2018届江西省重点中学协作体高三第二次联考数学(理)试题(解析版)

合集下载

2018届江西省八所重点中学高三联考理科数学试题及答案

2018届江西省八所重点中学高三联考理科数学试题及答案

2018届江西省⼋所重点中学⾼三联考理科数学试题及答案江西省⼋所重点中学2018届⾼三联考数学(理)试题⼀、选择题(本题共12个⼩题,每⼩题5分,共60分,在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的).1. 已知集合{-=2x x A }02≤-x ,{==y x B })1ln(x -,则=?B A ()A .)21(,B .]21(,C .)11[,-D .)11(,- 2. 如果iai z +-=11为纯虚数,则实数a 等于() A.0 B. -1或1 C. -1 D. 13. 在△ABC 中, AB AC BA BC ?=? “” 是 AC BC = “”的()A .充分⽽不必要条件B .必要⽽不充分条件C .充分必要条件D .既不充分也不必要条件4.数列{n a }的前n 项和)(322+∈-=N n n n S n ,若p-q=5,则q p a a -=() A. 10 B. 15 C. -5 D.205.对任意⾮零实数a 、b ,若a b ?的运算原理如图所⽰,则12)31(4log -?的值为() A.31 B.1 C.34 D.2 6.在某次联考数学测试中,学⽣成绩ξ服从正态分布()()2100,,0σσ>,若ξ在()80,120内的概率为0.8,则落在()0,80内的概率为()A. 0.05B. 0.1C. 0.15D.0.27.函数()sin (0,0)f x A x A ωω=>>的部分图象如图所⽰,则`)1(f +)2(f +)3(f ++)2015(f 的值为()8.若)1(x +8822107)21(x a x a x a a x ++++=- ,则721a a a +++ 的值是()A .-2 B.-3 C.125 D.-1319.已知圆1C :0222=++y cx x ,圆2C :0222=+-y cx x ,椭圆C :22221x y a b +=,若圆12,C C 都在椭圆内,则椭圆离⼼率的范围是() A. )1,21[ B.]21,0( C. )1,22[ D. ]22,0( 10.定义在R 上的函数)(x f 对任意1x 、)(212x x x ≠都有0)()(2121<--x x x f x f ,且函数(1)y f x =-的图象关于(1,0)成中⼼对称,若s ,t 满⾜不等式22(2)(2)f s s f t t -≤--.则当14s ≤≤时,ts s t +-2的取值范围是() A .)21,3[-- B .]21,3[-- C .)21,5[-- D .]21,5[-- 11.正三⾓形ABC 的边长为2,将它沿⾼AD 翻折,使点B 与点C 间的ABCD 外接球表⾯积为()。

2018届江西省重点中学协作体高三第二次联考数学(理)试题(解析版)

2018届江西省重点中学协作体高三第二次联考数学(理)试题(解析版)

