迈克耳孙干涉仪实验报告

合集下载

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告一、实验目的1、了解迈克尔逊干涉仪的结构和工作原理。

2、观察等倾干涉和等厚干涉条纹,加深对干涉现象的理解。

3、学会使用迈克尔逊干涉仪测量光波的波长。

二、实验原理迈克尔逊干涉仪是一种分振幅双光束干涉仪,其光路图如下图所示:此处可插入迈克尔逊干涉仪光路图光源 S 发出的光经过分光板 G1 分成两束光,一束光反射后到达反射镜 M1,另一束光透射后到达反射镜 M2。

两束光分别被 M1 和 M2反射后,再次回到分光板 G1,并在观察屏 E 处相遇发生干涉。

当 M1 和 M2 严格垂直时,观察到的是等倾干涉条纹。

此时,两束光的光程差为:$\Delta = 2d\cos\theta$其中,d 为 M1 和 M2 之间的距离,θ 为入射光与 M1 或 M2 法线的夹角。

当光程差满足:$\Delta = k\lambda$ (k 为整数)时,出现亮条纹;当光程差满足:$\Delta =(k +\frac{1}{2})\lambda$时,出现暗条纹。

当 M1 和 M2 不严格垂直时,观察到的是等厚干涉条纹。

此时,两束光的光程差主要取决于 M1 和 M2 之间的距离变化。

三、实验仪器迈克尔逊干涉仪、HeNe 激光器、扩束镜、毛玻璃屏等。

四、实验步骤1、仪器调节调节迈克尔逊干涉仪的底座水平,使干涉仪处于水平状态。

调节 M1 和 M2 背后的三个微调螺丝,使 M1 和 M2 大致垂直。

打开 HeNe 激光器,使激光束经过扩束镜后均匀地照射在分光板G1 上,并在毛玻璃屏上看到清晰的光斑。

调节 M1 或 M2 的位置,使屏上出现圆形的等倾干涉条纹。

2、观察等倾干涉条纹仔细调节 M1 或 M2 的位置,使干涉条纹清晰、对比度高。

观察条纹的形状、疏密和级次分布,记录条纹的变化情况。

3、测量光波波长沿某一方向缓慢移动 M1,观察条纹的“冒出”或“缩进”现象,并记录条纹变化的条数 N 和 M1 移动的距离Δd。

迈克耳孙干涉实验报告

迈克耳孙干涉实验报告

迈克耳孙干涉实验报告一、实验目的1、了解迈克耳孙干涉仪的原理、结构和调节方法。

2、观察等倾干涉和等厚干涉条纹,并熟悉其特点。

3、利用迈克耳孙干涉仪测量光波的波长。

二、实验原理迈克耳孙干涉仪是一种分振幅干涉仪,其原理基于光的干涉现象。

1、等倾干涉当光源发出的光经分光板 G1 分成两束光,分别经过 M1 和 M2 反射后,再次在分光板 G1 处相遇。

如果 M1 和 M2 相互平行,则两束光的光程差只取决于入射角 i,对于相同入射角的光线,具有相同的光程差,从而形成等倾干涉条纹。

2、等厚干涉当 M1 和 M2 有一定夹角时,两束光的光程差不仅与入射角有关,还与反射点的位置有关。

此时,在两反射镜交线附近,形成与楔板类似的等厚干涉条纹。

光程差与干涉条纹的关系为:\(\Delta = 2d\cos\theta\)其中,\(\Delta\)为光程差,\(d\)为 M1 和 M2 反射镜之间的距离,\(\theta\)为光线在 M1 上的入射角。

当\(\Delta = k\lambda\)(\(k\)为整数)时,出现亮条纹;当\(\Delta =(k +\frac{1}{2})\lambda\)时,出现暗条纹。

三、实验仪器迈克耳孙干涉仪、HeNe 激光器、扩束镜、毛玻璃屏等。

四、实验步骤1、仪器调节(1)调节迈克耳孙干涉仪的底座水平,使干涉仪大致水平放置。

(2)调节激光束使之大致垂直于干涉仪的入射平面,并通过分光板 G1 中心。

(3)调节 M1 和 M2 背后的三个螺丝,使 M1 和 M2 大致垂直于分光板 G1。

(4)观察由 M1 和 M2 反射回来的两束光,在毛玻璃屏上重合,形成干涉条纹。

2、观察等倾干涉条纹(1)缓慢移动 M1 镜,观察干涉条纹的变化,找到圆心清晰、条纹细密的等倾干涉条纹。

(2)测量等倾干涉条纹的变化,记录 M1 镜移动的距离和干涉条纹的变化数。

3、观察等厚干涉条纹(1)旋转 M1 镜下方的微调螺丝,使 M1 和 M2 之间有一定夹角,观察等厚干涉条纹。

迈克耳孙干涉实验报告

迈克耳孙干涉实验报告

一、实验目的1. 了解迈克耳孙干涉仪的结构及工作原理。

2. 掌握迈克耳孙干涉仪的调试方法。

3. 观察非定域干涉、等倾干涉、等厚干涉等现象。

4. 研究光源的时间相干性和空间相干性。

二、实验仪器与材料1. 迈克耳孙干涉仪2. He-Ne激光器3. 扩束镜4. 薄玻璃片5. 毛玻璃屏6. 光阑7. 粗调手轮8. 细调手轮9. 竖直调节螺钉三、实验原理迈克耳孙干涉仪是一种利用分振幅法获得双光束干涉的精密仪器。

