竖向地震作用
工程结构抗震设计基础 Part.1 第2章2 结构的弹性地震反应分析与抗震验算规定
2.8 建筑结构的抗震验算规定 2.8.1 一般规定 1、地震作用及计算方法 总的考虑: (1) 在抗震计算中,一般可在建筑结构的两个主轴方向 分别考虑水平地震作用,各方向的水平地震作用由该方 向的抗侧力构件承担; (2) 有斜交的抗侧力构件的结构,宜分别考虑各抗侧力 构件方向的水平地震作用;
(3) 对于质量和刚度明显不均匀、不对称的结构,应
(3) 按式(3-110)求顶部附加水平地震作用Δ Fn;
(4) 按式(3-111)求各质点的水平地震作用Fi(i=1,2,…,n); (5) 按力学方法求各层结构的地震作用效应。
《例题2-7》
试按振型分解法和底部剪力法计算下图所示三层框架 结构相应于多遇地震时的各楼层地震剪力。设防烈度8度,
近震,场地类别Ⅲ类。 (ml=116620 kg,m2=110850kg,
(弯矩、剪力、轴力或变形等); 最后,按一定的组合原则,将各振型的作用效应
进行组合便得到多自由度体系的水平地震作用效应。
1
振型的地震作用
单自由度:
多自由度: 振型分解后,相应于振型j质点i的位移地震反应 质点产生的惯性力为质点所受的地震作用:
2 振型的最大地震作用 利用反应谱,可求出振型的最大地震作用:
或
结构底部总剪力FEk为
FEk
2 1GE FEj j 1 n n j Gi X j ji G j 1 1 i 1 E n 2
(3 102)
记
所以
FEk 1Geq
(3 105)
式中:FEk——结构总水平地震作用(底部剪力)标准值; α 1——相应于结构基本周期T1时的地震影响系数值,按图3-25反应谱 或式(3-40)确定; Geq——结构等效总重力荷载; GE——结构总重力荷载代表值,GE =Σ Gi , Gi为集中于质点i的重力 荷载代表值(见后面式(3-120))。 β ——等效总重力荷载换算系数,对于单质点体系等于1.0,对于二 层以上的多层建筑,其值在0.8~0.98之间。《抗震规范》规定,多质点体 系取0.85;
地震作用
7、水平地震影响系数 a :
a=
质点最大绝对加速度
重力加速度
=
sa g
?
msa mg
F? G
水平地震作用 结构自重
根据烈度、场地类别、设计地震分组、结构自振周期 T和阻尼比确定:
二、高层建筑结构应按下列原则考虑地震作用:
① 一般情况下,计算两个主轴方向的地震作用;有斜交 抗侧力构件(角度大于15度)时应分别计算各抗侧力构件 方向的地震作用
地震影响系数曲线
6、结构自振周期T
结构的动力特性: 阻尼 振型 自振周期
T的确定方法:
[M ]{X&&}+ [K ]{X }= {0}
精确计算——动力学方法 [K ]- w2 [M ] = 0
近似法——顶点位移法,能量法
经验公式
钢筋砼框架
T1 =(0.08 ~ 0.1)N
钢筋砼框剪
T1 = (0.06 ~ 0.08)N
丙类建筑,设防烈度降低10 (60不变) ➢ Ⅲ,Ⅳ类,0.15g和0.3g,提高“半度”
2020/4/3
5
5、设计特征周期(Tg) 定义:抗震设计用的地震影响系数曲线中,反映地震 等级,震中距和场地类别等因素的下降段起始点对应 的周期值。
确定: 场地类别 设计地震分组(三组):体现震级和震中距的影响
结构薄弱层的不规则结构。(除进行第一阶段设计外,还要进 行结构薄弱部位的弹塑性层间变形验算并采取相应的抗震构造 措施,实现第三水准的设防要求)
② 高度不超过40m、以剪切变形为主的且质量和刚度沿高度 分布较均匀的高层建筑结构,可采用底部剪力法
③ 7~9度设防的高层建筑,下列情况宜采用弹性时程分析 法进行多遇地震作用下的补充计算:
什么是地震作用
什么是地震作用什么是地震作用地震作用(earthquake action),建筑学术语,指由地运动引起的结构动态作用,分水平地震作用和竖向地震作用。
设计时根据其超越概率,可视为可变作用或偶然作用。
下面是有关于地震作用的介绍,一起来看看。
强震地面运动强地震引起的地面运动,一般可用强震仪以加速度时程曲线(两个水平向、一个竖向)的形式记录,其中对结构产生作用的最重要特征是加速度最大值(也称加速度峰值)、频率成分和持续时间。
从图1 a、b可知,两个记录分别具有不同的频率成分(波形A、波形B),其各自的主要频率也称卓越频率(其倒数为卓越周期);土愈软则卓越周期愈长,并随震中距而异。
持续时间从几秒至几十秒,随震级、震中距以及地表软土覆盖层厚度而变化。
地震时,在结构的某些部位装上传感器把信号记录下来,可得到地震反应的物理量:如加速度、速度、位移和应变等,用以定量估计地震作用,以便在工程结构抗震设计中应用。
地震反应分析在地震的地面运动作用下,分析结构反应的过程称地震反应分析。
分析时常把研究的结构看成一个“系统”,把地面运动看成对该系统的输入,系统的输出便是地震反应。
以最简单的单自由度弹性体系作为该系统的一例,其质点在地震动作用下的运动方程式为m【塯(t)+塯g(t)】+c凧(t)+kyx(t)=0式中m为质量;塯g为地面运动加速度(即输入);塯、凧及x为质点相对于基底的加速度、速度和位移(即反应);【塯(t)+塯g(t)】为绝对加速度;c为阻尼系数;ky为刚度。
