条角平分线AD、BE、CF.(2)这三条角平分线AD、BE、CF有怎样的位置关系?(3)设△ABC的角平分线BE、CF交于N点,请量一量点N到△ABC三边的距离,从中你能发现什么结论?(一)参考答案1.(1)垂线,顶点、垂足,=,90°,高CD的长.(2)所对的边的中点、线段,=,AC(3)平分线,顶点、交点,一个角的平分线是射线,而三角形的角平分线是线段.=,∠BAC,∠BAD,∠DAC2.略.3.(1)略,(2)三条高所在直线交于一点.4.(1)略,(2)三条中线交于一点,(3)BM=2ME.5.(1)略,(2)三条角平分线交于一点,(3)点N到△ABC三边的距离相等.三角形的高、中线与角平分线(二)一.选择题:1.△ABC中,AB=AC=4,BC=a,则a的取值范围是( )A.a>0 B.0<a<4 C.4<a<8 D.0<a<82.△ABC中,CA=CB,D为BA中点,P为直线CD上的任一点,那么PA与PB的大小关系是( ) A.PA >PB B.PA<PB C.PA=PB D.不能确定3.△ABC中,AB=7,AC=5,则中线AD之长的范围是( )A.5<AD<7B.1<AD<6C.2<AD<12D.2<AD<54.△ABC中,AB=13,BC=10,BC边上中线AP=12,则AB,AC关系为( )A.AB>ACB.AB=ACC.AB<ACD.无法确定5.三条线段a,b,c长度均为整数且a=3,b=5.则以a,b,c为边的三角形共有( )A.4个B.5个C.6个D.7个6.一个三角形中,下列说法正确的是( )A.至少有一个内角不小于90°B.至少一个内角不大于30°C. 至少一个内角不小于60°D. 至少一个内角不大于45°7.△ABC中,∠A=40°,高BD和CE交于O,则∠COD为( )A.40°或140°B. 50°或130°C. 40°D. 50°8.已知,如图1,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是( )A.∠BAC<∠ADCB.∠BAC=∠ADCC.∠BAC>∠ADCD.不能确定9.在△ABC中,已知∠A+∠C=2∠B,∠C-∠A=80°,则∠C的度数是( )A.60°B.80°C.100°D.120°10.如图2,∠B=∠C,则∠ADC与∠AEB的关系是( )A.∠ADC>∠AEBB.∠ADC=∠AEBC.∠ADC<∠AEBD.不能确定二、填空题:1.△ABC中,∠A-∠B=10°,2∠C-3∠B=25°,则∠A= .2.等腰三角形周长为21cm,一中线将周长分成的两部分差为3cm,则这个三角形三边长为________.3.点A、B关于直线l对称,点C、D也关于l对称,AC、BD交于O,则O点在上.4.△ABC周长为36,AB=AC,AD⊥BC于D,△ABD周长为30cm,则AD= .5.等腰三角形一腰上的高与另一腰夹角为45°,则顶角为 .6.三角形三边的长为15、20、25,则三条高的比为 .7.若三角形三边长为3、2a-1、8,则a的取值范围是 .8.如果等腰三角形两外角比为1∶4则顶角为 . 9.等腰三角形两边比为1∶2,周长为50,则腰长为 . 10.等腰三角形底边长为20,腰上的高为16.则腰长为 . 三、解答题:1.△ABC 中AB=AC ,D 在AC 上,且AD=BD=BC.求△ABC 的三内角度数.2.如图,AC=BD ,AD ⊥AC ,BD ⊥BC ,求证AD=BC.3.CD 为Rt △ABC 斜边的中线 V ,DE ⊥AC 于E ,BC=1,AC=3.求△CED 的周长.4. 如图,AD 为△ABC 的中线,∠ADB 的平分线交AB 于E ,∠ADC 的平分线交AC 于E,求证BE+CF >EF.5.△A BC 中,AD ⊥BC 交边BC 于D.(1)若∠A=90° 求证:AD+BC >AB+AC(2)若∠A >90°,(1)中的结论仍然成立吗?若不成立,请举反例,若成立,请给出证明 6.如图,将一张长方形纸片沿EF 折叠后,点D 、C 分别落在点D ′、C ′的位置,ED ′ 的延长线与BC 交于点G ,若∠EFG =50°,求∠1、∠2的度数.(二)参考答案一、选择:DCBBB CABCB 二、填空:(1).55° (2).(8,8,5)或(6,6,9) (3).l (4).12 (5).45°或135° (6).20∶15∶12 (7).3<a <6 (8).140° (9).20 (10).350三.解答:1.设∠A=x AD=DB=BCAB=AC ∴∠ABD=x ∠BDC=2x ∠ABC=∠C=2x ∠DBC=x ∴5x=180° x=36° ∴∠A=36°∠C=72° ∠ABC=72°2.连DC ,∠DAC=∠DBC=90° AC=BD DC=DC ∴Rt △DAC ≌△CBD (HL) ∴AD=BC.3.∵∠ACB=90° BC=1 AC=3 ∴AB=2 ∠A=∠ACD=30°C D=1 DE=21CE=23 周长为2334.延长ED 至G ,使ED=DG ,连GC ,GF DE 平分∠BDA ,DF 平分∠ADC ∴∠EDF=90°,ED=DG ∴EF=FG ,△BED ≌△CGD ∴BE=GC ;GC+CF >GF.∴BE+CF >EF.5.(1)∵∠A=90°∴AB2+AC2=BC2AB ·AC=AD ·BC.(AB+AC)2=AB2+AC2+2AB ·AC=BC2+2AD ·BC <BC2+2AD ·BC+AD2=(BC+AD)2∴AD+BC >AB+AC. (2)若∠A >90°,上述结论仍成立.证∵∠A >90°,作AE ⊥AB 交BC 于E ,则AD 为Rt △BAE 斜边上的高 由(1)∴AD+BE >AB+AE ① 在△AE C 中 AE+EC >AC ②;①+② AD+BE+EC+AE >AB+AC+AE ∴AD+BC >AB+AC 6、80°,100°三角形的高、中线与角平分线(三)一、选择题1.一定在三角形内部的线段是( )A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、两条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2.如图,△ABC 中,点E 是BC 上的一点,EC=2BE,BD 是边AC 上的中线,若S △ABC =12,则S △ADF -S △BEF =( ) A.1 B.2 C.3 D.4 二、填空题3.空调外机安装在墙壁上时,一般都会按如图所示的方法固定在墙壁上,这种方法应用的数学知识是三角形的 .4.如图所示,∠BAD=45°,AE=4 cm.(1)如果AD 是△ABC 的角平分线,那么∠DAC= ;(2)如果AE=CE,那么线段BE 是△ABC 的 ,AC 的长为 ; (3)如果AF 是△ABC 的高,那么图中以AF 为高的三角形有 个.5.如图,在△ABC中,AD是△ABC边BC上的中线,CE是△ACD边AD上的中线,F是EC的中点.若S△BFC=1,则S△ABC= .三、解答题6.如图,已知AD、AE分别是△ABC的高和中线,AB=9 cm,AC=12 cm,BC=15 cm,∠BAC=90°.试求:(1)△ABE的面积;(2)AD的长度;(3)△A CE与△ABE的周长的差.7.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为24和18两部分,求三角形的三边长.(三)参考答案1.答案 A A项,锐角三角形的三条高、三条角平分线、三条中线一定在三角形内部,故本选项正确;B项,钝角三角形的三条高有两条在三角形的外部,故本选项错误;C项,任意三角形的一条中线、两条角平分线都在三角形内部,但三条高不一定都在三角形内部,故本选项错误;D项,直角三角形的三条高有两条是直角边,不在三角形内部,故本选项错误.故选A.2.答案B∵S△ABC=12,EC=2BE,点D是AC的中点,∴S△ABE=S△ABC=4,S△ABD=S△ABC=6,∴S△ADF-S△BEF=S△ABD-S△ABE=6-4=2.故选B.3.答案稳定性解析题中方法应用的数学知识是三角形的稳定性.4.答案(1)45°(2)中线;8 cm (3)6解析(1)∵AD是△ABC的角平分线,∴∠DAC=∠BAD=45°.(2)∵AE=CE,∴线段BE是△ABC的中线,AC=2AE=2×4=8(cm).(3)以AF为高的三角形有△ABD、△ABF、△ABC、△ADF、△ADC、△AFC,共6个. 5.答案 4解析如图,连接BE.∵点D、E分别为BC、AD的中点,∴S△ABD=S△ACD=S△ABC,S△BDE=S△ABD=S△ABC,S△CDE=S△ACD=S△ABC,∴S△BCE=S△BDE+S△CDE=S△ABC+S△ABC=S△ABC,∵点F是CE的中点,∴S△BEF=S△BFC=S△BCE=×S△ABC=S△ABC,∵S△BFC=1,∴S△ABC=4.6.解析(1)∵△ABC是直角三角形,∠BAC=90°,AB=9 cm,AC=12 cm,∴S△ABC=AB·AC=×9×12=54(cm2).∵AE是边BC上的中线,∴BE=EC,∴BE·AD=EC·AD,即S△ABE=S△AEC,∴S△ABE=S△ABC=27 cm2.∴△ABE的面积是27 cm2. (2)∵∠BAC=90°,AD是边BC上的高,∴AB·AC=BC·AD,∴AD===(cm),即AD的长度为 cm.(3)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长-△ABE的周长=AC+AE+CE-(AB+BE+AE)=AC-AB=12-9=3(cm),即△ACE与△ABE的周长的差是3 cm.7.解析如图,设AB=AC=a,BC=b,则有或解得或这时三角形的三边长分别为16,16,10或12,12,18,它们都能构成三角形.所以三角形的三边长分别为16,16,10或12,12,18.三角形的高、中线与角平分线(四)一、选择题1、已知三角形的两边分别为4和9,则此三角形的第三边可能是()A. 4 B. 5 C.9 D. 132、下列长度的三根木棒首尾相接,不能做成三角形框架的是( )A.5 cm、7 cm、2 cm B.7 cm、13 cm、10 cmC.5 cm、7 cm、11 cm D.5 cm、10 cm、13 cm3、如图,已知BE,CF分别为△ABC的两条高,BE和CF相交于点H,若∠BAC=50°,则∠BHC为()A.115°B.120°C.125°D.130°4、下列长度的三条线段,不能组成三角形的是()A.2、3、4 B.1、2、3 C.3、4、5 D.4、5、65、若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线6、如图,在△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE交BD于G,交BC于H,下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=(∠BAC﹣∠C);④∠BGH=∠ABE+∠C其中正确的是()A.①②③B.①③④C.①②④D.①②③④7、下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,118、如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A.AB=2BF B.∠ACE=∠ACB C.AE=BE D.CD⊥BE9、一个三角形中直角的个数最多有()A.3B.1C.2D.010、下列图形不具有稳定性的是()11、下列各组中的三条线段能组成三角形的是()A.3,4,8 B.5,6,11C.5,6,10 D.4,4,812、如图所示,其中三角形的个数是()A.2个B.3个C.4个D.5个13、下列图形不具有稳定性的是()A.正方形B.等腰三角形C.直角三角形D.钝角三角形14、如图,AC⊥BC,CD⊥AB,DE⊥BC,分别交BC,AB,BC于点C,D,E,则下列说法中不正确的是()A.AC是△ABC和△ABE的高B.DE,DC都是△BCD的高C.DE是△DBE和△ABE的高D.AD,CD都是△ACD的高二、填空题15、在△ABC是AB=5,AC=3,BC边的中线的取值范围是。

初中数学三角形的高、中线和角平分线提高训练5套(能力题含答案)

初中数学三角形的高、中线和角平分线提高训练5套(能力题含答案)

