小学数学应用题种类型类-小学数学应用题解法及类形
小学数学应用题类型讲解——和倍问题
和倍问题含义:已知两个数的和,以及它们的倍数关系,求这两个数各是多少,这样的问题叫做和倍问题。
数量关系:和÷(倍数+1)=较小数较小数×倍数=较大数和-较小数=较大数和倍问题类型一:基本型【例1】工厂有职工480人,其中男职工人数是女职工人数的3倍,工厂的男、女职工各有多少人?解题思路1:已知男、女职工的人数和是480,两者的倍数关系是3。
由公式直接求解。
列式:女职工480÷(3+1)=120(人)男职工120×3=360(人)或 480-120=360(人)答:女职工有120人,男职工有360人。
解题思路2:画线段图分析由图可知,将女职工的人数看作1份,男职工的人数是女职工的3倍,男职工的人数就是3份,总共是4份,总人数是480人,先求出1份的人数,再求出几份的人数。
列式:女职工480÷(3+1)=120(人)男职工120×3=360(人)或 480-120=360(人)答:女职工有120人,男职工有360人。
【例2】在一道除法算式中,已知被除数和除数的和为360,商是5,被除数和除数各是多少?解题思路1:在除法算式中,被除数÷除数=商,此题中商是5,说明被除数是除数的5倍,已知被除数和除数的和是360,由公式直接求解。
列式:除数 360÷(5+1)=60被除数 60×5=300 或 360-60=300答:被除数是300,除数是60。
解题思路2:画线段图分析由图可知,被除数是除数的5倍,除数和被除数的和为360,直接用公式求解。
列式:除数 360÷(5+1)=60被除数 60×5=300 或 360-60=300答:被除数是300,除数是60。
总结:基本的和倍问题是题目中直接给出两个数的和与倍数关系,那么我们可以直接利用数量关系式求出这两个数各是多少,同时也可以利用画线段图的方式去理解分析。
小学六年级数学应用题分类(答案及详解)
小学六年级数学应用题分类(答案及详解)公约公倍问题需要用公约数、公倍数来解答的应用题叫做公约数、公倍数问题。
【数量关系】绝大多数要用最大公约数、最小公倍数来解答。
【解题思路和方法】先确定题目中要用最大公约数或者最小公倍数,再求出答案.最大公约数和最小公倍数的求法,最常用的是“短除法”。
例1、一张硬纸板长60厘米,宽56厘米,现在需要把它剪成若干个大小相同的最大的正方形,不许有剩余。
问正方形的边长是多少?解:硬纸板的长和宽的最大公约数就是所求的边长.60和56的最大公约数是4。
答:正方形的边长是4厘米。
例2、甲、乙、丙三辆汽车在环形马路上同向行驶,甲车行一周要36分钟,乙车行一周要30分钟,丙车行一周要48分钟,三辆汽车同时从同一个起点出发,问至少要多少时间这三辆汽车才能同时又在起点相遇?解:要求多少时间才能在同一起点相遇,这个时间必定同时是36、30、48的倍数.因为问至少要多少时间,所以应是36、30、48的最小公倍数。
36、30、48的最小公倍数是720.答:至少要720分钟(即12小时)这三辆汽车才能同时又在起点相遇。
例3、一个四边形广场,边长分别为60米,72米,96米,84米,现要在四角和四边植树,若四边上每两棵树间距相等,至少要植多少棵树?解:相邻两树的间距应是60、72、96、84的公约数,要使植树的棵数尽量少,须使相邻两树的间距尽量大,那么这个相等的间距应是60、72、96、84这几个数的最大公约数12.所以,至少应植树(60+72+96+84)÷12=26(棵)答:至少要植26棵树。
例4、一盒围棋子,4个4个地数多1个,5个5个地数多1个,6个6个地数还多1个.又知棋子总数在150到200之间,求棋子总数。
解:如果从总数中取出1个,余下的总数便是4、5、6的公倍数.因为4、5、6的最小公倍数是60,又知棋子总数在150到200之间,所以这个总数为60×3+1=181(个)答:棋子的总数是181个。
小学数学分数应用题类型题大全及例题解析
小学分数应用题类型题大全及例题解析一、根底理论〔一〕分数应用题构建1、分数应用题是小学数学教学中重点与难点。
它大体可以分成两种:〔1〕根本数量关系与整数应用题根本一样,只是把整数应用题中数换成分数,解答方法与整数应用题根本一样。
〔2〕根据分数乘除法意义而产生具有独特解法分数应用题,这就是我们通常说分数应用题。
2、分数应用题主要讨论是以下三者之间关系:〔1〕分率:表示一个数是另一个数几分之几,这几分之几通常称为分率。
〔2〕标准量:解答分数应用题时,通常把题目中作为单位“1〞那个数,称为标准量。
〔3〕比拟量:解答分数应用题时,通常把题目中同标准量比拟那个数,称为比拟量。
〔二〕分数应用题分类1、求一个数几分之几是多少。
这类问题特点是一个看作单位“1〞数,求它几分之几是多少,解这类应用题用乘法。