m【塯(t)+塯g(t)】为质点运动的惯性力。
c凧(t)为阻尼力(阻尼愈大反应愈小)。
kyx(t)为恢复力;是质点在地震作用下力图恢复到原来位置的力。
在无阻尼自由振动中,质量m和刚度ky决定体系的自振频率(或周期)。
在相同的地面运动下,不同自振频率体系的质点反应不一样;反之,把不同地面运动输入同一体系的反应也不一样。
因此,地震作用不同于重力等其他作用,它和地面运动特性以及结构本身的动力特性(频率、阻尼)有关。
第四章竖向地震作用4
S ≤ R /γ
RE
---包含地震作用效应计值; S ---包含地震作用效应的结构构件内力组合的设计值;
R ---结构构件承载力设计值; ---结构构件承载力设计值 结构构件承载力设计值;
γ
RE
---承载力抗震调整系数,除另有规定外,按下表采用; ---承载力抗震调整系数,除另有规定外,按下表采用; 承载力抗震调整系数
S ≤ R /γ
RE
承载力抗震调整系数 材料 钢 结构构件 柱、梁 支撑 节点板件、 节点板件、连接螺栓 连接焊缝 两端均有构造柱、 两端均有构造柱、芯柱的抗震墙 其他抗震墙 梁 梁轴压比小于0.15柱 梁轴压比小于 柱 梁轴压比不小于0.15柱 梁轴压比不小于 柱 抗震墙 各类构件 受剪 受剪 受弯 偏压 偏压 偏压 受剪、 受剪、偏拉 受力状态
§4.7 结构竖向地震作用 4.7
竖向地震运动是可观的: 竖向地震运动是可观的:
根据观测资料的统计分 在震中距小于200km 200km范 析,在震中距小于200km范 围内, 围内,同一地震的竖向地面 加速度峰值与水平地面加速 度峰值之比av/ah平均值约为 度峰值之比 1/2,甚至有时可达1.6 1.6。 1/2,甚至有时可达1.6。
二、高耸结构和高层建筑竖向地震作用的计算公式
F EVK = α V max G eq
G eq = 0 . 75 ∑ G i
Gn
Gi
FVi
α V max = 0 . 65 α H max
FEVK
---结构总竖向地震作用标准值; ---结构总竖向地震作用标准值; 结构总竖向地震作用标准值
G1
---竖向 水平地震影响系数最大值。 竖向、 αV max ,α H max ---竖向、水平地震影响系数最大值。 F EVK
竖向地震作用计算
8 度
1、跨度>24m的楼盖结构
2、悬挑长度>2m的悬挑结构
3、隔震结构
4、地下空间综合体等体型复杂的地下结构
5.1.1第4款8、9度时的大跨度和长悬臂结构及9度时的高层建筑,应计算竖向地震作用。
注:8、9度时采用隔震设计的建筑结构,应按有关规定计算竖向地震作用。
14.2.33)地下空间综合体等体型复杂的地下结构,8、9度时尚宜计及竖向地震作用。
9度
高层建筑
9度
1、跨度>18m的楼盖结构
2、悬挑长度>1.5m的悬挑结构
3、高层建筑
4、隔震结构
5、地下空间综合体等体型复杂的地下结构
注:
《高规》3.8.2当仅考虑竖向地震作用组合时,各类结构构件的承载力抗震调整Байду номын сангаас数均应取为1.0。
《抗规》10.2.6 7度时,矢跨比小于1/5的单向平面桁架和单向立体桁架结构可不进行沿桁架的水平向以及竖向地震作用计算。
《抗规》12.2.1隔震层以上结构的水平地震作用应根据水平向减震系数确定;其竖向地震作用标准值,8度(0.20g)、8度(0.30g)和9度时分别不应小于隔震层以上结构总重力荷载代表值的20%、30%和40%。用5.3.1 5.3.2和 5.3.3计算出竖向地震力(aMax应采用12.2.5调整后的)不小于本条。
《烟规》5.5.13 抗震设防烈度为6度和7度时,可不计算竖向地震作用;8度和9度时,应计算竖向地震作用。竖向地震计算方法见 5.5.5条。
《装配式混凝土结构技术规程》 10.2节 外挂墙板设计时应考虑竖向地震作用,竖向地震作用标准值可取水平地震作用标准值的0.65倍。
抗震设计的基本内容
有利地段
地址、 地形、 地貌
稳定基岩,坚硬土,开阔、平坦、密实、均匀的中硬土等
不利地段
软弱土,液化土,条件突出的山嘴,高耸孤立的山丘,非岩 质的陡坡,河岸和边坡的边缘,平面分布上成因、岩性、 状态明显不均匀的土层(如故河道、疏松的断层破碎带、 暗埋的塘浜沟谷和半填半挖地基)等
地震时可能发生滑坡、崩塌、地陷、地裂、泥石流等及发震 断裂带上可能发生地表位错的部位
两阶段设计法
• 第一阶段设计:按多遇地震作用效应和其他荷载 效应的基本组合进行截面设计,以及验算在多遇 地震作用下结构的弹性变形,这就是所谓的“抗 震计算设计”。它使建筑物满足第一水准设防目 标。第一阶段设计中还包括抗震概念设计和抗震 构造措施,它使建筑物满足第二水准的设计要求。 • 第二阶段设计:为弹塑性变形验算,对特殊要求 的建筑和地震时易倒塌的结构,除进行第一阶段 设计外,还要对罕遇地震作用下结构的薄弱层进 行弹塑性变形验算和采取相应的构造措施,使建 筑物满足第三水准的设防要求。