三角形的高、中线和角平分线提高训练5套(能力题)能力训练(1)1.下列说法中正确的是( )A .三角形的三条高都在三角形内B .直角三角形只有一条高C .锐角三角形的三条高都在三角形内D .三角形每一边上的高都小于其他两边2.(易错题)小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?”小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是( )3.如图,∠1=∠2,∠3=∠4,下列结论中错误的是( ) A .BD 是△ABC 的角平分线 B .CE 是△BCD 的角平分线C .132ACB ∠=∠ D .CE 是△ABC 的角平分线4.如图,若已知AE 平分∠BAC ,且∠1=∠2=∠4=15°,则∠3的度数为________,以AE 为角平分线的三角形还有________.5.如图所示:(1)在△ABC 中,BC 边上的高是________; (2)在△AEC 中,AE 边上的高是________.6.如图所示,△ABC 的高AD ,BE ,CF 相交于点H ,过点F 作FG ⊥AC 交AC 于点G ,请说出△ABH ,△BCH ,△ACH ,△ACF 中各边上的高.7.如图,D 是△ABC 中BC 边上一点,DE ∥AC 交AB 于点E ,若∠EDA =∠EAD ,试说明AD 是△ABC 的角平分线.8.不等边△ABC 的两条高长度分别为4和12,若第三条高的长也是整数,试求它的长.(1)参考答案1.C 解析 锐角三角形的三条高都在三角形内,直角三角形有两条高恰是其直角边,故选C . 2.C 解析 最长边上的高,应是过这条边所对的顶点来作它的垂线段,图形中只有C 选项是正确的,故选C .3.D 解析 因为34∠=∠,CE 交BD 于点E ,所以CE 是△BCD 的角平分线,虽然CE 将∠ACB 分为两个相等的角,但CE 未与边AB 相交,所以CE 不是△ABC 的角平分线,故选D .4.15° 解析 因为AE 平分∠BAC ,所以B A E C A E ∠=∠.又因为1215∠=∠=︒,所以12151530BAE ∠=∠+∠=︒+︒=︒,所以30CAE BAE ∠=∠=︒,即4330BAE ∠=∠+∠=︒,所以330151∠=︒-︒=︒.因为2315∠=∠=︒,所以AE 是△DAF 的角平分线.5.AB CD 解析 根据三角形的高的定义即可判断.6.解:在△ABH 中,FH 是AB 边上的高,AE 是BH 边上的高,BD 是AH 边上的高;在△BCH 中,HD 是BC 边上的高,CE 是BH 边上的高,BF 是CH 边上的高;在△ACH 中,HE 是AC 边上的高,CD 是AH 边上的高,AF 是CH 边上的高;在△ACF 中,FG 是AC 边上的高,CF 是AF 边上的高,AF 是CF 边上的高.7.解:∵DEAC ,∴EDA CAD ∠=∠.∵EDA EAD ∠=∠,∴CAD EAD ∠=∠, ∴AD 是△ABC 的角平分线. 8.它的长为5,或4.提示:设S △ABC =S ,第三条高为h ,则△ABC 的三边长可表示为:hSS S 212242、、,列不等式得:12242212242SS h S S S +<<- ∴3<h <6.能力训练(2)1.若AD 是△ABC 的中线,则下列结论中错误的是( ) A .AD 平分∠BAC B .BD =DC C .AD 平分BC D .BC =2DC2.已知D ,E 分别是△ABC 的边AC ,BC 的中点,那么下列说法不正确的是( ) A .DE 是△BCD 的中线 B .BD 是△ABC 的中线 C .AD =DC ,BE =EC D .AD =EC ,DC =BE3.如图,△D 是△ABC 的中线,AE 是△ABD 的中线,若CE =9 cm ,则BC =________cm . 4.如图,BD 是△ABC 的中线,AB =6 cm ,BC =4 cm ,则△ABD 与△BCD 周长的差是________.5.如图所示,AE 和AF 分别是△ABD 和△ACD 的中线,根据条件填空.因为AE 是△ABD 的中线(已知),所以1______________________2==.因为AF 是△ACD 的中线(已知),所以1______________________2==.所以111__________________222EF =+=6.如图,在△ABC 中,D ,E 分别是BC ,AD 的中点,S △ABC =24 cm 2,求S △ABE .7.在△ABC 中,AB =AC ,AC 边上的中线BD 把△ABC 的周长分为12 cm 和15 cm 两部分,求三角形的各边长.8.已知:△ABC 中,AB =AC ,BD 是AC 边上的中线,如果D 点把三角形ABC 的周长分为12cm 和15cm 两部分,求此三角形各边的长.9.将一个三角形剖分成若干个面积相等的小三角形,称为该三角形的等积三角形的剖分(以下两问要求各画三个示意图)(1)已知一个任意三角形,并其剖分成3个等积的三角形. (2)已知一个任意三角形,将其剖分成4个等积的三角形.(2)参考答案1.A 解析 AD 是△ABC 的中线,它不一定平分∠BAC .2.D 解析 由三角形的中线定义可知A ,B 选项正确;由题意可明显得出AD DC =,BE EC =,C 选项正确.故选项D 错误.3.12 解析 ∵AD 是△ABC 的中线,AE 是△ABD 的中线,∴12CD BD BC ==,12DE BD =, ∴34CE DE CD BC =+=.∵9cm CE =,∴12cm BC =.4.2cm 解析 因为BD 是△ABC 的中线,所以A D C D =,所以△ABD 与△BCD 的周长差是()()()642cm AB BD AD BC BD DC AB BC ++-++=-=-=.5.BE DE BD CF FD CD BD CD BC6.解:由D ,E 分别是BC ,AD 的中点,且等底同高的三角形面积相等,得()2112412cm 22ABD ADC ABC S S S ∆∆∆===⨯=,ABE DBE S S ∆∆=,所以()211126cm 22ABE ABD S S ∆∆==⨯=7.解:设cm AB AC x ==.则1cm 2AD DC x ==.(1)若12cm AB AD +=, 即1122x x +=,则8x =, 所以8cm AB AC ==,4cm DC =.故()15411cm BC =-=.此时,AB AC BC +>,三角形存在.所以三角形的三边长分别为8cm ,8cm ,11cm .(2)若15cm AB AD +=,即1152x x +=,则10x =,所以5cm DC =,故()1257cm BC =-=. 显然,此时三角形存在,所以三角形三边长分别为10cm ,10cm ,7cm . 综上所述,此三角形的三边长分别为8cm ,8cm ,11cm 或10cm ,10cm ,7cm . 8.提示:有两种情况,分别运用方程思想,设未知数求解. ⎩⎨⎧===,11,8BC AC AB 或⎩⎨⎧===.7,10BC AC AB 9.(1)(2)下列各图是答案的一部分:能力训练(3)1.如图,在△ABC中,BD为角平分线,且∠ABC=60°,则∠ABD的度数是()A.60°B.45°C.30°D.15°2.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=()A.1 B.2 C.3 D.43.如图,在△ABC中,∠1=∠2,G为AD的中点,BG的延长线交AC于点E,F为AB上的一点,CF与AD垂直,交AD于点H,则下面判断正确的有()①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH是△ACD的边AD上的高;④AH是△ACF的角平分线和高.A.1个B.2个C.3个D.4个4.如图,AD是△ABC的高,AE是△ABC的角平分线,AF是△ABC的中线,则图中相等的角有________,相等的线段有________.5.如图,AD,BE分别是△ABC中BC,AC边上的高,AD=4cm,BC=6 cm,AC=5 cm,则BE=________.6.如图所示,在平面直角坐标系中,A点坐标为(3,3),B点坐标为(5,0),则△AOB的面积为________.7.有一块肥沃的三角形土地ABC,其中一边与灌渠相邻,如图,政府要将这块地按人口数分给甲、乙、丙三家,若甲家有3口人,乙家有3口人,丙家有6口人,且每家所分土地与灌渠相邻,请你帮忙设计一个合理的分配方案.8.如图所示,网格小正方形的边长都为1,在△ABC中,试分别画出三条边的中线,然后探究三条中线的位置关系,你发现了什么?9.如图,AD是∠CAB的平分线,DE∥AB,DF∥AC,EF交AD于点O.请问:(1)DO是∠EDF的平分线吗?如果是,请给予证明;如果不是,请说明理由.(2)若将DO是∠EDF的平分线与AD是∠CAB的平分线,DE∥AB,DF∥AC中的任何一个条件交换,所得命题正确吗?若正确,请选择一个证明.(3)参考答案1.C 解析 因为BD 为角平分线,所以ABD CBD ∠=∠,而60ABC ∠=︒,所以1302ABD ABC ∠=∠=︒.2.B 解析 ∵BD 是△ABC 的中线,∴162ABD CBD ABC S S S ∆∆∆===.∵2EC BE =,∴2AEC ABE S S ∆∆=,∴143AEE ABC S S ∆∆==,∴()642ADF BEF ADF ABF BEF ABF ABD ABE S S S S S S S S ∆∆∆∆∆∆∆∆-=+-+=-=-=.3.B 解析 由12∠=∠知AD 平分∠BAE ,但AD 不是△ABE 的线段,故①错误,而正确的说法为AD 为△ABC 的角平分线;BE 经过△ABD 的边AD 的中点G ,但BE 不是△ABD 内的线段,故②错误,而正确的说法为BG 为△ABD 的边AD 上的中线;由于CF AD ⊥于点H ,所以CH 是△ACD 的边AD 上的高,故③正确;AH 平分∠FAC ,且H 在△AFC 的边FC 上,因而AH 为△AFC 的角平分线,又因为AH FC ⊥,故AH 也为△AFC 的高,所以④正确.4.BAE CAE ∠=∠,ADB ADC ∠=∠ B F C F = 解析 ∵AE 是△ABC 的角平分线,∴BAE CAE ∠=∠.∵AD 是△ABC 的高,∴90ADB ADC ∠=∠=︒.∵AF 是△ABC 的中线,∴BF CF =.5.24cm 5解析 由1122BC AD AC ⋅=,得1164522BE ⨯⨯=⨯⨯,得24cm 5BE =.6.7.5 解析 如图,过A 点作AD x ⊥轴于点D ,则D 点坐标为(3,0),3AD =,所以11537.522ACB S OB AD ∆=⋅=⨯⨯=.7.解:因为人口数分别为3,3,6,且336+=,所以先找△ABC 的边BC 上的中线AD ,AD 将△ABC 分成两部分:△ABD 和△ADC .若将△ADC 分给丙家,则将△ABD 分给甲、乙两家,由于甲、乙两家人口数相等,因此找△ABD 的边BD 上的中线AE ,AE 将△ABD 分成相等的两部分:△ABE 和△AED .可将△ABE 分给甲家,△AED 分给乙家.如图所示.8.解:如图所示,由图中的信息可知:①三角形ABC的三条中线相交于一点;②三条中线交点到对边中点的距离等于它到对应顶点距离的一半.9.思路建立(1)要说明DO是∠EDF的平分线,则需说明EDA ADF∠=∠,根据角平分线的性质及平行线的性质进行等量代换即可.(2)与(1)的求证过程类似.解:(l)DO是∠EDF的平分线.证明:∵AD是∠CAB的平分线,∴EAD FAD∠=∠.∵DE AB,DF AC,∴EDA FAD∠=∠.∠=∠,FAD EAD∴EDA ADF∠=∠,∴DO是∠EDF的平分线.(2)①若与AD是∠CAB的平分线交换,正确.理由与(1)中证明过程类似.②若与DE AB交换,正确.理由:∵DF AC,∴FAD EAD∠=∠.∵AD是∠CAB的平分线,∴EAD FAD∠=∠.∠=∠.∴FAD FDA又∵DO是∠EDF的平分线,∴EDA FDA∠=∠,∴DE AB.∠=∠,∴EDA FAD③若与DF AC交换,正确,理由与②类似.能力训练(4)1.已知等腰△ABC的底边BC=8,且|AC-BC|=2,那么腰AC的长为( )A.10或6B.10C.6D.8或62.已知三角形两边的长分别是4和10,则此三角形的周长可能是( )A.19B.20C.25D.303.已知三角形三边的长分别为1、2、x,则x的取值范围在数轴上表示为( )4.如果a,b,c为三角形的三边长,且(a-b)2+(a-c)2+|b-c|=0,则这个三角形是.5.已知a、b、c为△ABC的三边长,b、c满足(b-2)2+|c-3|=0,且a为方程|a-4|=2的解,求△ABC的周长,并判断△ABC的形状.6.三角形两边之和为8,第三边上的高为2,面积大于5,则第三边a的范围是( )A.2<a<8B.5<a<8C.2<a<5D.不能确定7.一个三角形3条边长分别为x cm、(x+1)cm、(x+2)cm,它的周长不超过39 cm,则x的取值范围是.8.一个等腰三角形的周长为9,三条边长都为整数,则等腰三角形的腰长为.9.已知a,b,c是三角形的三边长.(1)化简:|b+c-a|+|b-c-a|-|c-a-b|-|a-b+c|;(2)在(1)的条件下,若a,b,c满足a+b=11,b+c=9,a+c=10,求这个式子的值.10.(2018浙江义乌月考,10,★★☆)边长为整数,周长为20的三角形个数是( )A.4B.6C.8D.1211.(2017山东泰安新泰中考模拟,16,★★★)已知一个三角形的三条边长均为正整数.若其中仅有一条边长为5,且它又不是最短边,则满足条件的三角形个数为( )A.4B.6C.8D.1012.(2018天津西青区期末,21,★★★)如图,△ABC中,A1,A2,A3,…,A n为AC边上不同的n个点,首先连接BA1,图中出现了3个不同的三角形,再连接BA2,图中便有6个不同的三角形,……(1)完成下表:6(2)若出现了45个三角形,则共连接了多少个点?(3)若一直连接到A n,则图中共有个三角形.13.(2016江苏盐城中考,8,★★☆)若a、b、c为△ABC的三边长,且满足|a-4|+=0,则c的值可以为( )A.5B.6C.7D.814.(2016贵州安顺中考,5,★★☆)已知实数x,y满足|x-4|+=0,则以x,y的值为两边长的等腰三角形的周长是( )A.20或16B.20C.16D.以上答案均不对15.若a、b、c为三角形的三边,且a、b满足+(b-2)2=0,则第三边c的取值范围是.16.如图,用四个螺丝钉将四条不可弯曲的木条钉成一个木框,不计螺丝钉大小,其中相邻两螺丝钉间的距离依次为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任意两个螺丝钉间的距离的最大值为( )A.6B.7C.8D.1017.不能构成三角形的三条整数长度的线段的长度和的最小值为1+1+2=4;若四条整数长度的线段中,任意三条不能构成三角形,则该四条线段的长度和的最小值为1+1+2+3=7;……,依此规律,若八条整数长度的线段中,任意三条不能构成三角形,则该八条线段的长度和的最小值为.(4)参考答案1.A ∵|AC-BC|=2,∴AC-BC=±2,∵等腰△ABC的底边BC=8,∴AC=10或6.故选A.2.C 设第三边的长为x,∵三角形两边的长分别是4和10,∴10-4<x<10+4,即6<x<14.则三角形的周长L满足20<L<28,只有C选项中25符合题意.3.A ∵三角形的三边长分别是x,1,2,∴x的取值范围是1<x<3,故选A.4.答案等边三角形解析∵(a-b)2+(a-c)2+|b-c|=0,∴a-b=0,a-c=0,b-c=0,∴a=b,a=c,b=c,∴a=b=c,∴这个三角形是等边三角形.5.解析∵(b-2)2+|c-3|=0,∴b-2=0,c-3=0,解得b=2,c=3,∵a为方程|a-4|=2的解,∴a-4=±2,解得a=6或2,∵a、b、c为△ABC的三边长,b+c<6,∴a=6不合题意,舍去,∴a=2,∴△ABC 的周长为2+2+3=7,△ABC是等腰三角形.6.B ∵三角形两边之和为8,第三边为a,∴a<8,∵第三边上的高为2,三角形的面积大于5,∴a>5,∴5<a<8,故选B.7.答案1<x≤12解析∵一个三角形的3条边长分别是x cm,(x+1)cm,(x+2)cm,它的周长不超过39 cm,∴解得1<x≤12.8.答案3或4解析设腰长为x,则底边长为9-2x.∵9-2x-x<x<9-2x+x,∴2.25<x<4.5,∵三边长均为整数,∴x可取的值为3或4.9.解析(1)∵a、b、c为三角形三边的长,∴a+b>c,a+c>b,b+c>a,∴原式=|(b+c)-a|+|b-(c+a)|-|c-(a+b)|-|(a+c)-b|=b+c-a+a+c-b-a-b+c+b-a-c=2c-2a.(2)∵a+b=11①,b+c=9②,a+c=10③,∴由①-②,得a-c=2④,由③+④,得2a=12,∴a=6,∴b=11-6=5,c=10-6=4.当a=6,b=5,c=4时,原式=2×4-2×6=-4.10.C 8个,分别是:(9,9,2),(8,8,4),(7,7,6),(6,6,8),(9,6,5),(9,7,4),(9,8,3),(8,7,5).故选C.11.D ①当5是最大的边长时,可能的情况有3、4、5;4、4、5;3、3、5;4、2、5,共四种情况.②当5是第二大的边长时,可能的情况有2、5、6;3、5、7;3、5、6;4、5、6;4、5、7;4、5、8,共六种情况.所以共有10个三角形.故选D.12.解析(1)62(2)共连接了8个点.(3)1+2+3+…+(n+1)=[1+2+3+…+(n+1)+1+2+3+…+(n+1)]=(n+1)(n+2).故填(n+1)(n+2).13.A ∵|a-4|+=0,∴a-4=0,b-2=0,∴a=4,b=2,则4-2<c<4+2,即2<c<6,故选A.14.B 根据题意得解得(1)若4是腰长,则三角形的三边长为4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为4、8、8,能组成三角形,周长为4+8+8=20.故选B.15.答案1<c<5解析由题意得,a2-9=0,b-2=0,解得a=3,b=2,∵3-2=1,3+2=5,∴1<c<5.16.B 已知相邻两螺丝钉间的距离依次为2、3、4、6,故可将4根木条的长看作2、3、4、6.①选5(2+3=5)、4、6作为三边长,5-4<6<5+4,能构成三角形,此时两个螺丝钉间的最大距离为6;②选7(3+4=7)、6、2作为三边长,6-2<7<6+2,能构成三角形,此时两个螺丝钉间的最大距离为7;③选10(4+6=10)、2、3作为三边长,2+3<10,不能构成三角形,此种情况不成立;④选8(6+2=8)、3、4作为三边长,3+4<8,不能构成三角形,此种情况不成立.综上所述,任意两个螺丝钉间的距离的最大值为7.故选B.17.答案54 解析1+1+2+3+5+8+13+21=54.能力训练(5)一、单选题(共14道,每道7分)1.下列说法正确的是( )A.三角形的三条角平分线有可能在三角形内,也可能在三角形外B.三角形的三条高都在三角形内C.三角形的三条高交于一点D.三角形的三条中线交于一点2.如图所示,D,E分别是△ABC的边AC,BC的中点,则下列说法不正确的是( )A.DE是△BCD的中线B.BD是△ABC的中线C.AD=DC,BE=ECD.DE是△ABC的中线3.如图,△ABC中,AD⊥BC交BC的延长线于D,BE⊥AC交AC的延长线于E,CF⊥BC交AB于F,下列说法错误的是( )A.FC是△ABC的高B.FC是△BCF的高C.BE是△ABC的高D.BE是△ABE的高4.如图,在△ABC中,作BC边上的高,下列选项中正确的是( )A. B. C. D.5.如图,在△ABC中,∠1=∠2,G为AD的中点,延长BG交AC于E,F为AB上的一点,CF⊥AD于H.则下列判断正确的个数是( )①AD是△ABE的角平分线;②BG是△ABD的中线;③CH为△ACD中AD边上的高.A.1个B.2个C.3个D.0个6.如图,AD是△ABC的角平分线,点O在AD上,且OE⊥BC于E,∠BAC=60°,∠C=80°,则∠EOD的度数为( )A.20°B.30°C.10°D.15°7.如图,已知BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是( )A.2B.3C.6D.不能确定8.有3cm,6cm,8cm,9cm的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为( )A.1B.2C.3D.49.已知三角形的三边长分别是3,8,x;若x的值为偶数,则x的值有( )A.6个B.5个C.4个D.3个10.三角形两边长为2和9,周长为偶数,则第三边长为( )A.7B.8C.9D.1011.已知三角形的两边分别为3和8,且周长为偶数,则周长为( )A.大于5,小于11B.18C.20D.18或2012.一个三角形的两边分别是5和11,若第三边是整数,则这个三角形的最小周长是( )A.21B.22C.23D.2413.已知等腰三角形的周长为16,其中一边长为3,则该等腰三角形的腰长为( )A.3B.10C.6.5D.3或6.514.已知等腰三角形的周长为13,其中一边长为3,则该等腰三角形的底边为( )A.7B.3C.7或3D.8(五)参考答案1.D2. D3.A4. C5.B6.A7.A8.C9.D10.C11.D12.C13.C14.B。