即反映是整体与局部之间关系应用题,根本数量关系是:整体量×分率=分率对应局部量;或一个看作单位“1〞数,另一个数占它几分之几,求另一个数,即反映是甲乙两数之间关系应用题,根本数量关系是:标准量×分率=分率对应比拟量。
〔分率〕=是〔1〕求一个数几分之几是多少:标准量×几几多少〔分率对应比拟量〕。
〔分率〕〔2〕求比一个数多几分之几多多少:标准量×几几=多多少〔分率对应比拟量〕。
〕〔3〕求比一个数多几分之几是多少:标准量×〔1+几几〔分率〕=是多少〔分率对应比拟量〕。
〔分率〕〔4〕求比一个数少几分之几少多少:标准量×几几=少多少〔分率对应比拟量〕。
〔5〕求比一个数少几分之几是多少:标准量×〔1-几〕几〔分率〕=是多少〔分率对应比拟量〕。
2、求一个数是另一个数几分之几。
这类问题特点是两个数量,比拟它们之间倍数关系,解这类应用题用除法。
根本数量关系是:比拟量÷标准量=分率。
〔1〕求一个数是另一个数几分之几:比拟量÷标准量=分率〔几分之几〕。
小学数学应用题21种类型总结(附例题、解题思路)
小学数学应用题21种类型总结(附例题、解题思路)1、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
例23台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。
例35辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。
2、归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
小学三年级数学应用题分类及解法
小学三年级数学应用题分类及解法一、引言小学三年级是学生们开始接触数学应用题的初始阶段。
这一阶段的学习对于学生来说至关重要,因为它不仅为学生打下了数学基础,还培养了他们解决问题的能力。
本文将数学应用题分为几类,并给出相应的解题方法。
二、分类1、计算类应用题:这类应用题主要考察学生的计算能力,如加减乘除、分数、小数等。
例如:“小明有5个苹果,小红有3个苹果,他们一共有多少个苹果?”这类问题的解决方法主要是通过正确的计算步骤得出答案。
2、比较类应用题:这类应用题通过比较两个或多个数量或数值来考察学生的比较能力。
例如:“一斤苹果的价格是5元,一斤香蕉的价格是3元,哪种水果更便宜?”解决这类问题,学生需要掌握比较的方法,并能够确定哪个数量或数值更大或更小。
3、图形类应用题:这类应用题通过图形或几何问题来考察学生的空间观念和推理能力。
例如:“一个长方形的长是5厘米,宽是3厘米,请问这个长方形的面积是多少?”解决这类问题,学生需要理解图形的性质和相关的几何公式。
4、逻辑推理类应用题:这类应用题通过一系列的信息或条件,要求学生推断出某种结论或结果。
例如:“在1,2,3,4,5,6,7,8,9中,不重复的三个数字可以组成一个三位数,请问有多少种可能的组合方式?”解决这类问题,学生需要运用逻辑推理的能力,从给定的信息中推导出正确的答案。
三、解题方法对于每一类应用题,我们都有相应的解题方法:1、计算类应用题:首先要理解题目中的数学表达式或方程,然后使用正确的计算步骤得出答案。
如果遇到困难,可以重新阅读题目或寻求帮助。
2、比较类应用题:首先需要确定哪个数量或数值更大或更小,然后通过比较得出答案。
如果遇到困难,可以重新阅读题目或寻求帮助。
3、图形类应用题:首先需要理解图形的性质和相关的几何公式,然后使用这些公式来解决问题。
如果遇到困难,可以借助模型或重新阅读题目。
4、逻辑推理类应用题:首先需要仔细阅读题目,理解所有的信息和条件,然后使用逻辑推理的方法得出答案。
小学数学各类应用题讲解+例题分析
小学数学各类应用题讲解+例题分析01简单应用题(1)简单应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。
(2)解题步骤:a 审题理解题意:了解应用题的内容,知道应用题的条件和问题。
读题时,不丢字不添字边读边思考,弄明白题中每句话的意思。
也可以复述条件和问题,帮助理解题意。
b选择算法和列式计算:这是解答应用题的中心工作。
从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称。
c检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。
如果发现错误,马上改正。
02复合应用题(1)有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。
(2)含有三个已知条件的两步计算的应用题。
求比两个数的和多(少)几个数的应用题。
比较两数差与倍数关系的应用题。
(3)含有两个已知条件的两步计算的应用题。
已知两数相差多少(或倍数关系)与其中一个数,求两个数的和(或差)。