三、抗震设计标准
抗震设防烈度为6度及以上地区的建 筑,必须进行抗震设计,抗震规范适用于 抗震设防烈度为6、7、8和9度地区建筑的 抗震设计和隔震、消能减震设计。设防烈 度高于9度地区的建筑,其抗震设计应按 专门规定进行抗震设计。
建筑抗震设计包括:满足抗震概念 设计的结构布置、地震作用计算、构件截 面计算和采取相应的抗震构造措施。
凹凸不规则 楼板局部不连续 或错层
竖向不规则的类型
不规则类型 定 义
侧向刚度不规则
该层的侧向刚度小于相邻上一层的70%, 或小于其上相邻三个楼层侧向刚度平均 值的80%;除顶层外,局部收进的水平 向尺寸大于相邻下一层的25% 竖向抗侧力构件(柱、抗震墙、抗震支 撑)的内力由水平转换构件(梁、桁架 等)向下传递 抗侧力结构的层间受剪承载力小于相邻上 一楼层的80%
竖向地震作用
第三章 建筑结构抗震原理
§8 结构竖向地震作用
楼层的竖向地震作用效应可按各构件承受的重 力荷载代表值的比例分配,第i层竖向地震作用 及其各构件的竖向地震作用可按下式计算:
N vi Fvk
k i n
N vij
式中,Nvi— 第i层的竖向地震作用标准值; Nvij— 第i层第j个竖向构件的竖向地震作用标准值 Gij— 第i层第j个竖向构件所承受重力荷载代表值 G ij — 第i层竖向构件所承受的总重力荷载代表 j 值。
第三章 建筑结构抗震原理
§8 结构竖向地震作用
《建筑抗震设计规范》规定:平板型网架屋盖 和跨度大于24m屋架的竖向地震作用标准值 , 宜取其重力荷载代表值Gi和竖向地震作用系数 λv的乘积,即:
FEvk v Gi
式中,λv—竖向地震作用系数,按下表采用
结构 类型 平板型网架 钢屋架 钢筋混凝土 屋架 场地类别 烈 度 Ⅰ Ⅱ 8 可不计算(0.10) 0.08(0.12) 9 0.15 0.15 8 0.10(0.15) 0.13(0.19) 9 0.20 0.25
第三章 建筑结构抗震原理
§8 结构竖向地震作用
欧洲抗震设计规范EuroCode-8中,采用的竖向 地震反应谱的形状与水平向地震反应谱的形状 有所不同,相差一个与周期有关的因子,周期 小于0.15s时为0.7,周期大于0.5s时为0.5,周 期介于0.15~0.5s之间时采用前两者的内插值。
第三章 建筑结构抗震原理
第三章 建筑结构抗震原理
Ⅲ、Ⅳ 0.10(0.15) 0.20 0.13(0.19) 0.25
§8 结构竖向地震作用
8.4 长悬臂结构和其它大跨度结构的竖向 地震作用
工程结构抗震设计:竖向地震作用计算题
1 (398.51 797.02 1195 53 1594 04 1992 55 2391 05 2789 56 . . . . . 10 3188 07 386.82 3985 09) 1.5 . . 1 21918 1.5 kN 10 3287 70kN .
FEvk v maxGeq
Geq 105375 kN
结构的总竖向地震作用标准值 FEvk
0.208105375 kN 21918 kN
2012-12-25
现今各层层高均为4.0m
FVik
Gi H i
G H
j 1 i
10
FEvk
i
14.050 H i 21918 14050 4 8 12 16 20 24 28 32 36 40) ( Hi 21918 kN 220
2012-12-25
因此,结构的总重力荷载代表值
GE Gi 14050 10 kN
i 1
10
140500 kN
结构等效总重力荷载代表值
Geq 0.75GE 0.75140500 kN 105375 kN
工程结构抗震设计竖向地震作用计算题
结构的总竖向地震作用标准值 FEvk
FEvk v maxGeq
0.208105375kN
21918kN
2020/4/11
现今各层层高均为4.0m
FVik
Gi Hi
10
FEvk
Gi Hi
j 1
14.050 Hi 21918
14050(4 8 12 16 20 24 28 32 36 40)
2020/4/11
因此,结构的总重力荷载代表值
10
GE Gi 14050kN 10 i1 140500kN
结构140500kN 105375kN
2020/4/11
vmax 0.65 0.32 0.208
Geq 105375 kN
2020/4/11
❖ 结构的总竖向地震作用标准值 FEvk
❖ 现今为9度区,在多遇地震影响下的水平地震影响
系数最大值,max 0.32 。
烈度
地震影响
6
7
8
9
多遇地震 0.04 0.08(0.12) 0.16(0.24) 0.32
罕遇地震 0.28 0.50(0.72) 0.90(1.20) 1.4
1 (398.51 797.02 1195.53 1594.04 1992.55 2391.05 2789.56 10 3188.07 386.82 3985.09) 1.5 1 21918kN 1.5
10 3287.70kN
2020/4/11
按重力荷载代表值比例分配,中柱A将受到1/3的竖向地震作 用轴向力标准值,即
NEvk 1/ 3 3287 .7 1095 .90kN