初三数学角平分线试题

初三数学角平分线试题

初三数学角平分线试题1.角的平分线上的点到角的两边的距离相等【答案】对【解析】根据角平分线的性质即可判断.角的平分线上的点到角的两边的距离相等,本题正确.【考点】角平分线的性质点评:熟练掌握基本图形的性质是学好图形问题的基础,因而此类问题在中考中比较常见,常以填空题、选择题形式出现,属于基础题,难度一般.2.如图,∠BAC=60°,AP平分∠BAC,PD⊥AB,PE⊥AC,若AD=,则PE=___.【答案】1【解析】由∠BAC=60°,AP平分∠BAC可得∠DAP=30°,即可得到AP=2DP,根据AD=可得PD的长,再根据角平分线的性质即可求得结果.∵∠BAC=60°,AP平分∠BAC∴∠DAP=30°∵PD⊥AB∴AP=2DP∵AD=∴DP=1∵AP平分∠BAC,PD⊥AB,PE⊥AC∴PE=DP=1.【考点】角平分线的性质,含30°角的直角三角形的性质点评:含30°角的直角三角形的性质是平面图形中一个非常重要的性质,在中考中比较常见,常以填空题、选择题形式出现,属于基础题,难度一般,需多加关注.3.已知,如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,若CD=CE,则∠COD+∠AOB=__________度.【答案】90【解析】由CD⊥OA,CE⊥OB,CD=CE可得OC平分∠AOB,即可求得结果.∵CD⊥OA,CE⊥OB,CD=CE∴OC平分∠AOB∵∠AOB=60°∴∠COD=30°∴∠COD+∠AOB=90°.【考点】角平分线的判定点评:本题是角平分线的性质的基础应用题,在中考中比较常见,常以填空题、选择题形式出现,属于基础题,难度一般.4.下列命题中是真命题的是A.有两角及其中一角的平分线对应相等的两个三角形全等B.相等的角是对顶角C.余角相等的角互余D.两直线被第三条直线所截,截得的同位角相等【答案】A【解析】根据平面图形的基本概念依次分析各项即可判断.A.有两角及其中一角的平分线对应相等的两个三角形全等,是真命题,本选项正确;B.直角都相等,但不一定是对顶角,C.余角相等的角相等,D.两直线平行,同位角相等,故错误,均不是真命题.【考点】平面图形的基本概念点评:此类题目综合性强,知识点多,在中考中比较常见,常以填空题、选择题形式出现,难度不大,需多加关注.5.在同一平面内,到三角形三边距离相等的点只有一个【答案】对【解析】根据三角形的性质结合角平分线的性质即可判断.在同一平面内,到三角形三边距离相等的点是三角形三条内角平分线的交点,只有一个,故本题正确.【考点】角平分线的性质点评:平面图形的基本概念中的关键字词学生往往容易忽视,因而此类问题是学生的易错点,在中考中比较常见,常以填空题、选择题形式出现,属于基础题,难度一般.6.在同一平面内,到三角形三边所在直线距离相等的点只有一个【答案】错【解析】根据三角形的性质结合角平分线的性质即可判断.在同一平面内,到三角形三边所在直线距离相等的点可能是三角形三条内角平分线的交点,也可能是任两个外角平分线的交点,不止一个,故本题错误.【考点】角平分线的性质点评:平面图形的基本概念中的关键字词学生往往容易忽视,因而此类问题是学生的易错点,在中考中比较常见,常以填空题、选择题形式出现,属于基础题,难度一般.7.三角形三条角平分线交于一点【答案】对【解析】根据三角形的角平分线的性质即可判断,若动手操作则更为直观.三角形三条角平分线交于一点,本题正确.【考点】角平分线的性质点评:熟练掌握基本图形的性质是学好图形问题的基础,因而此类问题在中考中比较常见,常以填空题、选择题形式出现,属于基础题,难度一般.8.如图,点P为△ABC三条角平分线交点,PD⊥AB,PE⊥BC,PF⊥AC,则PD________________PF.【答案】=,=【解析】根据角平分线上的点到角两边的距离相等即可判断.∵点P为△ABC三条角平分线交点,PD⊥AB,PE⊥BC,PF⊥AC,∴PD=PE=PF.【考点】角平分线的性质点评:此类问题知识点独立,在中考中不太常见,常以填空题、选择题形式出现,属于基础题,难度一般.9.利用角平分线的性质,找到△ABC内部距三边距离相等的点.【答案】三个内角平分线交点【解析】根据角平分线上的点到角两边的距离相等即可判断.△ABC内部距三边距离相等的点是三个内角平分线交点.【考点】角平分线的性质点评:此类问题知识点独立,在中考中不太常见,常以填空题、选择题形式出现,属于基础题,难度一般.10.在图△ABC所在平面中,找到距三边所在直线距离相等的点.【答案】如图所示:【解析】(1)以B为圆心,以任意长为半径画圆,分别交AB、BC于D、E两点,(2)再分别以D、E为圆心,以大于DE为半径画圆,两圆相交于F,连接BF,则BF即为∠B的平分线;同理作∠A的平分线,两平分线相交于点G1,则点G1即为所求;同理作出△ABC相邻外角的平分线分别交于G1,G2,G3,综上,满足题意的点有四个,如图所示:【考点】角平分线的性质的应用点评:本题是角平分线的性质的基础应用题,是常见的作图题,在中考中比较常见,一般与垂直平分线同时出现,难度不大,需熟练掌握.。

初中数学经典几何模型04-角平分线模型在三角形中的应用(含答案)

初中数学经典几何模型04-角平分线模型在三角形中的应用(含答案)

