初一奥林匹克数学竞赛真题及答案
初中数学奥林匹克竞赛题4套带详解
初中数学奥林匹克竞赛题4套带详解初中数学奥林匹克竞赛是挑战数学天赋和才能的绝佳场所。
这种竞赛是为那些对数字和逻辑有天赋和兴趣的人所设计的。
无论是追求数学事业,还是成为一名数学家,初中数学奥林匹克竞赛都是一个巨大的机会,可以开阔思维和向高级数学的道路迈进。
本文所述的四套初中数学奥林匹克竞赛题带有详细解析,可供所有有兴趣的人参考学习。
第一套试题:平方和试题:假设我们有两个正整数 a 和 b。
如果我们写一个等式 a²+ b² = 130, 请问这个方程有多少对正整数解?解析:通过对题目的分析,我们发现 a 和 b 都是小于等于 11 的正整数,因为如果是大于 11,它们的平方数之和会大于 130。
我们可以用双重循环解决这个问题:```ans = 0for a in range(1, 12):for b in range(1, 12):if a * a + b * b == 130:ans += 1print(ans)```第二套试题:比率试题:如果 3 个大苹果的重量等于 4 个小苹果的重量,又知道3 个小苹果重量等于 2 个中等苹果的重量,那么问:如果要将 20 个中等苹果与其中 $x$ 个大苹果混合,让它们的重量相等,求出$x$ 的值。
解析:我们可以用比率法解决这个题目。
首先,根据第一个给出的条件,我们有:```3a = 4b```其中,$a$ 是大苹果的重量,$b$ 是小苹果的重量。
然后,根据第二个条件,我们可以得到:```3b = 2c```其中,$c$ 是中等苹果的重量。
现在我们只需要将 $a$ 和$c$ 的比率相等,即:```a / c = 20x / (20 - x)```通过简单的代数运算,我们可以得到:```60x = 80(20 - x)x = 16```因此,我们需要加入 $16$ 个大苹果。
第三套试题:平均值试题:32 个正整数的平均值为20,当其中一个数字被改变后,平均数变为 19.875。
初一数学奥林匹克竞赛题(含答案).
5.第 n 项为
所以
≥0,即
6.设 p=30q+r ,0≤r <30.因为 p 为质数,故 r ≠0,即 0< r <30.假设 r 为合数,由于 r < 30,所以 r 的最小质约数只可能为 2,3,5.再由 p=30q+r 知,当 r 的最小质约数为 2,3,5 时, p 不是质数,矛盾.所以, r 一定不是合 数.
初一数学奥林匹克竞赛题(含答案)
初一奥数题一 100 元,三年后负债 600 元.求每人每年收入多少 ? 是多少?
甲多开支 S 的末四位数字的和
4.一个人以 3 千米 / 小时的速度上坡, 以 6 千米 / 小时的速度下坡, 行程 12 千米 共用了 3 小时 20 分钟,试求上坡与下坡的路程. 5.求和: 6.证明:质数 p 除以 30 所得的余数一定不是合数.
y;若 3|y,同理可得, 3|x.
9.连结 AN,CN,如图 1-103 所示.因为 N是 BD的中点,所以
上述两式相加
另一方面, S△PCD=S△CND+ S△ + CNP S△ . DNP
因此只需证明 S△ = AND S△CNP+ S△ . DNP
由于 M,N 分别为 AC, BD的中点,所以 S =S -S △CNP △CPM △CMN =S△APM-S △AMN =S△ANP.
8.若两个整数 x,y 使 x2+xy+y2能被 9 整除,证明: x 和 y 能被 3 整除. 9.如图 1-95 所示.在四边形 ABCD中,对角线 AC,BD的中点为 M,N,MN的延 长线与 AB边交于 P 点.求证:△ PCD的面积等于四边形 ABCD的面积的一半. 解答:
所以
x=5000( 元) .
解之得
故
初一数学奥林匹克竞赛题(含标准答案)
初一数学奥林匹克竞赛题(含答案)初一奥数题一甲多开支100元,三年后负债600元.求每人每年收入多少?S的末四位数字的和是多少?4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.5.求和:6.证明:质数p除以30所得的余数一定不是合数.8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.9.如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.解答:所以x=5000(元).所以S的末四位数字的和为1+9+9+5=24.3.因为a-b≥0,即a≥b.即当b≥a>0或b≤a<0时,等式成立.4.设上坡路程为x千米,下坡路程为y千米.依题意则有由②有2x+y=20,③由①有y=12-x.将之代入③得 2x+12-x=20.所以x=8(千米),于是y=4(千米).5.第n项为所以6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r 为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r 知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.7.设由①式得(2p-1)(2q-1)=mpq,即(4-m)pq+1=2(p+q).可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.(1)若m=1时,有解得p=1,q=1,与已知不符,舍去.(2)若m=2时,有因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.(3)若m=3时,有解之得故 p+q=8.8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy +y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以上述两式相加另一方面,S△PCD =S△CND+S△CNP+S△DNP.因此只需证明S△AND =S△CNP+S△DNP.由于M,N分别为AC,BD的中点,所以S△CNP =S△CPM-S△CMN=S△APM-S△AMN=S△ANP.又S△DNP =S△BNP,所以S△CNP+S△DNP=S△ANP+S△BNP=S△ANB=S△AND.初一奥数题二1.已知3x2-x=1,求6x3+7x2-5x+2000的值.2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:DA⊥AB.4.已知方程组的解应为一个学生解题时把c抄错了,因此得到的解为求a2+b2+c2的值.5.求方程|xy|-|2x|+|y|=4的整数解.6.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)7.对k,m的哪些值,方程组至少有一组解?8.求不定方程3x+4y+13z=57的整数解.9.小王用5元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为20分、8分、3分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?解答:1.原式=2x(3x2-x)+3(3x2-x)-2x+2000 =2x×1+3×1-2x+2000=2003.2.原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件.