江西省重点中学协作体2018届高三第二次联考数学(理)试卷第I卷一、选择题:本题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若(为虚数单位),则复数()A. B. C. D.【答案】B【解析】由可得:,故选B.2. 设集合,,,则中的元素个数为()A. B. C. D.【答案】C【解析】分析:由题意列表计算所有可能的值,然后结合集合元素的互异性确定集合M,最后确定其元素的个数即可.详解:结合题意列表计算M中所有可能的值如下:观察可得:,据此可知中的元素个数为.本题选择C选项.点睛:本题主要考查集合的表示方法,集合元素的互异性等知识,意在考查学生的转化能力和计算求解能力.3. 已知命题直线过不同两点、,命题直线的方程为,则命题是命题的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C【解析】分析:由题意结合两点式直线式方程的特征即可确定正确的结果.详解:方程表示经过点、的两点式方程,直线的两点式可得表示经过任意两点的直线,据此可得:命题是命题的充要条件.本题选择C选项.点睛:本题主要考查两点式直线方程的应用范围,充要条件的判断等知识,意在考查学生的转化能力和计算求解能力.4. 《九章算术》是人类科学史上应用数学的最早巅峰,书中有这样一道题:“今有大夫、不更、簪褭、上造、公士,凡五人,共猎得五只鹿.欲以爵次分之,问各得几何?”其译文是“现有从高到低依次为大夫、不更、簪褭、上造、公士的五个不同爵次的官员,共猎得五只鹿,要按爵次高低分配(即根据爵次高低分配得到的猎物数依次成等差数列),问各得多少鹿?”已知上造分只鹿,则公士所得鹿数为()A. 只B. 只C. 只D. 只【答案】C【解析】分析:由题意将原问题转化为等差数列前n项和的问题,然后结合题意整理计算即可求得最终结果.详解:设大夫、不更、簪褭、上造、公士所分得的鹿依次为,由题意可知,数列为等差数列,且,原问题等价于求解的值.由等差数列前n项和公式可得:,则,数列的公差为,故.即公士所得鹿数为只.本题选择C选项.点睛:本题主要考查数列知识的综合运用,意在考查学生的转化能力和计算求解能力.5. 函数的减区间为()A. B. C. D.【答案】D【解析】函数的定义域为,由题得所以函数的单调减区间为,故选D.6. 已知双曲线的焦距是虚轴长的倍,则该双曲线的渐近线方程为()A. B. C. D.【答案】A【解析】,,渐近线方程为,即,故选A.7. 如图所示的程序框图,则满足的输出有序实数对的概率为()A. B. C. D.【答案】D【解析】分析:由题意结合流程图和几何概型整理计算即可求得最终结果.详解:表示的平面区域为图中的正方形内部区域,满足的区域为图中应用部分的区域,正方形和图中的阴影部分区域均关于坐标原点直线对称,结合图形的对称性可知,满足题意的概率值为.本题选择D选项.点睛:数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A满足的不等式,在图形中画出事件A发生的区域,据此求解几何概型即可.8. 已知关于的方程在区间上有两个根,且,则实数的取值范围是()A. B. C. D.【答案】B【解析】分析:首先利用诱导公式化简所给的方程,然后数形结合整理计算即可求得最终结果.详解:由诱导公式可知:,绘制函数在区间上的图象如图所示,由题意可知函数与函数有两个不同的交点,且交点横坐标满足:,则和轴为临界条件,据此有:,解得:.本题选择B选项.点睛:函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.9. 已知一个三棱锥的三视图如图所示,主视图和俯视图都是直角梯形,左视图是正方形,则该几何体最长的棱长为()A. B. C. D.【答案】D【解析】分析:首先确定该几何体的空间结构,然后分别求得各条棱的长度,最后确定最长的棱长即可.详解:如图所示,在棱长为4的正方体中,点E为棱AD的中点,题中的三视图对应的几何体为三棱锥,其中,,,则该几何体最长的棱长为.本题选择D选项.点睛:本题主要考查三视图还原几何体,空间几何体的结构特征等知识,意在考查学生的转化能力和计算求解能力.10. 已知一袋中有标有号码、、的卡片各一张,每次从中取出一张,记下号码后放回,当三种号码的卡片全部取出时即停止,则恰好取次卡片时停止的概率为()A. B. C. D.【答案】B【解析】分析:由题意结合排列组合知识和古典概型计算公式整理计算即可求得最终结果.详解:根据题意可知,取5次卡片可能出现的情况有种;由于第5次停止抽取,所以前四次抽卡片中有且只有两种编号,所以总的可能有种;所以恰好第5次停止取卡片的概率为.本题选择B选项.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.11. 已知向量、、为平面向量,,且使得与所成夹角为.则的最大值为()A. B. C. D.