初中数学经典几何模型专题04 角平分线模型在三角形中的应用在初中几何证明中,常会遇到与角平分线有关的问题。

不少同学遇到这类问题时,不清楚应该怎样去作辅助线。

实际上这类问题是有章可循的,其策略是:明确辅助线作用,记清相应模型辅助线作法,理解作辅助线以后的目的。

能做到这三点,就能在解题时得心应手。

【知识总结】【模型】一、角平分线垂两边 角平分线+外垂直当已知条件中出现OP 为OAB ∠的角平分线、PM OA ⊥于点M 时,辅助线的作法大都为过点P 作PN OB ⊥即可.即有PM PN =、OMP ∆≌ONP ∆等,利用相关结论解决问题.【模型】二、角平分线垂中间 角平分线+内垂直当已知条件中出现OP 为AOB ∠的角平分线,PM OP ⊥于点P 时,辅助线的作法大都为延长MP 交OB 于点N 即可.即有OMN ∆是等腰三角形、OP 是三线等,利用相关结论解决问题.【模型】三、角平分线构造轴对称 角平分线+截线段等当已知条件中出现OP 为AOB ∠的角平分线、PM 不具备特殊位置时,辅助线的作法大都为在OB 上截取ON OM =,连结PN 即可.即有OMP ∆≌ONP ∆,利用相关结论解决问题.【模型】四、角平分线加平行线等腰现 角平分线+平行线当已知条件中出现OP 为AOB ∠的角平分线,点P 角平分线上任一点时,辅助线的作法大都为过点P 作PM //OB 或PM //OA 即可.即有OMP ∆是等腰三角形,利用相关结论解决问题.1、如图, ABN CBN ∠=∠, P 为BN 上的一点,并且PD BC ⊥于点D ,2AB BC BD +=,求证:180BAP BCP ∠+∠=︒.2、如图,在ABC ∆中,CD 是ACB ∠的平分线,AD CD ⊥于点D ,DE //BC 交AB 于点E ,求证:EA EB =.3、已知:如图7,2,,AB AC BAD CAD DA DB =∠=∠=,求证:DC AC ⊥.4、如图,AB //CD ,AE 、DE 分别平分BAD ∠和ADC ∠.探究:在线段AD 上是否存在点M ,使得2AD EM =.【基础训练】1、如图所示,在四边形ABCD中,DC//AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线交AD,AC于点E、F,则BFEF的值是___________.2、如图,D是△ABC的BC边的中点,AE平分∠BAC,AE⊥CE于点E,且AB =10,AC =16,则DE的长度为______3、如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ =13CE时,EP+BP =________.【巩固提升】1、如图,F,G是OA上两点,M,N是OB上两点,且FG =MN,S△PFG=S△PMN,试问点P是否在∠AOB 的平分线上?2、已知:在△ABC中,∠B的平分线和外角∠ACE的平分线相交于D,DG//BC,交AC于F,交AB于G,求证:GF =BG CF.3、在四边形ABCD中,∠ABC是钝角,∠ABC+∠ADC =180°,对角线AC平分∠BAD.(1)求证:BC =CD;(2)若AB +AD =AC,求∠BCD的度数;4、如图,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,△BDG与四边形ACDG的周长相等,设BC =a、AC =b、AB =c.(1)求线段BG的长(2)求证:DG平分∠EDF.5、如图,BA⊥MN,垂足为A,BA=4,点P是射线AN上的一个动点(点P与点A不重合),∠B PC=∠BP A,BC⊥BP,过点C作CD⊥MN,垂足为D,设AP=x.CD的长度是否随着x的变化而变化?若变化,请用含x的代数式表示CD的长度;若不变化,请求出线段CD的长度.6、已知:平面直角坐标系中,四边形OABC的顶点分别为0(0,0)、A(5,0)、B(m,2)、C(m-5,2).(1)问:是否存在这样的m,使得在边BC上总存在点P,使∠OP A=90°?若存在,求出m的取值范围;若不存在,请说明理由.(2)当∠AOC与∠OAB的平分线的交点Q在边BC上时,求m的值.7、我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”。

【精品】初中数学八年级上册《三角形的高、中线与角平分线》基础练习

【精品】初中数学八年级上册《三角形的高、中线与角平分线》基础练习

《三角形的高、中线与角平分线》基础练习一、选择题(本大题共5小题,共25.0分)1.(5分)用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是()A.B.C.D.2.(5分)下面四个图形中,线段BD是△ABC的高的是()A.B.C.D.3.(5分)如图,四个图形中,线段BE是△ABC的高的图是()A.B.C.D.4.(5分)如图所示,△ABC中AC边上的高线是()A.线段DA B.线段BA C.线段BC D.线段BD5.(5分)如图AD⊥BC于点D,那么图中以AD为高的三角形有()个A.3B.4C.5D.6二、填空题(本大题共5小题,共25.0分)6.(5分)如图所示:在△AEC中,AE边上的高是.7.(5分)如图,H若是△ABC三条高AD,BE,CF的交点,则△BHA中边BH上的高是.8.(5分)如图,AD是△ABC的中线,已知△ABD的周长为25cm,AB比AC长6cm,则△ACD的周长为cm.9.(5分)BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是.10.(5分)如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30°,∠2=20°,则∠B=.三、解答题(本大题共5小题,共50.0分)11.(10分)已知△ABC,如图,过点A画△ABC的角平分线AD、中线AE和高线AF.12.(10分)如图,在△ABC中,AC=8,BC=4,高BD=3,试作出BC边上的高AE,并求AE的长.13.(10分)如图,△ABC的三条高AD、BE、CF相交于点O.(1)在△BOC中,OB边上的高是,OC边上的高是,BC边上的高是.(2)在△AOC中,OA边上的高是,OC边上的高是,AC边上的高是.(3)在△AOB中,OA边上的高是,OB边上的高是,AB边上的高是.14.(10分)如图,已知CD是△ABC的中线,AC=9cm,BC=3cm,那么△ACD和△BCD 的周长之差是多少?15.(10分)如图,AD、AE分别是△ABC中∠A的内角平分线和外角平分线,它们有什么关系?《三角形的高、中线与角平分线》基础练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是()A.B.C.D.【分析】根据高线的定义即可得出结论.【解答】解:B,C,D都不是△ABC的边BC上的高,故选:A.【点评】本题考查的是作图﹣基本作图,熟知三角形高线的定义是解答此题的关键.2.(5分)下面四个图形中,线段BD是△ABC的高的是()A.B.C.D.【分析】根据高的画法知,过点B作AC边上的高,垂足为E,其中线段BD是△ABC 的高.【解答】解:由图可得,线段BD是△ABC的高的图是D选项.故选:D.【点评】本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.3.(5分)如图,四个图形中,线段BE是△ABC的高的图是()A.B.C.D.【分析】根据三角形高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高,再结合图形进行判断.【解答】解:过点B作AC边上的高,垂足为E,则线段BE是△ABC的高的图是选项C.故选:C.【点评】本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.熟记定义是解题的关键.4.(5分)如图所示,△ABC中AC边上的高线是()A.线段DA B.线段BA C.线段BC D.线段BD【分析】从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.【解答】解:由图可得,△ABC中AC边上的高线是BD,故选:D.【点评】本题主要考查了三角形的高线,钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.5.(5分)如图AD⊥BC于点D,那么图中以AD为高的三角形有()个A.3B.4C.5D.6【分析】由于AD⊥BC于D,图中共有6个三角形,它们都有一边在直线CB上,由此即可确定以AD为高的三角形的个数.【解答】解:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有6个,∴以AD为高的三角形有6个.故选:D.【点评】此题主要考查了三角形的高,三角形的高可以在三角形外,也可以在三角形内,所以确定三角形的高比较灵活.二、填空题(本大题共5小题,共25.0分)6.(5分)如图所示:在△AEC中,AE边上的高是CD.【分析】从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.根据三角形中高线的概念即可作答.【解答】解:由题意可得:△AEC中,AE边上的高是CD,故答案为:CD.【点评】本题考查了三角形高线的概念,三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.7.(5分)如图,H若是△ABC三条高AD,BE,CF的交点,则△BHA中边BH上的高是AE.【分析】直接利用三角形高线的定义得出答案.【解答】解:如图所示:∵H是△ABC三条高AD,BE,CF的交点,∴△BHA中边BH上的高是:AE.故答案为:AE.【点评】此题主要考查了三角形的高,正确钝角三角形高线的作法是解题关键.8.(5分)如图,AD是△ABC的中线,已知△ABD的周长为25cm,AB比AC长6cm,则△ACD的周长为19cm.【分析】根据三角形中线的定义可得BD=CD,再表示出△ABD和△ACD的周长的差就是AB、AC的差,然后计算即可.【解答】解:∵AD是BC边上的中线,∴BD=CD,∴△ABD和△ACD周长的差=(AB+BD+AD)﹣(AC+AD+CD)=AB﹣AC,∵△ABD的周长为25cm,AB比AC长6cm,∴△ACD周长为:25﹣6=19cm.故答案为19.【点评】本题主要考查了三角形的中线的定义,把三角形的周长的差转化为已知两边AB、AC的长度的差是解题的关键.9.(5分)BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是2.【分析】根据三角形的中线的定义可得AD=CD,再求出△ABD和△BCD的周长的差=AB﹣BC.【解答】解:∵BD是△ABC的中线,∴AD=CD,∴△ABD和△BCD的周长的差=(AB+BD+AD)﹣(BC+BD+CD)=AB﹣BC,∵AB=5,BC=3,∴△ABD和△BCD的周长的差=5﹣3=2.故答案为:2.【点评】本题考查了三角形的角平分线、中线和高线,熟记概念并求出两个三角形的周长的差等于AB﹣BC是解题的关键.10.(5分)如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30°,∠2=20°,则∠B=50°.【分析】由AE平分∠BAC,可得角相等,由∠1=30°,∠2=20°,可求得∠EAD的度数,在直角三角形ABD在利用两锐角互余可求得答案.【解答】解:∵AE平分∠BAC,∴∠1=∠EAD+∠2,∴∠EAD=∠1﹣∠2=30°﹣20°=10°,Rt△ABD中,∠B=90°﹣∠BAD=90°﹣30°﹣10°=50°.故答案为50°.【点评】本题考查了三角形的角平分线、中线和高的相关知识;求得∠EAD=10°是正确解答本题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)已知△ABC,如图,过点A画△ABC的角平分线AD、中线AE和高线AF.【分析】分别根据角平分线、三角形高线作法以及垂直平分线的作法得出答案即可.【解答】解:由题意画图可得:【点评】此题主要考查了复杂作图中线段垂直平分线的作法以及角平分线作法等知识,熟练掌握作图方法是关键.12.(10分)如图,在△ABC中,AC=8,BC=4,高BD=3,试作出BC边上的高AE,并求AE的长.【分析】利用等积法求得AE的长度即可.【解答】解:如图,过点A作BC边上的高线AE,交CB延长线于点E.∵BC•AE=AC •BD,AC=8,BC=4,高BD=3,∴×4AE=×8×3,则AE=6.【点评】本题考查了三角形的角平分线、中线和高,熟记三角形的面积公式即可解题,属于基础题.13.(10分)如图,△ABC的三条高AD、BE、CF相交于点O.(1)在△BOC中,OB边上的高是CE,OC边上的高是BF,BC边上的高是OD.(2)在△AOC中,OA边上的高是CD,OC边上的高是AF,AC边上的高是OE.(3)在△AOB中,OA边上的高是BD,OB边上的高是AE,AB边上的高是OF.【分析】从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高,根据三角形高的定义判断.【解答】解:(1)由图可得,在△BOC中,OB边上的高是CE,OC边上的高是BF,BC 边上的高是OD.(2)由图可得,在△AOC中,OA边上的高是CD,OC边上的高是AF,AC边上的高是OE.(3)由图可得,在△AOB中,OA边上的高是BD,OB边上的高是AE,AB边上的高是OF.故答案为:CE,BF,OD;CD,AF,OE;BD,AE,OF.【点评】本题主要考查了三角形高线的定义,解决问题的关键是掌握:钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.14.(10分)如图,已知CD是△ABC的中线,AC=9cm,BC=3cm,那么△ACD和△BCD 的周长之差是多少?【分析】利用中线的定义可知BD=AD,可知△ACD和△BCD的周长之差即为AC和BC 的差,可求得答案.【解答】解:∵CD是△ABC的中线,∴AD=BD,∵△ACD周长=AC+CD+AD,△BCD周长=BC+CD+BD,∴△ACD周长﹣△BCD周长=(AC+CD+AD)﹣(BC+CD+BD)=AC﹣BC=9﹣3=6(cm),即△ACD和△BCD的周长之差是6cm.【点评】本题主要考查三角形中线的定义,由条件得出两三角形的周长之差即为AC和BC的差是解题的关键.15.(10分)如图,AD、AE分别是△ABC中∠A的内角平分线和外角平分线,它们有什么关系?【分析】根据角平分线的定义和邻补角的定义可得∠DAE=90°,从而得到AD⊥AE.【解答】解:AD⊥AE,理由如下:∵AD、AE分别是△ABC中∠A的内角平分线和外角平分线,∴∠DAE=∠DAC+∠EAC=∠BAC+∠CAF=(∠BAC+∠CAF)=×180°=90°,∴AD⊥AE.【点评】本题考查了三角形的角平分线:三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线,也考查了邻补角的定义以及垂直的定义.。