已知两数之和与其中一个数,求两个数相差多少(或倍数关系)。
(4)解答连乘连除应用题。
(5)解答三步计算的应用题。
(6)解答小数计算的应用题:小数计算的加法、减法、乘法和除法的应用题,他们的数量关系、结构、和解题方式都与正式应用题基本相同,只是在已知数或未知数中间含有小数。
答案:根据计算的结果,先口答,逐步过渡到笔答。
( 7 ) 解答加法应用题:a求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。
b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。
(8)解答减法应用题:a求剩余的应用题:从已知数中去掉一部分,求剩下的部分。
-b求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。
c求比一个数少几的数的应用题:已知甲数是多少,,乙数比甲数少多少,求乙数是多少。
小学数学典型应用题归纳总结汇总30种题型
小学数学典型应用题归纳汇总30种题型1 归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
2 归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。
例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。
原来做791套衣服的布,现在可以做多少套?解(1)这批布总共有多少米? 3.2×791=2531.2(米)(2)现在可以做多少套?2531.2÷2.8=904(套)列成综合算式 3.2×791÷2.8=904(套)答:现在可以做904套。
3 和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
【数量关系】大数=(和+差)÷2小数=(和-差)÷2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。
例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。
小学数学应用题13种类型解题方法
小学数学应用题13种类型解题方法
以下是小学数学应用题13种类型解题方法:
1. 对等关系类型:确定两个物品或人物之间的对等关系,例如“如果一个苹果的重量是1斤,那么两个苹果的重量是多少?”
2. 比例关系类型:确定两个或多个物品或人物之间的比例关系,例如“一个篮球场长50米,那么120米长的篮球场需要多大?”
3. 增减关系类型:确定两个物品或人物之间的增减关系,例如“小明有30元钱,买了一杯奶茶,还剩多少钱?”
4. 总量平均数类型:确定总量和平均数之间的关系,例如“班里有30个同学,平均每人有8本书,那么班里一共有多少本书?”
5. 比价关系类型:确定两个物品或服务之间的价值比较,例如“一瓶可乐比一瓶雪碧贵3元,一瓶雪碧多少钱?”
6. 时间关系类型:确定时间之间的关系,例如“如果8点钟开始读书,读完4个小时,那么读书到几点钟?”
7. 容量类型:确定两个容器之间的关系,例如“一杯水有200ml,那么3杯水有多少毫升?”
8. 多项式类型:确定多项式之间的关系,例如“如果5x+2=17,那么x=多少?”
9. 周长关系类型:确定周长之间的关系,例如“一个正方形的周长是48cm,那么它的面积是多少?”10. 面积类型:确定两个或多个图形面积之间的关系,例如“一个长方形的长是8cm,宽是6cm,它的面积是多少?”
11. 相似关系类型:确定两个或多个图形之间的相似关系,例如“如果两个三角形相似,其中一个三角形的底是5cm,那么另一个三角形的底是多少?”12. 倍数类型:确定两个物品或人物之间的倍数关系,例如“5个苹果的价格是25元,那么一个苹果的价格是多少?”
13. 百分比类型:确定一个数值的百分比,例如“如果一个物品原价是120元,打8折后的价格是多少?”。
小学数学各类应用题类型及解题方法
2016-06-05差倍问题:已知两个数的差及两个数的倍数关系,求这两个数的应用题,叫做差倍问题。
基本关系式是:两数差÷倍数差=较小数。
例:有两堆煤,第二堆比第一堆多40吨,如果从第二堆中拿出5吨煤给第一堆,这时第二堆煤的重量正好是第一堆的3倍。
原来两堆煤各有多少吨?分析:原来第二堆煤比第一堆多40吨,给了第一堆5吨后,第二堆煤比第一堆就只多40-5×2吨,由基本关系式列式是:(40-5×2)÷(3-1)-5 =(40-10)÷2-5 =30÷2-5 =15-5 =10(吨)第一堆煤的重量10+40=50(吨)→第二堆煤的重量答:第一堆煤有10吨,第二堆煤有50吨和差问题:已知两个数的和与差,求这两个数的应用题,叫做和差问题。