2020/4/11
Hi 21918kN 220
新抗震规范——地震作用和结构抗震验算
5 地震作用和结构抗震验算5.1 一般规定5.1.1各类建筑结构的地震作用,应符合下列规定:1一般情况下,应至少在建筑结构的两个主轴方向分别计算水平地震作用,各方向的水平地震作用应由该方向抗侧力构件承担。
2有斜交抗侧力构件的结构,当相交角度大于15°时,应分别计算各抗侧力构件方向的水平地震作用。
3质量和刚度分布明显不对称的结构,应计入双向水平地震作用下的扭转影响;其它情况,应允许采用调整地震作用效应的方法计入扭转影响。
48、9度时的大跨度和长悬臂结构及9度时的高层建筑,应计算竖向地震作用5平面投影尺度很大的空间结构,应视结构形式和支承条件,分别按单点一致、多点、多向或多向多点输入计算地震作用。
注:8、9度时采用隔震设计的建筑结构,应按有关规定计算竖向地震作用。
【说明】本次修订,拟明确大跨空间结构地震作用的计算要求。
1、平面投影尺度很大的空间结构指,跨度大于120m、或长度大于300m、或悬臂大于40m的结构。
2、关于结构形式和支承条件(1)周边支承空间结构,如:网架、单、双层网壳、索穹顶、弦支穹顶屋盖和下部圈梁-框架结构,当下部支承结构为一个整体、且与上部空间结构侧向刚度比大于等于2时,应允许采用三向(水平两向加竖向)单点一致输入计算地震作用;当下部支承结构由结构缝分开、且每个独立的支承结构单元与上部空间结构侧向刚度比小于2时,应采用三向多点输入计算地震作用;(2)两线边支承空间结构,如:拱,拱桁架;门式刚架,门式桁架;圆柱面网壳等结构,当支承于独立基础时,应采用三向多点输入计算地震作用。
(3)长悬臂空间结构,应视其支承结构特点,采用多向单点一致输入、或多向多点输入计算地震作用。
3、关于单点一致输入仅对基础底部输入一致的加速度反应谱或加速度时程进行结构计算。
4、关于多向输入沿空间结构基础底部,三向同时输入,其地震动参数(加速度峰值或反应谱峰值)比例取:水平主向:水平次向:竖向= 1.00:0.85:0.65。
高层建筑结构设计水平地震作用
水平荷载与结构计算简化原则
第二节 地震作用
一、特点
地震时,地震波产生地面运动,通过房屋基础使上部结构产生振动, 这就是地震作用。地震作用使结构产生的运动称为地震反应,包括位移、 速度、与加速度,加速度将使结构产生惯性力,过大的惯性力将会影响 结构的正常使用,甚至造成结构的破坏。 地震波使建筑房屋产生竖向振动和水平振动,一般对房屋的破坏主要 由水平振动造成。设计中主要考虑水平地震作用,只有震中附近的高烈 度区域才考虑竖向地震作用。 地震动三要素: 1、强度:反应地震波的幅值,烈度大,强度大。 2、频谱:反应地震波的波形,1962年墨西哥地震时,墨西哥市a=0.05g, 但由于地震卓越周期与结构接近,从而破坏严重。 3、持时:反应地震波的持续时间,短则对结构影响不大。
动速度和位移可能对结构的破坏具有更大影响,但振型反应谱法或底部剪力尚无 法对此作出估计。出于结构安全的考虑,《高层规程》规定了结构各楼层水平地 震剪力最小值的要求,给出了不同烈度下的楼层地震剪力系数(即剪重比),结 构的水平地震作用效应应据此进行相应的调整。 水平地震作用计算时,结构各楼层对应于地震作用标准值的剪力应符合下式要 求:
1、计算范围: 水平地震作用:
• 6度区 (除甲类建筑和IV类场地上的较高房屋
外)可不算 • 7-9度区 (除可不进行上部结构抗震验算的房 屋外)均算
竖向地震作用:
•8、9度大跨度结构和长悬臂结构 •9度的高层建筑
2、水平地震作用的计算原则: – 一般正交布置抗侧力构件的结构,可沿纵横主轴方向分别计算 – 斜交布置抗侧力构件的结构,宜按平行于抗侧力构件方向计算 – 质量和刚度明显不均匀、不对称的结构,应考虑水平地震作用的 扭转影响
5、动力时程分析法
建筑结构抗震总复习第五章-地震作用和结构抗震设计要点
6度时建造于IV类场地上较高的高层建筑(高于40米的钢筋混 凝土框架,高于60米的其他钢筋混凝土民用房屋和类似的工业 厂房,以及高层钢结构房屋),7度和7度以上的建筑结构(生 土房屋和木结构房屋等除外),应进行多遇地震作用下的截面 抗震验算。
FEk——结构总水平地震作用标准值; a1 ——相应于结构基本自振周期的水平地震影响
系数值,多层砌体房屋、底部框架和多层
内框架砖房,宜取水平地震影响系数最大
Hale Waihona Puke 值;第五章 地震作用和结构抗震设计要点
Geq——结构等效总重力荷载,单质点应取总重力荷载代 表值,多质点可取总重力荷载代表值的85%;
Fi ——质点 i 的水平地震作用标准值 Gi ,Gj ——分别为集中于质点i 、j 的重力荷载代表值; Hi ,Hj ——分别为质点 i 、j 的计算高度;
改变了地基运动的频谱组成,使接近结构自振频率的分量获 得加强; 改变了地基振动加速度峰值,使其小于邻近自由场地的加速 度幅值; 由于地基的柔性,使结构的基本周期延长; 由于地基的柔性,有相当一部分振动能量将通过地基土的滞 回作用和波的辐射作用逸散至地基,使得结构振动衰减,地 基愈柔,衰减愈大;