如果设每天获利为y元,则y =(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490.所以当x=3时,y最大=490元,即每件提价3元,每天获利最大,为490元.3.因为CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°(图1-104),所以∠ADC+∠BCD=180°,所以AD∥BC.①又因为 AB⊥BC,②由①,② AB⊥AD.4.依题意有所以a2+b2+c2=34.5.|x||y|-2|x|+|y|=4,即|x|(|y|-2)+(|y|-2)=2,所以(|x|+1)(|y|-2)=2.因为|x|+1>0,且x,y都是整数,所以所以有6.设王平买三年期和五年期国库券分别为x元和y元,则因为y=35000-x,所以 x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,所以 1.3433x+48755-1.393x=47761,所以 0.0497x=994,所以 x=20000(元),y=35000-20000=15000(元).7.因为 (k-1)x=m-4,①m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解.当k=1,m≠4时,①无解.所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解.8.由题设方程得z=3m-y.x=19-y-4(3m-y)-m =19+3y-13m.原方程的通解为其中n,m取任意整数值.9.设苹果、梨子、杏子分别买了x,y,z个,则消去y,得12x-5z=180.它的解是x=90-5t,z=180-12t.代入原方程,得y=-230+17t.故x=90-5t,y=-230+17t,z=180-12t.x=20,y=8,z=12.因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.初一奥数题三1.解关于x的方程2.解方程其中a+b+c≠0.3.求(8x3-6x2+4x-7)3(2x5-3)2的展开式中各项系数之和.4.液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量.5.满足[-1.77x]=-2x的自然数x共有几个?这里[x]表示不超过x的最大整数,例如[-5.6]=-6,[3]=3.6.设P是△ABC内一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值范围.7.甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,甲经过9小时到东站,乙经过16小时到西站,求两站距离.8.黑板上写着三个数,任意擦去其中一个,将它改写成其他两数的和减1,这样继续下去,最后得到19,1997,1999,问原来的三个数能否是2,2,2?9.设有n个实数x1,x2,…,xn,其中每一个不是+1就是-1,且求证:n是4的倍数.解答:1.化简得6(a-1)x=3-6b+4ab,当a≠1时,2.将原方程变形为由此可解得x=a+b+c.3.当x=1时,(8-6+4-7)3(2-1)2=1.即所求展开式中各项系数之和为1.依题意得去分母、化简得7x2-300x+800=0,即7x-20)(x-40)=0,5.若n为整数,有[n+x]=n+[x],所以[-1.77x]=[-2x+0.23x]=-2x+[0.23x].由已知[-1.77x]=-2x,所以-2x=-2x+[0.23x],所以 [0.23x]=0.又因为x为自然数,所以0≤0.23x<1,经试验,可知x可取1,2,3,4,共4个.6.如图1-105所示.在△PBC中有BC<PB+PC,①延长BP交AC于D.易证PB+PC<AB+AC.②由①,② BC<PB+PC<AB+AC,③同理 AC<PA+PC<AC+BC,④AB<PA+PB<AC+AB.⑤③+④+⑤得AB+BC+CA<2(PA+PB+PC)<2(AB+BC+CA).所以7.设甲步行速度为x千米/小时,乙步行速度为y千米/小时,则所求距离为(9x+16y)千米.依题意得由①得16y2=9x2,③由②得16y=24+9x,将之代入③得即 (24+9x)2=(12x)2.解之得于是所以两站距离为9×8+16×6=168(千米).8.答案是否定的.对于2,2,2,首先变为2,2,3,其中两个偶数,一个奇数.以后无论改变多少次,总是两个偶数,一个奇数(数值可以改变,但奇偶性不变),所以,不可能变为19,1997,1999这三个奇数.。
初一数学奥林匹克竞赛题(含标准答案)
初一数学奥林匹克竞赛题(含答案)初一奥数题一甲多开支100元,三年后负债600元.求每人每年收入多少?S的末四位数字的和是多少?4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.5.求和:6.证明:质数p除以30所得的余数一定不是合数.8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.9.如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.解答:所以x=5000(元).所以S的末四位数字的和为1+9+9+5=24.3.因为a-b≥0,即a≥b.即当b≥a>0或b≤a<0时,等式成立.4.设上坡路程为x千米,下坡路程为y千米.依题意则有由②有2x+y=20,③由①有y=12-x.将之代入③得 2x+12-x=20.所以x=8(千米),于是y=4(千米).5.第n项为所以6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r 为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r 知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.7.设由①式得(2p-1)(2q-1)=mpq,即(4-m)pq+1=2(p+q).可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.(1)若m=1时,有解得p=1,q=1,与已知不符,舍去.(2)若m=2时,有因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.(3)若m=3时,有解之得故 p+q=8.8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy +y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以上述两式相加另一方面,S△PCD =S△CND+S△CNP+S△DNP.因此只需证明S△AND =S△CNP+S△DNP.由于M,N分别为AC,BD的中点,所以S△CNP =S△CPM-S△CMN=S△APM-S△AMN=S△ANP.又S△DNP =S△BNP,所以S△CNP+S△DNP=S△ANP+S△BNP=S△ANB=S△AND.初一奥数题二1.已知3x2-x=1,求6x3+7x2-5x+2000的值.2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:DA⊥AB.4.