角平分线练习题(答案)

角平分线练习题(答案)

角平分线练习题①如图,OM是∠AOB的角平分线,ON是∠BOC的角平分线,若∠AOC=120°,∠CON=38°,求∠AOM的度数。

答案:22°解析:根据OM与ON是角分线,所以∠AOC=2∠MON,∠MON=120°÷2=60°∠BON=∠CON=38°,所以∠AOM=∠BOM=60°-38°=22°②如图,O是直线AB上一点,∠BOC=36°,OD平分∠AOC,∠DOE=90°,求∠AOE的度数。

答案:18°解析:因为AB是直线,所以∠AOB=180°。

∠AOC=∠AOB-∠BOC=180°-36°=144°。

所以∠AOD=144°÷2=72°∠AOE=∠DOE-∠AOD=90°-72°=18°③如图OM是∠AOB的角平分线,ON是∠COD的角平分线,已知∠MON=90°,∠AOD=140°,求∠BOC的度数。

答案:40°解析:根据OM与ON是角分线,可知∠AOD=2∠MON-∠BOC(推导过程略)所以∠BOC=2∠MON-∠AOD=90°×2 - 140°= 40°④已知∠AOB=80°,∠BOC=30°,OM平分∠AOB,ON平分∠BOC,求∠MON的度数。

答案:25°或55°解析:由于没有给出具体图形,所以需要分类讨论。

当OC在OA与OB之间时,∠MON=∠MOB-∠NOB=40°-15°=25°当OB在OA与OC之间时,∠MON=∠MOB+∠NOB=40°+15°=55°⑤如图OM是∠AOC的角平分线,ON是∠BOD的角平分线,已知∠BOC=26°,∠AOD=150°,求∠MON的度数。

《4 角平分线》(同步训练)初中数学八年级下册_北师大版_2024-2025学年

《4 角平分线》(同步训练)初中数学八年级下册_北师大版_2024-2025学年

《4 角平分线》同步训练(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、在等腰三角形ABC中,AB=AC,点D是边BC上的任意一点,若AD平分∠BAC,则以下说法正确的是()A. ∠BAD = ∠CADB. ∠BAD = ∠BC. ∠BAD = ∠CAD/2D. ∠BAD = ∠B/22、在等边三角形ABC中,点D是边AB上的任意一点,若DE是∠BAC的角平分线,则以下说法正确的是()A. ∠ADE = ∠BB. ∠ADE = ∠CC. ∠ADE = (∠B + ∠C)/2D. ∠ADE = (∠B - ∠C)/23、在等腰三角形ABC中,AB=AC,点D在边AC上,且AD=BD。

若∠ABC的度数为50°,则∠ADB的度数为:A. 40°B. 50°C. 60°D. 70°4、在四边形ABCD中,对角线AC和BD相交于点O,且AO=CO,BO=DO。

如果∠AOD 的度数为60°,则下列说法正确的是:A. 四边形ABCD是菱形B. 四边形ABCD是矩形C. 四边形ABCD是等腰梯形D. 四边形ABCD是平行四边形5、在△ABC中,若∠BAC=50°,点D在BC边上,且∠ADB=40°,∠ADC=30°,则∠BDC的度数是:A. 30°B. 40°C. 50°D. 70°6、已知点P是等腰三角形ABC的底边BC的中点,点D在AB上,且∠APD=60°,∠B=70°,则∠A的度数是:A. 30°B. 40°C. 70°D. 80°7、在等腰三角形ABC中,AB=AC,D是BC的中点,E是AD的延长线上的一点,且AE=AD。

那么下列说法正确的是:A. BE=ECB. ∠B=∠CC. ∠AED=∠BEAD. ∠BEC=∠BDE8、在等腰三角形ABC中,AB=AC,点D在BC上,且BD=DC。

2022年初中数学精选《角平分线的尺规作图》课时练(附答案)

2022年初中数学精选《角平分线的尺规作图》课时练(附答案)

第1课时角平分线的尺规作图一.选择题〔共2小题〕1.〔2021秋•永定县期末〕用尺规作角平分线的依据是〔〕A.S AS B.A SA C.A AS D.S SS2.作△ABC的高AD、中线AE、角平分线AF,三者中有可能在△ABC的外部是〔〕A.A D B.A E C.A F D.都有可能二.填空题〔共1小题〕3.用直尺和圆规作一个角的角平分线示意图如下列图,那么说明∠AOC=∠BOC的依据是.三.解答题〔共4小题〕4.作图题:作∠AOB的角平分线〔要求:写出作法,作出图形〕5.:如图△ABC.求作:①AC边上的高BD;②△ABC的角平分线CE.6.∠α,求作一个角∠β,使得∠β=∠α,并作∠β的角平分线.7.如下列图,△ABC:〔1〕过A画出中线AD;〔2〕画出角平分线CE;〔3〕作AC边上的高BF.8.1 二元一次方程组一、选择题:1.以下方程中,是二元一次方程的是〔〕A.3x-2y=4z B.6xy+9=0C.1x+4y=6 D.4x=24y-2.以下方程组中,是二元一次方程组的是〔〕A.228 423119 (23754624)x yx y a b xB C Dx y b c y x x y+= +=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5a-11b=21 〔〕A.有且只有一解B.有无数解C.无解D.有且只有两解4.方程y=1-x与3x+2y=5的公共解是〔〕A.3333...2422 x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.以下各式,属于二元一次方程的个数有〔〕①xy+2x-y=7;②4x+1=x-y;③1x+y=5;④x=y;⑤x2-y2=2⑥6x-2y ⑦x+y+z=1 ⑧y〔y-1〕=2y2-y2+xA.1 B.2 C.3 D.46.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,那么下面所列的方程组中符合题意的有〔〕A.246246216246... 22222222 x y x y x y x yB C Dy x x y y x y x+=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩二、填空题7.方程2x+3y-4=0,用含x的代数式表示y为:y=_______;用含y的代数式表示x为:x=________.8.在二元一次方程-12x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.9.假设x3m-3-2y n-1=5是二元一次方程,那么m=_____,n=______.10.2,3xy=-⎧⎨=⎩是方程x-ky=1的解,那么k=_______.11.二元一次方程x+y=5的正整数解有______________.12.以57xy=⎧⎨=⎩为解的一个二元一次方程是_________.13.2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,那么m=_______,n=______.三、解答题14.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2〔关于x,y的方程〕有相同的解,求a的值.15.如果〔a-2〕x+〔b+1〕y=13是关于x,y的二元一次方程,那么a,b满足什么条件?17.x,y是有理数,且〔│x│-1〕2+〔2y+1〕2=0,那么x-y的值是多少?18.根据题意列出方程组:〔1〕明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?〔2〕将假设干只鸡放入假设干笼中,假设每个笼中放4只,那么有一鸡无笼可放;假设每个笼里放5只,那么有一笼无鸡可放,问有多少只鸡,多少个笼?。

2022年初中数学解题模型之图形认识初步-双角平分线(含答案)

2022年初中数学解题模型之图形认识初步-双角平分线(含答案)

