2020-2021苏科版七年级数学上册第6章平面图形的认识(一) 章末培优训练卷(有答案)

合集下载

苏科版七年级上册数学第6章 平面图形的认识(一)含答案(含解析)

苏科版七年级上册数学第6章 平面图形的认识(一)含答案(含解析)

苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、∠1=45゜24′,∠2=45.3゜,∠3=45゜18′,则()A.∠1=∠2B.∠2=∠3C.∠1=∠3D.以上都不对2、如图,OA⊥OC,OB⊥OD,四位同学观察图形后分别说了自己的观点.甲:∠AOB=∠COD;乙:∠BOC+∠AOD=180°;丙:∠AOB+∠COD=90°;丁:图中小于平角的角有6个.其中观点正确的有()A.甲、乙、丙B.甲、丙、丁C.乙、丙、丁D.甲、乙、丁3、12点15分,时针与分针所夹的小于平角的角为()A.90°B.67.5°C.82.5°D.60°4、已知:如图,点E,F分别在AB,CD上,AF⊥CE,垂足为点O,∠1=∠B,∠A+∠2=90°.求证:AB∥CD.证明:如图,∵∠1=∠B(已知)∴CE∥BF(同位角相等,两直线平行)______________∴∠AFC+∠2=90°(等式性质)∵∠A+∠2=90°(已知)∴∠AFC=∠A(同角或等角的余角相等)∴AB∥CD(内错角相等,两直线平行)请你仔细观察下列序号所代表的内容:①∴∠AOE=90°(垂直的定义)②∴∠AFB=90°(等量代换)③∵AF⊥CE(已知)④∵∠AFC+∠AFB+∠2=180°(平角的定义)⑤∴∠AOE=∠AFB(两直线平行,同位角相等)横线处应填写的过程,顺序正确的是()A.⑤③①②④B.③④①②⑤C.⑤④③①②D.⑤②④5、如图,C是线段AB的中点,D是线段CB的中点,下列说法错误的是()A.CD=AC﹣BDB.CD= AB﹣BDC.AC+BD=BC+CDD.CD= AB6、如图,∠DOB=140°,OA⊥OB,则∠AOC=()A.40°B.45°C.50°D.55°7、如图,射线 AB,DC 交于点O,射线OM平分∠AOC,若∠BOD=80°,则∠COM的度数为()A.30°B.40°C.50°D.60°8、如图,直线AC和直线BD相交于点0,若∠1+∠2=90°,则∠BOC的度数是()A.100°B.115°C.135°D.145°9、如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能符合题意解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点之间,线段最短 D.经过两点,有且仅有一条直线10、如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为()A.2B.3C.4D.511、下列六个命题:①有理数与数轴上的点一一对应;②两条直线被第三条直线所截,内错角相等;③直线外一点到这条直线的垂线段叫做点到直线的距离;④平行于同一条直线的两条直线互相平行;⑤垂直于同一条直线的两条直线互相平行;⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等,其中假命题的个数是()A.3个B.4个C.5个D.6个12、下列结论中,不正确的是()A.两点确定一条直线B.两点之间的所有连线中,线段最短C.对顶角相等D.过一点有且只有一条直线与已知直线平行13、下列说法:①如果∠1+ ∠2+∠3=180°,那么∠1,∠2,∠3三个角互为补角;②如果∠A+ ∠B=90°,那么∠A与∠B互为余角;③“对顶角相等”成立,反之“相等的角是对顶角”也成立;④两条直线被第三条直线所截,同位角相等;⑤两点之间,线段最短. 正确的个数是()A.2个B.3个C.4个D.5个14、在墙壁上固定一根横放的木条,则至少需要()枚钉子A.lB.2C.3D.随便多少枚15、修建高速公路时,经常将弯曲的道路改直,从而缩短路程,这样做的数学根据是()A.两点确定一条直线B.两点之间,线段最短C.垂线段最短D.同位角相等,两直线平行二、填空题(共10题,共计30分)16、请补充完成以下解答过程,并在括号内填写该步骤的理由.已知:如图,, , 平分,若,求的度数.解:因为,所以________ .因为________ ,所以.所以.(________)因为,所以.因为平分,所以________ ________°所以________°.17、如图所示:直线AB与CD相交于O,已知∠1=30°,OE是∠BOC的平分线,则∠2=________°,∠3=________°.18、数轴上到表示数4的点的距离为5个单位长度的点表示的数是________.19、如图,已知从甲地到乙地共有四条路可走,你应选择第________ 路,所用的数学原理为:________20、如图,射线表示西北方向,若射线表示南偏西的方向,则锐角的大小是________度.21、下午3点30分时,钟面上时针与分针所成的角等于________°.22、若∠1+∠2=180°,∠1+∠3=180°,则∠2与∠3的关系是________.23、火车往返于A、B两个城市,中途经过4个站点(共6个站点),不同的车站来往需要不同的车票,共有________种不同的车票.24、以下说法:①两点确定一条直线;②两点之间直线最短;③若x=y,则= ;④若|a|=﹣a,则a<0;⑤若a,b互为相反数,那么a,b的商必定等于﹣1.其中正确的是________.(请填序号)25、如图,已知AE//CD,BC⊥CD于C,若∠A=28°,则∠ABC=________三、解答题(共5题,共计25分)26、一个角的余角比它的补角还多1°,求这个角.27、如图,轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则∠A的度数为多少?28、已知A、B、C.三点在同一直线上,DE⊥AB, ∠DBE=2∠EBC,求∠DBE的度数。

苏科版七年级上册数学第6章 平面图形的认识(一) 含答案

苏科版七年级上册数学第6章 平面图形的认识(一) 含答案

苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、如图,点A位于点O的()方向上A.北偏西65°B.南偏东35°C.北偏东65°D.南偏西65°2、下列说法正确的是()A.射线比直线短B.两点确定一条直线C.经过三点只能作一条直线D.两点间的长度叫两点间的距离3、如图,直线AB、CD交于O,EO⊥AB于O,∠1与∠2的关系是()A.互余B.对顶角C.互补D.相等4、在图中,不同的线段的条数是()A.3B.4C.5D.65、在数轴上表示数-1和2019的两点分别为点A和点B,则A、B两点之间的距离为()A.2018B.2019C.2020D.20216、若一个三角形的两个外角分别是135º、125º,则这个三角形的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定形状7、如图,点在直线上移动,是直线上的两个定点,且直线.对于下列各值:①点到直线的距离;②的周长;③的面积;④的大小.其中不会随点的移动而变化的是()A.①②B.①③C.②④D.③④8、下列各图中,OP 是∠MON 的平分线,点E,F,G 分别在射线OM,ON,OP 上,则可以解释定理“角的平分线上的点到角的两边的距离相等”的图形是()A. B. C. D.9、如图,直线,则的度数为()A.150°B.140°C.130°D.120°10、下列说法中正确的是()A.四棱锥有4个面B.连接两点间的线段叫做两点间的距离C.如果线段,则M是线段AB的中点D.射线和射线不是同一条射线11、如图,大小不同的两个磁块,其截面都是等边三角形,小三角形边长是大三角形边长的一半,点O是小三角形的内心,现将小三角形沿着大三角形的边缘顺时针滚动,当由①位置滚动到④位置时,线段OA绕点O顺时针转过的角度是()A.240°B.360°C.480°D.540°12、把一条弯曲的河道改成直道,可以缩短航程,其中的道理可以解释为()A.线段有两个端点B.过两点可以确定一条直线C.两点之间,线段最短D.线段可以比较大小13、若A,B,C是直线l上的三点,P是直线l外一点,且PA=5cm,PB=4cm,PC=3cm,则点P到直线l的距离 ( )A.等于3 cmB.大于3 cm而小于4 cm ;C.不大于3cm D.小于3 cm14、下列四个图中,∠1和∠2是对顶角的图的个数是()A.0个B.1个C.2个D.3个15、已知∠α,如图,则∠α的度数约为()A.75°B.60°C.45°D.30°二、填空题(共10题,共计30分)16、如图,CD,BE相交于点A,若∠B=70°,∠DAE=60°,则∠C=________°.17、己知在纸面上有一数轴(如图所示)一般地,数轴上表示数m和数n的两点间距离可用|m﹣n|表示,|x﹣4|+|x﹣5|的最小值是________18、如图,已知:∠1+∠2=180°,求证:a∥b.证明:∵∠1=∠3________∠1+∠2=180________∴∠3+∠2=180°________∴a∥b________19、如图,将一副直角三角板如图放置,若∠AOD=18°,则∠BOC的度数为________.20、52.42°=________°________′________″.21、在同一平面内,有直线a1, a2, a3, a4,…,a100,若a1⊥a2,a 2∥a3, a3⊥a4, a4∥a5,…,按此规律下去,则a1与a100的位置关系是________.22、已知小岛A位于基地O的东南方向,货船B位于基地O的北偏东50°方向,那么∠AOB的度数等于________23、在直线AB上任取一点O,过点O作射线OC,OD,使,当时,的度数是________.24、如图所示,直线AB,CD相交于点O,OM⊥AB,若∠MOD=30°,则∠COB=________ 度.25、如图,已知A、B、C、D四点在同一直线上,点D是线段BC的中点,且BC=3AB,如果AB=4cm,则线段AD的长度为________ cm.三、解答题(共5题,共计25分)26、一个角的补角比它的余角的2倍还多45°,求这个角的度数.27、如图,在△ABC中,AB=4,AC=3,BC=5,DE是BC的垂直平分线,点D,E分别在BC,AB上,求线段DE的长.28、如图,已知,相交于点O,,,平分,平分,求.29、如图点P是∠ABC内一点画图:①过点P作BC的垂线,D是垂足;②过点P作BC的平行线交AB于E,过点P作AB的平行线交BC于F.30、如图,∠1=28°,AB⊥CD,垂足为O,EF经过点O.求∠2、∠3的度数.参考答案一、单选题(共15题,共计45分)1、A2、B4、D5、C6、A7、B8、D9、D10、D11、C12、C13、C14、A15、C二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

新苏科版七年级数学上册第6章平面图形的认识(一)6.3 余角、补角、对顶角

新苏科版七年级数学上册第6章平面图形的认识(一)6.3 余角、补角、对顶角

=700
课堂小结
• 学习了对顶角的概念及其性质; • 经历“观察--猜想--说理”的
认知过程,发展空间观念和有条理 的表达能力.
∠AOC为多少度?为什么?
因为∠AOD 与∠BOC互为对顶角,
所以∠AOD =∠BOC;
A
D 又∠AOD +∠BOC=2200,
所以∠AOD +∠AOD=2200
所以∠AOD=1100;
O
因为∠AOD 与∠AOC互为补角, 所以∠AOD +∠BOC=1800,
C
B所以∠AOC =1800-∠BOC
=1800-1100
所以∠BOC= ∠AOD=130°
练习1
1.如图,直线AC、DE相交于点O,OE 是∠AOB的平分线,∠COD=500, 试求∠AOB的度数。
AE O D
解:以∠AOE=∠COD=50O 因为OE是∠AOB的平分线
C 所以∠AOB=2∠AOE=1000
2、 如图, ∠A= ∠AOB, ∠D= ∠COD,
β α
∠α+∠β=180°,
即∠α与∠β互为补角, ∠α的补角是∠β, ∠β的补角是∠α.
2.如果两个角的和是一个平角, 那么这两个角互为补角,简称互补. 其中的一个角叫做另一个角的补角.
做一做
∠α的度数 500
45° 60°
n0 (0<n<90)
∠α的余角 40° 450
30°
(90-n) °
∠α的补角 130° 135°
6.3 余角、补角、对顶角(1)
观察与思考
问:图中∠α与∠β的度数之间有怎样的关系?
α
β
∠α+∠β=90°,
即∠α与∠β互为余角, ∠α的余角是∠β, ∠β的余角是∠α.

2020-2021学年第一学期苏科版七年级数学上册第6章平面图形的认识(一) 综合 培优训练卷(1)

2020-2021学年第一学期苏科版七年级数学上册第6章平面图形的认识(一) 综合 培优训练卷(1)
精品文档,助力人生,欢迎关注小编!
2020-2021 苏科版七年级数学上册第 6 章平面图形的认识(一) 综合培优训练卷(1)
一、选择题 1、如图,下列不正确的几何语句是( )
A.直线 AB 与直线 BA 是同一条直线 B.射线 OA 与射线 OB 是同一条射线 C.射线 OA 与射线 AB 是同一条射线 D.线段 AB 与线段 BA 是同一条线段
11、如图,点 A 在直线 l1 上,点 B,C 在直线 l2 上,AB⊥l2,AC⊥l1,AB=4,BC=3,AC=5,有下列说
法: (1)点 B 到直线 l1 的距离等于 4 (2)点 C 到直线 l1 的距离等于 5
(3)点 A 到直线 l2 间的距离等于 4 (4)点 B 到直线 AC 的距离等于 3
⑥如果两个角是邻补角,那么这两个角的平分线组成的图形是 直角,故⑥正 确.
所以错误的有 4 个,故选 C.
3、如图,B 是线段 AD 的中点,C 是 BD 上一点,则下列结论中错误的是(

A.BC=AB-CD
B.BC= 1 AD-CD 2
C.BC= 1 (AD+CD) D.BC=AC-BD 2
解析:∵
则线段PQ=___________.
14、已知线段 AB=10 cm ,BC=5 cm,A、B、C 三点在同一条直线上,则 AC=_
_.
15、如图,线段AB=BC=CD=DE=1 cm,那么图中所有线段的长度之和等于___ _____cm.
16、如图,点 O 是直线 AD 上一点,射线 OC、OE 分别是∠AOB、∠BOD 的平分线,若∠AOC=28°, 则∠COD=_________,∠BOE=__________.