一般关系式有:(和-差)÷2=较小数(和+差)÷2=较大数。
例:甲乙两数的和是24,甲数比乙数少4,求甲乙两数各是多少?(24+4)÷2 =28÷2 =14 乙数(24-4)÷2 =20÷2 =10 甲数答:甲数是10,乙数是14差倍问题:已知两个数的差及两个数的倍数关系,求这两个数的应用题,叫做差倍问题。
基本关系式是:两数差÷倍数差=较小数例:有两堆煤,第二堆比第一堆多40吨,如果从第二堆中拿出5吨煤给第一堆,这时第二堆煤的重量正好是第一堆的3倍。
原来两堆煤各有多少吨?分析:原来第二堆煤比第一堆多40吨,给了第一堆5吨后,第二堆煤比第一堆就只多40-5×2吨,由基本关系式列式是:(40-5×2)÷(3-1)-5 =(40-10)÷2-5 =30÷2-5 =15-5 =10(吨)第一堆煤的重量10+40=50(吨)→第二堆煤的重量答:第一堆煤有10吨,第二堆煤有50吨。
还原问题:已知一个数经过某些变化后的结果,要求原来的未知数的问题,一般叫做还原问题。
小学数学六年级应用题13种类型解题方法
解题方法一:直观化问题有些应用题可能会给出一个具体的场景,我们可以通过直观化问题来解决它。
比如,一个篮子里有苹果、梨子和橙子,苹果比梨子多两倍,橙子比梨子少3个,篮子里一共有15个水果,那么各种水果的数量分别是多少?我们可以通过直观化问题,用图表的形式来辅助解决。
解题方法二:列方程有些应用题可能无法直接看出关系,但我们可以通过列方程来建立关系。
比如,小明和小红一起骑自行车迎面而来,小明的速度是10千米/小时,小红的速度是8千米/小时,两人相距60千米,什么时候两人能够相遇?我们可以通过列方程来解决这个问题。
解题方法三:进行逆向思维有些应用题可能通过逆向思维来解决。
比如,小明现在拥有了100元,他想买一本书,但他还需要15元才能够买到,他打算用每天10元的零花钱来积攒足够的钱,问他需要多少天?我们可以通过逆向思维,从目标价钱出发,逐步推算回去。
解题方法四:分情况讨论有些应用题可能包含多个条件,我们需要分开讨论不同情况。
比如,小明有100元,他想买一本书,书的价格有两个档次,A档次每本50元,B档次每本80元,他至少要买一本A档次的书,同时还可以买一本B档次的书,问他最多能够买多少本书?我们可以分情况讨论,一种情况是只买A档次的书,另一种情况是同时买A档次和B档次的书。
解题方法五:利用等差或等比数列有些应用题可能可以用等差或等比数列的性质来解决。
比如,小明每天扔掉一半的花,第一天扔掉一朵,第二天扔掉两朵,第三天扔掉四朵,以此类推,问第五天共扔掉了多少朵花?我们可以通过等比数列的性质来解决。
解题方法六:利用图形的性质有些应用题可能可以利用图形的性质来解决。
比如,一个直角三角形的两条直角边长的比是3:4,面积是60平方单位,求三角形的周长和斜边的长。
我们可以通过利用直角三角形的性质来解决。
解题方法七:利用比例关系有些应用题可能可以利用比例关系来解决。
比如,小王爸爸做17天的工作可以挣700元,小王妈妈做25天的工作可以挣900元,小王爸爸和小王妈妈一起工作了多少天可以挣到500元?我们可以通过利用比例关系,建立方程来解决。
六年级上册数学应用题及解析(九种类型+综合练习)
类型一 分数乘除应用题【知识讲解】分数乘法解决问题(已知单位1的量,用乘法,即求单位1的几分之几是多少) 1.求一个数的几分之几是多少:用这个数乘几分之几2.求已知一个部分量是总量的几分之几,求另一部分量的方法: (1)单位1的量×(1-分率)=另一个部分量(2)单位1的量-已知占单位1的几分之几的部分量=要求的部分量分数除法解决问题(单位1的量未知,用除法,即已知单位1的几分之几是多少,求单位1的量)1.求一个数是另一个数的几分之几是多少:用一个数除以另一个数,结果写成分数形式。
2.求一个数比另一个数多几分之几的方法:用两个数的相差量÷单位1的量=分数【典型例题】【例1】修一条3千米长的公路,第一次修了这条公路的65,第二次修了65千米。
[分析]:第一个65后面没有单位,说明它是表示两个数之间的关系,则根据求一个数的几分之几是多少,用乘法来求出第一天的工作量;第二个65后面有单位,说明这是第二天的工作量,则直接加上即可。
[答案]:3×65+65=313(千米) 答:两次共修313千米。
两次共修了多少千米?【巩固练习】1.一箱香蕉重201吨,15箱这样的香蕉重多少吨?2.一台拖拉机每小时耕地公顷,3台拖拉机14小时耕地多少公顷?3.一块地有公顷,它们各修了多少公顷?我修了这块地的。
我修了这块地的。
4.蜂鸟是目前世界上所发现的最小的鸟,它65分钟可以飞行41km 。
蜂鸟平均每分钟可以飞行多少千米?5.挖一条长千米的水渠,第一天挖了全长的,第一天挖了多少千米?还剩多少千米没挖?6.校园举行“八荣八耻”演讲比赛,获得一等奖人数占参赛总人数的,其中获一等奖的男生占一等奖总人数的,获得一等奖的男生人数占参赛人数的几分之几?7.六年级学生参加植树劳动,男生植了160棵,女生植的树比男生的43多5棵。