【答案】A【解析】分析:首先由坐标结合几何意义确定向量对应的轨迹,然后利用圆的性质整理计算即可求得最终详解:设向量与的夹角为,由题意可得:,则,如图所示,在平面直角坐标系中,,,不妨认为,,延长到,使得,则,点为平面直角坐标系中的点,,则,,则满足题意时,,结合为定点,且,由正弦定理:可得,则点C的轨迹为以为圆心,为半径的优弧上,当点三点共线,即点位于图中点的位置时,取得最大值,其最大值为.本题选择A选项.点睛:本题的核心是考查数量积的坐标运算和数形结合的数学思想.求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.12. 已知函数(),,对任意的,关于的方程在有两个不同的实数根,则实数的取值范围(其中为自然对数的底数)为A. B. C. D.【答案】C【解析】分析:由题意分别考查函数和函数的性质,据此得到关于a的不等式组,求解不等式组即可求得最终结果.详解:函数的定义域为,且,当a=0时,f′(x)>0,f(x)在(0,+∞)单调递增.当a>0时,f′(x)>0,f(x)在(0,+∞)单调递增.当a<0时,f(x)在递减,在递增.,则,x∈(−∞,1),g′(x)>0,g(x)单调递增,x∈(1,+∞)时,g′(x)<0,g(x)单调递减,其中,则函数在区间上的值域为,在有两个不同的实数根,则必有,且:由的解析式有:,,,则满足题意时应有:,注意到函数是单调递增函数,且,据此可知方程的唯一实数根满足,即,则不等式的解集为,求解不等式可得.据此可得实数的取值范围是.本题选择C选项.点睛:本题主要考查函数单调性的应用,导函数研究函数的值域,导函数研究函数的单调性等知识,意在考查学生的转化能力和计算求解能力.第II卷二、填空题:本题共5个小题,每小题5分,共25分.13. 多项式的展开式中常数项是_____________.【答案】-672【解析】分析:由题意首先结合通项公式写出通项,然后结合展开式的性质整理计算即可求得最终结果.详解:展开式的通项公式为:,令可得:,则展开式的通项公式为:.点睛:(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.14. 若实数满足,则的最小值为_____________【答案】-3【解析】分析:首先画出可行域,然后结合目标函数的几何意义整理计算即可求得最终结果.详解:不等式组即:或,绘制不等式组表示的平面区域如图所示,目标函数即:,结合目标函数的几何意义可知目标函数表示点与可行域内连线斜率值加1的值,目标函数在点处取得最小值,据此可知目标函数的最小值为:.点睛:(1)本题是线性规划的综合应用,考查的是非线性目标函数的最值的求法.(2)解决这类问题的关键是利用数形结合的思想方法,给目标函数赋于一定的几何意义.15. 设是过抛物线焦点的弦,其垂直平分线交轴于点,设,则的值是________【答案】【解析】分析:首先画出题中所给的条件的示意图,然后结合抛物线的定义整理计算即可求得最终结果.详解:如图所示,设AB中点为E,作准线于点,准线于点,准线于点,由抛物线的定义可知:,则,轴,,则:,同理可得:,则,为的斜边的中线,则,结合可知四边形为筝形,故,据此可知:,结合可得:,且,据此可知四边形EHFG是平行四边形,则,从而:.点睛:本题主要考查抛物线定义的应用,数形结合的数学思想等知识,意在考查学生的转化能力和计算求解能力.16. 在中,点、在边上,满足.若,,则的面积为________【答案】【解析】分析:由题意结合正弦定理和函数的单调性首先求得∠ABC的值,然后结合三角形的性质整理计算即可求得最终结果.详解:如图所示,设,在△ABD和△ADE中应用正弦定理有:,,则:,即:,据此有:,令,则,则函数在定义域内单调递增,结合可得:.在△ABD中:,则:,,则.点睛:本题是导数问题与解三角形问题的综合问题,在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.三、解答题:本题共6小题,共75分,解答题应写出文字说明、证明过程和演算步骤.17. 已知等差数列的公差,其前项和为,且,,成等比数列.(1)求数列的通项公式;(2)若,数列的前项和为,求证:.【答案】(1).(2)见解析.【解析】分析:(1)由题意可设,,结合等比数列的性质可得,则数列的通项公式为.(2)由(1)可得,则,,据此可得. 详解:(1)由得,,因为成等比数列,所以,即,整理得,即,因为,所以,所以.(2)由(1)可得,所以,所以,所以.点睛:本题考查的核心是裂项求和,使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.18. 如图,在四棱锥中,底面是平行四边形,,,,.(1)求证:平面平面;(2)若,试判断棱上是否存在与点不重合的点,使得直线与平面所成角的正弦值为,若存在,求出的值;若不存在,请说明理由.【答案】(1)证明见解析.(2)答案见解析.【解析】分析:(1)由题意结合几何关系可证得平面,结合面面垂直的判定定理可得平面平面.