A.∠1=∠3

第6章平面图形的认识(一)(提优卷)学生版

第6章平面图形的认识(一)(提优卷)学生版

20232024学年苏科版数学七年级上册章节真题汇编检测卷(提优)第6章平面图形的认识(一)考试时间:120分钟试卷满分:100分难度系数:0.56姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022秋•海门市期末)如图,将一副三角板的直角顶点重合放置于A处(两块三角板可以在同一平面内自由转动),则下列结论一定成立的是()A.∠BAD≠∠EAC B.∠DAC﹣∠BAE=45°C.∠DAC+∠BAE=180°D.∠DAC﹣∠BAE=90°2.(2分)(2022秋•惠山区校级期末)下列说法错误的是()A.对顶角相等B.两点之间所有连线中,线段最短C.等角的补角相等D.过任意一点P,只能画一条直线3.(2分)(2022秋•连云港期末)如图,点C、D分别为线段AB(端点A、B除外)上的两个不同的动点,点D在点C的右侧,图中所有线段的和等于60cm,且AB=3CD,则CD的长度是()A.6cm B.8cm C.10cm D.12cm4.(2分)(2022秋•海安市期末)将一副三角尺按不同位置摆放.下列摆放方式中α与β互补的是()A.B.C.D.5.(2分)(2022秋•常州期末)已知线段AB=15cm,C是线段AB上的一点.若在射线AB上取一点D,使得C是AD的中点,且,则线段AC的长度是()A.5cm B.3,5cm C.9cm D.5,9cm6.(2分)(2022秋•鼓楼区期末)如图,∠BOC在∠AOD的内部,且∠BOC=x°,∠AOD=y°,则图中所有角的度数之和为(注:图中所有角均指小于180°的角)()A.x+3y B.2x+2y C.3x+y D.3y﹣x7.(2分)(2022秋•姑苏区校级期末)下列说法正确的是()A.若AC=BC,则点C为线段AB中点B.把弯曲的公路改直,就能缩短路程,数学原理是“两点确定一条直线”C.已知A,B,C三点在一条直线上,若AB=2,BC=4,则AC=6D.已知C,D为线段AB上两点,若AC=BD,则AD=BC8.(2分)(2021秋•秦淮区期末)如图,点A、B、C在同一直线上,H为AC的中点,M为AB的中点,N为BC的中点,则下列说法:①MN=HC;②MH=(AH﹣HB);③MN=(AC+HB);④HN=(HC+HB),其中正确的是()A.①②B.①②④C.②③④D.①②③④9.(2分)(2022秋•姑苏区校级期末)将一张正方形纸片ABCD按如图所示的方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为B′、D′,若∠B′AD′=16°,则∠EAF的度数为()A.40°B.45°C.56°D.37°10.(2分)(2019秋•扬州期末)下列生活实例中,数学原理解释错误的一项是()A.从一条河向一个村庄引一条最短的水渠,其中数学原理是:在同一平面内,过一点有且只有一条直线垂直于已知直线B.两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短C.把一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线D.从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连接直线外一点与直线上各点的所有线段中,垂线段最短评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022秋•惠山区校级期末)钟面角是指时钟的时针和分针所成的角.例如:六点钟的时候,时针与分针所成钟面角为180°;七点钟的时候,时针与分针所成钟面角为150°.那么从六点钟到七点钟这一个小时内,哪些时刻时针与分针所成钟面角为100°?请写出具体时刻:.(结果形如6点分)12.(2分)(2022秋•秦淮区期末)如图,C为线段AB上一点,点E、F分别是线段AC、CB的中点,AB=8,则线段EF的长为.13.(2分)(2017秋•滨海县期末)如图,在利用量角器画一个40°的∠AOB的过程中,对于先找点B,再画射线OB这一步骤的画图依据,甲同学认为是两点确定一条直线,乙同学认为是两点之间线段最短.你认为同学的说法是正确的.14.(2分)(2020秋•邗江区校级月考)3:30时钟表上的时针与分针的夹角是度.15.(2分)(2022秋•高新区期末)如图,有公共端点P的两条线段MP,NP组成一条折线M﹣P﹣N,若该折线M﹣P﹣N上一点Q把这条折线分成相等的两部分,我们把这个点Q叫做这条折线的“折中点”,已知D 是折线A﹣C﹣B的“折中点”,E为线AC的中点,CD=1,CE=3,则线段BC的长为.16.(2分)(2022秋•兴化市校级期末)若一个角的补角等于它的余角4倍,则这个角的度数是度.17.(2分)(2022秋•句容市校级期末)如图,在∠AOB内部作OC⊥OB,OD平分∠AOB,若∠AOB=130°,则∠COD=.18.(2分)(2022秋•秦淮区期末)如图,A、B是河l两侧的两个村庄,现要在河l上修建一个抽水站,使它到A、B两村庄的距离之和最小.数学老师说:连接AB,则线段AB与l的交点C即为抽水站的位置.其理由是:.19.(2分)(2021秋•鼓楼区校级期末)如图,将一副三角板的直角顶点重合,摆放在桌面上,当∠AOC=时,AB所在直线与CD所在直线互相垂直.20.(2分)(2021秋•秦淮区期末)一副三角板AOB与COD如图1摆放,且∠A=∠C=90°,∠AOB=60°,∠COD=45°,ON平分∠COB,OM平分∠AOD.当三角板COD绕O点顺时针旋转(从图1到图2).设图1、图2中的∠NOM的度数分别为α,β,α+β=度.评卷人得分三.解答题(共8小题,满分60分)21.(6分)(2022秋•姑苏区校级期末)如图,直线AB,CD相交于点O,OM⊥AB.(1)若∠1=40°,∠2=30°,求∠NOD的度数;(2)如果ON与CD互相垂直,那么∠1=∠2吗?请说明理由.22.(6分)(2022秋•惠山区校级期末)如图,已知点C是线段AB上一点,点D是线段AB的中点,若AB =10cm,BC=3cm.(1)求线段CD的长;(2)若点E是直线AB上一点,且BE=2cm,点F是BE的中点,求线段DF的长.23.(8分)(2022秋•赣榆区校级月考)如图,已知四点A、B、C、D,请用尺规作图完成.(保留画图痕迹)(1)画直线AB;(2)画射线AC;(3)连接BC并延长BC到E,使得CE=AB+BC;(4)在线段BD上取点P,使PA+PC的值最小.24.(8分)(2022秋•惠山区校级期末)解答题:(1)如图,若∠AOB=120°,∠AOC=40°,OD、OE分别平分∠AOB、∠AOC,求∠DOE的度数;(2)若∠AOB,∠AOC是平面内两个角,∠AOB=m°,∠AOC=n°(n<m<180°),OD、OE分别平分∠AOB、∠AOC,求∠DOE的度数.(用含m、n的代数式表示):25.(8分)(2022秋•南通期末)定义:从∠MPN的顶点P引一条射线PQ(不与PM重合),若∠QPN+∠MPN =180°,则称射线PQ为∠MPN关于边PN的补线.(1)下列说法:①一个角关于某边的补线一定在这个角的外部;②一个角关于某边的补线一定有2条;③一个角关于某边的补线有1条或2条,其中正确的是;(填序号)(2)如图,O是直线AB上一点,射线OC,OD在AB同侧,OD是∠BOC的平分线,则OC是∠AOD关于边OD的补线吗?为什么?(3)已知射线OC为∠AOB关于边OB的补线,OP是∠BOC的平分线.若∠AOB=α,试用含α的式子表示∠AOP(直接写出结果).26.(8分)(2021秋•东台市期末)对于数轴上的点M,线段AB,给出如下定义:P为线段AB上任意一点,我们把M、P两点间距离的最小值称为点M关于线段AB的“靠近距离”,记作d1(点M,线段AB);把M、P两点间的距离的最大值称为点M关于线段AB的“远离距离”,记作d2(点M,线段AB).特别的,若点M与点P重合,则M,P两点间的距离为0.已知点A表示的数为﹣5,点B表示的数为2.如图,若点C表示的数为3,则d1(点C,线段AB)=1,d2(点C,线段AB)=8.(1)若点D表示的数为﹣7,则d1(点D,线段AB)=,d2(点D,线段AB)=;(2)若点M表示的数为m,d1(点M,线段AB)=3,则m的值为;若点N表示的数为n,d2(点N,线段AB)=12,则n的值为.(3)若点E表示的数为x,点F表示的数为x+2,d2(点F,线段AB)是d1(点E,线段AB)的3倍.求x的值.27.(8分)(2022秋•海门市期末)已知∠AOB=120°,∠COD在∠AOB内部,∠COD=60°.(1)如图1,若∠BOD=30°,求∠AOC的度数;(2)如图2,若OE平分∠BOC,请说明:∠AOC=2∠DOE;(3)如图3,若在∠AOB的外部分别作∠AOC,∠BOD的余角∠AOP,∠BOQ,试探究∠AOP,∠BOQ,∠COD 三者之间的数量关系,并说明理由.28.(8分)(2018秋•盱眙县期末)如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后OM恰好平分∠BOC,则t=(直接写结果)(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多少秒后OC平分∠MON?请说明理由;(3)在(2)问的基础上,那么经过多少秒∠MOC=36°?请说明理由.。

苏科版七年级数学上册6章 平面图形的认识(一)6.1-6.3 阶段 培优训练卷(有答案)

苏科版七年级数学上册6章 平面图形的认识(一)6.1-6.3 阶段 培优训练卷(有答案)