已知方程组的解应为一个学生解题时把c抄错了,因此得到的解为求a2+b2+c2的值.5.求方程|xy|-|2x|+|y|=4的整数解.6.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)7.对k,m的哪些值,方程组至少有一组解?8.求不定方程3x+4y+13z=57的整数解.9.小王用5元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为20分、8分、3分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?解答:1.原式=2x(3x2-x)+3(3x2-x)-2x+2000 =2x×1+3×1-2x+2000=2003.2.原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件.如果设每天获利为y元,则y =(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490.所以当x=3时,y最大=490元,即每件提价3元,每天获利最大,为490元.3.因为CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°(图1-104),所以∠ADC+∠BCD=180°,所以AD∥BC.①又因为 AB⊥BC,②由①,② AB⊥AD.4.依题意有所以a2+b2+c2=34.5.|x||y|-2|x|+|y|=4,即|x|(|y|-2)+(|y|-2)=2,所以(|x|+1)(|y|-2)=2.因为|x|+1>0,且x,y都是整数,所以所以有6.设王平买三年期和五年期国库券分别为x元和y元,则因为y=35000-x,所以 x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,所以 1.3433x+48755-1.393x=47761,所以 0.0497x=994,所以 x=20000(元),y=35000-20000=15000(元).7.因为 (k-1)x=m-4,①m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解.当k=1,m≠4时,①无解.所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解.8.由题设方程得z=3m-y.x=19-y-4(3m-y)-m =19+3y-13m.原方程的通解为其中n,m取任意整数值.9.设苹果、梨子、杏子分别买了x,y,z个,则消去y,得12x-5z=180.它的解是x=90-5t,z=180-12t.代入原方程,得y=-230+17t.故x=90-5t,y=-230+17t,z=180-12t.x=20,y=8,z=12.因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.初一奥数题三1.解关于x的方程2.解方程其中a+b+c≠0.3.求(8x3-6x2+4x-7)3(2x5-3)2的展开式中各项系数之和.4.液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量.5.满足[-1.77x]=-2x的自然数x共有几个?这里[x]表示不超过x的最大整数,例如[-5.6]=-6,[3]=3.6.设P是△ABC内一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值范围.7.甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,甲经过9小时到东站,乙经过16小时到西站,求两站距离.8.黑板上写着三个数,任意擦去其中一个,将它改写成其他两数的和减1,这样继续下去,最后得到19,1997,1999,问原来的三个数能否是2,2,2?9.设有n个实数x1,x2,…,xn,其中每一个不是+1就是-1,且求证:n是4的倍数.解答:1.化简得6(a-1)x=3-6b+4ab,当a≠1时,2.将原方程变形为由此可解得x=a+b+c.3.当x=1时,(8-6+4-7)3(2-1)2=1.即所求展开式中各项系数之和为1.依题意得去分母、化简得7x2-300x+800=0,即7x-20)(x-40)=0,5.若n为整数,有[n+x]=n+[x],所以[-1.77x]=[-2x+0.23x]=-2x+[0.23x].由已知[-1.77x]=-2x,所以-2x=-2x+[0.23x],所以 [0.23x]=0.又因为x为自然数,所以0≤0.23x<1,经试验,可知x可取1,2,3,4,共4个.6.如图1-105所示.在△PBC中有BC<PB+PC,①延长BP交AC于D.易证PB+PC<AB+AC.②由①,② BC<PB+PC<AB+AC,③同理 AC<PA+PC<AC+BC,④AB<PA+PB<AC+AB.⑤③+④+⑤得AB+BC+CA<2(PA+PB+PC)<2(AB+BC+CA).所以7.设甲步行速度为x千米/小时,乙步行速度为y千米/小时,则所求距离为(9x+16y)千米.依题意得由①得16y2=9x2,③由②得16y=24+9x,将之代入③得即 (24+9x)2=(12x)2.解之得于是所以两站距离为9×8+16×6=168(千米).8.答案是否定的.对于2,2,2,首先变为2,2,3,其中两个偶数,一个奇数.以后无论改变多少次,总是两个偶数,一个奇数(数值可以改变,但奇偶性不变),所以,不可能变为19,1997,1999这三个奇数.。
初中奥林匹克数学竞赛试题
初中奥林匹克数学竞赛试题一、选择题(每题3分,共30分)1. 若实数a,b满足 a + 2 +(b - 4)² = 0,则a + b的值为()。
A. - 2B. 2C. 6D. - 6答案:B。
解析:因为绝对值是非负的,一个数的平方也是非负的,要使 a + 2 +(b - 4)² = 0,那么a+2 = 0且b - 4 = 0,解得a=-2,b = 4,所以a + b=2。
2. 把多项式x² - 4x+4分解因式,结果正确的是()。
A. (x - 2)²B. (x+2)²C. (x - 4)²D. (x+4)²答案:A。
解析:x²- 4x + 4符合完全平方公式a²- 2ab+b²=(a - b)²的形式,这里a=x,b = 2,所以分解因式结果为(x - 2)²。
3. 已知一元二次方程x² - 3x - 2 = 0的两个实数根为x1,x2,则(x1 - 1)(x2 - 1)的值是()。
A. - 4B. - 2C. 0D. 2答案:C。
解析:根据韦达定理,对于一元二次方程ax²+bx + c = 0(a≠0),x1+x2=-b/a,x1x2=c/a。
在方程x² - 3x - 2 = 0中,a = 1,b=-3,c = - 2,所以x1+x2 = 3,x1x2=-2。
(x1 - 1)(x2 - 1)=x1x2-(x1+x2)+1=-2 - 3+1 = 0。
4. 一个三角形的三个内角之比为1:2:3,则这个三角形是()。
A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形答案:B。
解析:设三个内角分别为x,2x,3x,因为三角形内角和为180°,所以x+2x+3x = 180°,解得x = 30°,那么三个角分别为30°,60°,90°,所以是直角三角形。