如果有352人参赛,那么获得一等奖的男生有多少人?女生植树多少棵?8.打吊针,瓶里有药水500毫升,已经输了100毫升,再输多少毫升正好输完这瓶药水的21?9.一个三角形的面积是1534 平方分米,它的高是517分米,这个三角形的底是多少分米?10.小华每天喝2杯这样的牛奶,他在整个九月份通过喝牛奶可以摄取钙质多少克?11.甲乙两地相距160千米,一辆汽车从甲地去乙地,43小时行了60千米,照这样的速度。
小学数学30种典型应用题分类讲解附带例题和解题过程
小学数学30种典型应用题讲解应用题可分为一般应用题与典型应用题。
没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。
题目中有特殊的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题. 以下主要研究30类典型应用题:1、归一问题2、归总问题3、和差问题4、和倍问题5、差倍问题6、倍比问题7、相遇问题8、追及问题9、植树问题10、年龄问题11、行船问题12、列车问题13、时钟问题14、盈亏问题15、工程问题16、正反比例问题17、按比例分配18、百分数问题19、“牛吃草”问题20、鸡兔同笼问题21、方阵问题22、商品利润问题23、存款利率问题24、溶液浓度问题25 、构图布数问题26、幻方问题27、抽屉原则问题28、公约公倍问题29、最值问题30、列方程问题1 归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱? 0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式 0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷? 90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷? 10×5×6=300(公顷)列成综合算式 90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷。
小学数学应用题的21种类型
1【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
2【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。
例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。
原来做791套衣服的布,现在可以做多少套?解(1)这批布总共有多少米?3.2×791=2531.2(米)(2)现在可以做多少套?2531.2÷2.8=904(套)列成综合算式3.2×791÷2.8=904(套)答:现在可以做904套。
3【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
【数量关系】大数=(和+差)÷2小数=(和-差)÷2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。
例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。
小学数学分数应用题类型题大全及例题解析
小学数学分数应用题类型题大全及例题解析小学数学分数应用题类型题大全及例题解析在小学数学的学习中,分数应用题是一个重要的知识点。
这类题目不仅考察了学生的数学基础,还对学生的逻辑思考和文字理解能力提出了要求。
本文将通过一些典型的分数应用题,解析其类型和解题方法,帮助同学们更好地掌握这一难点。
一、分数应用题的类型1、分数加减法应用题例如:小明吃了3个蛋糕,小强吃了2个蛋糕,请问小明比小强多吃了多少个蛋糕?2、分数乘法应用题例如:一个苹果的价格是0.5元,请问3个苹果的价格是多少?3、分数除法应用题例如:有20个蛋糕,每个蛋糕的价格是0.5元,请问这些蛋糕的总价格是多少?二、分数应用题的解题方法1、分数加减法应用题解题方法:将不同的分数化为相同的分母,然后进行加减。
如果分母不同,也可以通过乘以或除以一些数,使得分母相同。
例题解析:小明吃了3个蛋糕,小强吃了2个蛋糕,请问小明比小强多吃了多少个蛋糕?解:小明比小强多吃了1/2个蛋糕。
2、分数乘法应用题解题方法:将分数与整数相乘时,分子与整数相乘,分母保持不变。
例题解析:一个苹果的价格是0.5元,请问3个苹果的价格是多少?解:3个苹果的价格是1.5元。
3、分数除法应用题解题方法:将分数除法转化为乘法,例如2/3除以4/5就等于2/3乘以5/4。