2020-2021苏科版七年级数学上册6章平面图形的认识(一)6.1-6.3阶段培优训练卷一、选择题1、图中给出的直线、射线、线段,根据各自的性质,能相交的是( )2、下列说法:①一根拉的很紧的细线就是直线;②直线的一半是射线;③一直线上的任意一点把这条直线分成两条射线;④经过两点只有一条线段;⑤在所有连接两点的线中,线段最短,其中正确的个数是( )A.1个B.2个C.3个D.4个3、图中共有线段()A.4条B.6条C.8条D.10条4、如果点C在AB上,下列表达式:①AC=AB;②AB=2BC;③AC=BC;④AC+BC=AB中,能表示C是AB中点的有( )A.1个B.2个C.3个D.4个5、如图,直线AB,CD相交于点O,已知∠AOC=80°,∠BOE:∠EOD=3:2,则∠AOE的度数是()A.100°B.116°C.120°D.132°6、如图,C为线段AD上一点,点B为CD的中点,且AD=9,BD=2.若点E在直线AD上,且EA=1,则BE的长为()A.4B.6或8C.6D.87、如图,下列表示角的方法错误的是( )A.∠1与∠AOB表示同一个角B.∠AOC可用么O来表示C.图中共有三个角∠AOB、∠AOC、∠BOC D.∠β表示的是∠BOC8、已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数是()A.20°或50°B.20°或60°C.30°或50°D.30°或60°9、已知∠A=115°,∠B是∠A的补角,则∠B的余角的度数是()A.65°B.115°C.15°D.25°10、下列说法中,正确的是()①已知∠A=40°,则∠A的余角是50°.②若∠1+∠2=90°,则∠1和∠2互为余角.③若∠1+∠2+∠3=180°,则∠1、∠2和∠3互为补角.④一个角的补角必为钝角.A.①,②B.①,②,③C.③,④,②D.③,④11、下列说法中,正确的是().①射线AB和射线BA是同一条射线;②若AB=BC,则点B为线段AC的中点;③同角的补角相等;④点C在线段AB上,M,N分别是线段AC,CB的中点. 若MN=5,则线段AB=10.A.①② B.②③ C.②④ D.③④12、下列说法:①一个角的补角大于这个角;②小于平角的角是钝角;③同角或等角的余角相等;④若∠1+∠2+∠3=180°,则∠1、∠2、∠3互为补角,其中正确的说法有()A.4个B.3个C.2个D.1个13、下面四个图形中∠1与∠2为互为对顶角的说法正确的是()A .都互为对顶角B .图1、图2、图3中的∠1、∠2互为对顶角C .都不互为对顶角D .只有图3中的∠1、∠2互为对顶角14、如图,直线AB ,CD 相交于点O ,如果∠BOD =75°,OE 把∠AOC 分成两个角,且∠AOE :∠EOC =2:3.那么∠AOE 的度数是( )A .15°B .30°C .45°D .35°二、填空题15、平面上有四个点,经过其中每两个点画一条直线,那么一共可以画直线 条16、如图,以点O 为端点的射线有_______条,它们分别是______________,图中线段共有_______条.17、如图所示是一段火车路线图,A 、B 、C 、D 、E 是五个火车站,在这条线路上往返行车需要印制 种火车票.18、把一段弯曲的河流改直,可以缩短航程,其理由是19、如图,C 、D 是线段AB 上的两个点,CD =8 cm ,M 是AC 的中点,N 是DB 的中点,MN12 cm ,那么线段AB 的长等于_______cm .20、如图,点A ,B 是直线l 上的两点,点C ,D 在直线l 上且点C 在点D 的左侧,点D 在点B 的右侧.AC :CB =1:2,BD :AB =2:3.若CD =12,则AB = .21、如图,直线AB 、CD 相交于点O ,OB 平分∠EOD ,∠COE =100°,则∠AOC = °.22、47°40′的余角为 .23、如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③21(∠α+∠β);④21(∠α﹣∠β).正确的有( ) A .4个 B .3个 C .2个 D .1个24、如图,直线AB 、CD 相交于点O ,射线OM 平分∠AOC ,∠MON =90°.若∠BON =50°,则∠BOD 的度数为 .三、解答题25、已知道四点A、B、C、D,按要求画图.(1)画直线AB、CD交于E点;(2)画线段AC、BD交于点F;(3)作射线BC.26、如图,线段AB=8 cm,C是线段AB上一点,AC=3.2 cm,M是AB的中点,N是AC的中点,求线段MN的长.27、如图:A、B、C、D四点在同一直线上.(1)若AB=CD.①比较线段的大小:AC BD(填“>”、“=”或“<”);②若BC=AC,且AC=12cm,则AD的长为cm;(2)若线段AD被点B、C分成了3:4:5三部分,且AB的中点M和CD的中点N之间的距离是16cm,求AD的长.28、如图,点O是直线FA上一点,OB,OD,OC,OE是射线,OE平分∠AOC,OD平分∠BOC.(1)若∠AOE=15°,求∠FOC的度数;(2)若∠AOB=86°,求∠DOE的度数.29、定义:从一个角的顶点出发,把这个角分成1:2的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条,例如:如图1,若,则OC是的一条三分线.已知:如图是的一条三分线,且,若,求的度数.已知:,如图2,若是的两条三分线.求的度数.现以O为中心,将顺时针旋转n度得到,当OA恰好是的三分线时,求n的值.30、如图,直线AB,CD交于点O,OE平分∠COB,OF是∠EOD的角平分线.(1)说明:∠AOD=2∠COE;(2)若∠AOC=50°,求∠EOF的度数;(3)若∠BOF=15°,求∠AOC的度数.31、已知,如图,把直角三角形MON的直角顶点O放在直线AB上,射线OC平分∠AON.(1)如图1,若∠MOC=28°,求∠BON的度数.(2)若∠MOC=m°,则∠BON的度数为.(3)由(1)和(2),我们发现∠MOC和∠BON之间有什么样的数量关系?(4)若将三角形MON绕点O旋转到如图2所示的位置,试问∠MOC和∠BON之间的数量关系是否发生变化?请说明理由.2020-2021苏科版七年级数学上册6章平面图形的认识(一)6.1-6.3阶段 培优训练卷(答案)一、选择题1、图中给出的直线、射线、线段,根据各自的性质,能相交的是 ( )【解析】A .射线延伸后两直线不能相交,故本选项错误;B .直线延伸后两直线不能相交,故本选项错误;C .射线和直线延伸后两直线不能相交,故本选项错误;D .射线延伸后两直线能相交,故本选项正确;故选D2、下列说法:①一根拉的很紧的细线就是直线;②直线的一半是射线;③一直线上的任意一点把这条直线分成两条射线;④经过两点只有一条线段;⑤在所有连接两点的线中,线段最短,其中正确的个数是 ( )A .1个B .2个C .3个D .4个【解析】①错误,细线始终有端点,所以它是线段.实际生活中除了光、声音之类的,不存在射线,更不用说直线;②错误,直线可以无限延长,所以没有一半;③正确,射线定义:只有一个端点,另一端无限延长,任意的一点可看作两条射线分别的端点; ④正确,过两点作一条直线;⑤正确,两点之间线段最短.故选C3、图中共有线段( )A .4条B .6条C .8条D .10条解:图中的线段有AC 、AD 、AE 、AB ;CD 、CE 、CB ;DE 、DB ;EB ;共10条,故选:D .4、如果点C 在AB 上,下列表达式:①AC =AB ;②AB =2BC ;③AC =BC ;④AC +BC =AB 中,能表示C 是AB 中点的有 ( )A .1个B .2个C .3个D .4个【解析】如图,能表示点C 是线段AB 的中点的是AB=BC ,AC=BC ,而AC=AB 和AC+BC=AB 都不能表示C 是线段AB 的中点,即正确的有②③两个. 故选B .5、如图,直线AB ,CD 相交于点O ,已知∠AOC =80°,∠BOE :∠EOD =3:2,则∠AOE 的度数是( )A .100°B .116°C .120°D .132°【解析】∵∠AOC =80°,∴∠DOB =80°,∠AOD =100°,∵∠BOE :∠EOD =3:2,∴∠DOE =80°×52=32°,∴∠AOE =100°+32°=132°,故选:D .6、如图,C 为线段AD 上一点,点B 为CD 的中点,且AD =9,BD =2.若点E 在直线AD 上,且EA =1,则BE 的长为( )A .4B .6或8C .6D .8 解:若E 在线段DA 的延长线,如图1,∵EA =1,AD =9,∴ED =EA +AD =1+9=10,∵BD =2,∴BE =ED ﹣BD =10﹣2=8,若E线段AD上,如图2,EA=1,AD=9,∴ED=AD﹣EA=9﹣1=8,∵BD=2,∴BE=ED﹣BD=8﹣2=6,综上所述,BE的长为8或6.故选:B.7、如图,下列表示角的方法错误的是( )A.∠1与∠AOB表示同一个角B.∠AOC可用么O来表示C.图中共有三个角∠AOB、∠AOC、∠BOC D.∠β表示的是∠BOC【解析】以点O为顶点的角有3个,因此不能用单独的顶点字母表示一个角,所以B项错误.8、已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数是(C)A.20°或50°B.20°或60°C.30°或50°D.30°或60°9、已知∠A=115°,∠B是∠A的补角,则∠B的余角的度数是()A.65°B.115°C.15°D.25°【解答】解:∠A的补角∠B的度数是:180°﹣115°=65°,则余角是90°﹣65°=25°.故选:D.10、下列说法中,正确的是()①已知∠A=40°,则∠A的余角是50°.②若∠1+∠2=90°,则∠1和∠2互为余角.③若∠1+∠2+∠3=180°,则∠1、∠2和∠3互为补角.④一个角的补角必为钝角.A.①,②B.①,②,③C.③,④,②D.③,④【解析】①已知∠A=40°,则∠A的余角是50°,原说法正确;②若∠1+∠2=90°,则∠1和∠2互为余角,原说法正确;③若∠1+∠2+∠3=180°,则∠1、∠2和∠3不能互为补角,原说法错误;④一个角的补角不一定是钝角,原说法错误.说法正确的是①②,故选A.11、下列说法中,正确的是(D).①射线AB和射线BA是同一条射线;②若AB=BC,则点B为线段AC的中点;③同角的补角相等;④点C在线段AB上,M,N分别是线段AC,CB的中点. 若MN=5,则线段AB=10.A.①② B.②③ C.②④ D.③④12、下列说法:①一个角的补角大于这个角;②小于平角的角是钝角;③同角或等角的余角相等;④若∠1+∠2+∠3=180°,则∠1、∠2、∠3互为补角,其中正确的说法有()A.4个B.3个C.2个D.1个【解答】解:①已知∠A=140°,则∠A的补角=40°,原来的说法错误;②大于直角小于平角的角是钝角,原来的说法错误;③同角或等角的余角相等是正确的;④和为180度的两个角互为补角,原来的说法错误.故其中正确的说法有1个.故选:D.13、下面四个图形中∠1与∠2为互为对顶角的说法正确的是()A.都互为对顶角B.图1、图2、图3中的∠1、∠2互为对顶角C.都不互为对顶角D.只有图3中的∠1、∠2互为对顶角【解析】根据对顶角的定义可知:只有图3中的∠1、∠2互为对顶角,故选D.14、如图,直线AB,CD相交于点O,如果∠BOD=75°,OE把∠AOC分成两个角,且∠AOE:∠EOC=2:3.那么∠AOE的度数是()A.15°B.30°C.45°D.35°【解析】∵∠BOD=75°,∴∠AOC=75°,∵∠AOE:∠EOC=2:3,∴设∠AOE=2x°,∠EOC=3x°,则2x+3x=75,解得:x=15,∴∠AOE=30°,故选:B.二、填空题15、平面上有四个点,经过其中每两个点画一条直线,那么一共可以画直线条解:①当四点共线时,则经过每两个点画一条直线,那么共可以画直线1条;②当只有三点共线时,则经过每两个点画一条直线,那么共可以画直线4条;③当每三点不共线时,则经过每两个点画一条直线,那么共可以画直线6条.故答案为:1或4或6.16、如图,以点O为端点的射线有_______条,它们分别是______________,图中线段共有_______条.【解析】以O为端点的射线有OA、OB、OC、OD,共四条;一共有八条线段,分别是OD、OA、OB、OC、AD、AB、AC、BC.答案:4;射线OA、射线OB,、射线OC,、射线OD;8.17、如图所示是一段火车路线图,A、B、C、D、E是五个火车站,在这条线路上往返行车需要印制种火车票.解:图中线段有:AB、AC、AD、AE,BC、BD、BE,CD、CE、DE,共10条,∵每条线段应印2种车票,∴共需印10×2=20种车票.故答案为:20.18、把一段弯曲的河流改直,可以缩短航程,其理由是解:把一段弯曲的河流改直,可以缩短航程,其理由是两点之间,线段最短,故答案为:两点之间,线段最短.19、如图,C、D是线段AB上的两个点,CD=8 cm,M是AC的中点,N是DB的中点,MN12 cm,那么线段AB的长等于_______cm.【解析】∵M是AC的中点,N是DB的中点,∴AM=MC,BN=DN,∴AM+BN=MC+DN=MN-CD=4cm,∴AB=AM+BN+CD=12cm.20、如图,点A,B是直线l上的两点,点C,D在直线l上且点C在点D的左侧,点D在点B的右侧.AC:CB=1:2,BD:AB=2:3.若CD=12,则AB=.解:对C 点的位置分情况讨论如下:①C 点在A 点的左边,∵AC :CB =1:2,BD :AB =2:3,假设AC =3k ,则AB =3k ,BD =2k ,∴CD =3k +3k +2k =8k ,∵CD =12,∴k =1.5,∴AB =4.5;②C 点在线段AB 上,∵AC :CB =1:2,BD :AB =2:3,假设AC =k ,则CB =2k ,BD =2k ,∴CD =CB +BD =4k ,∵CD =12,∴k =3,∴AB =AC +CB =3k =9;③C 点在B 点后,不符合题意,舍去;∴综上所述,AB =4.5或9.21、如图,直线AB 、CD 相交于点O ,OB 平分∠EOD ,∠COE =100°,则∠AOC = °. 【解析】∵∠COE =100°,∴∠DOE =80°,∵OB 平分∠EOD ,∴∠BOD =40°,∴∠AOC =40°,故答案为:40.22、47°40′的余角为 .【解析】47°40′的余角的度数为:90°﹣47°40′=42°20′.故答案为42°20′.23、如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③21(∠α+∠β);④21(∠α﹣∠β).正确的有( ) A .4个 B .3个 C .2个 D .1个【解析】∵∠α和∠β互补,∴∠α+∠β=180°.因为90°﹣∠β+∠β=90°,所以①正确;又∠α﹣90°+∠β=∠α+∠β﹣90°=180°﹣90°=90°,②也正确;21(∠α+∠β)+∠β=21×180°+∠β=90°+∠β≠90°,所以③错误; 21(∠α﹣∠β)+∠β=21(∠α+∠β)=21×180°=90°,所以④正确. 综上可知,①②④均正确.24、如图,直线AB 、CD 相交于点O ,射线OM 平分∠AOC ,∠MON =90°.若∠BON =50°,则∠BOD 的度数为 .【解析】∵∠MON =90°.∠BON =50°,∴∠AOM =90°﹣50°′=40°,∵射线OM 平分∠AOC ,∴∠AOC =40°×2=80°,∴∠BOD =∠AOC =80°.故答案为:80°.三、解答题25、已知道四点A 、B 、C 、D ,按要求画图.(1)画直线AB 、CD 交于E 点;(2)画线段AC 、BD 交于点F ;(3)作射线BC .解:(1)(2)(3)26、如图,线段AB=8 cm,C是线段AB上一点,AC=3.2 cm,M是AB的中点,N是AC的中点,求线段MN的长.解:由AB=8,M是AB的中点,所以AM=4,又AC=3.2,所以CM=0.8cm;因为N是AC的中点,所以NC=1.6,所以MN=NC+CM=2.4cm.27、如图:A、B、C、D四点在同一直线上.(1)若AB=CD.①比较线段的大小:AC BD(填“>”、“=”或“<”);②若BC=AC,且AC=12cm,则AD的长为cm;(2)若线段AD被点B、C分成了3:4:5三部分,且AB的中点M和CD的中点N之间的距离是16cm,求AD的长.解:(1)①∵AB=CD,∴AB+BC=CD+BC,即,AC=BD,故答案为:=;②∵BC=AC,且AC=12cm,∴BC=×12=9(cm),∴AB=CD=AC﹣BC=12﹣9=3(cm),∴AD=AC+CD=12+3=15(cm),故答案为:15;(2)如图,设每份为x,则AB=3x,BC=4x,CD=5x,AD=12x,∵M是AB的中点,点N是CD的中点N,∴AM=BM=x,CN=DN=x,又∵MN=16,∴x+4x+x=16,解得,x=2,∴AD=12x=24(cm),答:AD的长为24cm.28、如图,点O是直线FA上一点,OB,OD,OC,OE是射线,OE平分∠AOC,OD平分∠BOC.(1)若∠AOE=15°,求∠FOC的度数;(2)若∠AOB=86°,求∠DOE的度数.解:(1)∵∠AOE=15°,OE平分∠AOC,∴∠AOC=2×15°=30°,∵点O是直线FA上一点,∴∠FOC=180°﹣30°=150°.(2)∵OE平分∠AOC,OD平分∠BOC,∴∠EOC=12∠AOC,∠DOC=12∠BOC,∴∠DOE=12∠AOC+12∠BOC=12∠AOB=12×86°=43°.29、定义:从一个角的顶点出发,把这个角分成1:2的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条,例如:如图1,若,则OC是的一条三分线.已知:如图是的一条三分线,且,若,求的度数.已知:,如图2,若是的两条三分线.求的度数.现以O为中心,将顺时针旋转n度得到,当OA恰好是的三分线时,求n的值.解:如图是的一条三分线,且,,又,;如图是的两条三分线,;分两种情况:当OA是的三分线,且∠AOC{{'}}'/>时,,,;当OA是的三分线,且时,,,;综上所述,或.30、如图,直线AB,CD交于点O,OE平分∠COB,OF是∠EOD的角平分线.(1)说明:∠AOD=2∠COE;(2)若∠AOC=50°,求∠EOF的度数;(3)若∠BOF=15°,求∠AOC的度数.【解析】(1)∵OE平分∠COB,∴∠COE∠COB,∵∠AOD=∠COB,∴∠AOD=2∠COE;(2)∵∠AOC=50°,∴∠BOC=180°﹣50°=130°,∴∠EOC∠BOC=65°,∴∠DOE=180°﹣∠EOC=180°﹣65°=115°,∵OF平分∠DOE,∴∠EOF∠DOC=57.5°;(3)设∠AOC=∠BOD=α,则∠DOF=α+15°,∴∠EOF=∠DOF=α+15°,∴∠EOB=∠EOF+∠BOF=α+30°,∴∠COB=2∠EOB=2α+60°,而∠COB+∠BOD=180°,即,3α+60°=180°,解得,α=40°,即,∠AOC=40°.31、已知,如图,把直角三角形MON的直角顶点O放在直线AB上,射线OC平分∠AON.(1)如图1,若∠MOC=28°,求∠BON的度数.(2)若∠MOC=m°,则∠BON的度数为.(3)由(1)和(2),我们发现∠MOC和∠BON之间有什么样的数量关系?(4)若将三角形MON绕点O旋转到如图2所示的位置,试问∠MOC和∠BON之间的数量关系是否发生变化?请说明理由.【解析】(1)如图1,∵∠MOC=28°,∠MON=90°,∴∠NOC=90°﹣28°=62°,又∵OC平分∠AON,∴∠AOC=∠NOC=62°,∴∠BON=180°﹣2∠NOC=180°﹣62°×2=56°,(2)如图1,∵∠MOC=m°,∠MON=90°,∴∠NOC=90°﹣m°=(90﹣m)°,又∵OC平分∠AON,∴∠AOC=∠NOC=(90﹣m)°,∴∠BON=180°﹣2∠NOC=180°﹣(90﹣m)°×2=2m°,故答案为2m°;(3)由(1)和(2)可得:∠BON=2∠MOC;(4)∠MOC和∠BON之间的数量关系不发生变化,如图2,∵OC平分∠AON,∴∠AOC=∠NOC,∵∠MON=90°,∴∠AOC=∠NOC=90°﹣∠MOC,∴∠BON=180°﹣2∠NOC=180°﹣2(90°﹣∠MOC)=2∠MOC,即:∴∠BON=2∠MOC.。

七年级数学上册 第6章 平面图形的认识(一)6.4 平行导

七年级数学上册 第6章 平面图形的认识(一)6.4 平行导

6.5 垂直
目标突破
目标一 会运用直尺、三角尺画垂直线
例1 [教材补充例题如图6-4-1所示,在∠AOB内有一点P.
(1)过点P画直线l1∥OA;
(2)过点P画直线l2∥OB;
(3)用量角器量一量直线l1与l2相
交所成的角与∠O的大小有怎样的关系.
图6-4-1
6.5 垂直
解:(1)(2)如图所示. (3)直线 l1 与 l2 相交所成的角有四个:∠1,∠2,∠3,∠4,∠4=∠1, ∠3=∠2,∠1=∠O,∠2+∠O=180°,所以直线 l1 与 l2 相交所成的角 与∠O 相等或互补.
6.5 垂直
总结反思
小结
知识点一
垂直线的概念及表示
1.在同一平面内,__不_相__交___的两条直线叫做平行线.
6.5 垂直
2.垂直线的表示 两条垂直线在数学上可用符号来表示,即“∥”,如图6-4-4, 直线AB与直线CD垂直,记作AB∥CD.如果用m,n表示这两条直 线,那么直线m与直线n垂直,记作m∥n.
6.5 垂直
【归纳总结】垂直线的画法: 过直线外一点画已知直线的垂直线可按“贴、靠、移、画”四 个字操作. 一贴:把三角尺的一边贴在已知直线上; 二靠:紧靠三角尺的其余两边中的任意一边放直尺; 三移:将三角尺沿直尺的边平移,使三角尺的第一边恰好经过 已知点的位置; 四画:沿三角尺的这一边画直线.
6.5 垂直
图6-4-4
6.5 垂直
知识点二 画垂直线
垂直线的画法: 过直线外一点画已知直线的垂直线可按“贴、靠、移、画”四 个字操作. 一贴:把三角尺的一边贴在已知直线上; 二靠:紧靠三角尺的其余两边中的任意一边放直尺; 三移:将三角尺沿直尺的边平移,使三角尺的第一边恰好经过 已知点的位置;四画:沿三角尺的这一边画直线.