(2)结合(1)的结论可知平面,据此建立空间直角坐标系,假设棱上存在点,使得直线与平面所成角的正弦值为,设,由题意可得平面的一个法向量为,且,结合空间向量的结论得到关于的方程,解方程可知存在,使得直线与平面所成角的正弦值为.详解:(1)因为四边形是平行四边形,,所以,又,所以,所以,又,且,所以平面,因为平面,所以平面平面.(2)由(1)知平面,分别以所在直线为轴、轴,平面内过点且与直线垂直的直线为轴,建立空间直角坐标系,则,由,,可得,所以,假设棱上存在点,使得直线与平面所成角的正弦值为,设,则,,设平面的法向量为,则,即,令,可得,所以平面的一个法向量为,设直线与平面所成的角为,则:,解得或者(舍).所以存在,使得直线与平面所成角的正弦值为.点睛:本题主要考查面面垂直的判断定理,空间向量的应用等知识,意在考查学生的转化能力和计算求解能力.19. 为创建文明城市,我市从年开始建立红黑榜,激励先进,鞭策后进,全力推进文明城市创建工作.为了更好地促进该项工作,我市“文明办”对全市市民抽样,进行了一次创建文明城市相关知识的问卷调查(一位市民只能参加一次).通过随机抽样,得到参加问卷调查的人的得分(满分100分)统计结果如下表所示.(1)根据频数分布表可以大致认为,此次问卷调查的得分服从正态分布,近似为这1000人得分的平均值(同一组数据用该组数据区间的中点值表示),请用正态分布的知识求;(2)在(1)的条件下,市“文明办”决定按如下的方案对参与调查的市民进行奖励:(ⅰ)得分不低于的可以获得2次抽奖机会,得分低于的可以获得1次抽奖机会;(ⅱ)每次抽奖所获奖券和对应的概率为:现有市民甲要参加此次问卷调查,记(单位:元)为该市民参加问卷调查所获得的所有奖券面值和,求的分布列与数学期望.附:参考数据与公式,若,则①;②;③.【答案】(1)0.8186.(2)见解析.【解析】分析:(1)由题意结合题意可得,,结合正态分布图像的对称性可得.(2)由题意可知的可能取值为,,,.且;;;.据此可得分布列,结合分布列计算数学期望可得.详解:(1).故,,∴,.∴.综上,.(2)易知,获奖券面值的可能取值为,,,.;;;.的分布列为:∴.点睛:本题主要考查正态分布的应用,概率分布列和数学期望的求解等知识,意在考查学生的转化能力和计算求解能力.20. 已知椭圆:的离心率为,短轴为.点满足.(1)求椭圆的方程;(2)设为坐标原点,过点的动直线与椭圆交于点、,是否存在常数使得为定值?若存在,求出的值;若不存在,请说明理由.【答案】(1).(2)答案见解析.【解析】分析:(1)由题意结合平面向量数量积的坐标运算可得的方程为.(2)当不为轴时,设:,、.联立与的方程可得,结合韦达定理和平面向量数量积的坐标运算可得.当为轴时,也满足上述结论.则存在使得为定值.详解:(1),所以从而的方程为.(2)当不为轴时,设:,、.联立与的方程可得,所以,,.因为为定值,所以,解得.此时定值为.当为轴时,,..综上,存在使得为定值.点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.21. 已知,.(1)证明:;(2)若时,恒成立,求实数的取值范围.【答案】(1)见解析.(2)见解析.【解析】分析:(1)构造函数,结合函数的单调性可证得.据此进一步可证得.则题中的不等式得证.(2)设,则,则原问题成立的必要条件是.进一步证得当时可知实数的取值范围是.详解:(1)设,则,故在上单调递减,在上单调递增.从而.而当时,.(2)设,则,.要求在上恒成立必须有.即.以下证明:当时.只要证,只要证在上恒成立.令,则对恒成立,又,所以.从而不等式得证.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.选做题(请考生在第22、23两题中任选一题作答,如果全做,则按所做的第一题评分,作答时请写清题号)22. 在平面直角坐标系中,曲线的参数方程为(为参数,)以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为().(1)求曲线、的直角坐标方程.(2)若、分别为、上的动点,且、间距离的最小值为,求实数的值.【答案】(1),.(2)或者.【解析】分析:(1)消去参数可得的直角坐标方程为,极坐标方程化为直角坐标方程为.(2)设,,由点到直线距离公式可得到的距离,结合题意分类讨论可得或者.详解:(1)消去参数可得的直角坐标方程为,的方程即:,即,则直角坐标方程为:.(2)设,,则到的距离,.由、间距离的最小值为知:当时,得;当时,,得.综上:或者.点睛:本题主要考查参数方程与普通方程互化,极坐标方程与互化,极坐标方程的几何意义等知识,意在考查学生的转化能力和计算求解能力.23. 选修4-5:不等式选讲已知函数.(Ⅰ)若不等式对恒成立,求实数的取值范围;(Ⅱ)当时,函数的最小值为,求实数的值.【答案】(Ⅰ) (Ⅱ)【解析】试题分析:(1)由绝对值不等式可求得实数的取值范围.(2)以零点和分三段讨论。