世界青少年奥林匹克数学竞赛(中国区)选拔赛七年级数学试题(含答案)
1 / 12017春季省级初赛考生须知:本卷考试时间60分钟,共100分。
考试期间,不得使用计算工具或手机。
七年级试题(A 卷)一、填空(每题3分,共30分)1、在△ABC 中,高BD 和CE 所在直线相交于O 点,若△ABC 不是直角三角形,且∠A =60°,则∠BOC =________度.2、在等腰△ABC 中,AB=AC,一边上的中线BD 将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为___________.3、凸多边形恰好有三个内角是钝角,这样的多边形边数的最大值是____________.4、凸n 边形除去一个内角外,其余内角和为2570°,则n 的值是________.5、已知 是二元一次方程ay x -2=3的一个解,那么a 的值是________.6、若关于x 、y 的方程组 无解,则a 的值是________.7、正整数._______,698的最大值是则满足、m mn n m n m +=+8、已知关于x 的不等式组 无解,则a 的取值范围是________.9、 都是正数,那么N M 、的大小关系是________.10、若n 为不等式 的解,则n 的最小正整数的值是________.二、选择题(每题5分,共25分)11、三元方程 的非负整数解的个数有( ). A.20001999个 B.19992000个 C.2001000个 D.2001999个12、如图已知 分别 为ABC ∆的两个外角的平分线,给出下列结论:①CD CP ⊥; ②A D ∠-︒=∠2190;③AC PD //.其中正确的是( ). A.①② B.①③ C.②③ D.①②③13、有一个边长为4米的正六边形客厅,用边长为50厘米的正三角形瓷砖铺满,则需要这种瓷砖( )块.A.200B.300C.384D.420 14、解方程组⎩⎨⎧=-=+472dy cx y ax 时,一个学生把a 看错后得到⎩⎨⎧==15y x ,而正确的解是⎩⎨⎧-==13y x ,则d c a 、、的值是:A.不能确定B.1,1,3===d c aC.d c 、不能确定,3=aD.2,2,3-===d c a 15、某步行街摆放有若干盆甲、乙、丙三种造型的盆景,甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了( )朵.A.4380B.4200C. 4750D.3750三、计算题(16~20题每题5分,21~22题每题10分,共45分)16、已知,9,27,81614131===c b a 则c b a 、、的大小关系是多少?17、计算:20002000200020001998357153)37(++⨯18、已知=+++--a y x y xy x 1437622)(32(b y x +-x 3y ++c),试确定c b a 、、的值。
初一奥数竞赛试题及答案
初一奥数竞赛试题及答案试题一:数字逻辑问题题目:有一个数字序列,前三个数字是5,7,9。
从第四个数字开始,每个数字都是前三个数字的和。
请问这个序列的第10个数字是多少?答案:首先,我们可以计算出第四个数字是5+7+9=21。
然后依次计算后面的数字:- 第五个数字是7+9+21=37- 第六个数字是9+21+37=67- 第七个数字是21+37+67=125- 第八个数字是37+67+125=229- 第九个数字是67+125+229=421- 第十个数字是125+229+421=775所以,这个序列的第10个数字是775。
试题二:几何问题题目:在一个直角三角形中,已知直角边长分别为3厘米和4厘米,求斜边的长度。
答案:根据勾股定理,直角三角形的斜边长度可以通过以下公式计算:\[ c = \sqrt{a^2 + b^2} \],其中a和b是直角边的长度。
将题目中给出的数值代入公式中,我们得到:\[ c = \sqrt{3^2 + 4^2} =\sqrt{9 + 16} = \sqrt{25} = 5 \]厘米。
所以,斜边的长度是5厘米。
试题三:组合问题题目:有5个不同的球和3个不同的盒子,每个盒子至少放一个球。
问有多少种不同的放球方法?答案:首先,我们需要将5个球分成3组,其中至少有1个球。
我们可以将这个问题看作是将5个球中的4个球分配到3个盒子中,剩下的一个球可以放在任意一个盒子中。
这相当于在4个球之间插入2个隔板来形成3个部分。
我们有4个空位可以放置隔板,所以总共有\[ C(4,2) \]种方法,即\[ \frac{4!}{2!(4-2)!} = 6 \]种方法。
但是,我们需要排除所有球都在一个盒子里的情况,这种情况有3种。
因此,最终的放球方法有\[ 6 - 3 = 3 \]种。
试题四:数列问题题目:一个数列的前两项是1和2,从第三项开始,每一项都是前两项的差。
求这个数列的第10项。
答案:我们可以列出数列的前几项来找出规律:1, 2, 1, 1, 0, 1, 1, 2, 3, 5, ...数列的规律是斐波那契数列,但是从第三项开始,每一项是前两项的差。
七年级数学奥林匹克竞赛题(一)解析
初中一年级奥赛训练题(一)及解析一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么( C)A.a,b都是0 B.a,b之一是0C.a,b互为相反数D.a,b互为倒数2.下面的说法中正确的是( D)A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是( C)A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么( D) A.a,b同号B.a,b异号C.a>0 D.b>05.大于-π并且不是自然数的整数有( B)A.2个B.3个C.4个D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不正确的说法的个数是( B)A.0个B.1个C.2个D.3个解析:负数的平方是正数,所以一定大于它本身,故丙错误。
7.a代表有理数,那么a和-a的大小关系是( D)A.a大于-a B.a小于-aC.a大于-a或a小于-a D.a不一定大于-a解析:令a=0,马上可以排除A、B、C,应选D。
8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( D)A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。
我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x -2)=0,其根为x=1及x=2,不与原方程同解,排除B。
同理应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,D所加常数为1,因此选D.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( C) A.一样多B.多了C.少了D.多少都可能解析:设杯中原有水量为a,依题意可得,第二天杯中水量为(1-10%)a=0.9a;第三天杯中水量为0.9a(1+10%)=0.9×1.1a;第三天杯中水量与第一天杯中水量之比为0.99∶1,所以第三天杯中水量比第一天杯中水量少了,选C。
初一奥数竞赛试题及答案