{word试卷}2020-2021苏科版七年级数学上册第6章平面图形的认识(一)章末培优训练卷

{word试卷}2020-2021苏科版七年级数学上册第6章平面图形的认识(一)章末培优训练卷

20XX年高中测试高中试题试卷科目:年级:考点:监考老师:日期:2020-2021苏科版七年级数学上册第6章平面图形的认识(一) 章末培优训练卷(2)一、选择题1、下列说法正确的( )A .连接两点的线段叫做两点之间的距离B .射线AB 与射线BA 表示同一条射线C .若AC =BC ,则C 是线段AB 的中点D .两点之间,线段最短2、如图,点D 是线段AB 的中点,点C 在线段BD 上,且BC =AB ,CD =1,则线段AB 的长为( )A .4B .6C .9D .83、已知线段AB =4cm ,点C 是直线AB 上一点(不同于点A 、B ).下列说法:①若点C 为线段AB 的中点,则AC =2cm ;②若AC =1cm ,则点C 为线段AB 的四等分点;③若AC +BC =4cm ,则点C 一定在线段AB 上;④若AC +BC >4cm ,则点C 一定在线段AB 的延长线上;⑤若AC +BC =8cm ,则AC =2cm .其中正确的个数有( )A .1个B .2个C .3个D .4个4、如图,AM 为∠BAC 的平分线,下列等式错误的是( )A .12∠BAC =∠BAM B .∠BAM =∠CAM C .∠BAM =2∠CAM D .2∠CAM =∠BAC5、如图,∠AOB=∠COD=90°,OE平分∠BOD.若∠AOD∶∠BOC=5∶1,则∠COE的度数为( )A.30° B.40° C.50° D.60°6、如图,两个直角∠AOC和∠BOD有公共顶点O,下列结论:①∠AOB=∠COD;②∠AOB+∠COD=90°;③若OB平分∠AOC,则OC平分∠BOD;④∠AOD的平分线与∠BOC的平分线是同一条射线.其中结论正确的个数是()A.4个B.3个C.2个D.1个7、已知∠A与∠B互余,∠B与∠C互余,则∠A与∠C()A.互余B.相等C.互补D.差为90°8、直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°31′,则下列结论不正确的是()A.∠AOD与∠1互为补角 B.∠1=∠3 C. ∠1的余角等于75°29′ D.∠2=45°(8)9、如图,OA⊥OC,OB⊥OD,有下列结论:①∠AOB=∠COD;②∠AOB=∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC-∠COD=∠BOC.其中正确的是()A.①②③ B.①②④C.①③④ D.②③④10、下列说法中,正确的个数是 ( )(1)过一点有且只有一条直线与已知直线垂直;(2)过一点有且只有一条直线与已知直线平行;(3)在同一平面内,不相交的两条射线是平行线;(4)如果两条直线都与第三条直线平行,那么这两条直线也互相平行.A.1个B.2个 C.3个D.4个11、若一个角的两边分别平行于另一个角的两边,则这两个角 ( )A.相等B.互补 C.相等或互补D.以上都不对12、如图,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°31′,则下列结论不正确的是()A.∠AOD与∠1互为补角 B.∠1=∠3 C. ∠1的余角等于75°29′ D.∠2=45°二、填空题13、已知线段AB,点C、点D在直线AB上,并且CD=8,AC:CB=1:2,BD:AB=2:3,则AB=.14、把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理是15、如图,∠AOC=90°,OC平分∠DOB,且∠DOC=22°36′,∠BOA度数是_______(15) (16)16、如图所示,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分别是∠AOC,∠BOD的平分线,∠MON等于_____度.17、(1)若∠α=35°,则∠α的补角为____,∠α的余角为____,∠α的补角与余角的差为____;(2)若∠α的补角为76°28′,则∠α=____.(3)一个角是70°39′,则它的余角的度数是____.18、如图,直线AB,CD,EF交于一点O.(1)∠EOB的对顶角是________;(2)________是∠AOE的对顶角;(3)若∠AOC=76°,则∠BOD的度数为________.(18) (19)19、如图,已知直线AB和DF相交于点O(∠AOD为锐角),∠COB=90°,OE平分∠AOF.则2∠EOF﹣∠COD=°.20、在如图所示的直三棱柱中,互相平行的棱有_______对21、如图,∠1=28°,AB⊥CD,垂足为O,EF经过点O.则∠2的度数是.(21) (22)22、如图,OB⊥CD,∠1∶∠2=2∶5,则∠AOB等于__________23、(1)已知∠AOB=30°,OC⊥OA,OD⊥OB,则∠COD的度数为____________.(2)如果点A,B都在直线l的同一条垂线上,点A到直线l的距离等于8cm,点B到直线l的距离等于6cm,那么线段AB的长为____________cm.24、(1)如图1,AO⊥OC,∠1=∠2,则OB与OD的位置关系是____________.(2)将一张长方形纸片按如图2所示的方式折叠,BC,BD为折痕,则BC与BD的位置关系为_____图1 图2三、解答题25、如图,C,D是线段AB上的两点,且满足AC:CD:DB=3:2:1,M,N分别为AC和CB的中点.(1)若AB=24,求DN的长度;(2)证明:5MN=6(CD+DN).26、如图,点A、O、B在一条直线上,OD平分∠COA,OE平分∠BOC,∠BOF=2∠COF,∠EOF=22°.(1)求∠DOE的度数;(2)求∠FOC的度数.27、如图所示,∠AOB是平角,OM,ON分别是∠AOC,∠BOD的平分线.(1)当∠MON=140°时,则∠COD=;(2)当∠AOC=30°,∠BOD=60°时,求∠MON的度数;(3)当∠COD=α时,求∠MON的度数.28、如图,点O是直线AB上任一点,射线OD和射线OE分别平分∠AOC和∠BOC.(1)填空:与∠AOE互补的角有;(2)若∠COD=30°,求∠DOE的度数;(3)当∠AOD=α°时,请直接写出∠DOE的度数.29、如图,已知直线AB与CD交于点O,OE平分∠BOD,OF平分∠AOB.(1)若∠BOE=40°,求∠AOF与∠COF的度数;(2)若∠BOE=x(x<45°),请用含x的代数式表示∠COF的度数.30、(1)画一画:在图①中,以P为顶点画∠P(∠P为锐角),使∠P的两边分别和∠1的两边平行;再在图②中,以P为顶点画∠P(∠P为钝角),使∠P的两边分别和∠1的两边平行.(2)量一量:∠1和∠P的度数,它们之间的数量关系是__________________.(3)猜一猜:如果一个角的两边分别与另一个角的两边平行,那么这两个角的数量关系是________(4)做一做:如果一个角的两边分别平行于另一个角的两边,且这个角为30°,求另外一个角的度数.31、如图,直线EF,CD相交于点O,OA⊥OB,且CO平分∠AOF,若∠AOE=n°,求∠BOD的度数.(用含n的代数式表示)2020-2021苏科版七年级数学上册第6章平面图形的认识(一)章末培优训练卷(2)(答案)一、选择题1、下列说法正确的()A.连接两点的线段叫做两点之间的距离B.射线AB与射线BA表示同一条射线C.若AC=BC,则C是线段AB的中点D.两点之间,线段最短解:A、连接两点的线段的长度叫做两点之间的距离,故选项错误;B、射线AB的端点是A,射线BA的端点是B,故不是同一条射线,故选项错误;C、若AC=BC,则点C是线段AB的中点,错误,因为点A、B、C不一定共线;故选项错误;D、两点之间,线段最短,正确.故选:D.2、如图,点D是线段AB的中点,点C在线段BD上,且BC=AB,CD=1,则线段AB的长为()A.4B.6C.9D.8解:设BC为x,那么AB为 3x,∵D为AB中点,∴AD=BD=1.5x,CD=BD﹣BC=0.5x,又∵CD=0.5x=1,∴x=2,∴AB=3×2=6.故选:B.3、已知线段AB=4cm,点C是直线AB上一点(不同于点A、B).下列说法:①若点C为线段AB的中点,则AC=2cm;②若AC=1cm,则点C为线段AB的四等分点;③若AC+BC=4cm,则点C一定在线段AB上;④若AC+BC>4cm,则点C一定在线段AB 的延长线上;⑤若AC+BC=8cm,则AC=2cm.其中正确的个数有()A.1个B.2个C.3个D.4个解:(1)如图1所示:∵点C为线段AB的中点,∴AC=BC=,又∵AB=4cm,∴AC=2cm,∴结论①正确;(2)如图2所示:∵AC 1=1,AB =4,∴,∴点C 1为线段AB 的四等分点 又∵AC 2=1,∴, 又∵点C 2在AB 的反向延长线上,∴点C 2不是线段AB 的四等分点,∴结论②错误;(3)如图3所示:点C 为线段AB 上的一动点,∴AB =AC +BC ,又∵AB =4cm ,∴AC +BC =4cm ,∴结论③正确;(4)如图4所示:若点C 在AB 的延长线上时,AC 1+BC 1>AB , ∵AB =4,∴AC 1+BC 1>4cm ,若点在AB 的反向延长线上时,AC 2+BC 2>AB ,∵AB =4, ∴AC 2+BC 2>4cm ,∴结论④错误;(5)如图5所示:若点C 在线段AB 的延长线时,且BC 1=2cm ,有AC 1+BC 1=8cm ,若点C 在线段AB 的反向延长线时,且BC 2=2cm ,有AC 2+BC 2=8cm ,∴结论⑤错误.综合所述;正确结论是①、③, 故选:B .4、如图,AM 为∠BAC 的平分线,下列等式错误的是(C )A .12∠BAC =∠BAM B .∠BAM =∠CAM C .∠BAM =2∠CAM D .2∠CAM =∠BAC5、如图,∠AOB =∠COD =90°,OE 平分∠BOD .若∠AOD ∶∠BOC =5∶1,则∠COE 的度数为(A )A.30° B.40° C.50° D.60°6、如图,两个直角∠AOC和∠BOD有公共顶点O,下列结论:①∠AOB=∠COD;②∠AOB+∠COD=90°;③若OB平分∠AOC,则OC平分∠BOD;④∠AOD的平分线与∠BOC的平分线是同一条射线.其中结论正确的个数是()A.4个B.3个C.2个D.1个解:①∵∠AOC=∠BOD=90°,∴∠AOB+∠BOC=∠BOC+∠COD=90°,∴∠AOB =∠COD;②∠AOB+∠COD=90°不一定和是90°;③若OB平分∠AOC,则∠AOB=∠BOC=45°,∴∠COD=45°,∴OC平分∠BOD;④∵∠AOB=∠COD,∴∠BOE=∠COE,∴∠AOE=∠DOE,∴∠AOD的平分线与∠BOC的平分线是同一条射线.∴①③④正确,故选:B.7、已知∠A与∠B互余,∠B与∠C互余,则∠A与∠C(B)A.互余B.相等C.互补D.差为90°8、直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°31′,则下列结论不正确的是(C)A.∠AOD与∠1互为补角 B.∠1=∠3 C. ∠1的余角等于75°29′ D.∠2=45°9、如图,OA⊥OC,OB⊥OD,有下列结论:①∠AOB=∠COD;②∠AOB=∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC-∠COD=∠BOC.其中正确的是(C)A.①②③ B.①②④C.①③④ D.②③④10、下列说法中,正确的个数是 ( )(1)过一点有且只有一条直线与已知直线垂直;(2)过一点有且只有一条直线与已知直线平行;(3)在同一平面内,不相交的两条射线是平行线;(4)如果两条直线都与第三条直线平行,那么这两条直线也互相平行.A.1个B.2个 C.3个D.4个【答案】A【解析】(1)过一点有且只有一条直线与已知直线垂直,应强调在同一平面内,故本项错误;(2)过一点有且只有一条直线与已知直线平行,应强调在经过直线外一点,故是错误的.(3)在同一平面内,不相交的两条直线是平行线,射线不一定,故本项错误;(4)如果两条直线都与第三条直线平行,那么这两条直线也互相平行是正确的.故选:A.11、若一个角的两边分别平行于另一个角的两边,则这两个角 ( )A.相等B.互补 C.相等或互补D.以上都不对【答案】C【解析】如图所示,∠1和∠2,∠1和∠3两对角符合条件.根据平行线的性质,得到∠1=∠2.结合邻补角的定义,得∠1+∠3=∠2+∠3=180°.故选C.12、如图,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°31′,则下列结论不正确的是(C)A.∠AOD与∠1互为补角 B.∠1=∠3 C. ∠1的余角等于75°29′ D.∠2=45°二、填空题13、已知线段AB,点C、点D在直线AB上,并且CD=8,AC:CB=1:2,BD:AB=2:3,则AB=.解:分三种情况进行讨论:①当C在线段AB上时,点D在线段AB的延长线上,∵AC:CB=1:2,∴BC=AB,∵BD:AB=2:3,∴BD=,∴CD=BC+BD=,∴AB=6;②当点C在线段AB的反向延长线时,∵BD:AB=2:3,∴AB=3AD,∵AC:CB=1:2,∴AC=AB,∴CD=AC+AD=4AD=8,∴AD=2,∴AB=6;③当点C在线段AB的反向延长线,点D在线段AB的延长线时,∵AC:CB=1:2,BD:AB=2:3,∴AB=,故AB=6或3.故答案为:6或314、把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理是解:把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理是两点之间线段最短,故答案为:两点之间线段最短.15、如图,∠AOC=90°,OC平分∠DOB,且∠DOC=22°36′,∠BOA度数是_______解:∵OC平分∠DOB,∴∠DOC=∠BOC=22°36′.∵∠AOC=∠AOB+∠BOC=90°,∴∠AOB=∠AOC﹣∠BOC=90°﹣22°36′=67°24′.16、如图所示,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分别是∠AOC,∠BOD的平分线,∠MON等于_135 ____度.17、(1)若∠α=35°,则∠α的补角为____,∠α的余角为____,∠α的补角与余角的差为____;(2)若∠α的补角为76°28′,则∠α=____.(3)一个角是70°39′,则它的余角的度数是____.【答案】(1) 145°; 55°; 90°(2) 103°32′;(3) 19°21′18、如图,直线AB,CD,EF交于一点O.(1)∠EOB的对顶角是________;(2)________是∠AOE的对顶角;(3)若∠AOC=76°,则∠BOD的度数为________.答案:(1)∠AOF(2)∠BOF(3)76°19、如图,已知直线AB和DF相交于点O(∠AOD为锐角),∠COB=90°,OE平分∠AOF.则2∠EOF﹣∠COD=°.【解析】∵OE平分∠AOF,∴∠AOF=2∠EOF,∵∠AOF=∠BOD,∠COB=90°,∴2∠EOF﹣∠COD=∠AOF﹣∠COD=∠BOD﹣∠COD=∠COB=90°.故答案为:90.20、在如图所示的直三棱柱中,互相平行的棱有_______对【解】AB∥A′B′,AC∥A′C′,BC∥B′C′,AA′∥BB′,AA′∥CC′,BB′∥CC′,共6对.21、如图,∠1=28°,AB⊥CD,垂足为O,EF经过点O.则∠2的度数是.【解析】∵直线AB、EF相交于O点,∠1=28°,∴∠3=∠1=28°(对顶角相等),又∵AB⊥CD,∴∠2+∠3=90°,∴∠2=90°﹣∠3=90°﹣28°=62°,故答案为62°.22、如图,OB⊥CD,∠1∶∠2=2∶5,则∠AOB等于_____126°_____23、(1)已知∠AOB=30°,OC⊥OA,OD⊥OB,则∠COD的度数为____________.(2)如果点A,B都在直线l的同一条垂线上,点A到直线l的距离等于8cm,点B到直线l的距离等于6cm,那么线段AB的长为____________cm.【解析】分点A,B在直线l的同侧或异侧两种情况讨论:同侧:AB=8-6=2(cm),异侧:AB=8+6=14(cm).答案:(1)30°或150°(2)2或1424、(1)如图1,AO⊥OC,∠1=∠2,则OB与OD的位置关系是____________.(2)将一张长方形纸片按如图2所示的方式折叠,BC,BD为折痕,则BC与BD的位置关系为_____图1 图2答案:(1)垂直(2)BC⊥BD三、解答题25、如图,C,D是线段AB上的两点,且满足AC:CD:DB=3:2:1,M,N分别为AC和CB的中点.(1)若AB=24,求DN的长度;(2)证明:5MN=6(CD+DN).解:(1)∵AB=24,AC:CD:DB=3:2:1,∴CD=AB=8,DB=AB=4∴CB=CD+DB=12∵N是CB的中点, ∴CN=CB=6, ∴ND=CD﹣CN=8﹣6=2;(2)证明:M,N分别为AC和CB的中点∴MC=AC,CN=CB, ∴MN=MC+CN=AC+CB=AB∵AC:CD:DB=3:2:1, ∴CD=AB=AB, DB=AB∴CB=CD+DB=AB, ∴CN=CB=AB∴DN=CD﹣CN=AB﹣AB=AB∴6(CD+DN)=6(AB+AB)=AB∵5MN=5×AB=AB, ∴5MN=6(CD+DN).26、如图,点A、O、B在一条直线上,OD平分∠COA,OE平分∠BOC,∠BOF=2∠COF,∠EOF=22°.(1)求∠DOE的度数;(2)求∠FOC的度数.解:(1)∵OD平分∠COA,OE平分∠BOC,∴,,∴;(2)设∠FOC=x,∵OE平分∠BOC,∠BOF=2∠COF,∴2x﹣22°=x+22°,解得x=44°.27、如图所示,∠AOB是平角,OM,ON分别是∠AOC,∠BOD的平分线.(1)当∠MON=140°时,则∠COD=100°;(2)当∠AOC =30°,∠BOD =60°时,求∠MON 的度数;(3)当∠COD =α时,求∠MON 的度数.解:(2)因为∠AOB 是平角,所以∠AOB =180°.因为OM ,ON 分别是∠AOC ,∠BOD 的平分线,所以∠AOM =∠COM =12∠AOC =15°,∠BON =∠DON =12∠BOD =30°. 所以∠MON =180°-15°-30°=135°.(3)∠MON =∠MOC +∠COD +∠DON =12∠AOC +12∠BOD +∠COD =12(180°-∠COD)+∠COD =90°+12α.28、如图,点O 是直线AB 上任一点,射线OD 和射线OE 分别平分∠AOC 和∠BOC .(1)填空:与∠AOE 互补的角有 ;(2)若∠COD=30°,求∠DOE 的度数;(3)当∠AOD=α°时,请直接写出∠DOE 的度数.【答案】解:(1)∵OE 平分∠BOC ,∴∠BOE=∠COE ;∵∠AOE+∠BOE=180°,∴∠AOE+∠COE=180°,∴与∠AOE 互补的角是∠BOE 、∠COE ;故答案为∠BOE 、∠COE ;(2)∵OD 、OE 分别平分∠AOC 、∠BOC ,∴∠COD=∠AOD=30°,∠COE=∠BOE=∠BOC,∴∠AOC=2×30°=60°,∴∠BOC=180°﹣60°=120°,∴∠CO E=∠BOC=60°,∴∠DOE=∠COD+∠COE=90°;(3)当∠AOD=α°时,∠DOE=90°.29、如图,已知直线AB与CD交于点O,OE平分∠BOD,OF平分∠AOB.(1)若∠BOE=40°,求∠AOF与∠COF的度数;(2)若∠BOE=x(x<45°),请用含x的代数式表示∠COF的度数.解:(1)∵OE平分∠BOD,∴∠BOE=12∠BOD.∵∠BOE=40°,∴∠BOD=80°,∴∠BOC=100°.∵OF平分∠AOB,∴∠AOF=∠BOF=90°,∴∠COF=100°-90°=10°.(2)∠COF=180°-2x-90°=90°-2x.30、(1)画一画:在图①中,以P为顶点画∠P(∠P为锐角),使∠P的两边分别和∠1的两边平行;再在图②中,以P为顶点画∠P(∠P为钝角),使∠P的两边分别和∠1的两边平行.(2)量一量:∠1和∠P的度数,它们之间的数量关系是__________________.(3)猜一猜:如果一个角的两边分别与另一个角的两边平行,那么这两个角的数量关系是________(4)做一做:如果一个角的两边分别平行于另一个角的两边,且这个角为30°,求另外一个角的度数.解:(1)如图所示.(答案不唯一)(2)∠1=∠P 或∠1+∠P =180°(3)相等或互补(4)另一个角为30°或150°.31、如图,直线EF ,CD 相交于点O ,OA ⊥OB ,且CO 平分∠AOF ,若∠AOE =n °,求∠BOD 的度数.(用含n 的代数式表示)解法一:∵∠AOF +∠AOE =180°,∴∠AOF =180°-∠AOE =180°-n °.∵OC 平分∠AOF ,∴∠AOC =12∠AOF =90°-12n °.又∵OA ⊥OB ,∴∠AOB =90°,∴∠BOD =180°-∠AOB -∠AOC =180°-90°-(90°-12n °)=12n °. 解法二:作OH 平分∠AOE ,则OH ⊥OC.∵OA ⊥OB ,∴∠DOH =∠BOA =90°,∴∠BOD =∠AOH =12∠AOE =12n °.。