其工作原理如下:1. He-Ne激光器发出的光经过扩束镜后,成为一束平行光。

2. 平行光束通过分束板(半透半反膜),分成两束光。

3. 其中一束光经过M1反射镜反射后,与另一束光在补偿板(与分束板成45度角)处发生干涉。

4. 干涉后的光在毛玻璃屏上形成干涉条纹。

四、实验步骤1. 将迈克耳孙干涉仪置于实验台上,调整水平与垂直,确保仪器稳定。

2. 将He-Ne激光器与扩束镜连接,调整光路,使激光束基本垂直于分束板。

3. 在光源前放置光阑,调节粗调手轮,使激光束通过光阑后,在毛玻璃屏上形成两排光点一一重合。

4. 去掉光阑,换上短焦距透镜,使光源成为发散光束。

调节补偿板,使两束光在毛玻璃屏上形成干涉条纹。

5. 轻轻调节细调手轮,观察干涉条纹的变化,分析非定域干涉、等倾干涉、等厚干涉等现象。

6. 利用干涉条纹,测量光束的波长和空气的折射率。

五、实验结果与分析1. 非定域干涉:当M1与M2垂直时,在毛玻璃屏上观察到两排光点一一重合,形成非定域干涉条纹。

2. 等倾干涉:当M1与M2不垂直时,在毛玻璃屏上观察到干涉条纹向中心聚集,形成等倾干涉条纹。

3. 等厚干涉:在补偿板处放置薄玻璃片,观察干涉条纹的变化,分析等厚干涉现象。

4. 光源的时间相干性和空间相干性:通过观察干涉条纹的变化,分析光源的时间相干性和空间相干性。

六、实验结论1. 成功掌握了迈克耳孙干涉仪的调试方法。

2. 观察到了非定域干涉、等倾干涉、等厚干涉等现象。

迈克耳孙干涉仪实验报告

迈克耳孙干涉仪实验报告

迈克耳孙干涉仪实验报告一、实验目的本实验的目的是研究大电流的特性,熟悉并使用米克尔孙干涉仪完成电流度量的实验,并采集测量数据,以证实熟悉的物理原理。

二、实验原理米克尔孙干涉仪是一种用于测量大电流的传感器,它采用了米克尔孙定律理论,简单地讲,当电流通过米克尔孙仪时,电流就会形成米克尔孙磁场,经过一定距离后,这个磁场耦合到被测量的磁棒上,由磁棒变化量来表征电流的大小,从而进行度量。

三、实验仪器和材料1. 测试用米克尔孙棒:由磁棒组成的2类装置,用作测量大电流的特性,其特性由米克尔孙定律决定。

2. 示波器:一种用于研究电流的仪器,可以显示持续变化的电流和电压的变化情况以及一些不可见的参数。

3. 多功能电源:一种可以提供稳定电压和电流的电源,用于测试米克尔孙棒,可以模拟各种实际电路中的调制过程。

四、实验步骤1. 熟悉米克尔孙棒结构,了解它的工作原理和测量原理。

2. 将米克尔孙仪连接多功能电源、示波器和计算机。

3. 根据计划,调整多功能电源,使其依次输出不同电压和电流,对米克尔孙仪进行测试。

4. 测量和记录米克尔孙仪的输出参数,包括电压、电流和振幅等。

5. 根据实验结果,计算最大变化量等参数。

6. 将实验数据进行处理和分析。

五、实验结果1. 实验中,采用多功能电源逐步改变电流和电压,获得了不同参数的测量结果,其结果如下所示:2. 通过实验,得出了米克尔孙仪的变化量与电压的关系:随着电压的增加,变化量呈线性增加趋势,与电压的增加趋势一致。

3. 通过实验处理,得出拟合的变化量的方程为Y=AX+B,其中,A,B分别为 0.3, 0.2.六、总结通过本次实验,我们可以准确地测量出米克尔孙仪的变化量,并用于证明其物理原理,同时也掌握了多功能电源、示波器等仪器的使用方法,受益匪浅。

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告英文回答:Michelson Interferometer Experiment Report。

Introduction。

The Michelson interferometer is an optical instrument that uses interference to measure the wavelength of light and the speed of light. It was invented by Albert A. Michelson in 1881. The interferometer consists of a light source, two mirrors, and a beam splitter. The light source is split into two beams by the beam splitter. One beam is reflected by one mirror and the other beam is reflected by the other mirror. The two beams are then recombined by the beam splitter and the interference pattern is observed.Methods。

This experiment determined the speed of light using aMichelson interferometer. The following apparatus was used: 1A Michelson interferometer。

2A helium-neon laser。

3A power supply。

4A photodetector。

5A digital oscilloscope。

迈克尔孙实验报告

迈克尔孙实验报告

迈克尔孙实验报告篇一:迈克尔孙干涉仪实验实验报告实验题目:迈克尔逊干涉仪实验成绩:一、实验目的1、学习迈克尔逊干涉仪的使用;2、测量He-Ne激光器发出光波的波长。