初一奥数竞赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个数是质数?A. 45B. 47C. 49D. 51答案:B2. 一个数的平方是36,这个数是多少?A. 6B. -6C. 6或-6D. 以上都不是答案:C3. 计算下列表达式的结果:(2+3) × (2-3) = ?A. -1B. 1C. 5D. -5答案:A4. 一个等差数列的首项是3,公差是2,那么第5项是多少?A. 13B. 11C. 9D. 7答案:A二、填空题(每题5分,共30分)5. 一个圆的半径是5厘米,那么它的周长是______厘米。
答案:31.46. 如果一个数的3倍加上4等于22,那么这个数是______。
答案:67. 一个数的相反数是-8,那么这个数是______。
答案:88. 计算下列表达式的结果:(-2) × (-3) ÷ (-1) = ______。
答案:-69. 一个等比数列的首项是2,公比是3,那么第4项是多少?答案:5410. 一个长方体的长是8厘米,宽是5厘米,高是3厘米,那么它的体积是______立方厘米。
答案:120三、解答题(每题10分,共50分)11. 一个数列的前三项是2,5,8,求这个数列的第10项。
答案:这个数列是一个等差数列,首项a1=2,公差d=5-2=3。
根据等差数列的通项公式an=a1+(n-1)d,我们可以求出第10项的值:a10 = 2 + (10-1) × 3 = 2 + 27 = 29。
12. 一个水池有甲、乙两个进水管,甲管每小时进水20立方米,乙管每小时进水15立方米。
如果同时打开两个水管,需要多少小时才能将水池注满?答案:设需要x小时才能将水池注满。
根据题意,甲管和乙管每小时共进水20+15=35立方米。
那么x小时内共进水35x立方米。
假设水池的容量为V立方米,我们可以得到方程:35x = V由于题目没有给出水池的具体容量,我们无法求出具体的小时数。
初一奥林匹克数学竞赛训练试题集(01)word版含答案
初一奥林匹克数学竞赛训练试题集(01)word版含答案初一奥林匹克数学竞赛训练试题集(01)一、选择题(共8小题,每小题4分,满分32分)1.设a、b为正整数(a>b),p是a、b的最大公约数,q 是a、b的最小公倍数,则p,q,a,b的大小关系是()A.p≥q≥a>bB.q≥a>b≥pC.q≥p≥a>bD.p≥a>b≥q2.下列四个等式:ab=0,a=0,a+b=0中,可以断定a必等于的式子共有()A.3个B.2个C.1个3.a为有理数,下列说法中,正确的是()A.B.22(a+)是正数a+是正数C.D.22﹣(a﹣)是﹣a+的值不负数4.a,b,c均为有理数.在下列:甲:若a>b,则ac>bc.乙:若ac>bc,则a>b.两个结论中()A.甲、乙都真B.甲真,乙不真C.甲不真,___D.甲、乙都不真5.若a+b=3,ab=﹣1,则a+b的值是()A.24B.36C.27D.36.a、b、c、m都是有理数,且a+2b+3c=m,a+b+2c=m,那么b与c的关系是()A.互为相反数B.互为倒数C.相等D.无法确定7.两个10次多项式的和是()A.2次多项式B.1次多项式C.100次多项式D.不高于10次的多项式8.在1992个自然数1,2,3,…,1991,1992的每一个数前面添加“+”或“﹣”号,则其代数和一定是()A.奇数B.偶数C.负整数D.非负整数二、填空题(共8小题,每小题5分,满分40分)9.现在弟弟的年龄恰好是哥哥年龄的,而九年前弟弟的年龄,只是哥哥年龄的,则哥哥现在的年龄是_________岁.3310.1.2345+0.7655+2.469×0.7655=_________.3.21011.已知方程组abc=_________.1212.若,则=_________.1/413.已知多项式2x﹣3x+ax+7x+b能被x+x﹣2整除,则的值是_________.214.满足的值中,绝对值不超过11的哪些整数之和等于_________.15.若三个连续偶数的和等于1992,则这三个偶数中最大的一个与最小的一个的平方差等于_________.642.(4分)下列四个等式:$a^2+b^2=0$,$ab=0$,$a=0$,$a+b=0$中,可以断定$a$必等于的式子共有()A.3个。
世界青少年奥林匹克数学竞赛(中国区)选拔赛七年级数学试题(含答案)
2017春季省级初赛考生须知:本卷考试时间60分钟,共100分。
考试期间,不得使用计算工具或手机。
七年级试题(A 卷)一、填空(每题3分,共30分)1、在△ABC 中,高BD 和CE 所在直线相交于O 点,若△ABC 不是直角三角形,且∠A =60°,则∠BOC =________度.2、在等腰△ABC 中,AB=AC,一边上的中线BD 将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为___________.3、凸多边形恰好有三个内角是钝角,这样的多边形边数的最大值是____________.4、凸n 边形除去一个内角外,其余内角和为2570°,则n 的值是________.5、已知 是二元一次方程ay x -2=3的一个解,那么a 的值是________.6、若关于x 、y 的方程组 无解,则a 的值是________.7、正整数._______,698的最大值是则满足、m mn n m n m +=+8、已知关于x 的不等式组 无解,则a 的取值范围是________.9、 都是正数,那么N M 、的大小关系是________.10、若n 为不等式 的解,则n 的最小正整数的值是________.二、选择题(每题5分,共25分)11、三元方程 的非负整数解的个数有( ). A.20001999个 B.19992000个 C.2001000个 D.2001999个12、如图已知 分别为ABC ∆的两个外角的平分线,给出下列结论:①CD CP ⊥; ②A D ∠-︒=∠2190;③AC PD //.其中正确的是( ). A.①② B.①③ C.②③ D.①②③13、有一个边长为4米的正六边形客厅,用边长为50厘米的正三角形瓷砖铺满,则需要这种瓷砖( )块.A.200B.300C.384D.420 14、解方程组⎩⎨⎧=-=+472dy cx y ax 时,一个学生把a 看错后得到⎩⎨⎧==15y x ,而正确的解是⎩⎨⎧-==13y x ,则d c a 、、的值是:A.不能确定B.1,1,3===d c aC.d c 、不能确定,3=aD.2,2,3-===d c a15、某步行街摆放有若干盆甲、乙、丙三种造型的盆景,甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了( )朵.A.4380B.4200C. 4750D.3750三、计算题(16~20题每题5分,21~22题每题10分,共45分)16、已知,9,27,81614131===c b a 则c b a 、、的大小关系是多少?17、计算:20002000200020001998357153)37(++⨯18、已知=+++--a y x y xy x 1437622)(32(b y x +-x 3y ++c ),试确定c b a 、、的值。
初一数学奥林匹克竞赛题