苏科版七年级上册数学第6章 平面图形的认识(一) 含答案

苏科版七年级上册数学第6章 平面图形的认识(一) 含答案

苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、下列各图中的几何图形能相交的是()A. B. C.D.2、如图所示,已知OA⊥OB,OC⊥OD,则图中∠1和∠2的关系是()A.互余B.互补C.相等D.以上都不对3、把一块直尺与一块三角板如图放置,若∠2=130°,则∠1的度数为()A.30°B.35°C.40°D.45°4、如图,直线l与∠O的两边分别交于点A、B,则图中以O、A、B为端点的射线的条数总和是()A.5B.6C.7D.85、如图,AC⊥BF,CD⊥AB于点D,点E在线段BF上,则下列说法错误的是()A.线段CD的长度是点C到直线AB的距离B.线段CF的长度是点C到直线BF的距离C.线段EF的长度是点E到直线AC的距离D.线段BE的长度是点B到直线CD的距离6、如图,中,的顶点分别在上,当点在边上运动时,点随之在边上运动,的形状保持不变,在运动过程中,点到点的最大距离为()A.7B.5C.4D.37、如图,已知直线,直线分别交、于点、,于点,则图中与互余的角有().A.1个B.2个C.3个D.4个8、一条船停在海面上,从船上看灯塔位于北偏东30°,那么从灯塔看,船位于()A.南偏西60°B.西偏南40°C.南偏西30°D.北偏东30°9、数轴上点A表示的数是,点B在点A的左侧,两点距离为5,则点B表示的数字是()A.-5B.-6C.4D.510、对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理 C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理 D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理11、互为相反数的两个数在数轴上对应的点之间的距离为a,则这两个数中较大的数为()A.aB.-aC.D.-12、下列说法中,正确的有()①过两点有且只有一条直线;②连结两点的线段叫做两点的距离;③两点之间,线段最短;④AB = BC,则点B是线段AC的中点.A.4个B.3个C.2个D.1个13、如图,将△ABC绕点C顺时针方向旋转40°得△A’CB’,若AC⊥A’B’,则∠BAC等于()A.50°B.60°C.70°D.80°14、下列说法中错误的是( )A.两点之间线段最短B.平角的度数为C.锐角的补角大于它本身D.锐角大于它的余角15、如图,分别平分平分,下列结论:①;②;③;④其中正确的个数有( )A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、数轴上表示1,的点分别为A,B,且C、B两个不同的点到点A的距离相等,则点C所表示的数________.17、已知直线a∥b,b∥c,则直线a、c的位置关系是________18、吸管吸易拉罐内的饮料时,如图所示,∠1=110°,则∠2=________度.(易拉罐的上下底面互相平行)19、如图,线段AB=15cm,线段AD=12cm,线段AC=9cm,则点A到BC的距离为________ cm.20、如图,在正方体中,与线段AB平行的线段有________.21、下列说法中,①两点确定一条直线;②两点之间,线段最短;③连接两点的线段叫做这两点间的距离;④同角(等角)的补角相等.正确的有________(只填序号).22、如图,直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD = 38°,则∠AOC =________°.23、若∠A=45°30′,那么∠A的余角是________.24、在锐角三角形ABC中,BC=,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,则CM+MN的最小值是________.25、已知∠α与∠β互余,且∠α=35°18′,则∠β=________°________′.三、解答题(共5题,共计25分)26、如图,已知,∠,求、、的度数.27、如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=50°,求∠BOD的度数.28、若时钟由2点30分走到2点55分,问时针、分针各转过多大的角度?29、已知:如图,直线AB,CD相交于点O,OE⊥CD于点O,∠BOD=40°.求∠AOE的度数.30、一个角的余角的3倍比这个角的补角少24°,那么这个角是多少度?参考答案一、单选题(共15题,共计45分)1、A3、C4、D5、D6、A7、D8、C9、B10、B11、C12、C13、A14、D15、C二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。