例题解析:有20个蛋糕,每个蛋糕的价格是0.5元,请问这些蛋糕的总价格是多少?解:这些蛋糕的总价格是10元。
三、举一反三通过以上的例题解析,我们可以发现,掌握分数应用题的解题方法关键在于理解题意并正确转化分数与整数之间的运算。
为了更好地掌握这一知识点,我们可以设计一些类似的题目进行练习。
1、一个橘子2元,请问3个橘子的价格是多少?解:3个橘子的价格是6元。
2、一种衣服原价为40元,现降价为30元,请问这种衣服的折扣是多少?解:这种衣服的折扣为2/5。
3、一个西瓜重8千克,请问4个西瓜的重量是多少?解:4个西瓜的重量是32千克。
小学所有应用题类型100道附答案(完整版)
小学所有应用题类型100道附答案(完整版)类型一:加法应用题题目1:小明有5 个苹果,小红有3 个苹果,他们一共有几个苹果?答案:5 + 3 = 8(个)解析:将小明和小红的苹果数相加。
题目2:学校图书馆有20 本故事书,15 本科技书,一共有多少本书?答案:20 + 15 = 35(本)解析:故事书和科技书的数量相加。
类型二:减法应用题题目3:妈妈买了10 个梨,小明吃了3 个,还剩下几个梨?答案:10 - 3 = 7(个)解析:用总数减去吃掉的数量。
题目4:盒子里有18 颗糖,拿走了5 颗,盒子里还剩几颗糖?答案:18 - 5 = 13(颗)解析:原有的糖数量减去拿走的。
类型三:乘法应用题题目5:每个文具盒5 元,买3 个文具盒需要多少钱?答案:5 ×3 = 15(元)解析:单价乘以数量。
题目6:一行有6 个同学,5 行一共有多少个同学?答案:6 ×5 = 30(个)解析:每行的同学数乘以行数。
类型四:除法应用题题目7:把12 个苹果平均分成3 份,每份有几个苹果?答案:12 ÷ 3 = 4(个)解析:总数除以份数。
题目8:20 元钱可以买4 个笔记本,每个笔记本多少钱?答案:20 ÷ 4 = 5(元)解析:总价除以数量得到单价。
类型五:比较多少应用题题目9:小明有8 支铅笔,小红有12 支铅笔,小红比小明多几支铅笔?答案:12 - 8 = 4(支)解析:大数减小数。
题目10:果园里有15 棵苹果树,20 棵梨树,苹果树比梨树少几棵?答案:20 - 15 = 5(棵)解析:梨树数量减去苹果树数量。
类型六:倍数应用题题目11:小白兔有6 只,小灰兔的数量是小白兔的3 倍,小灰兔有几只?答案:6 ×3 = 18(只)解析:小白兔数量乘以倍数。
题目12:爸爸的年龄是小明的4 倍,小明8 岁,爸爸多少岁?答案:8 ×4 = 32(岁)解析:小明年龄乘以倍数。
小学数学六年级应用题13种类型解题方法
1、已知条件类:根据题干中给定的条件,推导出最终结论;
2、识别规律类:根据题干中给出的数据,找出规律,然后得出结果;
3、概率类:依据事物发生的可能性计算结果;
4、几何类:借助图形,利用已知信息
求未知数;5、省略号类:找出省略号读值,得出结论;6、二次根式类:根据题干中给出的二次根式,求出解;7、变量代换类:根据题干中的变
量的特点,替换变量,得出结论;8、方程组类:根据题干给出的方程组,求解出结果;9、类比类:根据题干中的类比情景,得出相应结果;10、
对比分析类:根据题干中的对比情景,得出结论;11、容斥原理类:根据
题干中的容斥原理,求出解;12、反证法类:根据题干中的给定条件,反
证出结果;13、短路法类:根据题干中的情景,分析各种结果,不断缩小
范围,得出最终答案。
小学数学30种典型应用题分类讲解附带例题和解题过程
常见题型:例如,一项工程甲单独做需要10天完成,乙单独做需要15天完成,如果甲先做了3天后, 乙加入一起做,还需几天完成?
解题方法:先计算甲、乙两人单独完成工程所需的时间和效率,然后根据题目条件列出方程,最后 求解未知数。
题目:钟表上分针 转动的速度是时针 的几倍。
题目:钟表上时针 转动的速度是分针 的几分之几。
题目:钟表上分针 转动一圈,时针转 动多少度。
添加 标题
定义:日历问题是指与日期有关的数学问题,通常涉及到平年、闰年的计算以及日历的转换等。
添加 标题
解题思路:首先确定问题的类型,然后根据不同的类型采用不同的计算方法。对于平年或闰年的计算,需要 了解平年或闰年的天数和月份的天数;对于日历的转换,需要了解不同年份或月份的转换规则。
添加标题
添加标题
添加标题
添加标题
应用题的作用是帮助学生理解数学 概念,提高数学思维能力。
应用题在小学数学教学中占有重要 地位,是提高学生数学素养的重要 途径。
01
代数应用题:涉及代数方程、不等式、函数等数学 概念的问题,如鸡兔同笼问题。
03
概率与统计应用题:涉及概率、统计、数据分析等 概念的问题,如扔骰子求概率。
解题方法:解决 比例应用题的方 法通常包括找出 比例关系,建立 数学模型,然后 求解。
常见题型:例如 “一杯水中有 200克糖,糖和 水的比例是1:5, 求水的重量是多 少克?”