2018届江西省重点中学协作体高三第二次联考理科数学试题及答案

2018届江西省重点中学协作体高三第二次联考理科数学试题及答案

2018届江西省重点中学协作体⾼三第⼆次联考理科数学试题及答案江西省重点中学协作体2018届⾼三第⼆次联考数学(理)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(⾮选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷⼀、选择题:本⼤题共10⼩题,每⼩题5分,共50分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.1.已知全集U R =,集合2{|log (1)},{|||,}A x y x B x x a a R ==-=<∈,()U C A B =? , 则实数a 的取值范围是( )A .(,1)-∞B .(,1]-∞C .(0,1)D .(0,1] 2.函数ln(1)11x y xx -=++的定义域是() A.[1,0)(0,1)- B.[1,0)(0,1]- C.(1,0)(0,1]- D.(1,0)(0,1)- 3.已知i 为虚数单位,若复数z 满⾜(2)12z i i -=+,则z 的共轭复数是( )A .iB .i -C .35iD .35i-4.关于统计数据的分析,有以下⼏个结论,其中正确的个数为()①将⼀组数据中的每个数据都减去同⼀个数后,期望与⽅差均没有变化;②在线性回归分析中,相关系数r 越⼩,表明两个变量相关性越弱;③已知随机变量ξ服从正态分布(5,1)N ,且(46)0.6826,P ξ≤≤=则(6)0.1587;P ξ>= ④某单位有职⼯750⼈,其中青年职⼯350⼈,中年职⼯250⼈,⽼年职⼯150⼈.为了了解该单位职⼯的健康情况,⽤分层抽样的⽅法从中抽取样本.若样本中的青年职⼯为7⼈,则样本容量为15⼈.A .1B .2C .3D .45.已知锐⾓βα,满⾜:1sin cos ,6αα-=3tan tan 3tan tan =?++βαβα,则βα,的⼤⼩关系是()A .βα<B .αβ>C .<<46.程序框图如下图所⽰,该程序运⾏后输出的S 的值是()A .3B .12C .13-D .2-7.等⽐数列{}n a 是递减数列,其前n 项积为n T ,若1284T T =,则813a a ?=( )A .1±B .2±C .1D .2 8.已知在⼆项式32()nx x-的展开式中,仅有第9项的⼆项式系数最⼤,则展开式中,有理项的项数是( )A. 1B. 2C. 3D. 49. 已知函数2()2f x x x =-,(1,0)Q ,过点(1,0)P -的直线l 与()f x 的图像交于,A B 两点,则QAB S ?的最⼤值为()1n = 开始结束否是输出S3S =1+=n n2014n ≤11S S S+=-A. 1210.如图,过原点的直线l 与圆221x y +=交于,P Q 两点,点P 在第⼀象限,将x 轴下⽅的图形沿x 轴折起,使之与x 轴上⽅的图形成直⼆⾯⾓,设点P 的横坐标为x ,线段PQ 的长度记为()f x ,则函数()y f x =的图像⼤致是( )⼆、选做题:请考⽣在下列两题中任选⼀题作答.若两题都做,则按所做的第⼀题评阅记分,本题共5分.11(1).(坐标系与参数⽅程选做题)在极坐标系中,过点(2,)6π且垂直于极轴的直线的极坐标⽅程是( )A.3sin ρθ=B.3cos ρθ=C.sin 3ρθ=D.cos 3ρθ=11(2).(不等式选讲选做题))若存在,R x ∈,使|2|2|3|1x a x -+-≤成⽴,则实数a 的取值范围是( )A. [2,4]B. (5,7)C. [5,7]D. (,5][7,)-∞+∞第Ⅱ卷注意事项:第Ⅱ卷须⽤⿊⾊签字笔在答题卡上书写作答,若在试题卷上作答,答案⽆效. 三、填空题:本⼤题共4⼩题,每⼩题5分,共20分.将答案填在题中的横线上.yxo Q P12.已知2,=a e 为单位向量,当,a e 的夹⾓为32π时,+a e 在-a e 上的投影为 . 13.若⼀组数据1,2,0,,8,7,6,5a 的中位数为4,则直线ax y =与曲线2x y =围成图形的⾯积为 . 14.已知双曲线22122:1x y C a b -=和双曲线22222:1y x C a b-=,其中0,b a >>,且双曲线1C 与2C 的交点在两坐标轴上的射影恰好是两双曲线的焦点,则双曲线1C 的离⼼率是 . 15.对于定义在D 上的函数()f x ,若存在距离为d 的两条直线1y kx m =+和2y kx m =+,使得对任意x D ∈都有12()kx m f x kx m +≤≤+恒成⽴,则称函数()()f x x D ∈有⼀个宽度为d 的通道.给出下列函数:①1()f x x=;②()sin f x x =;③2()1f x x =-;④ln ()xf x x=其中在区间[1,)+∞上通道宽度可以为1的函数有 (写出所有正确的序号). 四、解答题:本⼤题共6⼩题,共75分.解答应写出⽂字说明、证明过程或演算步骤. 16.(本⼩题满分12分)如图,设1P ,2P ,…,6P 为单位圆上逆时针均匀分布的六个点.现从这六个点中任选其中三个不同点构成⼀个三⾓形,记该三⾓形的⾯积为随机变量S .(1)求32S =的概率;(2)求S 的分布列及数学期望()E S .5P 6P2P3P4P OP 117.(本⼩题满分12分)在ABC ?中,2sin 2cos sin 33cos 3A A A A -+=. (1)求⾓A 的⼤⼩;(2)已知,,a b c 分别是内⾓,,A B C 的对边,若1a =且sin sin()2sin 2,A B C C +-= 求ABC ?的⾯积.18.(本⼩题满分12分)若数列{}n a 的前n 项和为n S ,对任意正整数n 都有612n n S a =-. (1)求数列{}n a 的通项公式;(2)若10,c =且对任意正整数n 都有112log n n n c c a +-=,求证:对任意*2311132,4n n n N c c c ≥∈+++< 都有.19.(本⼩题满分12分)如图,四棱锥ABCD P -的底⾯ABCD 是平⾏四边形,1,2==AB AD , 60=∠ABC ,⊥PA ⾯ABCD ,设E 为PC 中点,点F 在线段PD 上且FD PF 2=.(1)求证://BE 平⾯ACF ;(2)设⼆⾯⾓D CF A --的⼤⼩为θ,若1442|cos |=θ,求PA 的长.。

2018届江西省重点中学协作体高三第二次联考理科综合试题

2018届江西省重点中学协作体高三第二次联考理科综合试题

2018.5江西省重点中学协作体2018届高三第二次联考理科综合能力测试卷本试卷分选择题和非选择题两部分。

满分300分。

考试时间150分钟。

可能用到的相对原子质量:H-1 C-12 N-14 O-16 Na-23 F-19 Mg-24 S-32 Cl-35.5 Ca-40 Cu-64 Cr-52第Ⅰ卷(选择题,共126分)一、选择题(本题共13小题,每小题6分,共78分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.细胞分化使细胞趋向专门化,下列对细胞分化不同水平的分析中,正确的是( )A.从核酸分子水平分析,细胞分化是不同细胞中遗传信息的执行情况不同的结果,这是细胞分化的直接原因B.从细胞水平分析,细胞分化是细胞形态、结构和功能发生了不稳定性的改变C.从蛋白质分子水平分析,细胞分化是蛋白质种类、数量改变的结果,这是细胞分化的根本原因 D 从细胞器水平分析,细胞分化是使细胞中细胞器的种类和数量发生改变2.科学家发现某些蚜虫能合成类胡萝卜素,其体内的类胡萝卜素不仅能吸收光能,传递给负责能量生产的组织细胞,而且还决定蚜虫的体色。