第五章 地震作用和结构抗震设计要点
第五章 地震作用和结构抗震设计要点
1. 建筑的分类与抗震设防 1.1 建筑抗震设防类别:
(1) 特殊设防类:指使用上有特殊设施,涉及国家公共 安全的重大建筑工程和地震时可能发生严重次生灾害等特 别重大灾害后果,需要进行特殊设防的建筑。简称甲类。 (2)重点设防类:指地震时使用功能不能中断或需尽快恢 复的生命线相关建筑,以及地震时可能导致大量人员伤亡 等重大灾害后果,需要提高设防标准的建筑。简称乙类。 (3)标准设防类:指大量的除1、2、4款以外按标准要求 进行设防的建筑。简称丙类。 (4)适度设防类:指使用上人员稀少且震损不致产生次生 灾害,允许在一定条件下适度降低要求的建筑。简称丁类。
地震作用下桥梁结构的抗震设计
地震作用下桥梁结构的抗震设计桥梁作为交通运输的重要枢纽,在地震作用下的安全性至关重要。
地震可能导致桥梁结构的损坏甚至倒塌,严重影响救援和灾后重建工作。
因此,对桥梁结构进行科学合理的抗震设计是保障桥梁安全的关键。
一、地震对桥梁结构的影响地震是一种突发的自然灾害,其释放的能量以地震波的形式传播。
当地震波到达桥梁所在地时,会对桥梁结构产生多种影响。
首先是水平地震力的作用。
水平地震力会使桥梁产生水平位移和加速度,导致桥墩、桥台等构件承受较大的弯矩和剪力。
如果这些构件的强度和刚度不足,就可能发生开裂、屈服甚至破坏。
其次是竖向地震力的影响。
虽然竖向地震力通常比水平地震力小,但在某些情况下,如近断层地震或大跨径桥梁中,竖向地震力也不可忽视。
它可能导致桥梁支座脱空、梁体与墩台的碰撞等问题。
此外,地震还可能引起地基土的液化、滑坡等现象,削弱桥梁基础的承载能力,导致桥梁整体失稳。
二、桥梁结构抗震设计的原则为了确保桥梁在地震作用下的安全性,抗震设计应遵循以下原则:1、多道防线原则在桥梁结构中设置多个抗震防线,当第一道防线失效后,后续的防线能够继续发挥作用,从而提高桥梁的抗震能力。
例如,墩柱可以作为第一道防线,当墩柱破坏后,支座、伸缩缝等构件能够起到一定的耗能作用。
2、能力设计原则通过合理的设计,使桥梁结构的各个构件在地震作用下能够按照预定的方式屈服和破坏,避免出现脆性破坏和不合理的破坏模式。
例如,应确保桥墩的塑性铰出现在预期的位置,并且具有足够的变形能力。
3、整体性原则注重桥梁结构的整体性,使各个构件之间能够协同工作,共同抵抗地震作用。
例如,通过合理设置系梁、盖梁等构件,增强桥墩之间的连接,提高桥梁的整体刚度和稳定性。
三、桥梁结构抗震设计的方法1、静力法静力法是一种简单的抗震设计方法,它将地震作用等效为一个静态的水平力,作用在桥梁结构上。
这种方法适用于规则、简单的桥梁结构,但对于复杂的桥梁结构,其计算结果可能不够准确。
竖向地震作用系数推导
隔震结构荷载组合系数推导1、根据《建筑抗震设计规范》GB50011-2001(2008年版)第12.2.1条强制性条文的规定,竖向地震作用标准值,8度9度时分别不应小于隔震层以上结构总重力荷载代表值(G代)的20%和40%。
2、根据《建筑抗震设计规范》GB50011-2001(2008年版)第5.1.3条的规定,结构竖向地震作用标准值F Evk=ɑvmax G eq=0.75ɑvmax G代3.3.14条第3点“宜乘以增大系数1.5”。
3、9度0.75ɑ0.75=0.234;8度0.75ɑvmax=0.16×1.5×0.65×0.75=0.117;7.5度0.75ɑvmax=0.12×1.5×0.65×vmax×1.5×0.65×0.75=0.0585;由上可知,8、9度时竖向地震作用标准值均小于第12.2.1条的规定(即20%和40%的规定),须用0.2G代及0.4G代代替荷载组合中的竖向地震作用标准值。
4、SATWE中,可以改动的竖向地震力的系数为1.3(仅考虑竖向地震作用时)及0.5(同时考虑水平及竖向地震作用时),所以r EV.S EVK=r EV. ɑvmax G eq,当9度降为8度时,S EVK=0.117G代,而实际应为,S EVK=0.4G代,所用r EV所=1.3×0.4÷0.117=4.444;同理,当9度降为7.5度时,S EVK=0.08775G代,而实际应为,S EVK=0.4G代,所用r EV所=1.3×0.4÷0.08775=5.926;当8度降为7度时,S EVK=0.0585G代,而实际应为,S EVK=0.2G代,所用r EV所=1.3×0.2÷0.0585=4.44;当同时考虑水平及竖向地震作用,9度降为8度时,为1.7;当9度降为7.5度时,为2.279;5、仅考虑竖向地震作用时r EV隔震后上部结构设计采用烈度设防烈度8度 7.5度7度9度 4.45 5.938度 4.456、同时考虑竖向地震作用和水平地震作用时r EV隔震后上部结构设计采用烈度设防烈度8度 7.5度7度9度 1.7 2.288度 1.7我们这个工程相当于从8度(0.3g)降到了7度(0.15g),降低一度,采用上表红色数据。
竖向地震作用