二、实验仪器用具计算机及其仿真软件三、实验原理(一)光的干涉对于薄膜干涉,当光程差满足正式时,将分别出现明暗相间的条纹,即明条纹暗条纹(1)在迈克尔逊干涉仪中M1与M2的像之间可以视为薄膜,由(1)式可知,相邻两条明条纹或暗条纹之间的光程差为,对应薄膜之间的厚度差为e??/2。

因此当视野中移过n条干涉条纹时,则M1移动的距离为h?ne?n?2(2)实验时只需测出当视野中移过n条干涉条纹时,M1移动的距离,即可以利用(2)来测量光波的波长。

四、实验内容一、启动软件:二、仪器调节三、实验内容及步骤测量He-Ne激光器发出的光波波长1、在窗口中右键,选择“测量He-Ne激光波长”;2、在迈克尔孙干涉仪侧面右键,选择“导轨侧面毫米刻度尺读数”、左键单击“刻度盘读数窗口”和“微动手轮”,弹出对应窗口;3、右击微动手轮(左击或右击均可,右击是让干涉条纹从中心冒出,便于观察),选择干涉条纹的一个参考位置,记下三者之和的初始读数为x1?;4、继续右击微动手轮,让干涉条纹从中心冒出,当连续冒出n?100个干涉条纹时,刻度尺三者之和的读数为x2? ;5、M1移动的距离为h?x2?x1? ;6、利用(2)计算He-Ne激光器发出的光波波长??2h? n相对误差为 E?,其中He-Ne激光的波长为6.328?10m。

?7篇二:迈克尔逊干涉仪的使用实验报告学生物理实验报告实验名称迈克尔逊干涉仪的使用学院专业班级报告人学号同组人学号同组人学号同组人学号理论课任课教师实验课指导教师实验日期报告日期实验成绩批改日期篇三:迈克尔孙干涉仪实验报告迈克耳孙干涉仪实验报告实验目的1、了解迈克尔逊干涉仪的结构及工作原理,掌握其调试方法2、学会观察非定域干涉、等倾干涉、等厚干涉及光源的时间相干性,空间相干性等重要问题。

迈克耳孙干涉仪实验报告

迈克耳孙干涉仪实验报告

迈克耳孙干涉仪实验报告
实验报告:
迈克耳孙干涉仪实验报告
一、实验目的
本实验旨在探究迈克耳孙干涉仪的工作原理,通过测量光程差的改变对光干涉的现象进行观测,验证光的波动性。

二、实验原理
迈克耳孙干涉仪是一种利用光的干涉现象测量长度、精密测量折射率和表面形貌的仪器。

该仪器由光源、光路、反射镜、分束器等部分组成。

实验中将激光通过分束器分为两路,经过反射后合并。

若光程差为波长λ的整数倍,则两束光相长干涉,能够产生干涉条纹;若光程差为波长λ的奇数倍,则两束光相消干涉,无光强信号输出。

通过调整移动反射镜的距离,可以改变两束光之间的光程差,
从而改变干涉条纹的位置和间距。

三、实验步骤
1.将迈克耳孙干涉仪放在水平台上,调整仪器平衡,保证反射
镜和分束器都放在同一水平线上。

2.利用反射镜将激光分为两路,并调整两路光的光程差至相等。

3.调整反射镜位置,使两路光在同一点空间叠加,观察干涉条
纹的出现。

4.移动反射镜,改变光程差,观察干涉条纹的变化。

5.记录不同光程差下的干涉条纹位置,计算出相应的波长,并
根据波长变化计算出光的折射率。

四、实验结果
在实验中,我们测量了不同光程差下的干涉条纹位置,并计算出了光的波长和折射率。

实验结果表明,光的波动性和干涉现象得到了很好的验证。

五、实验结论
本实验利用迈克耳孙干涉仪探究了光的干涉现象,通过测量干涉条纹位置计算出相应的光程差、波长和折射率等参数,验证了光的波动性和干涉现象。

通过本实验,我们加深了对光学基础理论的理解,对光学实验技能有了更深入的认识。

迈克尔逊干涉仪实验报告数据处理

迈克尔逊干涉仪实验报告数据处理

迈克尔逊干涉仪实验报告数据处理篇一:迈克尔逊干涉仪实验报告迈克尔逊干涉仪的调整与应用1. 原始数据及处理1.1 测量钠光灯波长(?Na?589.3nm)不确定度计算:?A?2.48?x?mm, ?B?0.00004mm?U?d?mm U??U2U?d=4.4nm,Ur????100%=0.74%. ?N?1.2 双线的波长差:??Na?0.59nm 2.思考题及分析:2.1、为什么白光干涉不易观察到?答:两光束能产生干涉现象除满足同频、同向、相位差恒定三个条件外,其光程差还必须小于其相干长度。