阳光下蚜虫的ATP 生成量将会增加,黑暗时蚜虫的ATP 含量将会下降。

下列有关分析不合理的是( )A. 正常情况下蚜虫在黑暗中合成ATP 时一定伴随着放能反应B. 阳光下蚜虫的ATP 生成量将会增加使得蚜虫组织细胞内ATP 的含量很高C. 蚜虫做同一强度的运动时,阳光下和黑暗中的ATP 消耗量不一样D. 蚜虫合成ATP 时需要的能量不仅来自光能,还来自呼吸作用释放的化学能3.下列关于生物学实验操作、实验结果、实验现象及原理的描述中,正确的是( ) A .用纸层析法分离菠菜滤液中的色素的原理是色素能溶于有机溶剂无水酒精中 B .探究酵母菌呼吸方式的两组实验中,两组实验都是实验组C .一天中植物体内有机物总量从减少转为增加时,细胞呼吸达到最低光合作用开始启动D .将二倍体玉米的幼苗用秋水仙素处理,待其长成后用其花药进行离体培养得到了新的植株,都是纯合子4.下列有关生物变异的说法,正确的是( )A .某生物体内某条染色体上多了几个或少了几个基因,这种变化属于染色体数目的变异B .黄圆豌豆×绿皱豌豆→绿圆豌豆,这种变异来源于基因突变C .DNA 分子中碱基对的增添、缺失和替换不一定都是基因突变D .亲代与子代之间,子代与子代之间出现了各种差异,是因为受精过程中进行了基因重组 5.“蚕豆病”是一种罕见的单基因遗传病,患者绝大多数平时没有贫血和临床症状,但在食用蚕豆或其他氧化剂药物时可能发生明显的溶血性贫血。

江西省景德镇市第一中学等盟校2018届高三第二次联考数学(理)试卷(含答案)

江西省景德镇市第一中学等盟校2018届高三第二次联考数学(理)试卷(含答案)