解题思路:首先 找出比例关系, 然后根据比例关 系建立数学模型, 最后求解。
定义:工程问题是指与工程项目相关的数学问题,涉及到工作量、工作效率和工作时间等概念。
小学数学应用题种类型总结
小学数学应用题种类型总结小学数学是小学生必修的一门学科,也是学生将来学习更高一级的数学知识的基础。
数学应用题是小学数学中的重要部分,也是学生锻炼数学思维和解决实际问题的重要途径。
本文将对小学数学应用题种类型进行总结,旨在帮助小学生更好地掌握数学应用题解题方法,提高数学成绩。
一、整数运用题整数运用题主要涉及四则运算和应用计算机技术的情境运用,例如:小明有150元,他要买两本书,第一本书是80元,第二本书比第一本书贵10元,那么他还剩多少钱?这种类型题目不仅能锻炼孩子的加减乘除能力,同时还培养了孩子的实际动脑能力。
二、比例运用题比例运用是小学数学应用题中比较复杂的一种类型,包括直接比例和复合比例。
这类题目一般表现为一个数与另一个数的关系,例如:10瓶可乐喝了6天,那么30瓶可乐要喝几天?这种类型题目需要学生通过分析比例的关系来解决问题,对数学思维的培养有很好的帮助。
三、分数运用题分数是小学数学中的重要知识点,运用分数求解实际问题的题目也很多。
例如:5个小朋友共有18个水果,每个小朋友分得苹果6/5个,那么共有多少个苹果?这种题目考查了学生对分数的理解和运用,同时对于帮助学生的中华营养学的知识理解和操作能力的提高也有很大的帮助。
四、几何形体体积和表面积的计算题小学数学中的几何形体体积和表面积问题比较少,但是需要解决这些问题时软件性的问题时相对比较棘手的,需要孩子通过计算并把握几何形体表面和空间长宽高等多个维度的数值进行运算,例如地球表面积是多少平方千米?这种问题对于孩子维度思维能力的培养较有帮助。
五、时间、速度、距离等运用题时间、速度、距离等运用题也是小学数学应用题中很常见的题目类型,例如:从A地到B地一站车要1小时,一共走了100公里,那么一共要走几个小时?这种问题帮助孩子培养了时、距离、速度等方面的认识能力和判断能力。
结语:小学数学应用题类型很多,不同类型的题目需要不同的解题方法。
通过总结不同题型的特点,可以帮助学生更好地掌握解题技巧,从而提高数学成绩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学应用题的21种类型类,讲解详细,内容全面,例题经典1、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱解(1)买1支铅笔多少钱0.6÷5=0.12(元)(2)买16支铅笔需要多少钱0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
2、归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。
例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。
原来做791套衣服的布,现在可以做多少套解(1)这批布总共有多少米3.2×791=2531.2(米)(2)现在可以做多少套2531.2÷2.8=904(套)列成综合算式3.2×791÷2.8=904(套)答:现在可以做904套。
3、和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
【数量关系】大数=(和+差)÷2小数=(和-差)÷2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。
例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人解甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。
4、和倍问题【含义】已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。
【数量关系】总和÷(几倍+1)=较小的数总和-较小的数=较大的数较小的数×几倍=较大的数【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。
例1 果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵解(1)杏树有多少棵248÷(3+1)=62(棵)(2)桃树有多少棵62×3=186(棵)答:杏树有62棵,桃树有186棵。
5、差倍问题【含义】已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。
【数量关系】两个数的差÷(几倍-1)=较小的数较小的数×几倍=较大的数【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。
例1 果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。
求杏树、桃树各多少棵解(1)杏树有多少棵124÷(3-1)=62(棵)(2)桃树有多少棵62×3=186(棵)答:果园里杏树是62棵,桃树是186棵。
6、倍比问题【含义】有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。
【数量关系】总量÷一个数量=倍数另一个数量×倍数=另一总量【解题思路和方法】先求出倍数,再用倍比关系求出要求的数。
例1 100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少解(1)3700千克是100千克的多少倍3700÷100=37(倍)(2)可以榨油多少千克40×37=1480(千克)列成综合算式40×(3700÷100)=1480(千克)答:可以榨油1480千克。
7、相遇问题【含义】两个运动的物体同时由两地出发相向而行,在途中相遇。
这类应用题叫做相遇问题。