初一数学奥林匹克竞赛题(含答案)初一奥数题一甲多开支100元,三年后负债600元.求每人每年收入多少?S的末四位数字的和是多少?4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.5.求和:6.证明:质数p除以30所得的余数一定不是合数.8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.9.如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.解答:所以x=5000(元).所以S的末四位数字的和为1+9+9+5=24.3.因为a-b≥0,即a≥b.即当b≥a>0或b≤a<0时,等式成立.4.设上坡路程为x千米,下坡路程为y千米.依题意则有由②有2x+y=20,③由①有y=12-x.将之代入③得 2x+12-x=20.所以x=8(千米),于是y=4(千米).5.第n项为所以6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r 为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r 知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.7.设由①式得(2p-1)(2q-1)=mpq,即(4-m)pq+1=2(p+q).可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.(1)若m=1时,有解得p=1,q=1,与已知不符,舍去.(2)若m=2时,有因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.(3)若m=3时,有解之得故 p+q=8.8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy +y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以上述两式相加另一方面,S△PCD =S△CND+S△CNP+S△DNP.因此只需证明S△AND =S△CNP+S△DNP.由于M,N分别为AC,BD的中点,所以S△CNP =S△CPM-S△CMN=S△APM-S△AMN=S△ANP.又S△DNP =S△BNP,所以S△CNP +S△DNP=S△ANP+S△BNP=S△ANB=S△AND.初一奥数题二1.已知3x2-x=1,求6x3+7x2-5x+2000的值.2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:DA⊥AB.4.已知方程组的解应为一个学生解题时把c抄错了,因此得到的解为求a2+b2+c2的值.5.求方程|xy|-|2x|+|y|=4的整数解.6.王平买了年利率%的三年期和年利率为%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为%)7.对k,m的哪些值,方程组至少有一组解?8.求不定方程3x+4y+13z=57的整数解.9.小王用5元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为20分、8分、3分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?解答:1.原式=2x(3x2-x)+3(3x2-x)-2x+2000 =2x×1+3×1-2x+2000=2003.2.原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件.如果设每天获利为y元,则y =(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490.所以当x=3时,y最大=490元,即每件提价3元,每天获利最大,为490元.3.因为CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°(图1-104),所以∠ADC+∠BCD=180°,所以AD∥BC.①又因为 AB⊥BC,②由①,② AB⊥AD.4.依题意有所以a2+b2+c2=34.5.|x||y|-2|x|+|y|=4,即|x|(|y|-2)+(|y|-2)=2,所以(|x|+1)(|y|-2)=2.因为|x|+1>0,且x,y都是整数,所以所以有6.设王平买三年期和五年期国库券分别为x元和y元,则因为y=35000-x,所以 x(1+×3)(1+2+(35000-x)(1+×5)=47761,所以+=47761,所以 =994,所以 x=20000(元),y=35000-20000=15000(元).7.因为 (k-1)x=m-4,①m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解.当k=1,m≠4时,①无解.所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解.8.由题设方程得z=3m-y.x=19-y-4(3m-y)-m =19+3y-13m.原方程的通解为其中n,m取任意整数值.9.设苹果、梨子、杏子分别买了x,y,z个,则消去y,得12x-5z=180.它的解是x=90-5t,z=180-12t.代入原方程,得y=-230+17t.故x=90-5t,y=-230+17t,z=180-12t.x=20,y=8,z=12.因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.初一奥数题三1.解关于x的方程2.解方程其中a+b+c≠0.3.求(8x3-6x2+4x-7)3(2x5-3)2的展开式中各项系数之和.4.液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量.5.满足[]=-2x的自然数x共有几个?这里[x]表示不超过x的最大整数,例如[]=-6,[3]=3.6.设P是△ABC内一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值范围.7.甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,甲经过9小时到东站,乙经过16小时到西站,求两站距离.8.黑板上写着三个数,任意擦去其中一个,将它改写成其他两数的和减1,这样继续下去,最后得到19,1997,1999,问原来的三个数能否是2,2,2?9.设有n个实数x1,x2,…,xn,其中每一个不是+1就是-1,且求证:n是4的倍数.解答:1.化简得6(a-1)x=3-6b+4ab,当a≠1时,2.将原方程变形为由此可解得x=a+b+c.3.当x=1时,(8-6+4-7)3(2-1)2=1.即所求展开式中各项系数之和为1.依题意得去分母、化简得7x2-300x+800=0,即7x-20)(x-40)=0,5.若n为整数,有[n+x]=n+[x],所以[]=[-2x+]=-2x+[].由已知[]=-2x,所以-2x=-2x+[],所以 []=0.又因为x为自然数,所以0≤<1,经试验,可知x可取1,2,3,4,共4个.6.如图1-105所示.在△PBC中有BC<PB+PC,①延长BP交AC于D.易证PB+PC<AB+AC.②由①,② BC<PB+PC<AB+AC,③同理 AC<PA+PC<AC+BC,④AB<PA+PB<AC+AB.⑤③+④+⑤得AB+BC+CA<2(PA+PB+PC)<2(AB+BC+CA).所以7.设甲步行速度为x千米/小时,乙步行速度为y千米/小时,则所求距离为(9x+16y)千米.依题意得由①得16y2=9x2,③由②得16y=24+9x,将之代入③得即 (24+9x)2=(12x)2.解之得于是所以两站距离为9×8+16×6=168(千米).8.答案是否定的.对于2,2,2,首先变为2,2,3,其中两个偶数,一个奇数.以后无论改变多少次,总是两个偶数,一个奇数(数值可以改变,但奇偶性不变),所以,不可能变为19,1997,1999这三个奇数.。