而白光的相干长度只有微米量级,所以只能在零光程附近才能观察到白光干涉。

2.2、为什么M1和M2没有严格垂直时,眼睛移动干涉条纹会吞吐?答:因为没有严格垂直时,会形成一个披肩状的光学腔。

各处的光程差不相同,其干涉条纹的级数也会不同。

所以眼睛移动时,干涉条纹会吞吐。

2.3、讨论干涉条纹吐出或吞入时的光程差变化情况。

答:吞入时,光程差变小。

而吐出时,光程差则变大。

2.4、为什么要加补偿板?答:因为分束板的加入,使其中一路光束比另一光束附加了一定的光程。

所以加入与分束板厚度相同的补偿板来补偿这部分光程差。

2.5、如何设计一个实验,利用迈克尔逊干涉仪测玻璃的折射率?答:以白光发生干涉现象时,确定零光程处。

测定在光路中加入玻璃与否,白光产生干涉时M2镜移动的距离。

再根据所加入玻璃的厚度,计算出玻璃的折射率。

2.6、试根据迈克尔逊干涉仪的光路,说明各光学元件的作用,并简要叙述调出等倾干涉、等厚干涉和白光干涉条纹的条件及程序.答:分束板:将光束分为两路光束。

补偿板:补偿因分束板产生的光程差。

粗调螺丝:调节使其与M1镜大致垂直。

细调拉丝:精密调节M2镜的方位,使使其与M1M2镜的方位,镜严格垂直。

鼓轮:调节M2镜的位置,使光学腔的厚度改变。

等倾干涉:光学腔应严格平行。

等厚干涉:此时光学腔为披肩状。

白光干涉:零光程处附近。

2.7、如何利用干涉条纹“吞”、“吐”现象,测定单色光的波长? 答:数一定量的“吞”或“吐”,再根据公式??2?d?N计算。

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告迈克尔逊干涉仪,听起来高大上,其实就是一种用来测量光波性质的仪器。

它的设计精巧得很,主要用来研究干涉现象。

说起干涉,简单来说,就是两束光波相遇时,可能会互相增强或抵消。

这样的现象在科学研究中非常重要。

一、迈克尔逊干涉仪的结构与原理1.1 结构迈克尔逊干涉仪由几个主要部分构成。

首先,有个光源。

然后是分光镜,把光分成两束。

接着,有两个反射镜,光线在这儿反射后,再次汇聚。

最后,合光的地方就是观察屏。

想象一下,光线就像两条小路,互相交叉。

这个设计让我们能够清晰地看到干涉条纹,神奇吧?1.2 原理干涉的原理其实很简单。

当两束光波相遇时,如果它们的波峰和波峰重合,就会加强;如果波峰和波谷重合,就会相互抵消。

这就是干涉现象的根本。

通过这种方式,迈克尔逊干涉仪能够测量光的波长,甚至是微小的变化。

二、实验步骤与过程2.1 准备工作在开始实验之前,首先要确保仪器各部分安装牢固。

光源要亮,分光镜要摆正。

这样的准备工作虽然麻烦,但非常关键。

小细节决定成败,大家懂的。

2.2 调整仪器调整仪器是个技术活。

反射镜的角度要调得刚刚好。

要是角度偏了,干涉条纹就模糊不清。

像个画家,认真地调整每一个细节,才能呈现出最美的画面。

2.3 观察干涉条纹一切准备就绪后,打开光源。

光线经过分光镜,形成两束光。

这时,观察屏上会出现一系列明暗相间的条纹。

哇,那感觉就像在看一幅动人的画卷!每一条条纹都在告诉我们光的奥秘,真是让人惊叹不已。

三、数据记录与分析3.1 数据记录实验过程中,要仔细记录每一次观察到的干涉条纹数量和相应的光源波长。

这些数据非常重要,可以帮助我们进一步分析干涉现象。

科学实验就是这样,数据就是我们的金钥匙。

3.2 数据分析分析数据时,要认真对比干涉条纹与光波长的关系。

每次计算都要小心翼翼,不能出错。

通过这些数据,我们能了解光的性质,还能探索更多未知的领域。

科学的魅力就在于此,永远有新的发现等着我们。

四、总结迈克尔逊干涉仪的实验不仅让我领略了光的奇妙,也让我体会到科学探索的乐趣。

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告英文回答:The Michelson interferometer experiment is a classic experiment in physics that demonstrates the wave-particle duality of light. The experiment was first performed by Albert Michelson in 1881, and it has since been used to test a variety of fundamental principles of physics.The Michelson interferometer is a simple device that consists of two mirrors that are placed at a distance of L from each other. A beam of light is split into two beams, and each beam is reflected by one of the mirrors. The two beams are then recombined, and the interference pattern is observed.The interference pattern depends on the wavelength of the light and the distance between the mirrors. If the wavelength of the light is small compared to the distance between the mirrors, then the interference pattern will bea series of bright and dark fringes. If the wavelength ofthe light is large compared to the distance between the mirrors, then the interference pattern will be a series of evenly spaced bright fringes.The Michelson interferometer experiment has been usedto measure the speed of light, the wavelength of light, and the index of refraction of materials. The experiment hasalso been used to test the theory of special relativity and the principle of equivalence.The Michelson interferometer experiment is a powerful tool that has been used to make a number of important discoveries in physics. The experiment is a simple and elegant way to demonstrate the wave-particle duality oflight and to test fundamental principles of physics.中文回答:迈克尔逊干涉仪实验是物理学中的一项经典实验,它证明了光的波粒二象性。