竖向地震作用竖向地震作用:是指结构在竖向地震分量的作用下,产生竖向的地震效应。
1:竖向地震动对结构的影响并非完全没有研究过,钱培风先生早在工力所工作时就已倡导竖向地震作用研究而著名。
唐山地震时有一座烟囱拦腰折断,但有意思的是上面部分旋转90度后落在下面部分之上,并没有掉下来。
关于该震害现象是由于水平地震作用还是竖向地震作用引起的,在工力所曾引发了激烈的争论。
地震工程研究普遍重视水平地震作用的原因有二:一、从强震观测的纪录上看,竖向地震动的峰值普遍小于水平地震动峰值,一般为水平地震动峰值的1/2~2/3,所以水平地震动更重要。
二、结构体系一般具有较强地抗竖向荷载的能力(如柱的轴向刚度很大,结构设计时必须考虑死、活荷载的作用,所以结构有足够的竖向抗力!),而抗水平作用在体系实现上比较困难,这就使得水平地震作用更具威胁性。
但是,实际观测到的竖向地震动峰值也有超过1g的,况且当前的结构体系较之过去有很大不同,主要是大跨、超高的体系已很普遍。
这样竖向地震动对结构的影响似乎并不再是无足轻重了,特别是P-Delt效应问题比较突出,需要研究。
在理论上,竖向地震作用下的结构反应分析同水平地震反应分析方法没有区别,如果采用空间模型,输入三维地震地面运动,则可以将结构水平与竖向反应结果一并算出。
2:之所以“自从唐山地震以来,好像竖向地震力的关注越发受到人们的冷落”是因为唐山地震前,由钱培风先生提出的竖向地震作用也很显著的说法,很多人不理解,在期刊上争论的很激烈。
钱培风先生在众多人反对的形势下,一直坚持自己的观点。
钱老的论据尽是地震现场人员的口头描述,经过地震的人大多都不在震中区,对地震的感受只有水平运动;唐山地震(震中区)震害的照片让大家明白了确有竖向地震加速度大于g的现象。
于是大家有了统一的认识,不再争论,即冷落了。
结论是:震中区竖向地震加速度会很大,随震中距的加大,由于竖向地震波是高频率,衰减很快,所以大部分地区都是只感觉有水平地震作用。
抗震结构设计扭转、竖向地震作用)
1.高宽比小于3的结构,各楼层水平地震剪力的折减系数, 可按下式计算:
( T1 )0.9
T1 T
---计入地基与结构动力相互作用后的地震剪力折减系数;
T1 ---按刚性地基假定确定的结构基本自振周期;
T ---计入地基与结构动力相互作用的附加周期
按右表采用(单位:s);
2.高宽比不小于3的结构,底部的地震 烈度
此外,竖向第一振型的数值大致呈倒三角形式,基本 周期小于场地特征周期。
因此,高耸结构和高层建筑的竖向地震作用可按与底 部剪力法类似的方法计算。
二、高耸结构和高层建筑竖向地震作用的计算公式(5.3.1)
FEVK G V m ax eq
Gn
Geq 0.75 Gi
Gi
FVi
V max 0.65 H max
竖向地震作用的影响是显著的:
根据地震计算分析,对于高层建筑、高耸及大跨结构,竖向 地震影响显著。结构竖向地震内力NE/与重力荷载产生的内力NG 的比值沿高度自下向上逐渐增大,烈度为8度时为50%至90%,9 度时可达到或超过1;335m高的电视塔上部,8度时为138%;高 层建筑上部,8度时为50%至110%。
mm
SEK
jk S j Sk
j 1 k 1
jk
8 jk (1 T )T1.5 (1 T2 )2 4 jk (1 T )2 T
SEK ---考虑扭转的地震作用效应
S j、Sk---分别为j、k振型地震作用产生的作用效应; 可取前9~ 15个振型。
j、k---分别为j、k振型的阻尼比; jk ---为j振型与k振型的耦联系数,即:相关系数;
(
x
2 ji
y
2 ji
2 ji
地震作用和结构抗震设计要点3
地基与结构相互作用的考虑
《抗震规范》规定 1)结构抗震计算,一般情况下,可不考虑地基与结构相
互作用的影响; 2)8度和9度时建造在Ⅲ,Ⅳ类场地土上,采用箱基、刚
性较好的筏基和桩箱联合基础的钢筋混凝土高层建筑, 当结构基本周期处于特征周期的1.2倍至5倍范围时, 若计入地基与结构动力相互作用的影响,对刚性地基 假定计算的水平地震剪力可按下列规定折减,其层间 变形可按折减后的楼层剪力计算。
mg(
xg max )( g
Sa ) xg max
Gk
G
为地震影响系数, 质点所受水平地震力与该质点重力之比。
我国《建筑抗震设计规范》(GB 50011-2010) 将地震影响系数曲线分为4个部分,覆盖的房屋 自振周期从0至6S。
加速度影响曲线,无量刚化,弹性反应谱
GB 50011-2010, Fig. 5.1.5
FXji j tj X jiGi FYji j tjYjiGi Ftji j tj ri2 jiGi
单向地震作用下
SEk
mm
jk S j Sk
j 1 k 1
双向地震作用下
SEk SEk
S
2 x
(0.85S y )2
S
2 y
(0.85S x )2
时程反应法
适用情况:
特别不规则的建筑,甲类建筑和表中所列的高层建筑
2max
When:Tg Ti 5Tg
( Tg T
) 2 m ax
加速度影响曲线
When : 5Tg Ti 6.0s [2 0.2 1 (T 5T g)]max
Geq 结构等效总重量