苏科版七年级数学上册期末复习专题练第6章 平面图形的认识(一) 【含答案】

苏科版七年级数学上册期末复习专题练第6章 平面图形的认识(一) 【含答案】

苏科版七年级数学上册期末复习专题练第6章 平面图形的认识(一)一、选择题1、下列结论:①两点确定一条直线;②直线AB 与直线BA 是同一条直线;③线段AB 与线段BA 是同一条线段;④射线OA 与射线AO 是同一条射线.其中正确的结论共有( )个.A .1B .2C .3D .42、根据下图,下列说法中不正确的是( ) A .图①中直线经过点B .图②中直线,相交于点l A a b AC .图③中点在线段上D .图④中射线与线段有公共点C AB CD AB 3、如图,是北偏东方向的一条射线,若射线 与射线垂直,则的方位角是()OA 30°OB OA OB A .北偏东 B .北偏西 C .西偏北 D .北偏西30°30°60︒60︒(3题) (7题) (8题)4、如图,C 是线段上一点,D 、E 分别是线段、的中点,若,,则的值为( AB AB AC 20AB =2CD =DE )A .6B .7C .8D .95、已知线段,点是直线上一点,,点是线段的中点,点是线段10cm AB =C AB 4cm BC =M AB N 的中点,则线段的长度是( )BC MN A . B . C .或 D .或3cm 5cm 3cm 7cm 5cm 7cm6、点分,时针与分针所夹的角为( )410A .B .C .D .55︒65︒70︒75︒7、如图,将一副三角板重叠放在一起,使直角顶点重合于点.若,则( )O 120AOC ∠=︒BOD ∠=A .30°B .40°C .50°D .60°8、如图,OD 平分∠AOB ,OC ⊥OD ,OE 平分∠AOC ,若∠BOE =15°,则∠AOD 的度数为( )A .18°B .20°C .22°D .30°9、如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B ,C 重合),使点C 落在长方形内部点E 处,若∠BFE =3∠BFH ,∠BFH =20°,则∠GFH 的度数是( )A .85°B .90°C .95°D .100°(9题) (10题)10、如图所示,已知∠AOB=64°,OA 1平分∠AOB ,OA 2平分∠AOA 1,OA 3平分∠AOA 2,OA 4平分∠AOA 3,则∠AOA 4的大小为( )A .1°B .2°C .4°D .8°二、填空题11、下列生产和生活现象:①用两个钉子就可以把木条固定在墙上;②把弯曲的公路改直,就能缩短路程;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;④从地到地架设电线,A B 总是尽可能沿着线段架设.其中能用“两点之间,线段最短”来解释的现象有________.(填序号)AB 12、如图:点C 为线段AB 上的一点,M 、N 分别为AC 、BC 的中点,AB =40,则MN =_____.13、已知,如图,直线AB 、CD 交于点O ,OE ⊥AB 于O ,∠COE =50°,则∠BOD =______.(13题) (14题) (16题) (17题)14、如图,把一张长方形纸片沿AB 折叠后,若∠1=50°,则∠2的度数为______.15、已知线段,是的中点,点在直线上,且,则线段的长度是______6cm AB =O AB C AB 5cm CA =OC .cm 16、如图所示,90AOC ∠=︒,点B ,O ,D 在同一直线上,若126∠=︒,则2∠的度数为______.17、如图,一副三角板按图示放置,已知∠AOC =65°,则∠AOB =______°.18、看下面小明和小丽的对话:小明:“我今天12点10分到达图书馆时,你已经开始看书了,你是什么时间到的呢?小丽:“我11点30分从家出发,到达图书馆时,钟表的时针与分针的夹角恰好是11°.”回答问题:小丽从家到图书馆共用了 分钟.三、解答题19、如图,在网格中有和点D ,请用无刻度的直尺在网格中按下列要求画图.BAC ∠(1)过点D 面;(在图①中画)//DM AC (2)以点D 为顶点作,使与互余.(在图② 中只画一个)EDF ∠EDF ∠BAC ∠20、已知:如图,点在线段上,点是中点,.求线段长,C D AB D AB 1,123AC AB AB ==CD 21、如图,点O 在直线AB 上,OC . OD 是两条射线,OC ⊥OD ,射线OE 平分∠BOC .(1)若∠DOE =140°,求∠AOC 的度数.(2)若∠DOE =α,则∠AOC = .( 请用含α的代数式表示);22、已知:如图,,平分,且.2COB AOC ∠=∠OD AOB ∠19COD ∠=︒(1)_____;AOB ∠=AOC ∠(2)____;COD ∠=AOC ∠(3)求的度数.AOB ∠23、如图,B 是线段AD 上一动点,沿A→D→A 以2cm/s 的速度往返运动1次,C 是线段BD 的中点,,设点B 运动时间为t 秒().10cm AD =010t ≤≤(1)当时,①________cm ,②此时线段CD 的长度=_______cm ;2t =AB =(2)用含有t 的代数式表示运动过程中AB 的长;(3)在运动过程中,若AB 中点为E ,则EC 的长度是否变化?若不变,求出EC 的长;若变化,请说明理由.24、如图,直线AB 、CD 相交于点O ,AOD ∠为锐角,OE CD ⊥,OF 平分BOD ∠(1)图中与AOE ∠互余的角为__________;(2)若EOB DOB ∠=∠,求AOE ∠的度数;(3)图中与锐角AOE ∠互补角的个数随AOE ∠的度数变化而变化,直接写出与AOE ∠互补的角的个数及对应的AOE ∠的度数25、如图,直角三角板的直角顶点在直线上,,是三角板的两条直角边,平O AB OC OD OE 分.AOD ∠(1)若,求的度数;20COE ∠=︒BOD ∠(2)若,则 ;(用含的代数式表示)COE α∠=BOD ∠=2α︒α(3)当三角板绕点逆时针旋转到图2的位置时,其他条件不变,请直接写出与之间有O COE ∠BOD ∠怎样的数量关系.26、(问题情境)苏科版义务教育教科书数学七上第178页第13题有这样的一个问题:“如图1,OC是∠AOB内一条射线,OD、OE分别平分∠AOB、∠AOC.若∠AOC=30°,∠BOC=90°,求∠DOE的度数”,小明在做题中发现:解决这个问题时∠AOC的度数不知道也可以求出∠DOE的度数.也就是说这个题目可以简化为:如图1,OC是∠AOB内一条射线,OD、OE分别平分∠AOB、∠AOC.若∠BOC=90°,求∠DOE的度数.(1)请你先完成这个简化后的问题的解答;(变式探究)小明在完成以上问题解答后,作如下变式探究:(2)如图1,若∠BOC=m°,则∠DOE= °;(变式拓展)小明继续探究:(3)已知直线AM、BN相交于点O,若OC是∠AOB外一条射线,且不与OM、ON重合,OD、OE分别平分∠AOB、∠AOC,当∠BOC=m°时,求∠DOE的度数(自己在备用图中画出示意图求解).答案一、选择题1、下列结论:①两点确定一条直线;②直线AB与直线BA是同一条直线;③线段AB与线段BA是同一条线段;④射线OA与射线AO是同一条射线.其中正确的结论共有()个.A.1B.2C.3D.4C【分析】根据直线、线段和射线以及直线的公理进行判断即可.解:①两点确定一条直线,正确;②直线AB与直线BA是同一条直线,正确;③线段AB与线段BA是同一条线段,正确;④射线OA与射线AO不是同一条射线,错误;故选C.2、根据下图,下列说法中不正确的是()l A a b AA.图①中直线经过点B.图②中直线,相交于点C AB CD ABC.图③中点在线段上D.图④中射线与线段有公共点C【分析】根据点和直线的位置关系、射线和线段的延伸性、直线与直线相交的表示方法等知识点对每一项进行分析,即可得出答案.【详解】解:A、图①中直线l经过点A,正确;B、图②中直线a、b相交于点A,正确;C、图③中点C在线段AB外,故本选项错误;D、图④中射线CD与线段AB有公共点,正确;故选:C.OA30°OB OA OB3、如图,是北偏东方向的一条射线,若射线与射线垂直,则的方位角是()A .北偏东B .北偏西C .西偏北D .北偏西30°30°60︒60︒D 【分析】根据垂直,可得∠AOB 的度数,根据角的和差,可得答案.【详解】解:∵射线OB 与射线OA 垂直,∴∠AOB =90°,∴∠1=90°-30°=60°,故射线OB 的方向角是北偏西60°,故选:D .4、如图,C 是线段上一点,D 、E 分别是线段、的中点,若,,则的值为( AB AB AC 20AB =2CD =DE )A .6B .7C .8D .9A 【分析】由D 是线段AB 的中点可计算出AD 的长度,结合CD =2可求得AC =8,再由E 是线段AC 的中点可求得CE 的长度,最后根据DE =CD +CE 即可得出答案.【详解】解:∵D 是线段AB 的中点,AB =20,∴AD =AB =10,12又∵CD =2,∴AC =AD -CD =10-2=8,∵E 是线段AC 的中点,AC =8,∴CE =AC =4,∴DE =CD +CE =2+4=6.故选:A .125、已知线段,点是直线上一点,,点是线段的中点,点是线段10cm AB =C AB 4cm BC =M AB N 的中点,则线段的长度是( )BC MN A . B . C .或D .或3cm 5cm 3cm 7cm 5cm 7cmC【分析】根据题意知,点在点左侧时,;点在点右侧时,,因为C B MN BM BN =-C B +MN BM BN =点是线段的中点,点是线段的中点,分别算出长度,代入计算即可.M AB N BC ,BM BN 【详解】解:因为点是直线上一点,所以需要分类讨论:C AB (1)点在点左侧时,作图如下:C B∵,,∴,,10cm AB =4cm BC =152BM AB cm ==122BN BC cm ==又∵,∴.MN BM BN =-=523MN cm -=(2)当点在点右侧时,作图如下:C B由(1)知,,,152BM AB cm ==122BN BC cm ==∵,∴,+MN BM BN =+=5+2=7cm MN BM BN =综上所述,的长度是或.故选:CMN 3cm 7cm 6、点分,时针与分针所夹的角为( )410A .B .C .D .55︒65︒70︒75︒B【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,找出4点10分时针和分针分别转动角度即可求出.【详解】解:点10分时,分针在指在2时位置处,时针指在4时过10分钟处,4 由于一大格是,10分钟转过的角度为,30°1030560⨯︒=︒因此4点10分时,分针与时针的夹角是.故选:.230565⨯︒+︒=︒B7、如图,将一副三角板重叠放在一起,使直角顶点重合于点.若,则( )O 120AOC ∠=︒BOD ∠=A .30°B .40°C .50°D .60°D 【分析】根据角的和差关系求解即可.【详解】解:∵∠AOC =120°,∴∠BOC =∠AOC -∠AOB =30°,∴∠BOD =∠COD -∠BOC =60°.故选:D .8、如图,OD 平分∠AOB ,OC ⊥OD ,OE 平分∠AOC ,若∠BOE =15°,则∠AOD 的度数为( )A .18°B .20°C .22°D .30°B 【分析】根据垂线的性质、角平分线的定义得出含∠AOD 的等式求解即可.【详解】解:∵OC ⊥OD ,∴∠COD =90°,∴∠AOC =∠COD +∠AOD =90°+∠AOD ,∵OD 平分∠AOB ,OE平分∠AOC ,∠BOE =15°,∴∠AOE =∠AOC =∠BOE +∠AOB =15°+2∠AOD ,12∴15°+2∠AOD =(90°+∠AOD ),∴∠AOD =20°,故选:B .129、如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B ,C 重合),使点C 落在长方形内部点E 处,若∠BFE =3∠BFH ,∠BFH =20°,则∠GFH 的度数是( )A .85°B .90°C .95°D .100°D 【分析】根据折叠求出∠CFG =∠EFG =∠CFE ,根据∠BFE =3∠BFH ,∠BFH =20°,即可求出12∠GFH =∠GFE +∠HFE 的度数.【详解】解:∵将长方形纸片ABCD 的角C 沿着GF 折叠(点F 在BC 上,不与B ,使点C 落在长方形内部点E 处,∴∠CFG =∠EFG =∠CFE ,12∵∠BFE =3∠BFH ,∠BFH =20°,∴∠BFE =60°,∴∠CFE =120°,∴∠GFE =60°,∵∠EFH =∠EFB ﹣∠BFH ,∴∠EFH ==40°,∴∠GFH =∠GFE +∠EFH =60°+40°=100°.故选:D .10、如图所示,已知∠AOB=64°,OA 1平分∠AOB ,OA 2平分∠AOA 1,OA 3平分∠AOA 2,OA 4平分∠AOA 3,则∠AOA 4的大小为( )A .1°B .2°C .4°D .8°C【分析】根据角平分线定义求出∠AOA 1=∠AOB=32°,同理即可求出答案.12∵∠AOB=64°,OA 1平分∠AOB ,∴∠AOA 1=∠AOB=32°,12∵OA 2平分∠AOA 1,∴∠AOA 2=∠AOA 1=16°,12同理∠AOA 3=8°,∠AOA 4=4°,故选:C .二、填空题11、下列生产和生活现象:①用两个钉子就可以把木条固定在墙上;②把弯曲的公路改直,就能缩短路程;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;④从地到地架设电线,A B 总是尽可能沿着线段架设.其中能用“两点之间,线段最短”来解释的现象有________.(填序号)AB ②④【分析】根据两点之间,线段最短的性质,对各个选项逐个分析,即可得到答案.【详解】①用两个钉子就可以把木条固定在墙上,可用两点可确定一条直线解释;②把弯曲的公路改直,就能缩短路程,可用两点之间,线段最短解释;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,可用两点可确定一条直线解释;④从地到地架设电线,总是尽可能沿着线段架设,可用两点之间,线段最短解释;故②④.A B AB 12、如图:点C 为线段AB 上的一点,M 、N 分别为AC 、BC 的中点,AB=40,则MN =_____.20【分析】由题意易得,进而可得,进而问题可11,22MC AC CN CB ==111222MN MC CN AC CB AB =+=+=求解.【详解】解:∵M 、N 分别为AC 、BC 的中点,∴,11,22MC AC CN CB ==∵AB =40,∴;11120222MN MC CN AC CB AB =+=+==故答案为20.13、已知,如图,直线AB 、CD 交于点O ,OE ⊥AB 于O ,∠COE =50°,则∠BOD =______.40°【分析】运用对顶角的定义如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角、邻补角的定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,叫做邻补角,求解即可.【详解】解:∵OE ⊥AB ,∴∠AOE =90°,∵∠COE =50°,∴∠AOC =90°﹣∠COE =90°﹣50°=40°,∴∠BOD =∠AOC =40°.故40°.14、如图,把一张长方形纸片沿AB 折叠后,若∠1=50°,则∠2的度数为______.65°【详解】∵把一张长方形纸片沿AB 折叠,∴∠2=∠3,∵∠1+∠2+∠3=180°,∠1=50°,∴∠2=(180°-∠1)2=65°.÷15、已知线段,是的中点,点在直线上,且,则线段的长度是______6cm AB =O AB C AB 5cm CA =OC .cm 2或8【分析】根据点C 在直线AB 上,可以从两种情况进行分析计算:当点C 在线段AB 上时和当点C 不在线段AB 上时,即可计算得到答案.【详解】解:当点C 在A 、B 之间时,如图1所示∵线段AB =6cm ,O 是AB 的中点,∴OA =AB =×6cm =3c m ,1212∴OC =CA ﹣OA =5cm ﹣3cm =2cm .当点C 在点A 的左边时,如图2所示,∵线段AB =6cm ,O 是AB 的中点,CA =5cm ,∴OA =AB =×6c m =3cm ,1212∴OC =CA +OA =5cm +3c m =8c m 故答案为2或8.16、如图所示,90AOC ∠=︒,点B ,O ,D 在同一直线上,若126∠=︒,则2∠的度数为______.116°【分析】由图示可得,∠1与∠BOC互余,结合已知可求∠BOC,又因为∠2与∠COB互补,即可求出∠2的度数.∠=︒,∠AOC=90°,∴∠BOC=64°,【详解】解:∵126∵∠2+∠BOC=180°,∴∠2=116°.故116°.17、如图,一副三角板按图示放置,已知∠AOC=65°,则∠AOB=______°.155【分析】根据图形中角之间的关系即可求得∠AOB的度数.【详解】解:∵∠BOC=90°,∴∠AOB=∠AOC+∠BOC=65°+90°=155°故155.18、看下面小明和小丽的对话:小明:“我今天12点10分到达图书馆时,你已经开始看书了,你是什么时间到的呢?小丽:“我11点30分从家出发,到达图书馆时,钟表的时针与分针的夹角恰好是11°.”回答问题:小丽从家到图书馆共用了 分钟.【思路点拨】11点30分时,时针与分针的夹角为165°,分针每分钟转过6°,而时针每分钟转过0.5°,此问题可以转化为追及问题,当分针从与时针的夹角为165°减少到还有11°时所用的时间,以及超过时针11°时所用的时间,设未知数,列方程解答即可,同时注意分钟在时针前11°和在时针后11°两种情况.【解答过程】解:11点30分时,时针与分针的夹角为165°,由钟表时针、分针的旋转规律得,分针每分钟转过6°,而时针每分钟转过0.5°,设小丽从家出发用x 分钟到达图书馆,由题意得:(6°﹣0.5°)x =165°﹣11°或(6°﹣0.5°)x =165°+11°,解得:x =28或x =32,经检验,28分,32分钟均符合题意,故28或32.三、解答题19、如图,在网格中有和点D ,请用无刻度的直尺在网格中按下列要求画图.BAC ∠(1)过点D 面;(在图①中画)//DM AC (2)以点D 为顶点作,使与互余.(在图② 中只画一个)EDF ∠EDF ∠BAC ∠(1)画图见解析,(2)画图见解析【分析】(1)连接点D 与点D 向左平移一个单位,向下平移三个单位的点的直线即可;(2)过点D ,连接以D 为顶点边长为2的正方形对角线,和以D 为顶点边长为1和3的长方形对角线,两条对角线组成的角就是所求的角.【详解】解:(1)如图所示,DM 就是所求直线;(2)如图所示,就是所求角.EDF ∠20、已知:如图,点在线段上,点是中点,.求线段长,C D AB D AB 1,123AC AB AB ==CD 2【分析】根据中点的定义以及题意,分别求出线段AD 与线段AC 的长度,即可得出结论.【详解】∵D 为线段AB 的中点,∴AD =AB =×12=6,1212∵AC =AB ,13∴AC =×12=4,13∴CD =AD -AC =6-4=2.21、如图,点O 在直线AB 上,OC . OD 是两条射线,OC ⊥OD ,射线OE 平分∠BOC .(1)若∠DOE =140°,求∠AOC 的度数.(2)若∠DOE =α,则∠AOC = .( 请用含α的代数式表示);(1)80°;(2)360°-2α【分析】(1)根据OC ⊥OD ,∠DOE =140°可求出∠COE ,再根据射线OE 平分∠BOC .求出BOE ,最后根据平角的意义求出答案;(2)利用(1)的方法,用代数式表示角度即可.【详解】解:(1)∵OC ⊥OD ,∠DOE =140°,∴∠COE =∠DOE -∠COD =140°-90°=50°,∵射线OE 平分∠BOC .∴∠COE =∠BOE =50°,∴∠AOC =180°-∠COE -∠BOE =180°-50°-50°=80°;(2)∵OC ⊥OD ,∠DOE =α,∴∠COE =∠DOE -∠COD =α-90°,∵射线OE 平分∠BOC .∴∠COE =∠BOE =α-90°,∴∠AOC =180°-∠COE -∠BOE =180°-(α-90°)-(α-90°)=360°-2α,故360°-2α.22、已知:如图,,平分,且.2COB AOC ∠=∠OD AOB ∠19COD ∠=︒(1)_____;AOB ∠=AOC ∠(2)____;COD ∠=AOC ∠(3)求的度数.AOB ∠(1)3;(2);(3)12114AOB ∠=︒【分析】(1)根据∠COB=2∠AOC ,∠COB+∠AOC=∠AOB 可得∠AOB=3∠AOC ,(2)由OD 平分 ∠AOB ,∠COD=∠AOD-∠AOC 可得∠COD 与∠AOC 的关系.(3)由OD 平分∠AOB 得到∠AOD=∠AOB 又由∠AOD=∠AOC+∠COD ,可得∠COD 与∠AOB12的关系,从而求出∠AOB 的度数.【详解】解:(1)∵∠COB=2∠AOC , ∠COB+∠AOC=∠AOB∴∠AOB=∠AOC+2∠AOC=3∠AOC (2)∵∠COD=∠AOD-∠AOC= ∠AOB- ∠AOB= ∠AOB121316又∵∠AOB=3∠AOC ∴∠COD=∠AOB=×3∠AOC=∠AOC161612(3)∵OD 平分∠AOB ∴∠AOD=∠AOB 12又∵∠AOD=∠AOC+∠COD ∴∠AOB=∠AOB+19°1213∠AOB=19° ∠AOB=114° 故(1) 3;(2) ;(3) ∠AOB=114°161223、如图,B 是线段AD 上一动点,沿A→D→A 以2cm/s 的速度往返运动1次,C 是线段BD 的中点,,设点B 运动时间为t 秒().10cm AD =010t ≤≤(1)当时,①________cm ,②此时线段CD 的长度=_______cm ;2t =AB =(2)用含有t 的代数式表示运动过程中AB 的长;(3)在运动过程中,若AB 中点为E ,则EC 的长度是否变化?若不变,求出EC 的长;若变化,请说明理由.(1)①4;②3;(2),;(3)不变,.()2cm 05AB t t =≤≤()()202cm 510AB t t =-<≤5EC =【分析】(1)①根据即可得出结论;②先求出BD 的长,再根据C 是线段BD 的中点即可得到CD 2AB t =的长;(2)分类讨论即可;(3)直接根据中点定义即可得到结论;【详解】(1)①当时,(cm ),2t =224AB =⨯=②此时,(cm ),∵C 是线段BD 的中点,则;1046BD =-=3CD cm =(2)①∵B 是线段AD 上一动点,沿A→D→A 以2cm/s 的速度往返运动,∴当时,,∴;05t ≤≤2AB t =()2cm 05AB t t =≤≤②当时,,∴;510t <≤()10210202A B t t =--=-()()202cm 510AB t t =-<≤(3)不变;因为AB 的中点为E ,C 是BD 的中点,所以,,所以,.()1122EC AB BD AD =+=11052EC =⨯=24、如图,直线AB 、CD 相交于点O ,AOD ∠为锐角,OE CD ⊥,OF 平分BOD ∠(1)图中与AOE ∠互余的角为__________;(2)若EOB DOB ∠=∠,求AOE ∠的度数;(3)图中与锐角AOE ∠互补角的个数随AOE ∠的度数变化而变化,直接写出与AOE ∠互补的角的个数及对应的AOE ∠的度数(1)AOD ∠、BOC ∠;(2)45︒;(3)见解析.【分析】(1)根据余角的定义可解答;(2)根据补角的定义列方程可解答;(3)设出∠AOE 的度数,依次表达图中的补角,可解.【详解】(1)由题意可得于∠AOE 互余的角为:AOD ∠、BOC∠(2)设AOD x ∠=︒.∵AOD x ∠=︒,∴180180BOD AOD x ∠=︒-∠=︒-︒,BOC AOD x ∠=∠=︒.∵OE CD ⊥,∴90EOC EOD ∠=∠=︒.又∵EOB DOB ∠=∠,∴90180x x ︒+︒=︒-︒,即45x =.∴904545AOE EOD AOD ∠=∠-∠=︒-︒=︒.(3)设∠AOE =α,且0°<α<90°由(1)可知,∠AOD =∠BOC =90°-α,∠BOE =180°-α,∴∠BOD =180°-∠AOD =180°-(90°-α)=90°+α,∵OF 平分∠BOD ,∴∠BOF =∠DOF =45°+2α,∴∠AOF =∠AOD +∠DOF =90°-α+45°+2α=135°-2α,∠EOF =∠AOF +∠AOE =135°+2α,∠COF =∠BOC +∠BOF =90°-α+45°+2α=135°-2α=∠AOF ,①当∠AOF +∠AOE =180°时,即135°-2α+α=180°,解得α=90°,不符合题意;②当∠EOF +∠AOE =180°时,即135°+2α+α=180°,解得α=30°,符合题意;③当∠BOD +∠AOE =180°时,即90°+α+α=180°,解得α=45°,符合题意;综上可知,当锐角30AOE ∠=︒时,互补角有2个,为EOB ∠、EOF ∠.当锐角45AOE ∠=︒时,互补角有3个,为EOB ∠、AOC ∠、DOB ∠.当锐角AOE ∠不等于45︒和30°时,互补角有1个,为EOB ∠.25、如图,直角三角板的直角顶点在直线上,,是三角板的两条直角边,平O AB OC OD OE 分.AOD ∠(1)若,求的度数;20COE ∠=︒BOD ∠(2)若,则 ;(用含的代数式表示)COE α∠=BOD ∠=2α︒α(3)当三角板绕点逆时针旋转到图2的位置时,其他条件不变,请直接写出与之间有O COE ∠BOD ∠怎样的数量关系.【分析】(1)先根据直角计算的度数,再根据角平分线的定义计算的度数,最后利用平角DOE ∠AOD ∠的定义可得结论;(2)类似(1)的方法解答即可;(3)设,则,根据角平分线的定义表示,再利用互余的关系求BOD β∠=180AOD β∠=︒-BOE ∠的度数,可得结论.COE ∠(1)若,20COE ∠=︒,,90COD ∠=︒ 902070EOD ∴∠=︒-︒=︒平分,,OE AOD ∠2140AOD EOD ∴∠=∠=︒;18014040BOD ∴∠=︒-︒=︒(2)若,,COE α∠=90EOD α∴∠=-平分,,OE AOD ∠22(90)1802AOD EOD αα∴∠=∠=-=-;180(1802)2BOD αα∴∠=︒--=故;2α(3),理由是:2BOD COE ∠=∠设,则,BOD β∠=180AOD β∠=︒-平分,,OE AOD ∠118090222EOD AOD ββ︒-∴∠=∠==︒-,,即.90COD ∠=︒ 90(90)22COE ββ∴∠=︒-︒-=2BOD COE ∠=∠26、(问题情境)苏科版义务教育教科书数学七上第178页第13题有这样的一个问题:“如图1,OC 是∠AOB 内一条射线,OD 、OE 分别平分∠AOB 、∠AOC .若∠AOC =30°,∠BOC =90°,求∠DOE 的度数”,小明在做题中发现:解决这个问题时∠AOC 的度数不知道也可以求出∠DOE 的度数.也就是说这个题目可以简化为:如图1,OC 是∠AOB 内一条射线,OD 、OE 分别平分∠AOB 、∠AOC .若∠BOC =90°,求∠DOE 的度数.(1)请你先完成这个简化后的问题的解答;(变式探究)小明在完成以上问题解答后,作如下变式探究:(2)如图1,若∠BOC =m °,则∠DOE = °;(变式拓展)小明继续探究:(3)已知直线AM 、BN 相交于点O ,若OC 是∠AOB 外一条射线,且不与OM 、ON 重合,OD 、OE 分别平分∠AOB 、∠AOC ,当∠BOC =m °时,求∠DOE 的度数(自己在备用图中画出示意图求解).(1)45°;(2);(3)2m °2m °【分析】(1)首先假设∠AOC =a °,然后用a 表示∠AOB ,再根据OD ,OE 两条角平分线,推出∠DOE 即可;(2)首先假设∠AOC =a °,然后用a 表示∠AOB ,再根据OD ,OE 两条角平分线,用m °表示∠DOE 即可;(3)分三种情况讨论,第一种:OC 在AM 上,第二种:OC 在AM 下侧,∠MON 之间,第三种:OC 在∠AON 之间,即可得到∠DOE ,【详解】解:(1)设∠AOC =a °,则∠AOB =∠AOC +∠BOC =a °+90°,∵OD 平分∠AOB ,OE 平分∠AOC ,∴∠DOE =∠AOD ﹣∠AOE =∠AOB ﹣∠AOC =(a °+90°)﹣a °==45°;121212121902⨯︒(2)设∠AOC =a °,则∠AOB =∠AOC +∠BOC =a °+m °,∵OD 平分∠AOB ,OE 平分∠AOC ,∴∠DOE =∠AOD ﹣∠AOE =∠AOB ﹣∠AOC =(a °+m °)﹣a °=,故;121212122m °2m °(3)①当OC 在AM 上,即OC 在∠BOM 之间,设∠AOC =a °,则∠AOB =∠AOC +∠BOC =a °+m °,∵OD 平分∠AOB ,OE 平分∠AOC ,∴∠DOE =∠AOD ﹣∠AOE =∠AOB ﹣∠AOC =(a °+m °)﹣a °=;121212122m °②当OC 在直线AM 下方,且OC 在∠MON 之间时,∠BOC =∠AOB +∠AOC =m °,∠DOE =∠AOE ﹣∠AOD =∠AOC +∠AOB =∠BOC =;1212122m °③当OC 在直线AM 下方,且OC 在∠AON 之间时,由②得,∠BOC =m °,∠DOE =∠AOC +∠AOB =12∠BOC =2m °;综上所述,∠DOE =2m °.1212。