初中数学解题模型之图形认识初步(双角平分线)一.选择题(共10小题)1.(2013秋•长清区期末)如图,OB是∠AOC的平分线,OD是∠COE的平分线,如果∠AOB=50°,∠COE=60°,则下列结论错误的是()A.∠AOE=110°B.∠BOD=80°C.∠BOC=50°D.∠DOE=30°2.(2012春•巴南区期中)如图,∠AOB是平角,OD平分∠BOC,OE平分∠AOC,那么∠AOE的余角有()A.1个B.2个C.3个D.4个3.(2021秋•肥西县期末)如图,OC是∠AOB的平分线,OD是∠BOC的平分线,那么下列各式中正确的是()A.∠COD=∠AOB B.∠AOD=∠AOBC.∠BOD=∠AOD D.∠BOC=∠AOD4.(2016秋•昆山市校级期末)如图,∠AOB=120°,射线OC是∠AOB内部任意一条射线,OD,OE分别是∠AOC,∠BOC的角平分线,下列叙述正确的是()A.∠DOE的度数不能确定B.∠AOD=∠EOCC.∠AOD+∠BOE=60°D.∠BOE=2∠COD5.(2015秋•薛城区期末)如图,∠AOB=130°,射线OC是∠AOB内部任意一条射线,OD、OE分别是∠AOC、∠BOC的平分线,下列叙述正确的是()A.∠DOE的度数不能确定B.∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°C.∠BOE=2∠CODD.∠AOD=6.(2013秋•洛阳期末)如图,∠AOB=130°,射线OC是∠AOB内部任意一条射线,OD、OE分别是∠AOC、∠BOC的平分线,下列叙述正确的是()A.∠DOE的度数不能确定B.∠AOD=EOCC.∠BOE=2∠COD D.∠AOD+∠BOE=65°7.(2021秋•彭水县期末)如图,已知∠AOB=20°,∠AOE=110°,OB平分∠AOC,OD 平分∠AOE,则∠COD的度数为()A.8°B.10°C.15°D.18°8.(2021秋•朝阳区期末)如图,射线OC、OD把平角∠AOB三等分,OE平分∠AOC,OF平分∠BOD.下列说法正确的是()A.图中只有两个120°的角B.图中只有∠DOE是直角C.图中∠AOC的补角有3个D.图中∠AOE的余角有2个9.(2017秋•淮安区期末)如图,∠AOB=130°,射线OC是∠AOB内部任意一条射线,OD、OE分别是∠AOC、∠BOC的角平分线,下列叙述正确的是()A.∠DOE的度数不能确定B.∠AOD=∠EOCC.∠AOD+∠BOE=65°D.∠BOE=2∠COD10.(2021秋•武城县期末)如图,∠AOB=120°,OC是∠AOB内部任意一条射线,OD,OE分别是∠AOC,∠BOC的角平分线,下列叙述正确的是()A.∠AOD+∠BOE=60°B.∠AOD=∠EOCC.∠BOE=2∠COD D.∠DOE的度数不能确定二.填空题(共10小题)11.(2021秋•长春期末)如图,EF、EG分别是∠AEB和∠BEC的平分线.若∠BEF=30°,则∠BEG=°.12.(2021秋•盐城月考)如图,OB平分∠AOC,OD平分∠COE,∠AOC=100°,∠EOC=40°,则∠BOD的度数为°.13.(2020秋•青岛期末)如图,∠AOB=180°,OD是∠BOC的平分线,OE是∠AOC的平分线,则图中与∠COD互补的角是.14.(2021秋•天河区期末)如图,∠AOB=90°,OC是∠AOB里任意一条射线,OD,OE 分别平分∠AOC,∠BOC,则∠DOE=.15.(2021秋•金塔县期末)如图,∠AOB中,OD是∠BOC的平分线,OE是∠AOC的平分线,若∠AOB=140°,则∠EOD=度.16.(2020秋•江津区期末)若∠AOB=50°,∠BOC=30°,OM、ON分别是∠AOC、∠BOC的平分线,则∠MON的度数为°.17.(2021秋•义乌市月考)已知∠AOC=70°,∠COE=30°,OB是∠AOC的平分线,OD是∠COE的平分线,则∠BOD的度数为度.18.(2020秋•东西湖区期末)已知∠AOB=30°,∠AOC=4∠AOB,OM平分∠AOB,ON 平分∠AOC,则∠MON的度数是.19.(2020秋•黄岛区期末)平面内有公共端点的三条射线OA,OB,OC,构成的角∠AOB =30°,∠BOC=70°,OM和ON分别是∠AOB和∠BOC的角平分线,则∠MON的度数是.20.(2021秋•青羊区校级期中)已知∠AOB=100°,射线OC在同平面内绕点O旋转,射线OE,OF分别是∠AOC和∠COB的角平分线,则∠EOF的度数为.三.解答题(共5小题)21.(2021秋•细河区期末)如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB是直角,∠BOC=60°时,求∠MON的度数是多少?(2)如图2,当∠AOB=α,∠BOC=60°时,尝试发现∠MON与α的数量关系;(3)如图3,当∠AOB=α,∠BOC=β时,①猜想:∠MON与α、β有数量关系吗?直接写出结论即可;②当∠CON=3∠BOM时,直接写出α、β之间的数量关系.22.(2021秋•澄海区期末)如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)如果∠AOC=70°,∠COE=50°,求∠BOD的度数;(2)如果∠AOE=160°,求∠BOD的度数;(3)如果OM平分∠AOE,∠COD:∠BOC=2:3,∠COM=15°,求∠BOD的度数.23.(2021秋•义乌市期末)如图,已知OB是∠AOC内一条射线,OE平分∠AOC,OF平分∠BOC.(1)若AO⊥BO,∠BOC=60°,求∠EOF的度数;(2)试判断∠AOB=2∠EOF是否成立.并请说明理由.24.(2021秋•金水区校级期末)已知OC为一条射线,OM平分∠AOC,ON平分∠BOC.(1)如图1,当∠AOB=60°,OC为∠AOB内部任意一条射线时,∠MON=;(2)如图2,当∠AOB=60°,OC旋转到∠AOB的外部时,∠MON=;(3)如图3,当∠AOB=α,OC旋转到∠AOB(∠BOC<120°)的外部时,求∠MON,请借助图3填空.解:因为OM平分∠AOC,ON平分∠BOC所以∠COM=∠AOC,∠CON=∠BOC(依据是)所以∠MON=∠COM﹣=∠AOC﹣=.25.(2021秋•红河州期末)已知∠AOB=70°,如图1,OC为∠AOB内部任意一条射线,OM平分∠AOC,ON平分∠BOC.(1)求∠MON的度数;(2)如图2,当OC在∠AOB的外部且∠BOC<70°时,其他条件不变,∠MON的度数会发生变化吗?请说明理由.初中数学解题模型之图形认识初步(双角平分线)参考答案与试题解析一.选择题(共10小题)1.(2013秋•长清区期末)如图,OB是∠AOC的平分线,OD是∠COE的平分线,如果∠AOB=50°,∠COE=60°,则下列结论错误的是()A.∠AOE=110°B.∠BOD=80°C.∠BOC=50°D.∠DOE=30°【考点】角的计算;角平分线的定义.【分析】根据角平分线的性质,角的和差倍分关系计算作答.【解答】解:∵OB是∠AOC的平分线,OD是∠COE的平分线,如果∠AOB=50°,∠COE=60°,∴A、∠AOE=2∠AOB+∠COE=160°,故错误;B、∠BOD=∠BOC+∠COD=∠AOB+∠COE=80°,故正确;C、∠BOC=∠AOB=50°,故正确;D、∠DOE=∠COE=30°,故正确.故选:A.【点评】本题结合角平分线的性质考查了角的和差倍分关系计算.2.(2012春•巴南区期中)如图,∠AOB是平角,OD平分∠BOC,OE平分∠AOC,那么∠AOE的余角有()A.1个B.2个C.3个D.4个【考点】余角和补角;角平分线的定义.【分析】利用角平分线的定义以及平角的定义,可知∠EOC与∠COD互余,∠AOE与∠BOD互余.而∠AOE=∠EOC,故可知∠AOE的余角有两个.【解答】解:∵OD平分∠BOC,OE平分∠AOC∴∠AOE=∠EOC,∠COD=∠BOD又∵∠AOB是平角∴∠EOC+∠COD=90°即∠DOE=90°∴∠AOE+∠BOD=∠AOE+∠COD=90°.故选:B.【点评】本题主要考查了平角,平分线的定义,余角的定义,是一个基本的类型.3.(2021秋•肥西县期末)如图,OC是∠AOB的平分线,OD是∠BOC的平分线,那么下列各式中正确的是()A.∠COD=∠AOB B.∠AOD=∠AOBC.∠BOD=∠AOD D.∠BOC=∠AOD【考点】角平分线的定义.【分析】根据角平分线定义,得出角与角的关系.再根据选项选取正确答案.【解答】解:∵OC是∠AOB的平分线,OD是∠BOC的平分线,∴∠BOC=∠AOC=∠AOB,∠BOD=∠AOC=∠BOC,∴∠BOC=∠AOD,故选:D.【点评】根据角平分线定义得出所求角与已知角的关系转化求解.4.(2016秋•昆山市校级期末)如图,∠AOB=120°,射线OC是∠AOB内部任意一条射线,OD,OE分别是∠AOC,∠BOC的角平分线,下列叙述正确的是()A.∠DOE的度数不能确定B.∠AOD=∠EOCC.∠AOD+∠BOE=60°D.∠BOE=2∠COD【考点】角的计算.【分析】根据角的平分线的定义以及角的和差即可判断.【解答】解:∵OD,OE分别是∠AOC,∠BOC的角平分线∴∠COD=∠AOC,∠EOC=∠BOC,∴∠DOE=∠COD+∠EOC=∠AOC+∠BOC=(∠AOC+∠BOC)=∠AOB=×120°=60°.故C正确;而OC是∠AOB内部任意一条射线,则∠BOC和∠AOC的大小无法确定,则A、B、D错误.故选:C.【点评】本题考查了角的平分线的定义以及角的和差关系,正确理解∠DOE=∠AOB 是关键.5.(2015秋•薛城区期末)如图,∠AOB=130°,射线OC是∠AOB内部任意一条射线,OD、OE分别是∠AOC、∠BOC的平分线,下列叙述正确的是()A.∠DOE的度数不能确定B.∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°C.∠BOE=2∠CODD.∠AOD=【考点】角平分线的定义.【分析】本题是对角的平分线的性质的考查,角平分线将角分成相等的两部分.结合选项得出正确结论.【解答】解:∵OD、OE分别是∠AOC、∠BOC的平分线,∴∠AOD=∠COD、∠EOC=∠BOE,又∵∠AOD+∠BOE+∠EOC+∠COD=∠AOB=130°,∴∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°.故选:B.【点评】本题是对角平分线的性质的考查.然后根据角平分线定义得出所求角与已知角的关系转化求解.6.(2013秋•洛阳期末)如图,∠AOB=130°,射线OC是∠AOB内部任意一条射线,OD、OE分别是∠AOC、∠BOC的平分线,下列叙述正确的是()A.∠DOE的度数不能确定B.∠AOD=EOCC.∠BOE=2∠COD D.∠AOD+∠BOE=65°【考点】角的计算.【专题】计算题.【分析】本题是对角的平分线的性质的考查,角平分线将角分成相等的两部分.结合选项得出正确结论.【解答】解:∵OD、OE分别是∠AOC、∠BOC的平分线,∴∠AOD=∠COD、∠EOC=∠BOE,又∵∠AOD+∠BOE+∠EOC+∠COD=∠AOB=130°,∴∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°.故选:D.【点评】本题是对角平分线的性质的考查.然后根据角平分线定义得出所求角与已知角的关系转化求解.7.(2021秋•彭水县期末)如图,已知∠AOB=20°,∠AOE=110°,OB平分∠AOC,OD 平分∠AOE,则∠COD的度数为()A.8°B.10°C.15°D.18°【考点】角的计算;角平分线的定义.【专题】线段、角、相交线与平行线;运算能力.【分析】根据∠AOB=20°,OB平分∠AOC,可得∠AOC的度数;根据OD平分∠AOE,∠AOE=110°,可得∠COD的度数,根据角的和差即可求得∠COD的度数.【解答】解:∵OB平分∠AOC,∠AOB=20°,∴∠AOC=2∠AOB=40°,∵OD平分∠AOE,∠AOE=110°,∴∠AOD=∠AOE=55°,∴∠COD=∠AOD﹣∠AOC=55°﹣40°=15°.则∠COD的度数为15°.故选:C.【点评】本题考查了角的计算、角平分线的定义,解决本题的关键是掌握角平分线的定义.8.(2021秋•朝阳区期末)如图,射线OC、OD把平角∠AOB三等分,OE平分∠AOC,OF平分∠BOD.下列说法正确的是()A.图中只有两个120°的角B.图中只有∠DOE是直角C.图中∠AOC的补角有3个D.图中∠AOE的余角有2个【考点】余角和补角;角平分线的定义.【专题】线段、角、相交线与平行线;推理能力.【分析】根据已知条件求出有关角的度数,即可对各个选项作出判断.【解答】解:∵射线OC和OD把平角三等分,∴∠AOC=∠COD=∠BOD=60°,∵OE平分∠AOC,OF平分∠BOD,∴∠COE=∠AOC=30°,∠DOF=∠BOD=30°,∴∠DOE=∠COF=30°+60°=90°,图中120°的角有:∠AOD、∠EOF、∠COB,故A选项不正确;图中直角有∠DOE、∠COF,故B选项不正确;∠AOC=60°,所以它的补角等于120°,图中有三个,故C选项正确;∠AOE=30°,所以它的余角等于60°,图中等于60°的角有三个,故D选项不正确.故选:C.【点评】本题考查了余角和补角、角平分线定义等知识;熟练掌握余角的定义和角平分线定义是解题的关键.9.(2017秋•淮安区期末)如图,∠AOB=130°,射线OC是∠AOB内部任意一条射线,OD、OE分别是∠AOC、∠BOC的角平分线,下列叙述正确的是()A.∠DOE的度数不能确定B.∠AOD=∠EOCC.∠AOD+∠BOE=65°D.∠BOE=2∠COD【考点】角平分线的定义.【专题】线段、角、相交线与平行线.【分析】依据OD、OE分别是∠AOC、∠BOC的平分线,即可得出∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°,结合选项得出正确结论.【解答】解:∵OD、OE分别是∠AOC、∠BOC的平分线,∴∠AOD=∠COD,∠EOC=∠BOE,又∵∠AOD+∠BOE+∠EOC+∠COD=∠AOB=130°,∴∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°.故选:C.