初一年级奥数试题及答案
【导语】奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。
奥数体现了数学与奥林匹克体育运动精神的共通性:更快、更⾼、更强。
国际数学奥林匹克作为⼀项国际性赛事,由国际数学教育专家命题,出题范围超出了所有国家的义务教育⽔平,难度⼤⼤超过⼤学⼊学考试。
奥数对青少年的脑⼒锻炼有着⼀定的作⽤,可以通过奥数对思维和逻辑进⾏锻炼,对学⽣起到的并不仅仅是数学⽅⾯的作⽤,通常⽐普通数学要深奥⼀些。
下⾯是⽆忧考为⼤家带来的初⼀年级奥数试题及答案,欢迎⼤家阅读。
⼀、选择题(每题1分,共10分) 1.如果a,b都代表有理数,并且a+b=0,那么()A.a,b都是0.B.a,b之⼀是0.C.a,b互为相反数.D.a,b互为倒数. 2.下⾯的说法中正确的是()A.单项式与单项式的和是单项式.B.单项式与单项式的和是多项式.C.多项式与多项式的和是多项式.D.整式与整式的和是整式. 3.下⾯说法中不正确的是()A.有最⼩的⾃然数.B.没有最⼩的正有理数.C.没有的负整数.D.没有的⾮负数. 4.如果a,b代表有理数,并且a+b的值⼤于a-b的值,那么()A.a,b同号.B.a,b异号.C.a>0.D.b>0. 5.⼤于-π并且不是⾃然数的整数有()A.2个.B.3个.C.4个.D.⽆数个. 6.有四种说法: 甲.正数的平⽅不⼀定⼤于它本⾝;⼄.正数的⽴⽅不⼀定⼤于它本⾝; 丙.负数的平⽅不⼀定⼤于它本⾝;丁.负数的⽴⽅不⼀定⼤于它本⾝. 这四种说法中,不正确的说法的个数是()A.0个.B.1个.C.2个.D.3个. 7.a代表有理数,那么,a和-a的⼤⼩关系是()A.a⼤于-a.B.a⼩于-a.C.a⼤于-a或a⼩于-a.D.a不⼀定⼤于-a. 8.在解⽅程的过程中,为了使得到的⽅程和原⽅程同解,可以在原⽅程的两边()A.乘以同⼀个数.B.乘以同⼀个整式.C.加上同⼀个代数式.D.都加上1. 9.杯⼦中有⼤半杯⽔,第⼆天较第⼀天减少了10%,第三天⼜较第⼆天增加了10%,那么,第三天杯中的⽔量与第⼀天杯中的⽔量相⽐的结果是()A.⼀样多.B.多了.C.少了.D.多少都可能. 10.轮船往返于⼀条河的两码头之间,如果船本⾝在静⽔中的速度是固定的,那么,当这条河的⽔流速度增⼤时,船往返⼀次所⽤的时间将()A.增多.B.减少.C.不变.D.增多、减少都有可能. ⼆、填空题(每题1分,共10分) 1.______. 2.198919902-198919892=______. 3.=________. 4.关于x的⽅程的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______. 6.当x=-时,代数式(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)的值是____. 7.当a=-0.2,b=0.04时,代数式的值是______. 8.含盐30%的盐⽔有60千克,放在秤上蒸发,当盐⽔变为含盐40%时,秤得盐⽔的重是______克. 9.制造⼀批零件,按计划18天可以完成它的.如果⼯作4天后,⼯作效率提⾼了,那么完成这批零件的⼀半,⼀共需要______天. 10.现在4点5分,再过______分钟,分针和时针第⼀次重合. 答案及解析 ⼀、选择题1.C2.D3.C4.D5.C6.B7.D8.D9.C10.A 提⽰: 1.令a=2,b=-2,满⾜2+(-2)=0,由此 2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D. 3.1是最⼩的⾃然数,A正确.可以找到正 所以C“没有的负整数”的说法不正确.写出扩⼤⾃然数列,0,1,2,3,…,n,…,易知⽆⾮负数,D正确.所以不正确的说法应选C. 5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C. 6.由12=1,13=1可知甲、⼄两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.⽽负数的平⽅均为正数,即负数的平⽅⼀定⼤于它本⾝,所以“负数平⽅不⼀定⼤于它本⾝”的说法不正确.即丙不正确.在甲、⼄、丙、丁四个说法中,只有丙1个说法不正确.所以选B. 7.令a=0,马上可以排除A、B、C,应选D. 8.对⽅程同解变形,要求⽅程两边同乘不等于0的数.所以排除A. 我们考察⽅程x-2=0,易知其根为x=2.若该⽅程两边同乘以⼀个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原⽅程同解,排除B.若在⽅程x-2=0两边加上同⼀个代数式去了原⽅程x=2的根.所以应排除C.事实上⽅程两边同时加上⼀个常数,新⽅程与原⽅程同解,对D,这⾥所加常数为1,因此选D. 9.设杯中原有⽔量为a,依题意可得, 第⼆天杯中⽔量为a×(1-10%)=0.9a; 第三天杯中⽔量为(0.9a)×(1+10%)=0.9×1.1×a; 第三天杯中⽔量与第⼀天杯中⽔量之⽐为 所以第三天杯中⽔量⽐第⼀天杯中⽔量少了,选C. 10.设两码头之间距离为s,船在静⽔中速度为a,⽔速为v0,则往返⼀次所⽤时间为 设河⽔速度增⼤后为v,(v>v0)则往返⼀次所⽤时间为 由于v-v0>0,a+v0>a-v0,a+v>a-v 所以(a+v0)(a+v)>(a-v0)(a-v) ∴t0-t<0,即t0 ⼆、填空题 提⽰: 2.198919902-198919892 =(19891990+19891989)×(19891990-19891989) =(19891990+19891989)×1=39783979. 3.由于(2+1)(22+1)(24+1)(28+1)(216+1) =(2-1)(2+1)(22+1)(24+1)(28+1)(216+1) =(22-1)(22+1)(24+1)(28+1)(216+1) =(24-1)(24+1)(28+1)(216+1) =(28-1)(28+1)(216+1) =(216-1)(216+1)=232-1. 2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=4 5.1-2+3-4+5-6+7-8+…+4999-5000 =(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000) =-2500. 6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+2 7.注意到: 当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0. 8.⾷盐30%的盐⽔60千克中含盐60×30%(千克)设蒸发变成含盐为40%的⽔重x克,即0.001x千克,此时,60×30%=(0.001x)×40% 解得:x=45000(克).。
奥林匹克数学竞赛初赛七年级考试卷(B)含答案
16.如图4是由几块相同的小正方体搭成的立体图形的三视图,则这立体图形中小正方体共有()块.