江西省重点中学盟校2018届高三第二次联考数学(理科)试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 为虚数单位,复数z 满足31i z i =-,则z =r( )A .1B .2C .2D .3 2.已知集合{}|lg ,1M y R y x x =∈=≥,{}2|4N x R y x =∈=-,则M N =I ( )A .{}(1,1),(1,1)-B .[]02,C .[]01,D .{}13.下图是2002年8月中国成功主办的国际数学家大会的会标,是我们古代数学家赵爽为证明勾股定理而绘制的,在我国最早的数学著作《周髀算经》中有详细的记载.若图中大正方形ABCD 的边长为5,小正方形的边长为2,现作出小正方形的内切圆,向大正方形所在区域模拟随机投掷n 个点,有m 个点落在中间的圆内,由此可估计π的所似值为( )A .254m n B .4m n C .425m n D .25mn4.命题“1[,3]4x ∀∈,220x a --≤”为真命题的一个充分不必要条件是( )A .9a ≥B .8a ≤ C.6a ≥ D .11a ≤5.已知定义在R 上的偶函数()f x 满足:当[)0,x ∈+∞时,()2018xf x =,若(ln 3)a f e =,0.3(0.2)b f =,12(())3c f -=-,则a ,b ,c 的大小关系是( )A .b c a <<B .c b a << C. b a c << D .c a b <<6.如图,网格纸上小正方形的边长为1,粗线描绘的是某几何体的三视图,其中主视图和左视图相同如上方,俯视图在其下方,该几何体体积为( )A.143πB.5π C.163πD.173π7.实数,x y满足610320x yyx y+≤⎧⎪-≥⎨⎪--≥⎩,则2x yzx+=最大值为()A.3 B.5 C.92D.758.运行如下程序框图,若输入的1[,3]2t∈-,则输出s取值为()A.[13,3]s∈ B.1[,8]2s∈ C.[13,8]s∈ D.[0,8]s∈9.已知菱形ABCD满足:2AB=,3ABCπ∠=,将菱形ABCD沿对角线AC折成一个直二面角B AC D--,则三棱锥B ACD-外接球的表面积为()A .203π B .8π C.7π D .173π 10.已知函数()sin()(0,0)f x x ωϕωϕπ=+>≤≤是R 上的偶函数,且图像关于直线34x π=对称,且在区间2[0,]3π上是单调函数,则ω=( ) A .83 B .23 C.43或83 D .4311.若函数2()(1)2(1)xx f x a ee a x =+-+-有两个极值点,则实数a 的取值范围是( )A .B . C.( D .U 12.已知抛物线22(0)x py p =>,过点(0,)(0)P b b ≠的直线与抛物线交于A ,B 两点,交x 轴于点Q ,若3QA AP =u u u r u u u r ,PQ AB λ=u u u r u u u r,则实数λ的取值是( )A .125-B .127- C.2- D .与,b p 有关 二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知a =r ,2a b ⋅=r r ,()()15a b a b -+=-r r r r ,则a r 与b r 夹角为 .14.已知6((0)ax a+>展开式中的常数项为60,则(sin )a a x x dx -+=⎰ .15.已知双曲线22221(0,0)x y a b a b-=>>的左右焦点分别为12,F F ,若双曲线上存在关于y 轴对称的两点A ,B 使得等腰梯形21ABF F 满足下底长是上底长两倍,且腰与下底形成的两个底角为60︒,则该双曲线的离心率为 .16.已知等边ABC ∆边长为6,过其中心O 点的直线与边AB ,AC 交于P ,Q 两点,则当12PQ OQ+取最大值时,OP = .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列{}n a 首项为1,其前n 项和为n S ,且1310n n S s +--=.(1)求数列{}n a 的通项公式; (2)若数列{}n b 满足3n n na b =,求数列{}n b 的前n 项和n T . 18. 如图,在多面体ABCDEF 中,底面ABCD 是边长为2的菱形,60BAD ︒∠=,四边形BDEF 是矩形,G 和H 分别是CE 和CF 的中点.(1)求证:平面BDGH ∥平面AEF ;(2)若平面BDEF ⊥平面ABCD ,3BF =,求平面CED 与平面CEF 所成角的余弦值. 19.为建立健全国家学生体质健康监测评价机制,激励学生积极参加身体锻炼,教育部印发《国家学生体质健康标准(2014年修订)》,要求各学校每学期开展覆盖本校各年级学生的《标准》测试工作,并根据学生每个学期总分评定等级.某校决定针对高中学生,每学期进行一次体质健康测试,以下是小明同学六个学期体质健康测试的总分情况. 学期x 1 2 3 4 5 6 总分y (分)512518523528534535(1)请根据上表提供的数据,用相关系数r 说明y 与x 的线性相关程度,并用最小二乘法求出y 关于x 的线性回归方程(线性相关系数保留两位..小数); (2)在第六个学期.....测试中学校根据 《标准》,划定540分以上为优秀等级,已知小明所在的学习小组10个同学有6个被评定为优秀,测试后同学们都知道了自己的总分但不知道别人的总分,小明随机的给小组内4个同学打电话询问对方成绩,优秀的同学有X 人,求X 的分布列和期望.参考公式: iii=12ii=1()()ˆ()nnx x y y bx x --=-∑∑,ˆˆay bx =-;相关系数i ii=122i ii=1i=1()()()()nn nx x y yrx x y y--=--∑∑∑;参考数据:721084.91≈,6i ii=1()()84x x y y--=∑.20.已知椭圆2222:1(0)x yC a ba b+=>>的离心率为12,左、右焦点分别为1F,2F,过1F的直线交椭圆于,P Q两点,以1PF为直径的动圆内切于圆224x y+=.(1)求椭圆的方程;(2)延长PO交椭圆于R点,求PQR∆面积的最大值.21. 已知函数sin()xf xx=.(1)若(0,)xπ∈,讨论方程()f x k=根的情况;(2)若(0,2)xπ∈,2[,)5k∈+∞,讨论方程()f x k'=根的情况.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的参数方程为2233x ty m t=⎧⎪⎨=⎪⎩(t为参数,0m>),曲线1sin:cosx mCy m mϕϕ=⎧⎨=+⎩(ϕ为参数).