【点评】本题是对角的平分线的性质的考查,解题时注意:角平分线将角分成相等的两部分.10.(2021秋•武城县期末)如图,∠AOB=120°,OC是∠AOB内部任意一条射线,OD,OE分别是∠AOC,∠BOC的角平分线,下列叙述正确的是()A.∠AOD+∠BOE=60°B.∠AOD=∠EOCC.∠BOE=2∠COD D.∠DOE的度数不能确定【考点】角的计算;角平分线的定义.【专题】计算题;线段、角、相交线与平行线;几何直观;推理能力.【分析】由角平分线的定义,角的和差计算得∠AOD+∠BOE=60°,故答案选A.【解答】解:如图所示:∵OD,OE分别是∠AOC,∠BOC的角平分线,∴∠AOD=∠DOC=,∠COE=∠BOE=,又∵∠AOB=∠AOC+∠BOC=120°,∴∠AOD+∠BOE=60°,故选:A.【点评】本题综合考查了角平分线的定义,角的和差等相关知识点,重点掌握角的计算.二.填空题(共10小题)11.(2021秋•长春期末)如图,EF、EG分别是∠AEB和∠BEC的平分线.若∠BEF=30°,则∠BEG=60°.【考点】角的计算;角平分线的定义.【专题】线段、角、相交线与平行线;运算能力.【分析】根据双角平分线先求出∠FEG的度数,再减去∠BEF即可.【解答】解:∵EF、EG分别是∠AEB和∠BEC的平分线,∴∠BEG=∠BEC,∠BEF=∠BEA,∴∠FEG=∠BEG+∠BEF==∠BEC+∠BEA=(∠BEC+∠BEA)=∠CEA=×180°=90°,∵∠BEF=30°,∴∠BEG=∠FEG﹣∠BEF=90°﹣30°=60°,故答案为:60.【点评】本题考查了角的计算,角平分线的定义,根据双角平分线求出∠FEG的度数是解题的关键.12.(2021秋•盐城月考)如图,OB平分∠AOC,OD平分∠COE,∠AOC=100°,∠EOC =40°,则∠BOD的度数为70°.【考点】角的计算;角平分线的定义.【专题】线段、角、相交线与平行线;运算能力.【分析】根据角平分线的定义可求出∠BOC=∠AOC,∠COD=∠COE,从而可求出∠BOD的度数.【解答】解:∵OB平分∠AOC,OD平分∠COE,∠AOC=100°,∠EOC=40°,∴∠BOC=∠AOC=50°,∠COD=∠COE=20°,∴∠DOB=∠COD+∠COB=70°;故答案为:70.【点评】本题考查角平分线的定义,解题的关键是求出∠BOC=∠AOC,∠COD=∠COE,本题属于基础题型.13.(2020秋•青岛期末)如图,∠AOB=180°,OD是∠BOC的平分线,OE是∠AOC的平分线,则图中与∠COD互补的角是∠AOD.【考点】余角和补角;角平分线的定义.【专题】线段、角、相交线与平行线;推理能力.【分析】根据角平分线的性质,可得∠AOE=∠COE,∠COD=∠BOD,再根据补角的定义求解即可.【解答】解:∵OD是∠BOC的平分线,∴∠COD=∠BOD,∵∠BOD+∠AOD=180°,∴∠COD+∠AOD=180°,∴与∠COD互补的是∠AOD.故答案为:∠AOD.【点评】本题考查了补角的定义,角平分线的定义等知识,解答本题的关键是理解补角的定义,掌握角平分线的性质.14.(2021秋•天河区期末)如图,∠AOB=90°,OC是∠AOB里任意一条射线,OD,OE 分别平分∠AOC,∠BOC,则∠DOE=45°.【考点】角平分线的定义.【专题】线段、角、相交线与平行线;运算能力.【分析】由角平分线可得∠DOE=∠AOB,再将已知代入即可.【解答】解:∵OD平分∠AOC,∴∠COD=∠AOD,∵OE平分∠BOC,∴∠COE=∠BOE,∴∠DOE=∠AOB,∵∠AOB=90°,∴∠DOE=45°,故答案为:45°.【点评】本题考查角平分线的性质,熟练掌握角平分线的性质,灵活应用角的和差关系是解题的关键.15.(2021秋•金塔县期末)如图,∠AOB中,OD是∠BOC的平分线,OE是∠AOC的平分线,若∠AOB=140°,则∠EOD=70度.【考点】角的计算;角平分线的定义.【分析】由图形可知∠DOE=∠DOC+∠EOC,然后根据角平分线的性质,可推出∠DOC=∠BOC,∠EOC=∠AOC,由此可推出∠DOE=∠AOB,最后根据∠AOB的度数,即可求出结论.【解答】解:∵OD是∠BOC的平分线,OE是∠AOC的平分线,∴∠DOC=∠BOC,∠EOC=∠AOC,∴∠DOE=∠DOC+∠EOC=∠AOB,∵∠AOB=140°,∴∠EOD=70°.故答案为70.【点评】本题主要考查角平分线的性质,关键在于运用数形结合的思想推出∠DOE=∠DOC+∠EOC=∠AOB.16.(2020秋•江津区期末)若∠AOB=50°,∠BOC=30°,OM、ON分别是∠AOC、∠BOC的平分线,则∠MON的度数为25°.【考点】角的计算;角平分线的定义.【专题】分类讨论;线段、角、相交线与平行线;推理能力.【分析】画出符合的两种图形,根据角平分线定义求出∠MOC和∠NOC的度数,即可求出∠MON.【解答】解:当射线OC位于∠AOB内部时,∵∠AOB=50°,∠BOC=30°,∴∠AOC=50°﹣30°=20°,∵OM,ON分别是∠AOC和∠BOC的角平分线,∴∠COM=∠AOC=10°,∠CON=∠BOC=15°,∴∠MON=∠MOC+∠NOC=10°+15°=25°;当射线OC位于∠AOB外部时,∵∠AOB=50°,∠BOC=30°,∴∠AOC=50°+30°=80°,∵OM,ON分别是∠AOC和∠BOC的角平分线,∴∠COM=∠AOC=40°,∠CON=∠BOC=15°,∠MON=∠MOC﹣∠NOC=54°﹣15°=25°;所以∠MON的度数是25°.故答案为:25.【点评】本题主要考查了角平分线的定义,解题的关键是利用了角平分线的定义和图中各角之间的和差关系,难度中等.17.(2021秋•义乌市月考)已知∠AOC=70°,∠COE=30°,OB是∠AOC的平分线,OD是∠COE的平分线,则∠BOD的度数为50°或20°度.【考点】角的计算;角平分线的定义.【专题】线段、角、相交线与平行线;运算能力.【分析】分两种情况求解:当OE在∠AOC外时,∠BOD=∠BOC+∠COD=35°+15°=50°;当OE在∠AOC内时,∠BOD=∠BOC﹣∠COD=35°﹣15°=20°.【解答】解:如图1,当OE在∠AOC外时,∵OB是∠AOC的平分线,∴∠BOC=∠AOC,∵∠AOC=70°,∴∠BOC=35°,∵OD是∠COE的平分线,∴∠COD=∠COE,∵∠COE=30°,∴∠COD=15°,∴∠BOD=∠BOC+∠COD=35°+15°=50°;如图2,当OE在∠AOC内时,∵OB是∠AOC的平分线,∴∠BOC=∠AOC,∵∠AOC=70°,∴∠BOC=35°,∵OD是∠COE的平分线,∴∠COD=∠COE,∵∠COE=30°,∴∠COD=15°,∴∠BOD=∠BOC﹣∠COD=35°﹣15°=20°;综上所述:∠BOD的度数是50°或20°,故答案为:50°或20°.【点评】本题考查角的计算,熟练掌握角平分线的定义,灵活运用角的和差关系,准确画出图形是解题的关键.18.(2020秋•东西湖区期末)已知∠AOB=30°,∠AOC=4∠AOB,OM平分∠AOB,ON 平分∠AOC,则∠MON的度数是45°或75°.【考点】角的计算;角平分线的定义.【专题】线段、角、相交线与平行线;几何直观.【分析】分为两种情况,当∠AOB在∠AOC内部时,当∠AOB在∠AOC外部时,分别求出∠AOM和∠AON度数,即可求出答案.【解答】解:分为两种情况:如图1,当∠AOB在∠AOC内部时,∵∠AOB=30°,∠AOC=4∠AOB,∴∠AOC=120°,∵OM平分∠AOB,ON平分∠AOC,∴∠AOM=∠AOB=15°,∠AON=∠AOC=60°,∴∠MON=∠AON﹣∠AOM=60°﹣15°=45°;如图2,当∠AOB在∠AOC外部时,∠MON=∠AOM+∠AOD=60°+15°=75°.故∠MOD的度数是45°或75°.故答案为:45°或75°.【点评】本题考查了角平分线定义的应用,用了分类讨论思想,注意根据射线OB的位置需要分类讨论.19.(2020秋•黄岛区期末)平面内有公共端点的三条射线OA,OB,OC,构成的角∠AOB =30°,∠BOC=70°,OM和ON分别是∠AOB和∠BOC的角平分线,则∠MON的度数是20°或50°.【考点】角的计算;角平分线的定义.【专题】线段、角、相交线与平行线;运算能力.【分析】有两种情况,一种是射线OA在∠BOC的内部,一种是射线OA在∠BOC的外部,根据∠AOB=30°,∠BOC=70°和OM、ON分别是∠AOB和∠BOC的平分线,分别求出∠BOM、∠BON,然后相加或相减,即可求得答案.【解答】解:有两种情况,(1)射线OA在∠BOC的内部,∵∠AOB=30°,∠BOC=70°,OM、ON分别是∠AOB和∠BOC的平分线,∴∠BOM=∠AOB=×70°=35°,∠BON=∠BOC=×30°=15°,∴∠MON=∠BOM﹣∠BON=35°﹣15°=20°.(2)射线OA在∠BOC的外部.∵∠AOB=30°,∠BOC=70°,OM、ON分别是∠AOB和∠BOC的平分线,∴∠BOM=∠AOB=×70°=35°,∠BON=∠BOC=×30°=15°,∴∠MON=∠BOM+∠BON=35°+15°=50°.故答案为:20°或50°.【点评】本题主要考查学生对角的计算的理解和掌握,解答此题的关键是明确此题有两种情况,不要遗漏.20.(2021秋•青羊区校级期中)已知∠AOB=100°,射线OC在同平面内绕点O旋转,射线OE,OF分别是∠AOC和∠COB的角平分线,则∠EOF的度数为50°或130°.【考点】角的计算;角平分线的定义.【专题】分类讨论;线段、角、相交线与平行线;运算能力.【分析】分射线OC在∠AOB的内部和在∠AOB的外部两种情况讨论解答,画出符合题意的图形,利用已知条件和角平分线的定义分别解答即可.【解答】解:当射线OC在∠AOB的内部时,如图,∵射线OE,OF分别是∠AOC和∠COB的角平分线,∴∠EOC=∠AOC,∠FOC=∠BOC,∴∠EOF=∠EOC+∠FOC=(∠AOC+∠BOC),∵∠AOC+∠BOC=∠AOB=100°,∴∠EOF=50°;当射线OC在∠AOB的外部时,①射线OE,OF中有一个在∠AOB的内部时,如图,∵射线OE,OF分别是∠AOC和∠COB的角平分线,∴∠EOC=∠AOC,∠FOC=∠BOC,∴∠EOF=∠EOC﹣∠FOC=(∠AOC﹣∠BOC),∵∠AOC﹣∠BOC=∠AOB=100°,∴∠EOF=50°;②射线OE,OF两个都在∠AOB的外部时,如图,∵射线OE,OF分别是∠AOC和∠COB的角平分线,∴∠EOC=∠AOC,∠FOC=∠BOC,∴∠EOF=∠EOC+∠FOC=(∠AOC+∠BOC),∵∠AOC+∠BOC=360°﹣∠AOB=260°,∴∠EOF=130°;综上,∠EOF的度数为50°或130°.故答案为:50°或130°.【点评】本题主要考查了角平分线的定义,角的计算,利用分类讨论的思想方法解答是解题的关键.三.解答题(共5小题)21.(2021秋•细河区期末)如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB是直角,∠BOC=60°时,求∠MON的度数是多少?(2)如图2,当∠AOB=α,∠BOC=60°时,尝试发现∠MON与α的数量关系;(3)如图3,当∠AOB=α,∠BOC=β时,①猜想:∠MON与α、β有数量关系吗?直接写出结论即可;②当∠CON=3∠BOM时,直接写出α、β之间的数量关系.【考点】角的计算;角平分线的定义.【专题】数形结合;几何直观.【分析】(1)求出∠AOC的度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC ﹣∠NOC求出即可;(2)求出∠AOC的度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC 求出即可;(3)求出∠AOC的度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC 求出即可.【解答】解(1)∵∠AOB是直角,∴∠AOB=90°,∠BOC=60°,∴∠COA=∠AOB+∠BOC=90°+60°=150°,∵OM平分∠AOC,∴∠COM=∠COA=75°,∵ON平分∠BOC,∴∠CON=∠BOC=30°,∴∠MON=∠COM﹣∠CON=75°﹣30°=45.(2)∵∠AOB=α,∠BOC=60°,∴∠COA=α+60°,∴∠COM=∠COA=(α+60°),∴∠MON=∠COM﹣∠CON=(α+60°)﹣30°=α.(3)①∠MON=α;②β=α或β=α.【点评】本题考查了角相关的计算及角平分线的定义,关键在于学生要认真审题,结合图形完成题目.22.(2021秋•澄海区期末)如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)如果∠AOC=70°,∠COE=50°,求∠BOD的度数;(2)如果∠AOE=160°,求∠BOD的度数;(3)如果OM平分∠AOE,∠COD:∠BOC=2:3,∠COM=15°,求∠BOD的度数.【考点】角平分线的定义;角的计算.【专题】线段、角、相交线与平行线;运算能力.【分析】(1)利用角平分线的定义求出∠BOC和∠∠COD的度数即可解答;(2)利用双角平分线的定义求出∠BOD=∠AOE,即可解答;(3)根据已知设∠COD=2x,则∠BOC=3x,利用角平分线的定义求出∠COE=4x,∠AOC=6x,从而求出∠AOE,再根据OM平分∠AOE,求出∠EOM,最后利用∠COM=15°,进行计算即可解答.【解答】解:(1)∵OB平分∠AOC,∠AOC=70°,∴∠BOC=∠AOC=35°,∵OD平分∠COE,∠COE=50°,∴∠COD=∠COE=25°,∴∠BOD=∠BOC+∠COD=35°+25°=60°;(2)∵OB平分∠AOC,OD平分∠COE,∴∠COD=∠COE,∠BOC=∠AOC,∴∠BOD=∠COD+∠BOC=∠COE+∠AOC=(∠COE+∠AOC)=∠AOE=80°;(3)∵∠COD:∠BOC=2:3,∴设∠COD=2x,则∠BOC=3x,∵OB平分∠AOC,OD平分∠COE,∴∠COE=2∠COD=4x,∠AOC=2∠BOC=6x,∴∠AOE=∠COE+∠AOC=10x,∵OM平分∠AOE,∴∠EOM=∠AOE=5x,∵∠EOM﹣∠COE=∠COM=15°,∴5x﹣4x=15°,∴x=15°,∴∠BOD=∠COD+∠BOC=2x+3x=75°.