A、9B、10C、11D、12
Part 3计算:
17. 18.
Part 4列方程解应用题。
19、一队学生从甲地到乙地,速度为每小时8千米,当行进2千米路后,通讯员奉命回甲地取东西,他以每小时10千米的速度回甲地取了东西后,立即以同样速度追赶队伍,结果在距乙地3千米处追上队伍,求甲、乙两地的距离(取东西的时间不计)。
世界少年奥林匹克数学竞赛(中国区)选拔赛
2020-2021初赛试卷 七年级(B卷)
┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄
考生须知:本卷共120分,考试时间90分钟。第1至20题,每题6分。
考试期间,不得使用计算工具或手机
Part 1填空题
1.计算: + + +……+ =。
A、37B、36C、35D、34
15.某旅游团92人在快餐店就餐,该店备有9种菜,每份菜单单价分别为1、2、3、4、5、6、7、8、9(元),旅游团领队交代:每人可选不同的菜,但金额都须正好10元,且每一种菜最多只能买一份,这样,该团成员在购菜完全符合要求的所有方案中,至少有一个方案的人数不少于(C).
A.52 B.55 C.58 D.62
12.适合 的整数x的值的个数有(D)
A.5B.4C.3D.2
13.已知m是方程 的一个根,则 的值等于(D).
A、2005B、2006C、2007D、.2008
14.将一段72cm长的绳子,从一端开始每3cm作一记号,每4cm也作一记号,然后从有记号的地方剪断,则这段绳子共被剪成的段数为(B).
初中数学奥林匹克竞赛题和答案
初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。
2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x²,x3都是单项式.两个单项式x3,x²之和为x3+x²是多项式,排除A。
两个单项式x²,2x2之和为3x2是单项式,排除B。
两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。
3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。
4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。
6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。
7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。
8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一奥林匹克数学竞赛真题及答案
一、选择题(每题1分,共10分)
1.如果a,b都代表有理数,并且a+b=0,那么()
A.a,b都是0.
B.a,b之一是0.
C.a,b互为相反数.
D.a,b互为倒数.
2.下面的说法中正确的是()
A.单项式与单项式的和是单项式.
B.单项式与单项式的和是多项式.
C.多项式与多项式的和是多项式.
D.整式与整式的和是整式.
3.下面说法中不正确的是()
A.有最小的自然数.
B.没有最小的正有理数.
C.没有的负整数.
D.没有的非负数.
4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么()
A.a,b同号.
B.a,b异号.
C.a>0.
D.b>0.
5.大于-π并且不是自然数的整数有()
A.2个.
B.3个.
C.4个.
D.无数个.
6.有四种说法:
甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;
丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.
这四种说法中,不正确的说法的个数是()
A.0个.
B.1个.
C.2个.
D.3个.
7.a代表有理数,那么,a和-a的大小关系是()
A.a大于-a.
B.a小于-a.
C.a大于-a或a小于-a.
D.a不一定大于-a.
8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边()
A.乘以同一个数.
B.乘以同一个整式.
C.加上同一个代数式.
D.都加上
1.
9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是()
A.一样多.
B.多了.
C.少了.
D.多少都可能.
10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将()
A.增多.
B.减少.
C.不变.
D.增多、减少都有可能.
二、填空题(每题1分,共10分)
1.______.
2.198919902-198919892=______.
3.=________.
4.关于x的方程的解是_________.
5.1-2+3-4+5-6+7-8+…+4999-5000=______.
6.当x=-时,代数式(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)的值是____.
7.当a=-0.2,b=0.04时,代数式的值是______.
8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.
9.制造一批零件,按计划18天可以完成它的.如果工作4天后,工作效率提高了,那么完成这批零件的一半,一共需要______天.
10.现在4点5分,再过______分钟,分针和时针第一次重合.
答案及解析
一、选择题
1.C
2.D
3.C
4.D
5.C
6.B
7.D
8.D
9.C10.A
提示:
1.令a=2,b=-2,满足2+(-2)=0,由此
2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.
3.1是最小的自然数,A正确.可以找到正
所以C“没有的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无非负数,D正确.所以不正确的说法应选C.
5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.
6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.
7.令a=0,马上可以排除A、B、C,应选D.
8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.
我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.
9.设杯中原有水量为a,依题意可得,
第二天杯中水量为a×(1-10%)=0.9a;
第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;
第三天杯中水量与第一天杯中水量之比为
所以第三天杯中水量比第一天杯中水量少了,选C.
10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为
设河水速度增大后为v,(v>v0)则往返一次所用时间为
由于v-v0>0,a+v0>a-v0,a+v>a-v
所以(a+v0)(a+v)>(a-v0)(a-v)
∴t0-t<0,即t0
二、填空题
提示:
2.198919902-198919892
=(19891990+19891989)×(19891990-19891989)
=(19891990+19891989)×1=39783979.
3.由于(2+1)(22+1)(24+1)(28+1)(216+1)
=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)
=(22-1)(22+1)(24+1)(28+1)(216+1)
=(24-1)(24+1)(28+1)(216+1)
=(28-1)(28+1)(216+1)
=(216-1)(216+1)=232-1.
2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=4
5.1-2+3-4+5-6+7-8+…+4999-5000
=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)
=-2500.
6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+2
7.注意到:
当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.
8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).。