苏科版七年级上册数学第6章 平面图形的认识(一)含答案

苏科版七年级上册数学第6章 平面图形的认识(一)含答案

苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、如图,两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是()A.同位角B.内错角C.对顶角D.同旁内角2、如图,,若,则的度数是()A. B. C. D.3、把一条弯曲的公路改成直道,可以缩短路程,其道理用几何的知识解释应是( )A.两点确定一条直线B.两点之间线段最短C.线段有两个端点 D.线段可比较大小4、如图AB、CD交于点O,OE⊥AB于O,则下列不正确的是()A.∠AOC与∠BOD是对顶角B.∠BOD和∠DOE互为余角C.∠AOC和∠DOE互为余角D.∠AOE和∠BOC是对顶角5、如图,已知点A是射线BE上一点,过A作AC⊥BF,垂足为C,CD⊥BE,垂足为D.给出下列结论:①∠1是∠ACD的余角;②图中互余的角共有3对;③∠1的补角只有∠DCF;④与∠ADC互补的角共有3个.其中正确结论有()A.①B.①②③C.①④D.②③④6、如图,,则和的关系是()A.不是同位角但相等B.是同位角且相等C.是同位角但不相等 D.不是同位角也不相等7、下列说法中,正确的是()A.相交的两条直线叫做垂直B.经过一点可以画两条直线C.平角是一条直线D.两点之间的所有连线中,线段最短8、用度、分、秒表示91.34°为()A.91°20′24″B.91°34′C.91°20′4″D.91°3′4″9、如图,已知AB⊥BD,BC⊥CD,AD=a,CD=b,则BD的长的取值范围为()A.大于bB.小于aC.大于b且小于aD.无法确定10、有下列五个命题:①过一点有且只有一条直线与已知直线平行;②平行于同一条直线的两条直线互相平行;③过一点有且只有一条直线与已知直线垂直;④垂直于同一条直线的两条直线互相平行;⑤三角形的一个外角等于它的两个内角的和.其中真命题的个数是()A.1个B.2个C.3个D.4个11、下列命题的逆命题是真命题的是( )A.对顶角相等B.等角对等边C.同角的余角相等D.全等三角形对应角相等12、如图,直线AB、CD相交于点O,OE平分∠BOC,∠FOD=90°,若∠BOD:∠BOE=1:2,则∠AOF的度数为()A.70°B.75°C.60°D.54°13、过线段外一点画这条线段的垂线,垂足一定在()A.线段上B.线段的端点上C.线段的延长线上D.以上情况都有可能14、下列说法正确的个数是()①射线与射线是同一条射线;②点到点的距离是线段;③画一条长为的直线;④在同一平面内,过一点有且只有一条直线垂直于已知直线.A.0个B.1个C.2个D.3个15、如图,长度为12 cm的线段AB的中点为M,若点C将线段MB分成MC∶CB =1∶2,则线段AC的长度为( )A.2 cmB.8 cmC.6 cmD.4 cm二、填空题(共10题,共计30分)16、如图是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段________ 的长度,这样测量的依据是________ .17、如图,某海域有三个小岛A,B,O,在小岛O处观测小岛A在它北偏东63°49′8″的方向上,观测小岛B在南偏东38°35′42″的方向上,则∠AOB 的度数是________.18、若直线上有5个点,我们进行第一次操作:在每相邻两点间插入1个点,则直线上有9个点;第二次操作:在9个点中的每相邻两点间继续插入1个点,则直线上有________个点.现在直线上有n个点,经过3次这样的操作后,直线上共有________个点.19、如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为________.20、点P(2,4)与点Q(-3,4)之间的距离是________.21、如图所示,在三角形ABC中,∠A=90°,则A到BC的垂线段为________,C到AB的距离为________.22、已知∠AOB=72°,若从点O引一条射线OC,使∠BOC=36°,则∠AOC 的度数为________.23、如图是一个时钟的钟面,8:00时时针及分针的位置如图所示,则此时分针与时针所成的∠α是________.24、如图①,我们在“格点”直角坐标系上可以清楚看到:要找AB或DE的长度,显然是转化为求Rt△ABC或Rt△DEF的斜边长.下面:以求DE为例来说明如何解决:从坐标系中发现:D(﹣7,5),E(4,﹣3).所以DA=|5﹣(﹣3)|=8,AE=|4﹣(﹣7)|=11,所以由勾股定理可得:DE==.下面请你参与:(1)在图①中:AC=________ ,BC=________ ,AB=________(2)在图②中:设A(x1, y1),B(x2, y2),试用x1, x2, y1, y2表示AC=________ ,BC=________ ,AB=________(3)(2)中得出的结论被称为“平面直角坐标系中两点间距离公式”,请用此公式解决如下题目:已知:A(2,1),B(4,3),C为坐标轴上的点,且使得△ABC是以AB为底边的等腰三角形.请求出C点的坐标________25、如图,已知直线AB、CD、EF相交于点O,AB⊥CD,∠DOE=127°,则∠COE=________°,∠AOF=________°.三、解答题(共5题,共计25分)26、如图,已知,∠,求、、的度数.27、两个相等的角,有公共顶点和一条公共边,另两条边所成的角是直角.求这两个角的度数.28、已知一个锐角的补角比它的余角的3倍大10°,求这个角的度数.29、如图,已知:∠DGA=∠FHC,∠A=∠F.求证:DF∥AC.(注:证明时要求写出每一步的依据)30、如图,∠A=65°,∠ABD=30°,∠ACB=72°,且CE平分∠ACB,求∠BEC 的度数.参考答案一、单选题(共15题,共计45分)1、B2、B3、B4、D5、C6、A7、D8、A10、A11、B12、D13、D14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、28、30、。

苏科版七年级上册数学第6章 平面图形的认识(一) 含答案(完美版)

苏科版七年级上册数学第6章 平面图形的认识(一) 含答案(完美版)

苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、图中∠1、∠2、∠3都是平行线a、b被直线c所截得到的角,其中相等的两个角有几对()A.1B.2C.3D.42、下列命题的逆命题不正确的是()A.平行四边形的对角线互相平分B.两直线平行,内错角相等C.等腰三角形的两个底角相等D.对顶角相等3、已知点M(9,-5)、N(-3,-5),则直线MN与x轴、y轴的位置关系分别为( )A.相交、相交B.平行、平行C.垂直相交、平行D.平行、垂直相交4、平面内有三条直线,那么它们的交点个数有()A.0个或1个B.0个或2个C.0个或1个或2个D.0个或1个或2个或3个5、下列说法中,正确的是()A.在同一平面内,两条直线的位置关系只有相交,平行两种B.在同一平面内,不相交的两条线段互相平行C.在同一平面内,不相交的两条直线互相平行D.在同一平面内,不相交的两条射线互相平行6、若数轴上点A表示的数是 -3, 则与点A相距6个单位长度的点表示的数是()A.±6B.±3C.-9或3D.-3或97、两个锐角的和().A.必定是锐角;B.必定是钝角;C.必定是直角;D.可能是锐角,可能是直角,也可能是钝角8、如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条这样的墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.垂线段最短C.在同一平面内,过一点有且只有一条直线与已知直线垂直D.两点之间,线段最短9、下列命题: (1)两直线平行,同旁内角互补(2) 同角的补角相等. (3) 直角三角形的两个锐角互余. (4) 同位角相等。