迈克耳孙干涉仪实验报告

迈克耳孙干涉仪实验报告

实验预习与原始数据记录一、原理简述1.迈克耳孙干涉仪的结构和原理:A和B为材料、厚度完全相同的平行板,A的一面镀上半反射膜,M1、M2为平面反射镜,M2是固定的,M1和精密丝杆相连,使其可前后移动,最小读数为10−4mm,可估计到10−5mm,M1和M2后各有几个小螺丝可调节其方位。

2.透明薄片折射率(或厚度)的测量:(1). 白光干涉条纹干涉条纹的明暗决定于光程差与波长的关系,用白光光源,只有在d=0的附近才能在M1、M2′交线处看到干涉条纹,这时对各种光的波长来说,其光程差均为λ/2(反射时附加λ/2),故产生直线黑褐色纹,即所谓的中央条纹,两旁有对称分布的彩色条纹。

(2)固体透明薄片折射率或厚度的测定当视场中出现中央条纹之后,在M1与A之间放入折射率为n、厚度为l的透明物体,则此时程差要比原来增大∆L=2l(n−1),因而中央条纹移出视场范围,如果将M1向A前移d,使d=∆L/2,则中央条纹会重新出现,测出d及l,可由下式d=l(n−l)求出折射率n。

二、预习中的问题列举自误差的主要来源是什么?三、原始数据记录表1中心每“生成”或“吞进”30个干涉条纹M1镜的位置表2条纹从不可见到次不可见时M1的位置读数将中央黑褐纹移到中间,M1的位置(mm)=30.89650放置玻璃薄片,再将中央黑褐纹移动至中心,M1的位置(mm)=30.89100移除玻璃薄片,找到d=0的位置,观察到中央是直线黑褐纹两边对称分布彩色花纹的直线干涉条纹,M1的位置(mm)=30.89600放置水晶薄片,再将中央黑褐纹移动至中心,M1的位置(mm)=30.89065表3 中心每“生成”或“吞进”30个干涉条纹时M1镜的位置实验名称:迈克尔逊干涉仪实验日期 2023.11.12 教师签字同组者审阅日期一、实验目的1.了解迈克尔逊干涉仪的构造原理并掌握其调节方法2.通过实验观察等倾干涉、等厚干涉、自然光干涉和非定域干涉条纹3.了解光源的时间相干性问题二、实验仪器与实验方法实验仪器:HeNe激光器,Na光源,白光源,小孔光阑,短焦透镜(扩束镜),迈克耳孙干涉仪实验内容:1. 观察非定域干涉条纹2.测量He-Ne激光的波长3.测钠黄光波长及钠黄光双线的波长差,观察条纹的可见度的变化;4.测量钠黄光的相干长度,观察氦氖激光的相干情况;5.调节观察白光干涉条纹,测定透明薄片的折射率.三、测量内容及数据处理1.用逐差法处理数据,根据相应公式计算钠光的波长λ(nm)=589.26λ=∆D1+∆D2+∆D3390×12=0.02650+0.02650+0.02655345×1000000≈589.26(nm)2.用逐差法处理数据,根据相应公式计算钠光双线的波长差d(nm)=0.60d=λ2∆D1+∆D22=589.2620.57918+0.581852×11000000≈0.60(nm)3.两种薄片的折射率:玻璃:N=30.89650−30.891000.01+1=1.55水晶:N=30.89100−30.890650.01+1=1.544.用逐差法处理数据,根据相应公式计算He-Ne激光的波长λ(nm)=632.89λ=∆D1+∆D2+∆D3390×12=0.02848+0.02850+0.02846345×1000000≈632.89(nm)四、小结(结论、误差分析及建议等)结论:钠光的波长λ=589.26nm钠光双线的波长差d=0.60nm玻璃的折射率为1.55水晶的折射率为1.54He-Ne激光的波长λ=632.89nm误差分析:1.d0、d30对应的圆心处干涉圆环不会完全一致而产生误差;2.读数误差。

迈克耳逊干涉仪实验报告

迈克耳逊干涉仪实验报告

迈克耳逊干涉仪实验报告一、 实验原理1、迈克耳逊干涉仪的基本原理迈克耳逊干涉仪的基本原理如图1所示:其中S 为光源、L 为透镜、P 为观察屏,G 1为半反半透镜、G 2 为补偿镜、用于补偿光路1、2之间的光程差,M 1和M 2 为反射镜,M 2固定,M 1可以移动。

S 发出的光,通过G 1后分为两束,反射光由光路1,被M 1反射,通过G 1,L 到达观察点P ;透射光通过G 2,被M 2反射,再次通过G 2,L 到达观察点P 。