【点评】本题考查了角平分线的定义,角的计算,熟练掌握双角平分线是解题的关键.23.(2021秋•义乌市期末)如图,已知OB是∠AOC内一条射线,OE平分∠AOC,OF平分∠BOC.(1)若AO⊥BO,∠BOC=60°,求∠EOF的度数;(2)试判断∠AOB=2∠EOF是否成立.并请说明理由.【考点】垂线;角平分线的定义;角的计算.【专题】线段、角、相交线与平行线.【分析】(1)求出∠AOC,根据角平分线性质求出∠EOC=∠AOC=75°,∠FOC=∠BOC=30°,根据∠EOF=∠EOC﹣∠FOC代入求出即可;(2)根据角平分线性质求出∠EOC=∠AOC,∠FOC=∠BOC,根据∠EOF=∠EOC ﹣∠FOC代入求出即可.【解答】解:(1)∵AO⊥BO,∴∠AOB=90°,∵∠BOC=60°,∴∠AOC=∠AOB+∠BOC=150°,∵OE平分∠AOC,OF平分∠BOC,∴∠EOC=∠AOC=75°,∠FOC=∠BOC=30°,∴∠EOF=∠EOC﹣∠FOC=75°﹣30°=45°;(2)成立,理由如下:∵OE平分∠AOC,OF平分∠BOC,∴∠EOC=∠AOC,∠FOC=∠BOC,∴∠EOF=∠EOC﹣∠FOC=(∠AOC﹣∠BOC)=∠AOB,即∠AOB=2∠EOF.【点评】本题考查了角的计算,主要利用了角的平分线的定义,对识图能力有一定要求,快速准确识图是解题的关键.24.(2021秋•金水区校级期末)已知OC为一条射线,OM平分∠AOC,ON平分∠BOC.(1)如图1,当∠AOB=60°,OC为∠AOB内部任意一条射线时,∠MON=30°;(2)如图2,当∠AOB=60°,OC旋转到∠AOB的外部时,∠MON=30°;(3)如图3,当∠AOB=α,OC旋转到∠AOB(∠BOC<120°)的外部时,求∠MON,请借助图3填空.解:因为OM平分∠AOC,ON平分∠BOC所以∠COM=∠AOC,∠CON=∠BOC(依据是角平分线定义)所以∠MON=∠COM﹣∠CON=∠AOC﹣=α.【考点】角的计算;角平分线的定义.【专题】线段、角、相交线与平行线;推理能力.【分析】(1)根据角平分线定义可得∠MOC=∠AOC,∠NOC=∠BOC,再利用角的和差可得∠MON的度数;(2)根据(1)的思路可得答案;(3)根据角平分线的定义与角的和差可得答案.【解答】解:(1)∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC,∠NOC=∠BOC,∴∠MON=∠MOC+∠NOC=∠AOC+∠BOC=∠AOB=30°.故答案为:30°;(2)∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC,∠NOC=∠BOC,∴∠MON=∠MOC﹣∠NOC=∠AOC﹣∠BOC=∠AOB=30°.故答案为:30°;(3)因为OM平分∠AOC,ON平分∠BOC,所以∠COM=∠AOC,∠CON=∠BOC(角平分线定义),所以∠MON=∠COM﹣∠CON,=∠AOC﹣BOC,=α.故答案为:角平分线定义,∠CON,BOC,α.【点评】本题考查角的计算和角平分线的定义,熟练掌握角平分线的定义与角的和差是解题关键.25.(2021秋•红河州期末)已知∠AOB=70°,如图1,OC为∠AOB内部任意一条射线,OM平分∠AOC,ON平分∠BOC.(1)求∠MON的度数;(2)如图2,当OC在∠AOB的外部且∠BOC<70°时,其他条件不变,∠MON的度数会发生变化吗?请说明理由.【考点】角的计算;角平分线的定义.【专题】数形结合;几何直观.【分析】(1)由OM平分∠AOC,ON平分∠BOC得:AOB=35°.(2)由题意知:BOC=.【解答】解:(1)∵OM平分∠AOC,ON平分∠BOC,∴,∴AOB=35°;(2)∠MON的度数不会发生变化,理由如下:∵OM平分∠AOC,ON平分∠BOC,∴,∴BOC=,故∠MON的度数不会发生变化.【点评】本题考查了双角平分线,关键是结合图形利用角平分线的定义求解.考点卡片1.角平分线的定义(1)角平分线的定义从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.(2)性质:若OC是∠AOB的平分线则∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC.(3)平分角的方法有很多,如度量法、折叠法、尺规作图法等,要注意积累,多动手实践.2.角的计算(1)角的和差倍分①∠AOB是∠AOC和∠BOC的和,记作:∠AOB=∠AOC+∠BOC.∠AOC是∠AOB和∠BOC的差,记作:∠AOC=∠AOB﹣∠BOC.②若射线OC是∠AOB的三等分线,则∠AOB=3∠BOC或∠BOC=∠AOB.(2)度、分、秒的加减运算.在进行度分秒的加减时,要将度与度,分与分,秒与秒相加减,分秒相加,逢60要进位,相减时,要借1化60.(3)度、分、秒的乘除运算.①乘法:度、分、秒分别相乘,结果逢60要进位.②除法:度、分、秒分别去除,把每一次的余数化作下一级单位进一步去除.3.余角和补角(1)余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.(2)补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.(3)性质:等角的补角相等.等角的余角相等.(4)余角和补角计算的应用,常常与等式的性质、等量代换相关联.注意:余角(补角)与这两个角的位置没有关系.不论这两个角在哪儿,只要度数之和满足了定义,则它们就具备相应的关系.4.垂线(1)垂线的定义当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.(2)垂线的性质在平面内,过一点有且只有一条直线与已知直线垂直.注意:“有且只有”中,“有”指“存在”,“只有”指“唯一”“过一点”的点在直线上或直线外都可以.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学角,角平分线练习题一、单选题1.三角形的三条高所在直线的交点在三角形的一个顶点上,则此三角形是( )A.直角三角形B.锐角三角形C.钝角三角形 D 等腰三角形2.下列长度的三根木棒首尾相接,能做成三角形框架的是( )A. 1cm 2cm 3cm ,,B. 2cm cm 4cm ,3,C. 4cm cm 4cm ,9,D. 2cm cm 4cm ,1, 3.如图所示,在ABC 中,, , D E F 是BC 边上的三点,且1234∠=∠=∠=∠,则AE 是哪个三角形的角平分线( )A.ABEB.ADFC.ABCD.,ABC ADF4.下列图形中不具有稳定性的是( )A. B.C. D.5.如图,在ABC △中,AD 是边BC 上的高,,AE BF 分别是BAC ∠,ABC ∠的平分线,50BAC ∠=︒,60ABC ∠=︒,则EAD ACD ∠+∠=( )A.75︒B.80︒C.85︒D.90︒6.如图.,BE CF 是ABC △的角平分线,,BE CF 相交于点,50,70D ABC ACB ∠=∠=°°,则CDE ∠的度数是( )A.50°B.60°C.70°D.120°7.在四边形ABCD 中,如果260A B C ∠+∠+∠=°,那么D ∠的度数为( )A.120°B.110°C.100°D.90°8.如果一个多边形的内角和是1260°,那么该多边形的边数n 是( )A.8B.9C.11D.79.如图,32,45,38A B C ∠=∠=∠=°°°,则DFE ∠等于( )A.105°B.110°C.115°D.120°10.如图,, , , ABC ACB AD BD CD ∠=∠分别平分ABC △的外角EAC ∠、内角ABC ∠、外角ACF ∠.以下结论:①//AD BC ;②12BDC BAC ∠=∠;③90ADC ABD ∠=-∠°;④BD 平分ADC ∠ 其中正确的结论有( )A.①②③B.①②④C.②③④D.①②③④二、解答题11.已知:如图,ABC 中,BAD EBC ∠=∠,AD 交BE 于F .(1)试说明:BFD ABC ∠=∠;(2)若40ABC ∠=︒,//EG AD EH BE ⊥,,求HEG ∠的度数.12.如图,在ABC 中,AD BC ⊥于点,D AE 平分BAC ∠.(1)若70,40B C ∠=∠=°°,求DAE ∠的度数;(2)若()B C B C α∠-∠=∠>∠,求DAE ∠的度数.(用含α的代数式表示)三、填空题13.一副透明的三角板,如图叠放,直角三角板的斜边,AB CE 相交于点D ,则BDC ∠= .14.在ABC 中,边AB 与BC 的中点分别是,D E ,连接,AE CD 交于点G .连接BG 交边AC 于点F .若4,6,8AB BC AC ===,则线段FC 的长度是 .15.如图,建高楼常需要用塔吊来吊建筑材料,而塔吊的上部是三角形结构,这是应用了三角形的_____(性质)?16.如图,在Rt ABC △中, 90C ∠=︒,40A ∠=︒,BD 是ABC ∠的平分线,则ADB ∠= .17.如图所示,①中多边形是由正三角形“扩展”而来的.②中多边形是由正方形“扩展”而来的……以此类推,由正n 边形“扩展”而来的多边形的边数为 .参考答案1.答案:A 解析:三角形的三条高所在直线的交点在三角形的一个顶点上,∴此三角形是直角三角形.2.答案:B解析:A. 123+=,不能组成三角形,故本选项错误;B. 234+>,能组成三角形,故本选项正确;C. 449+<,不能组成三角形,故本选项错误;D. 124+<,不能组成三角形,故本选项错误.故选B .3.答案:D解析:23,AE ∠=∠∴是ADF 的角平分线;1234∠=∠=∠=∠ ,1234∴∠+∠=∠+∠,即BAE CAE ∠=∠,AE ∴是ABC 的角平分线.4.答案:B解析:B 选项中含有长方形属于四边形,不具有稳定性,而三角形具有稳定性,故B 符合题意; 故选:B.5.答案:A解析:AD 是BC 边上的高,60ABC ∠=︒,30BAD ∴∠=︒.50BAC ∠=︒,AE 平分BAC ∠,25BAC ∴∠=︒,30255DAE ∴∠=︒-︒=︒.在ABC△中,18070C ABC BAC ∠=︒-∠-∠=︒,57075EAD ACD ∴∠+∠=︒+︒=︒.故选A.6.答案:B 解析:,BE CF 是ABC △的角平分线,50,70,ABC ACB ∠=∠=°° 115025,22EBC ABC ∴∠=∠=⨯=°°117035,22FCB ACB ∠=∠=⨯=°° 253560.CDE EBC FCB ∴∠=∠+∠=︒+︒=︒7.答案:C解析:360()360260100D A B C ∠=-∠+∠+∠=-=°°°°8.答案:B解析:根据题意列方程,得2 800126()0n x --=°,解得.故选B.9.答案:C解析:由三角形外角的性质可知83ADF B C ∠=∠+∠=3283115A A E DF DF ∠+∠=+==∠,故选C.10.答案:A解析:AD 平分,2.EAC EAC EAD ∠∴∠=∠,,EAC ABC ACB ABC ACB ∠=∠+∠∠=∠,//EAD ABC AD BC ∴∠=∠∴,即①正确.,BD CD 分别平分,ABC ACF ∠∠,11,22DCF ACF DBC ABC ∴∠=∠∠=∠. DCF ∠是BCD △的外角,BDC DCF DBC ∴∠=∠-∠1122ACF ABC =∠-∠11(),22ACF ABC BAC =∠-∠=∠即②正确. AD 平分,EAC CD ∠平分ACF ∠,11,.22DAC EAC DCA ACF ∴∠=∠∠=∠ ,EAC ABC ACB ACF ∠=∠+∠∠,180.ABC BAC ABC ACB BAC =∠+∠∠+∠+∠=°180()ADC DAC DCA ∴∠=-∠+∠°1180()2EAC ACF =-∠+∠°1180()2ABC ACB ABC BAC =-∠+∠+∠+°1180(180)2ABC =-+∠°°19090,2ABC ABD =-∠=-∠°°即③正确. 由①知1//,.2AD BC ADB DBC ABC ∴∠=∠=∠ 又由③知,1902ADC ABC ∠=-∠°, 当且仅当1902,2ABC ADB ABC -∠=∠=∠°即60ABC ∠=°时,BD 平分ADC ∠,故④不一定成立.∴正确的有①②③.11.答案:(1)∵BFD ABF BAD ABC ABF FBC ∠=∠+∠∠=∠+∠,,∵BAD FBC ∠=,∴ABC BFD ∠=∠;(2)∵35BFD ABC ∠=∠=︒,∵//EG AD ,∴35BEG BFD ∠=∠=︒,∵EH BE ⊥,∴90BEH ∠=︒,∴55HEG BEH BEG ∠=∠-∠=︒.解析:12.答案:解:(1)AD BC ⊥于点D ,90ADC ∴∠=°. AE 平分BAC ∠,12EAC BAC ∴∠=∠, 而180BAC B C ∠=-∠-∠°,119022EAC B C ∴∠=-∠-∠°, 18090DAC C ∠=--∠°°,1()2DAE DAC EAC B C ∴∠=∠-∠=∠-∠=1(7040)152-=°°°. (2)若()B C B C α∠-∠=∠>∠,由(1)得1()2DAE B C ∠=∠-∠,则12DAE α∠=. 解析:13.答案:75︒解析:6045CEA BAE ︒︒∠=∠=,18075ADE CEA BAE ︒︒∴∠=-∠-∠=75BDC ADE ︒∴∠=∠=.14.答案:4解析:边AB 与BC 的中点分别是,,,D E AE CD 交于点G .∴点G 是ABC 的重心.142FC AC ∴==.15.答案:稳定性解析: 塔吊的上部是三角形结构,可以保证安全吊塔上部的结构的稳定性,应用了三角形的稳定性,故答案为三角形的稳定性.16.答案:115︒解析:90,40C A ∠=∠=︒︒,50ABC ∴∠=︒.又BD 是ABC ∠的平分线,25ABD ∴∠=︒,180115ADB A ABD ∴∠=-∠-∠=︒︒.17.答案:(1)n n +解析: ①正三角形"扩展”而来的多边形的边数是1234=⨯,②正四边形"扩展”而来的多边形的边数是2045=⨯ ③正五边形"扩展”而来的多边形的边数是3056=⨯,④正六边形"扩展"而来的多边形的边数是4267=⨯,.∴正边形n 扩展“而来的多边形的边数为(1)n n +。

相关文档
最新文档