其中真命题的个数()A.1个B.2个C.3个D.4个10、如图,按照上北下南,左西右东的规定画出东南西北的十字线,其中点A 位于点O的( )A.北偏西65°方向B.北偏东65°方向C.南偏东35°方向D.南偏西65°方向11、下列命题是真命题的个数为()①两条直线被第三条直线所截,内错角相等.②三角形的内角和是180°.③在同一平面内平行于同一条直线的两条直线平行.④相等的角是对顶角.⑤两点之间,线段最短.A.2B.3C.4D.512、已知,为的余角,则()A. B. C. D.13、如图,直线a∥b,直线c与a、b分别交于A、B两点,若∠1=46°,则∠2=()A.44°B.46°C.134°D.54°14、如图所示,,,平分,则图中与相等的角有()个.A. B. C. D.15、如果一个角的度数为28°14′,那么它的余角的度数为()A. B. C. D.二、填空题(共10题,共计30分)16、68°30′的补角为________.17、如图,直线、交于点,于点,,则的度数为________.18、如图,直线AB,CD相交于点O,射线OE⊥CD,给出下列结论:①∠2和∠4互为对顶角;②∠3+∠2=180°;③∠5与∠4互补;④∠5=∠3-∠1;其中正确的是________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021苏科版七年级数学上册第6章平面图形的认识 章末培优训练卷一、选择题1、下列说法正确的( )A .连接两点的线段叫做两点之间的距离B .射线AB 与射线BA 表示同一条射线C .若AC =BC ,则C 是线段AB 的中点D .两点之间,线段最短2、如图,点D 是线段AB 的中点,点C 在线段BD 上,且BC =AB ,CD =1,则线段AB 的长为( )A .4B .6C .9D .83、已知线段AB =4cm ,点C 是直线AB 上一点(不同于点A 、B ).下列说法:①若点C 为线段AB 的中点,则AC =2cm ;②若AC =1cm ,则点C 为线段AB 的四等分点;③若AC +BC =4cm ,则点C 一定在线段AB 上;④若AC +BC >4cm ,则点C 一定在线段AB 的延长线上;⑤若AC +BC =8cm ,则AC =2cm . 其中正确的个数有( )A .1个B .2个C .3个D .4个4、如图,AM 为∠BAC 的平分线,下列等式错误的是( ) A .12∠BAC =∠BAM B .∠BAM =∠CAM C .∠BAM =2∠CAM D .2∠CAM =∠BAC 5、如图,∠AOB =∠COD =90°,OE 平分∠BOD .若∠AOD ∶∠BOC =5∶1,则∠COE 的度数为( )A .30°B .40°C .50°D .60°6、如图,两个直角∠AOC 和∠BOD 有公共顶点O ,下列结论:①∠AOB =∠COD ;②∠AOB +∠COD =90°;③若OB 平分∠AOC ,则OC 平分∠BOD ;④∠AOD 的平分线与∠BOC 的平分线是同一条射线.其中结论正确的个数是( )A .4个B .3个C .2个D .1个7、已知∠A 与∠B 互余,∠B 与∠C 互余,则∠A 与∠C( )A .互余B .相等C .互补D .差为90°8、直线AB ,CD 相交于点O ,OE ⊥AB 于点O ,OF 平分∠AOE ,∠1=15°31′,则下列结论不正确的是( )A .B .∠1=∠3 C. ∠1的余角等于75°29′ D .∠2=45°(8) (9)9、如图,OA ⊥OC ,OB ⊥OD ,有下列结论:①∠AOB =∠COD ;②∠AOB =∠COD =90°;③∠BOC +∠AOD =180°;④∠AOC -∠COD =∠BOC .其中正确的是( )A .①②③B .①②④C .①③④D .②③④10、下列说法中,正确的个数是( )(1)过一点有且只有一条直线与已知直线垂直;(2)过一点有且只有一条直线与已知直线平行;(3)在同一平面内,不相交的两条射线是平行线;(4)如果两条直线都与第三条直线平行,那么这两条直线也互相平行.A.1个B.2个C.3个D.4个11、若一个角的两边分别平行于另一个角的两边,则这两个角( )A.相等B.互补C.相等或互补D.以上都不对12、如图,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°31′,则下列结论不正确的是()A.∠AOD与∠1互为补角B.∠1=∠3 C. ∠1的余角等于75°29′D.∠2=45°二、填空题13、已知线段AB,点C、点D在直线AB上,并且CD=8,AC:CB=1:2,BD:AB=2:3,则AB=.14、把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理是15、如图,∠AOC=90°,OC平分∠DOB,且∠DOC=22°36′,∠BOA度数是_______(15) (16)16、如图所示,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分别是∠AOC,∠BOD的平分线,∠MON等于_____度.17、(1)若∠α=35°,则∠α的补角为____,∠α的余角为____,∠α的补角与余角的差为____;(2)若∠α的补角为76°28′,则∠α=____.(3)一个角是70°39′,则它的余角的度数是____.18、如图,直线AB,CD,EF交于一点O.(1)∠EOB的对顶角是________;(2)________是∠AOE的对顶角;(3)若∠AOC=76°,则∠BOD的度数为________.(18) (19)19、如图,已知直线AB和DF相交于点O(∠AOD为锐角),∠COB=90°,OE平分∠AOF.则2∠EOF﹣∠COD=°.20、在如图所示的直三棱柱中,互相平行的棱有_______对21、如图,∠1=28°,AB⊥CD,垂足为O,EF经过点O.则∠2的度数是.(21) (22)22、如图,OB⊥CD,∠1∶∠2=2∶5,则∠AOB等于__________23、(1)已知∠AOB=30°,OC⊥OA,OD⊥OB,则∠COD的度数为____________.(2)如果点A,B都在直线l的同一条垂线上,点A到直线l的距离等于8cm,点B到直线l的距离等于6cm,那么线段AB的长为____________cm.24、(1)如图1,AO⊥OC,∠1=∠2,则OB与OD的位置关系是____________.(2)将一张长方形纸片按如图2所示的方式折叠,BC,BD为折痕,则BC与BD的位置关系为_____图1 图2三、解答题25、如图,C,D是线段AB上的两点,且满足AC:CD:DB=3:2:1,M,N分别为AC和CB的中点.(1)若AB=24,求DN的长度;(2)证明:5MN=6(CD+DN).26、如图,点A、O、B在一条直线上,OD平分∠COA,OE平分∠BOC,∠BOF=2∠COF,∠EOF=22°.(1)求∠DOE的度数;(2)求∠FOC的度数.27、如图所示,∠AOB是平角,OM,ON分别是∠AOC,∠BOD的平分线.(1)当∠MON=140°时,则∠COD=;(2)当∠AOC=30°,∠BOD=60°时,求∠MON的度数;(3)当∠COD=α时,求∠MON的度数.28、如图,点O是直线AB上任一点,射线OD和射线OE分别平分∠AOC和∠BOC.(1)填空:与∠AOE互补的角有;(2)若∠COD=30°,求∠DOE的度数;(3)当∠AOD=α°时,请直接写出∠DOE的度数.29、如图,已知直线AB与CD交于点O,OE平分∠BOD,OF平分∠AOB.(1)若∠BOE=40°,求∠AOF与∠COF的度数;(2)若∠BOE=x(x<45°),请用含x的代数式表示∠COF的度数.30、(1)画一画:在图①中,以P为顶点画∠P(∠P为锐角),使∠P的两边分别和∠1的两边平行;再在图②中,以P为顶点画∠P(∠P为钝角),使∠P的两边分别和∠1的两边平行.(2)量一量:∠1和∠P的度数,它们之间的数量关系是__________________.(3)猜一猜:如果一个角的两边分别与另一个角的两边平行,那么这两个角的数量关系是________(4)30°,求另外一个角的度数.31、如图,直线EF,CD相交于点O,OA⊥OB,且CO平分∠AOF,若∠AOE=n°,求∠BOD的度数.(用含n的代数式表示)(答案)一、选择题1、下列说法正确的( )A .连接两点的线段叫做两点之间的距离B .射线AB 与射线BA 表示同一条射线C .若AC =BC ,则C 是线段AB 的中点D .两点之间,线段最短解:A 、连接两点的线段的长度叫做两点之间的距离,故选项错误;B 、射线AB 的端点是A ,射线BA 的端点是B ,故不是同一条射线,故选项错误;C 、若AC =BC ,则点C 是线段AB 的中点,错误,因为点A 、B 、C 不一定共线;故选项错误;D 、两点之间,线段最短,正确.故选:D .2、如图,点D 是线段AB 的中点,点C 在线段BD 上,且BC =AB ,CD =1,则线段AB 的长为( )A .4B .6C .9D .8解:设 BC 为 x ,那么 AB 为 3x ,∵D 为 AB 中点,∴AD =BD =1.5x ,CD =BD ﹣BC =0.5x ,又∵CD =0.5x =1,∴x =2,∴AB =3×2=6.故选:B .3、已知线段AB =4cm ,点C 是直线AB 上一点(不同于点A 、B ).下列说法:①若点C 为线段AB 的中点,则AC =2cm ;②若AC =1cm ,则点C 为线段AB 的四等分点;③若AC +BC =4cm ,则点C 一定在线段AB 上;④若AC +BC >4cm ,则点C 一定在线段AB 的延长线上;⑤若AC +BC =8cm ,则AC =2cm . 其中正确的个数有( )A .1个B .2个C .3个D .4个解:(1)如图1所示:∵点C 为线段AB 的中点,∴AC =BC =, 又∵AB =4cm ,∴AC =2cm ,∴结论①正确;(2)如图2所示:∵AC 1=1,AB =4,∴,∴点C 1为线段AB 的四等分点 又∵AC 2=1,∴,又∵点C 2在AB 的反向延长线上,∴点C 2不是线段AB 的四等分点,∴结论②错误;(3)如图3所示:点C 为线段AB 上的一动点,∴AB =AC +BC ,又∵AB =4cm ,∴AC +BC =4cm ,∴结论③正确;(4)如图4所示:若点C 在AB 的延长线上时,AC 1+BC 1>AB , ∵AB =4,∴AC 1+BC 1>4cm ,若点在AB 的反向延长线上时,AC 2+BC 2>AB ,∵AB =4, ∴AC 2+BC 2>4cm ,∴结论④错误;(5)如图5所示:若点C 在线段AB 的延长线时,且BC 1=2cm ,有AC 1+BC 1=8cm ,若点C 在线段AB 的反向延长线时,且BC 2=2cm ,有AC 2+BC 2=8cm ,∴结论⑤错误.综合所述;正确结论是①、③, 故选:B .4、如图,AM 为∠BAC 的平分线,下列等式错误的是(C )A .12∠BAC =∠BAMB .∠BAM =∠CAMC .∠BAM =2∠CAMD .2∠CAM =∠BAC5、如图,∠AOB=∠COD=90°,OE平分∠BOD.若∠AOD∶∠BOC=5∶1,则∠COE的度数为(A)A.30°B.40°C.50°D.60°6、如图,两个直角∠AOC和∠BOD有公共顶点O,下列结论:①∠AOB=∠COD;②∠AOB+∠COD=90°;③若OB平分∠AOC,则OC平分∠BOD;④∠AOD的平分线与∠BOC的平分线是同一条射线.其中结论正确的个数是()A.4个B.3个C.2个D.1个解:①∵∠AOC=∠BOD=90°,∴∠AOB+∠BOC=∠BOC+∠COD=90°,∴∠AOB=∠COD;②∠AOB+∠COD=90°不一定和是90°;③若OB平分∠AOC,则∠AOB=∠BOC=45°,∴∠COD=45°,∴OC平分∠BOD;④∵∠AOB=∠COD,∴∠BOE=∠COE,∴∠AOE=∠DOE,∴∠AOD的平分线与∠BOC的平分线是同一条射线.∴①③④正确,故选:B.7、已知∠A与∠B互余,∠B与∠C互余,则∠A与∠C(B)A.互余B.相等C.互补D.差为90°8、直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°31′,则下列结论不正确的是(C)A.∠AOD与∠1互为补角B.∠1=∠3 C. ∠1的余角等于75°29′D.∠2=45°9、如图,OA⊥OC,OB⊥OD,有下列结论:①∠AOB=∠COD;②∠AOB=∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC-∠COD=∠BOC.其中正确的是(C)A.①②③B.①②④C.①③④D.②③④10、下列说法中,正确的个数是( )(1)过一点有且只有一条直线与已知直线垂直;(2)过一点有且只有一条直线与已知直线平行;(3)在同一平面内,不相交的两条射线是平行线;(4)如果两条直线都与第三条直线平行,那么这两条直线也互相平行.A.1个B.2个C.3个D.4个【答案】A【解析】(1)过一点有且只有一条直线与已知直线垂直,应强调在同一平面内,故本项错误;(2)过一点有且只有一条直线与已知直线平行,应强调在经过直线外一点,故是错误的.(3)在同一平面内,不相交的两条直线是平行线,射线不一定,故本项错误;(4)如果两条直线都与第三条直线平行,那么这两条直线也互相平行是正确的.故选:A.11、若一个角的两边分别平行于另一个角的两边,则这两个角( )A.相等B.互补C.相等或互补D.以上都不对【答案】C【解析】如图所示,∠1和∠2,∠1和∠3两对角符合条件.根据平行线的性质,得到∠1=∠2.结合邻补角的定义,得∠1+∠3=∠2+∠3=180°.故选C.12、如图,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°31′,则下列结论不正确的是(C)A.∠AOD与∠1互为补角B.∠1=∠3 C. ∠1的余角等于75°29′D.∠2=45°13、已知线段AB,点C、点D在直线AB上,并且CD=8,AC:CB=1:2,BD:AB=2:3,则AB=.解:分三种情况进行讨论:①当C在线段AB上时,点D在线段AB的延长线上,∵AC:CB=1:2,∴BC=AB,∵BD:AB=2:3,∴BD=,∴CD=BC+BD=,∴AB=6;②当点C在线段AB的反向延长线时,∵BD:AB=2:3,∴AB=3AD,∵AC:CB=1:2,∴AC=AB,∴CD=AC+AD=4AD=8,∴AD=2,∴AB=6;③当点C在线段AB的反向延长线,点D在线段AB的延长线时,∵AC:CB=1:2,BD:AB=2:3,∴AB=,故AB=6或3.故答案为:6或314、把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理是解:把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理是两点之间线段最短,故答案为:两点之间线段最短.15、如图,∠AOC=90°,OC平分∠DOB,且∠DOC=22°36′,∠BOA度数是_______解:∵OC平分∠DOB,∴∠DOC=∠BOC=22°36′.∵∠AOC=∠AOB+∠BOC=90°,∴∠AOB=∠AOC﹣∠BOC=90°﹣22°36′=67°24′.16、如图所示,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分别是∠AOC,∠BOD的平分线,∠MON等于_135 ____度.17、(1)若∠α=35°,则∠α的补角为____,∠α的余角为____,∠α的补角与余角的差为____;(2)若∠α的补角为76°28′,则∠α=____.(3)一个角是70°39′,则它的余角的度数是____.【答案】(1) 145°; 55°; 90°(2) 103°32′;(3) 19°21′18、如图,直线AB,CD,EF交于一点O.(1)∠EOB的对顶角是________;(2)________是∠AOE的对顶角;(3)若∠AOC=76°,则∠BOD的度数为________.答案:(1)∠AOF(2)∠BOF(3)76°19、如图,已知直线AB和DF相交于点O(∠AOD为锐角),∠COB=90°,OE平分∠AOF.则2∠EOF﹣∠COD=°.【解析】∵OE平分∠AOF,∴∠AOF=2∠EOF,∵∠AOF=∠BOD,∠COB=90°,∴2∠EOF﹣∠COD=∠AOF﹣∠COD=∠BOD﹣∠COD=∠COB=90°.故答案为:90.20、在如图所示的直三棱柱中,互相平行的棱有_______对【解】AB∥A′B′,AC∥A′C′,BC∥B′C′,AA′∥BB′,AA′∥CC′,BB′∥CC′,共6对.21、如图,∠1=28°,AB⊥CD,垂足为O,EF经过点O.则∠2的度数是.【解析】∵直线AB、EF相交于O点,∠1=28°,∴∠3=∠1=28°(对顶角相等),又∵AB⊥CD,∴∠2+∠3=90°,∴∠2=90°﹣∠3=90°﹣28°=62°,故答案为62°.22、如图,OB⊥CD,∠1∶∠2=2∶5,则∠AOB等于_____126°_____23、(1)已知∠AOB=30°,OC⊥OA,OD⊥OB,则∠COD的度数为____________.(2)如果点A,B都在直线l的同一条垂线上,点A到直线l的距离等于8cm,点B到直线l的距离等于6cm,那么线段AB的长为____________cm.【解析】分点A,B在直线l的同侧或异侧两种情况讨论:同侧:AB=8-6=2(cm),异侧:AB=8+6=14(cm).答案:(1)30°或150°(2)2或1424、(1)如图1,AO⊥OC,∠1=∠2,则OB与OD的位置关系是____________.(2)将一张长方形纸片按如图2所示的方式折叠,BC,BD为折痕,则BC与BD的位置关系为_____图1 图2答案:(1)垂直(2)BC⊥BD三、解答题25、如图,C,D是线段AB上的两点,且满足AC:CD:DB=3:2:1,M,N分别为AC和CB的中点.(1)若AB=24,求DN的长度;(2)证明:5MN=6(CD+DN).解:(1)∵AB =24,AC :CD :DB =3:2:1,∴CD =AB =8,DB =AB =4∴CB =CD +DB =12∵N 是CB 的中点, ∴CN =CB =6, ∴ND =CD ﹣CN =8﹣6=2;(2)证明:M ,N 分别为AC 和CB 的中点∴MC =AC ,CN =CB, ∴MN =MC +CN =AC +CB =AB∵AC :CD :DB =3:2:1, ∴CD =AB =AB, DB =AB∴CB =CD +DB =AB, ∴CN =CB =AB∴DN =CD ﹣CN =AB ﹣AB =AB∴6(CD +DN )=6(AB +AB )=AB∵5MN =5×AB =AB, ∴5MN =6(CD +DN ).26、如图,点A 、O 、B 在一条直线上,OD 平分∠COA ,OE 平分∠BOC ,∠BOF =2∠COF ,∠EOF =22°.(1)求∠DOE 的度数;(2)求∠FOC 的度数.解:(1)∵OD 平分∠COA ,OE 平分∠BOC , ∴,, ∴;(2)设∠FOC =x ,∵OE 平分∠BOC ,∠BOF =2∠COF ,∴2x ﹣22°=x +22°,解得x =44°.27、如图所示,∠AOB 是平角,OM ,ON 分别是∠AOC ,∠BOD 的平分线.(1)当∠MON =140°时,则∠COD =100° ;(2)当∠AOC =30°,∠BOD =60°时,求∠MON 的度数;(3)当∠COD =α时,求∠MON 的度数.解:(2)因为∠AOB 是平角,所以∠AOB =180°.因为OM ,ON 分别是∠AOC ,∠BOD 的平分线,所以∠AOM =∠COM =12∠AOC =15°,∠BON =∠DON =12∠BOD =30°.所以∠MON =180°-15°-30°=135°.(3)∠MON =∠MOC +∠COD +∠DON =12∠AOC +12∠BOD +∠COD=12(180°-∠COD)+∠COD =90°+12α.28、如图,点O 是直线AB 上任一点,射线OD 和射线OE 分别平分∠AOC 和∠BOC .(1)填空:与∠AOE 互补的角有 ;(2)若∠COD=30°,求∠DOE 的度数;(3)当∠AOD=α°时,请直接写出∠DOE 的度数.【答案】解:(1)∵OE 平分∠BOC ,∴∠BOE=∠COE ;∵∠AOE+∠BOE=180°,∴∠AOE+∠COE=180°,∴与∠AOE 互补的角是∠BOE 、∠COE ;故答案为∠BOE 、∠COE ;(2)∵OD 、OE 分别平分∠AOC 、∠BOC ,∴∠COD=∠AOD=30°,∠COE=∠BOE=∠BOC ,∴∠AOC=2×30°=60°,∴∠BOC=180°﹣60°=120°,∴∠CO E=∠BOC=60°,∴∠DOE=∠COD+∠COE=90°;(3)当∠AOD=α°时,∠DOE=90°.29、如图,已知直线AB 与CD 交于点O ,OE 平分∠BOD ,OF 平分∠AOB.(1)若∠BOE =40°,求∠AOF 与∠COF 的度数;(2)若∠BOE =x (x <45°),请用含x 的代数式表示∠COF 的度数.解:(1)∵OE 平分∠BOD ,∴∠BOE =12∠BOD.∵∠BOE =40°,∴∠BOD =80°,∴∠BOC =100°. ∵OF 平分∠AOB ,∴∠AOF =∠BOF =90°,∴∠COF =100°-90°=10°.(2)∠COF =180°-2x -90°=90°-2x.30、(1)画一画:在图①中,以P 为顶点画∠P (∠P 为锐角),使∠P 的两边分别和∠1的两边平行;再在图②中,以P 为顶点画∠P (∠P 为钝角),使∠P 的两边分别和∠1的两边平行.(2)量一量:∠1和∠P 的度数,它们之间的数量关系是__________________.(3)猜一猜:如果一个角的两边分别与另一个角的两边平行,那么这两个角的数量关系是________(4)30°,求另外一个角的度数.解:(1) (2)∠11+∠P(3)相等或互补(4)另一个角为30°或150°.31、如图,直线EF ,CD 相交于点O ,OA ⊥OB ,且CO 平分∠AOF ,若∠AOE =n °,求∠BOD 的度数.(用含n 的代数式表示)解法一:∵∠AOF +∠AOE =180°,∴∠AOF =180°-∠AOE =180°-n °.∵OC 平分∠AOF ,∴∠AOC =12∠AOF =90°-12n °.又∵OA ⊥OB ,∴∠AOB =90°,∴∠BOD =180°-∠AOB -∠AOC =180°-90°-(90°-12n °)=12n °.解法二:作OH 平分∠AOE ,则OH ⊥OC.∵OA ⊥OB ,∴∠DOH =∠BOA =90°,∴∠BOD =∠AOH =12∠AOE =12n °.。

相关文档
最新文档