反射光与透射光在P 发生干涉,形成干涉条纹。

M 2′为M 2通过G 1所成的像M 2′和M 2之间的距离等于d 。

由M 2反射的光, 可以看作由M 2′出的,这样,光路1、2之间的光程差等于2d 。

移动M 1,P 处干涉条纹会周期性地产生或消失。

2、 迈克耳逊干涉仪的定域与非定域干涉分析迈克耳逊干涉仪主要由两个互相垂直的全反射镜M 1、M 2和一个45°放置的半反射镜M 组成。

不同的光源会形成不同的干涉情况。

a. 当光源为单色点光源时,它发出的光被M 分为光强大致相同的两束光(1)和(2),如图2所示。

其中光束(1)相当于从虚像S ′发出,再经M 1反射,成像于S 1′;光束(2)相当于从虚像S ′发出,再经M 2′反射成像于S 2′。

因此,单色电光源经过迈克耳逊干涉仪中两反射镜的反射光,可看作是从S 1′和S 2′发出的两束相干光。

在观察屏上,S 1′与S 2′的连线所通过点P 0的程差为2d ,而在观察屏上其他点P 的程差约为2dcosi (i 是光线对M 1或M 2′的入射角)。

因而干涉条纹是以P 0为圆心的一组同心圆,中心级次高,周围级次低。

若M 1与M 2的夹角偏离90°,则干涉条纹的圆心可偏出观察屏以外,在屏上看到弧状条纹;若偏离更大而d 又很小,S 1′与S 2′的连线几乎与观察屏平行,则相当于杨氏双孔干涉,条纹近似为直线。

无论干涉条纹形状如何,只要观察屏在S 1′与S 2′发出的两束光的交叠区都可看到干涉条纹,所以这种干涉称为“非定域干涉”。

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告英文回答:The Michelson interferometer experiment is a classic experiment in physics that demonstrates the wave nature of light. It was first performed by Albert Michelson in 1881, and it has since been used to measure the speed of light, the index of refraction of materials, and the wavelength of light.In the Michelson interferometer experiment, a beam of light is split into two beams by a beam splitter. The two beams are then reflected by mirrors and recombined at the beam splitter. The resulting interference pattern can be used to measure the wavelength of light.The Michelson interferometer experiment is a very sensitive instrument, and it can be used to measure very small changes in the wavelength of light. This makes it a valuable tool for studying the properties of light andmatter.Here are some examples of how the Michelson interferometer experiment can be used:To measure the speed of light. The speed of light can be measured by measuring the time it takes for light to travel between the two mirrors in the interferometer.To measure the index of refraction of materials. The index of refraction of a material is a measure of how much the material bends light. The index of refraction of a material can be measured by measuring the change in the wavelength of light when it passes through the material.To measure the wavelength of light. The wavelength of light can be measured by measuring the distance between the fringes in the interference pattern.The Michelson interferometer experiment is a powerful tool for studying the properties of light and matter. It is a versatile instrument that can be used to measure avariety of different quantities.中文回答:迈克尔逊干涉仪实验是物理学中一项经典实验,用于证明光的波动性。

迈克耳孙干涉仪实验报告

迈克耳孙干涉仪实验报告

迈克耳孙干涉仪实验报告一、实验目的1.了解迈克耳孙干涉仪的原理和结构。

2.观察和研究平行光束通过迈克耳孙干涉仪时的干涉现象。

3.通过实验结果验证光的干涉理论。

二、实验原理分束器是一个玻璃板,中间夹层有一层反射膜,通过反射膜的一部分光线被反射,另一部分光线被透射,从而产生两束光线。

合束器是两个平行的玻璃板,其中间夹层同样有一层反射膜,使两束光线再次重合。

当两束光线重合后,它们会产生干涉现象。

干涉是由于两束光线相遇的位置和相位差引起的。

当两束光线的相位差相等时,会形成明纹,相位差差π时,会形成暗纹。

三、实验步骤1.将迈克耳孙干涉仪摆放好,确保设备稳定。

2.打开光源,调节光源的亮度,使光线足够明亮。

3.调节分束器上的反射镜,使两束光线分离。

4.调节合束器上的反射镜,使两束光线再次重合。

5.观察和记录干涉图样。

6.调节光源的亮度,观察干涉图样的变化。

7.调节分束器和合束器上的反射镜,改变光线的路径,观察干涉图样的变化。

四、实验结果与分析在实验过程中,观察到了干涉图样。

当两束光线重合时,形成了一系列明纹和暗纹。

明纹是由光的叠加增强形成的,暗纹是由光的叠加抵消形成的。

通过调节光源的亮度,可以观察到明纹和暗纹的变化。

光源越亮,明纹越亮,暗纹越暗;光源越弱,明纹越暗,暗纹越亮。

通过调节分束器和合束器上的反射镜,可以改变光线的路径,观察到干涉图样的变化。

当两束光线重合的位置发生变化时,干涉图样也会发生相应变化。

这表明干涉图样的形成与光线的路径密切相关。

五、实验总结通过这次实验,我们对迈克耳孙干涉仪的原理和结构有了深入了解。

我们观察到了明纹和暗纹的形成,并通过调节光源亮度和光线的路径,观察到了干涉图样的变化。

在实验过程中,我们还发现,光的干涉现象是光的波动性质的体现。

干涉图样的形成与光的相位差有关,相位差相等时形成明纹,相位差差π时形成暗纹。

这次实验让我们更加深入地理解了光的干涉现象,也提高了我们的实验技能。

同时,实验过程中也发现了一些问题,如实验条件的稳定性,需要进一步完善实验装置,以获得更准确的实验结果。

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告英文回答:Michelson Interferometer Experiment Report。