【数量关系】相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。
例1 南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇解392÷(28+21)=8(小时)答:经过8小时两船相遇。
8、追及问题【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。
这类应用题就叫做追及问题。
【数量关系】追及时间=追及路程÷(快速-慢速)追及路程=(快速-慢速)×追及时间【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。
例1 好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马解(1)劣马先走12天能走多少千米75×12=900(千米)(2)好马几天追上劣马900÷(120-75)=20(天)列成综合算式75×12÷(120-75)=900÷45=20(天)答:好马20天能追上劣马。
9、植树问题【含义】按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。
【数量关系】线形植树棵数=距离÷棵距+1环形植树棵数=距离÷棵距方形植树棵数=距离÷棵距-4三角形植树棵数=距离÷棵距-3面积植树棵数=面积÷(棵距×行距)【解题思路和方法】先弄清楚植树问题的类型,然后可以利用公式。
例1 一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳解136÷2+1=68+1=69(棵)答:一共要栽69棵垂柳。
10、年龄问题【含义】这类问题是根据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化。
【数量关系】年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住“年龄差不变”这个特点。
【解题思路和方法】可以利用“差倍问题”的解题思路和方法。
例1 爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍明年呢解35÷5=7(倍)(35+1)÷(5+1)=6(倍)答:今年爸爸的年龄是亮亮的7倍,明年爸爸的年龄是亮亮的6倍。
11、行船问题【含义】行船问题也就是与航行有关的问题。
解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;水速是水流的速度,船只顺水航行的速度是船速与水速之和;船只逆水航行的速度是船速与水速之差。
【数量关系】(顺水速度+逆水速度)÷2=船速(顺水速度-逆水速度)÷2=水速顺水速=船速×2-逆水速=逆水速+水速×2逆水速=船速×2-顺水速=顺水速-水速×2【解题思路和方法】大多数情况可以直接利用数量关系的公式。
例1 一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时解由条件知,顺水速=船速+水速=320÷8,而水速为每小时15千米,所以,船速为每小时320÷8-15=25(千米)船的逆水速为25-15=10(千米)船逆水行这段路程的时间为320÷10=32(小时)答:这只船逆水行这段路程需用32小时。
12、列车问题【含义】这是与列车行驶有关的一些问题,解答时要注意列车车身的长度。
【数量关系】火车过桥:过桥时间=(车长+桥长)÷车速火车追及:追及时间=(甲车长+乙车长+距离)÷(甲车速-乙车速)火车相遇:相遇时间=(甲车长+乙车长+距离)÷(甲车速+乙车速)【解题思路和方法】大多数情况可以直接利用数量关系的公式。
例1 一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开上桥到车尾离开桥共需要3分钟。
这列火车长多少米解火车3分钟所行的路程,就是桥长与火车车身长度的和。
(1)火车3分钟行多少米900×3=2700(米)(2)这列火车长多少米2700-2400=300(米)列成综合算式900×3-2400=300(米)答:这列火车长300米。
13、时钟问题【含义】就是研究钟面上时针与分针关系的问题,如两针重合、两针垂直、两针成一线、两针夹角为60度等。
时钟问题可与追及问题相类比。
【数量关系】分针的速度是时针的12倍,二者的速度差为11/12。
通常按追及问题来对待,也可以按差倍问题来计算。
【解题思路和方法】变通为“追及问题”后可以直接利用公式。
例1 从时针指向4点开始,再经过多少分钟时针正好与分针重合解钟面的一周分为60格,分针每分钟走一格,每小时走60格;时针每小时走5格,每分钟走5/60=1/12格。
每分钟分针比时针多走(1-1/12)=11/12格。
4点整,时针在前,分针在后,两针相距20格。
所以分针追上时针的时间为20÷(1-1/12)≈22(分)答:再经过22分钟时针正好与分针重合。
14、盈亏问题【含义】根据一定的人数,分配一定的物品,在两次分配中,一次有余(盈),一次不足(亏),或两次都有余,或两次都不足,求人数或物品数,这类应用题叫做盈亏问题。
【数量关系】一般地说,在两次分配中,如果一次盈,一次亏,则有:参加分配总人数=(盈+亏)÷分配差如果两次都盈或都亏,则有:参加分配总人数=(大盈-小盈)÷分配差参加分配总人数=(大亏-小亏)÷分配差【解题思路和方法】大多数情况可以直接利用数量关系的公式。
例1 给幼儿园小朋友分苹果,若每人分3个就余11个;若每人分4个就少1个。
问有多少小朋友有多少个苹果解按照“参加分配的总人数=(盈+亏)÷分配差”的数量关系:(1)有小朋友多少人(11+1)÷(4-3)=12(人)(2)有多少个苹果3×12+11=47(个)答:有小朋友12人,有47个苹果。
15、工程问题【含义】工程问题主要研究工作量、工作效率和工作时间三者之间的关系。