For SDOM,
For MDOM,
Geq =G1
高层结构设计第3章 高层建筑的荷载和地震作用
3、抗震设防目标
具体通过“三水准”的抗震设防要求和 “两阶段”的抗震设计方法实现。
三水准地震作用的标定
三水准:“小震”“中震”“大震” 地震影响 众值烈度(多遇地震)小震 基本烈度(设防烈度地震)中震 罕遇烈度(罕遇地震)大震 50年超越概率 63.2% 10% 2-3% 地震重现期 50年 475年 1642-2475年
:空气密度
2014-11-16
15
(2)风荷载体型系数 s 风对建筑表面的作用力并不等于基本风压值,而是随建筑物的 体型、尺度、表面位臵等而改变,其大小由实测或风洞试验确定 s =垂直于建筑表面的平均风作用力/基本风压值
2014-11-16
16
(2)风荷载体型系数 s 风对建筑表面的作用力并不等于基本风压值,而是随建筑物的 体型、尺度、表面位臵等而改变,其大小由实测或风洞试验确定 s =垂直于建筑表面的平均风作用力/基本风压值
吸力
2014-11-16
27
4、总风荷载
各个表面承受风力的合力,沿高度变化的分布荷载
Z Z 0 (1 B1 cos1 Zn Bn cos n )
α2 =900 α1=0 μs= +0.8 B1 wind B4
μs=-0.6
2014-11-16 28
μs=-0.6
4、地震作用计算原则
一般情况下,计算两个主轴方向的地震作用;有斜交抗 侧力构件(角度大于 15 度)时应分别计算各抗侧力构件 方向的地震作用 质量与刚度分布明显不对称、不均匀的结构,应计算双 向水平地震作用下的扭转影响,其他情况应计算单向地 震作用下的扭转影响 8 度和 9 度抗震设计时,高层建筑中的大跨度和长悬臂结 构应考虑竖向地震作用 9度抗震设计时应计算竖向地震作用
第五章-地震作用和结构抗震设计要点
Geq——结构等效总重力荷载,单质点应取总重力荷载代 表值,多质点可取总重力荷载代表值的85%; Fi ——质点 i 的水平地震作用标准值 Gi ,Gj ——分别为集中于质点i 、j 的重力荷载代表值; Hi ,Hj ——分别为质点 i 、j
η
的计算高度;
ζ
δn——顶 部 附 加 地震作用 系数 ,多层 钢筋混凝土 和钢结 构房屋可按表6采用,多层内框架砖房可采用0.2,其 他房屋可采用0.0; ∆Fn ——顶部附加水平地震作用。
i =1 i =1 n n 2
式中 Fji——j 振型 i 质点的水平地震作用标准值; aj——相应于 j 振型自振周期的地震影响系数; Xji——j 振型 i 质点的水平相对位移; γj ——j 振型的参与系数。 水平地震作用效应(弯矩、剪力、轴向 力和变形),应按 下式确定:
S Ek = ∑ S j
有斜交抗侧力构件的结构,当相交角度大于15 度时, 应分别考虑各侧力构件方向的水平地震作用; 质量和刚度明显不对称的结构,应考虑双向水平地震 作用下的扭转影 响。其他情况,可以采用调整 地震作 用效应的方法计入扭转影响; 8度和9度的大跨度结构、长悬臂结构及9度时的高层建 筑,应考虑竖向地震作用。
1.1.2 地震作用计算方法
现行《抗震规范》的抗震设计计算采用以下三种方法: 适用于多自由度体系的振型分解反应谱法; 将多自由度体系看作等效单自由度体系的底部剪力法; 直接输入地震波求解运动方程及结构地震反应的时程分 析法 。
《抗震规范》对上述三种方法的使用范围作了如下规定: 高度不超过40m,以剪切变形为主且质量和刚度沿高 度分布比较均匀的结构,以及近似于单质点体系的结 构,可采用底部剪力法等简化方法 ; 除上述以外的建筑结构,宜采用振型分解反应谱法; 特别不规则的建筑,甲类建筑和表1所列的高层建 筑,应采用时程分析法进行多遇地震作用下的补充计 算,并取多条时程曲线计算结果的平均值与振型分解 反应谱法计算结果的较大值。
竖向地震作用计算
楼 层 1 2 3
高 度(m)
4 8 12 16 20
Fvi(KN)
楼 层
6 7 8 9 10
高 度(m)
24 28 32 36 40
Fvi(KN) 3281.88 3828.86 4375.84 4922.82 5056.85
546.98 1093.96 1640.94
4
5
2187.92
2734.9
力最小值的要求,即在进行结构抗震验算时,结构任一楼层的水平地震剪力应满足 下式要求:来自Veki G j
j i
n
Veki 第i层对应于水平地震作用 标准值的楼层剪力;
剪力系数,按照表 3.7取值。
G j j层的重力荷载代表值
3.3 竖向地震作用的计算
《抗震规范》规定,8度、9度时的大跨度结构和长悬臂结构,以及9度时的 高层建筑,应考虑竖向地震作用的影响。竖向地震作用的计算应根据结构的 不同类型选用不同的计算方法:对于高层建筑、烟囱和类似 高耸结构,可采 用反应谱法;对于平板网架、大跨度结构及长悬臂结构,一般采用静力法。 3.3.1 高层建筑和高耸结构的的竖向地震作用计算
1)多遇地震下结构的弹性变形验算
ue e h
2)罕遇地震作用下结构的弹塑性变形验算
up p h
本 章 结 束!