Introduction。

The Michelson interferometer is a scientific instrument used to measure the relative velocity between two objects.It was invented by Albert A. Michelson in 1881. The interferometer is based on the principle of interference, which occurs when two waves of the same frequency are superimposed on each other. The resulting wave pattern will have areas of constructive interference, where the waves reinforce each other, and areas of destructive interference, where the waves cancel each other out.Experimental Setup。

The Michelson interferometer consists of a light source,two mirrors, and a beam splitter. The light source emits a beam of light, which is split by the beam splitter into two beams. The two beams are then reflected by the mirrors and recombined by the beam splitter. The resulting beam is observed on a screen.Procedure。

【实验报告】迈克耳孙干涉仪

【实验报告】迈克耳孙干涉仪

【实验报告】迈克耳孙干涉仪
迈克耳孙干涉仪是一种非常重要的实验仪器,在光学实验中得到了广泛应用。

本篇实
验报告将对迈克耳孙干涉仪的原理、实验步骤以及实验结果进行详细介绍,以帮助读者更
好地理解和掌握这项实验。

一、实验原理
迈克耳孙干涉仪主要由激光器、分束器、反射镜、半反射镜、透镜以及像面等基本组
成部分组成。

当激光束被分束器分成两束光后,其中一束光经过反射镜反射回来,并与另
一束来自半反射镜的光在像面上发生干涉。

如果两束光程的差为光的波长的一半,那么它
们将在相遇时形成相消干涉,否则将形成相位差相加的相位干涉。

二、实验步骤
1. 打开激光器,将激光束照射到分束器上,使其被分成两束光。

2. 将其中一束光经过反射镜反射回来,与另一束来自半反射镜的光在像面上发生干涉。

3. 通过移动反射镜或调整半反射镜的位置,使两束光程差为光的波长的一半。

4. 观察像面上的干涉条纹,记录相关数据。

三、实验结果
实验结果表明,当两束光程差为光的波长的一半时,即可形成相消干涉,以干涉条纹
清晰度和条纹间隔的大小来判断干涉的质量和精度。

我们可以通过调整分束器与反射镜之
间的距离和半反射镜的反射率等参数,进一步优化干涉质量和精度。

本次实验通过使用迈克耳孙干涉仪,成功地观察到了光的干涉效应,并且实验结果表明,通过调整干涉仪的参数可以进一步优化干涉质量和精度,这对于后续的光学实验和应
用具有重要意义。

因此,在进行光学实验时,迈克耳孙干涉仪是一个非常重要的实验仪器,需要认真掌握和使用。

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告
实验目的:
本实验旨在通过使用迈克尔逊干涉仪,观察和分析光的干涉现象,以及验证干涉仪的工作原理。

实验仪器和材料:
1. 迈克尔逊干涉仪。

2. 激光光源。

3. 互动式干涉仪软件。

4. 平面镜。

5. 半反射镜。

6. 透镜。

7. 旋转平台。

8. 光电探测器。

9. 调节螺钉。

实验步骤:
1. 将激光光源接入迈克尔逊干涉仪的光路中,使光线通过半反
射镜分成两束光线。

2. 通过调节平面镜和半反射镜的位置,使得两束光线分别经过
不同的光程后再次汇聚在光电探测器上。

3. 使用互动式干涉仪软件记录并分析干涉条纹的变化。

4. 通过旋转平台,改变其中一束光线的光程差,观察干涉条纹
的变化。

实验结果:
通过实验观察和数据记录,我们成功观察到了明显的干涉条纹,
并且发现随着光程差的改变,干涉条纹的间距也相应发生了变化。

通过软件分析,我们得到了干涉条纹的间距与光程差的关系曲线。

实验分析:
根据实验结果,我们验证了迈克尔逊干涉仪的工作原理,即光程差的改变会导致干涉条纹的变化。

同时,我们也通过实验观察到了光的干涉现象,加深了对光学干涉的理解。

实验结论:
本次实验通过使用迈克尔逊干涉仪,成功观察和分析了光的干涉现象,并验证了干涉仪的工作原理。

实验结果符合预期,达到了预期的实验目的。

同时,通过本次实验,我们对光学干涉有了更深入的认识。

大学物理下-迈克尔逊干涉仪实验报告【全文】

大学物理下-迈克尔逊干涉仪实验报告【全文】

精选全文完整版可编辑修改大学物理实验报告3. 实验原理(请用自己的语言简明扼要地叙述,注意原理图需要画出,测试公式需要写明)(1)迈克耳孙干涉仪的结构与光路如图5.3. 1所示为迈克耳孙干涉仪的侧视图图与俯视图,导轨7固定在一只稳定的底座上,底座由三颗调平螺丝9及其锁紧螺丝10来调平。

丝杠6螺距为1mm,转动粗调手轮2,经一对齿轮带动丝杠转动,进而带动移动镜M在导轨上滑动。

移动距离可在毫米刻度尺5上读到1 mm,在窗口3中的刻度盘上读到0.01 mm。

转动微调手轮1,经1:100的蜗轮传动,可实现微动。

微动手轮上的最小刻度为0.0001 mm,可估读到0.00001 mm 。

分光板G1和补偿板G2固定在基座上,不得强扳,且不能用手接触其光学表面。

固定参考镜(定镜)13和移动镜(动镜)11后各有三颗螺丝,用于粗调两者相互垂直,不能拧得太紧或太松,以免使其变形或松动。

固定参考镜13的一侧和下部各有一颗微调螺丝 14和15,可用来微调13的左右偏转和俯视,微调螺丝也不能拧得太松或太紧。

丝杠的顶进力由丝杠顶进螺帽8来调整。

迈克尔逊干涉仪的实验原理如图5.3.2所示。

由光源S发出一束光,射到分光板G1的半透半反膜L上,L使反射光和反射的光强基本相同,所以称G1为分光板。

透过膜层L的光束(1)经G2到达参考镜M1后,被反射回来;被反射的光束(2) 到达移动镜M2后,也被反射回来。

由于(1)、(2)两束光满足光的相干条件,各自反射回来在膜层L所在表面相遇后,就发生干涉,在E处即可观察到干涉条纹。

G2是补偿板,它使光束(1)和(2)经过玻璃的次数相同,当使用白光作为光源时,G2还可以补偿G1的色散。

M1’是在G1中看到的M1的虚像。

(2) 单色点光源等倾干涉条纹的观察及波长的测量如图5.3.3所示,由He-Ne激光器发出的细束平行激光经过以钠光入射,它有两条谱线,对应空气中波长分别为λ 1和λ 2(设λ 1>λ 2),彼此十分接近,就会出现这样一种情况: 当d 为某一定值d1时,对同一入射角θi,有2d1cos θi=k λ2,且2d1cos θi=(k+1/2) λ 1,此时λ 2的k 级明条纹与λ1的k 级暗条纹重叠,视场中干涉条纹的可见度最低,如图5.3.5所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

迈克耳孙干涉仪实验报告
迈克耳孙干涉仪实验报告
引言:
迈克耳孙干涉仪是一种经典的光学实验装置,由德国物理学家阿尔伯特·迈克耳
孙于1887年发明。

该实验装置通过利用光的干涉现象,可以精确测量光的波长、光速以及其他光学参数。

本实验报告将详细介绍迈克耳孙干涉仪的原理、实验
步骤以及实验结果的分析。

一、实验原理:
迈克耳孙干涉仪的原理基于光的干涉现象。

当光线经过一块透明介质表面时,
会发生折射和反射。

当入射光线的角度满足一定条件时,反射光线和透射光线
会发生干涉现象,产生明暗条纹。

迈克耳孙干涉仪利用这种干涉现象来测量光
的波长。

二、实验装置:
迈克耳孙干涉仪主要由一个分束器、两个反射镜和一个透明介质构成。

分束器
将入射光线分成两束,分别经过两个反射镜反射后再次汇聚,形成干涉条纹。

三、实验步骤:
1. 调整仪器:首先,调整迈克耳孙干涉仪的各个部件,确保光线的传输正常。

调整分束器使得光线分成两束,经过反射后再次重合。

调整透明介质的位置,
使得干涉条纹清晰可见。

2. 测量干涉条纹:用目镜观察干涉条纹的变化。

通过调整反射镜的位置,可以
改变干涉条纹的间距和形状。

记录下不同位置的干涉条纹,并测量它们的间距。

3. 计算波长:根据干涉条纹的间距和实验装置的参数,可以计算出入射光线的
波长。

利用迈克耳孙干涉仪的公式,可以得到波长的精确数值。

四、实验结果分析:
通过实验,我们得到了一系列干涉条纹的数据。

根据这些数据,我们可以计算
出入射光线的波长。

在实验中,我们还可以改变透明介质的折射率,观察干涉
条纹的变化。

通过对实验结果的分析,我们可以得到一些有趣的结论。

在实验中,我们发现干涉条纹的间距与入射光线的波长成正比。

这符合光的波
动性质,也验证了迈克耳孙干涉仪的原理。

通过计算,我们得到了入射光线的
波长为X纳米。

这个结果与已知的光的波长相符合,验证了实验的准确性。

此外,我们还发现透明介质的折射率对干涉条纹的形状有一定影响。

当折射率
增大时,干涉条纹的间距会变大,条纹也会更加清晰。

这是因为折射率的增大
会改变光线的传播速度,进而影响干涉现象的形成。

结论:
通过迈克耳孙干涉仪的实验,我们成功地测量了入射光线的波长,并验证了干
涉现象的原理。

实验结果表明,迈克耳孙干涉仪是一种可靠且精确的光学测量
装置。

通过进一步研究和改进,迈克耳孙干涉仪可以在光学领域的研究和应用
中发挥重要作用。

总结:
迈克耳孙干涉仪是一种经典的光学实验装置,通过利用光的干涉现象来测量光
的波长和其他光学参数。

本实验报告详细介绍了迈克耳孙干涉仪的原理、实验
步骤以及实验结果的分析。

通过实验,我们成功地测量了入射光线的波长,并
验证了干涉现象的原理。

迈克耳孙干涉仪在光学研究和应用中具有重要的意义,通过进一步研究和改进,它可以为光学领域的发展做出更大的贡献。

相关文档
最新文档