FEvk v maxGeq
Fvi Gi H i
G
j 1
n
FEvk
j
Hj
Geq 0.75 Gi
i 1
v max 0.65max
n
例题:
某钢筋混凝土高层办公楼建筑共10层,每层层高均为4m,总高40m,质 量和侧向刚度沿高度分布比较均匀,属于规则结构。该建筑位于9度设防区, 场地类别为II类,设计地震分组分组为第二组,设计基本地震加速度为0.4g。 已知屋面、楼面永久荷载标准值为1500KN,屋面及各层楼面活荷载标准值为 2450KN,结构基本自振周期为1.0s。试计算该结构的竖向地震作用标准值, 以及每层的竖向地震作用标准值。 解:(1)该建筑位移9度设防区,因此,根据表格3-4得:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
竖向地震作用
竖向地震作用:是指结构在竖向地震分量的作用下,产生竖向的地震效应。
1:
竖向地震动对结构的影响并非完全没有研究过,钱培风先生早在工力所工作时就已倡导竖向地震作用研究而著名。
唐山地震时有一座烟囱拦腰折断,但有意思的是上面部分旋转90度后落在下面部分之上,并没有掉下来。
关于该震害现象是由于水平地震作用还是竖向地震作用引起的,在工力所曾引发了激烈的争论。
地震工程研究普遍重视水平地震作用的原因有二:
一、从强震观测的纪录上看,竖向地震动的峰值普遍小于水平地震动峰值,一般为水平地震动峰值的
1/2~2/3,所以水平地震动更重要。
二、结构体系一般具有较强地抗竖向荷载的能力(如柱的轴向刚度很大,结构设计时必须考虑死、活荷载的作用,所以结构有足够的竖向抗力!),而抗水平作用在体系实现上比较困难,这就使得水平地震作用更具威胁性。
但是,实际观测到的竖向地震动峰值也有超过1g的,况且当前的结构体系较之过去有很大不同,主要是大跨、超高的体系已很普遍。
这样竖向地震动对结构的影响似乎并不再是无足轻重了,特别是P-Delt效应问题比较突出,需要研究。
在理论上,竖向地震作用下的结构反应分析同水平地震反应分析方法没有区别,如果采用空间模型,输入三维地震地面运动,则可以将结构水平与竖向反应结果一并算出。
2:
之所以“自从唐山地震以来,好像竖向地震力的关注越发受到人们的冷落”是因为唐山地震前,由钱培风先生提出的竖向地震作用也很显著的说法,很多人不理解,在期刊上争论的很激烈。
钱培风先生在众多人反对的形势下,一直坚持自己的观点。
钱老的论据尽是地震现场人员的口头描述,经过地震的人大多都不在震中区,对地震的感受只有水平运动;唐山地震(震中区)震害的照片让大家明白了确有竖向地震加速度大于g的现象。
于是大家有了统一的认识,不再争论,即冷落了。
结论是:震中区竖向地震加速度会很大,随震中距的加大,由于竖向地震波是高频率,衰减很快,所以大部分地区都是只感觉有水平地震作用。
由此规范对高烈度区(震中区)提出计算竖向地震的要求;对接近震中区(八度)的大跨,长悬臂等对竖向地震敏感的结构也提出了计算竖向地震的要求。
除此之外的区域,只要求计算水平地震作用。
3:
竖向地震作用目前的研究并不是很多,据已经查到的资料看,一般都是在研究建筑结构简化为单质点以及多质点模型在竖向地震作用下的地震反应。
另一方面,竖向地震作用在隔震结构中显得比较突出,因此在隔震结构中对竖向地震作用还是比较重视的。
我国抗震设计规范里中也规定位于高烈度区8度和9度时的大跨结构、长悬臂结构、烟囱和类似的高耸结构,9度时的高层建筑,应考虑竖向地震作用。
规范里计算时候取竖向地震作用为水平地震作用的65%。
就已有的地震记录还看,根据统计资料,一般竖向地震作用为水平地震作用的1/2~2/3左右,在高烈度地区,竖向地震可能达到或者超过1g,竖向地震作用与水平地震作用的比值甚至会达到2左右。
为什么竖向地震时程分析的结构计算模型水平构件的跨中至少要设一个有质量的节点呢?
一般有限元采用聚集质量法,即将杆件单元的质量集中到杆端节点上,地震作用是惯性力,如框架梁中无质量,则计算中无法模拟实际的地震竖向作用。
竖向地震跟水平地震类似,惯性力是与整个结构的质量相关,至于在其内部的分部应与其单个构件的质量没太大的联系。