(1)求直线l及曲线1C的极坐标方程;(2)若曲线2:3Cπθ=与直线l和曲线1C分别交于异于原点的A,B两点,且53AB=求m的取值.23.已知函数()123f x x x =+++. (1)解不等式()210f x x <+;(2)若不等式()2f x m x ≤+有解,求m 的取值范围.江西省重点中学盟校2018届高三第二次联考数学(理科)试卷参考答案一、选择题二、填空题13.65π14. 4 15. 213+或 13+ 16.221 16题提示:可设θ=∠APQ ,在三角形AOP 正弦定理可得:θsin 3=OP ,同理在三角形AOQ 可得:)3sin(3πθ+=OP .三、解答题17.(1)∵1310n n S S +--=⇒12,310n n n S S -≥--=.∴130n n a a +-=,又∵213a a = ∴{}n a 为等比数列13n n a -⇒=.(2)33n n n n n b a ==.231123133333n n n n n T --=+++⋅⋅⋅++⇒234111231333333n n n n n T +-=+++⋅⋅⋅++23121111333333n n n n T +⇒=+++⋅⋅⋅+-⇒nn n T 343243⋅+-=. 18.(1)连接AC 交BD 于点O ,显然AE OG //,⊄OG 平面AEF , ⊂AE 平面AEF ,可得//OG 平面AEF ,同理//BD 平面AEF ,O BD OG =I , 又⊂OG BD ,平面BDGH ,可得:平面//BDGH 平面AEF .(2)过点O 在平面BDEF 中作z 轴BD ⊥,显然z 轴、OB 、OC 两两垂直,如图所示建立空间直角坐标系.)0,3,0(C ,)3,0,1(-E ,)3,0,1(F ,)0,0,1(-D ,)33,1(,--=CE ,)0,3,1(--=CD ,)0,0,2(=EF .设平面CDE 与平面CDF 法向量分别为),,(1111z y x n =ρ,),,(2222z y x n =ρ.⎪⎩⎪⎨⎧=--=+--0303311111y x z y x ,设)0,1,3(1-=n ρ;⎩⎨⎧==+--020331111x z y x ,设)1,3,0(2=n ρ. 43223,cos 21-=⋅->=<n n ρρ,综上:面CED 与平面CEF 所成角的余弦值为43.19. 解:(1)由表中数据计算得:5.3=x ,525=y ,5.17)(261=-∑=x xi i,412)(261=-∑=y y i i ,∴75.099.04125.1784)()())((2126161>≈⨯=----=∑∑∑===y yx x y yx x r ni ii iii i.综上y 与x 的线性相关程度较高.又8.45.1784)())((ˆ26161==---=∑∑==x xy y x xbi ii i i,2.5088.45.3525ˆ=⨯-=∴a , 故所求线性回归方程:.25088.4ˆ+=x y.(2)X 服从超几何分布,所有可能取值为1,2,3,4,)4,3,2,1(49436)(=-==k C kC k C k X P 所以X 的分布列为期望394424213142211)(=⨯=⨯+⨯+⨯+⨯=X E20.(1)设1PF 的中点为M ,在三角形12PF F 中,由中位线得:212OMPF =, 当两个圆相内切时 ,两个圆的圆心距等于两个圆的半径差,即1122OM PF =-∴2112112422PF PF PF PF =-⇒+=, 即2a =, 又21=e ∴1,c b ==∴椭圆方程为:22143x y +=(2)由已知0≠PQ k可设直线:1PQ x my =-,1122(,),(,)P x y Q x y22221(34)690143x my m y my x y =-⎧⎪⇒+--=⎨+=⎪⎩122234PQR POQS S y y m ==-=+V V 1t =≥,原式=212121313t t t t=++,当1t =时,min 1(3)4t t+=∴max ()3PQR S =V(1)0sin )(),,0(=-⇒=∈x kx k x f x π,令()π,0,sin )(∈-=x x kx x g .此时x k x g cos )(-='①若1-≤k ,)(x g 在()π,0递减,0)0(=g ,无零点; ②若1≥k ,)(x g 在()π,0递增,0)0(=g ,无零点;③若11<<-k ,)(x g 在()0,0x 递减,()π,0x 递增,其中k x =0cos . Ⅰ.若01≤<-k ,则0)(,0)0(≤=πg g ,此时)(x g 在()π,0无零点; Ⅱ.若10<<k ,则0)(,0)0(>=πg g ,此时)(x g 在()π,0有唯一零点; 综上所述:当0≤k 或1≥k 时,无零点;当10<<k 时,有1个零点.(2)解法一:k x xx x x f =-='2sin cos )(,令)2,0(,cos sin )(2π∈-+=x x x x kx x h , )2(sin )(k x x x h +='①若21≥k ,)(x h 在()π2,0递增,0)0(=h ,无零点;②若⎪⎭⎫⎢⎣⎡∈<≤1542,2152,k k ,)(x h 在()1,0x 递增,()21,x x 递减,()π2,2x 递增. 其中⎥⎦⎤ ⎝⎛--∈-==54,12sin sin 21k x x , 47234521πππ<<<<∴x x 显然22222221cos sin )(,024)2(,0)(,0)0(x x x kx x h k h x h h -+=>-=>=πππ消元:()2222222cos sin 2sin x x x x x x h -+-=,其中47232ππ<<x , 令x x x x x x u cos sin 2sin )(2-+-=,)47,23(,02cos )(2ππ∈<-='x x x x u08272264249)47()(22>--=>πππu x h ,即0)(),2,0(>∈x h x π,无零点.综上所述:⎪⎭⎫⎢⎣⎡+∞∈∈,52)2,0(k x ,π,方程k x f =')(无解 .解法二:令2sin cos )(x x x x x h -=,32sin 2cos 2sin )(xxx x x x x h +--='.令)2,0(sin 2cos 2sin )(2π∈+--=x x x x x x x u ,,x x x u cos )(2-='. 显然)(x u 在)2,0(π递减,)23,2(ππ递增,)2,23(ππ递减,0)0(=u ,0)2(<πu ,⇒<-=>--=>-=04)2(,024*******)47(,0249)23(22πππππππu u u )(x h 在),0(1x 递减,),(21x x 递增,)2,(2πx 递减,其中πππ247221<<<<x x . 且0sin 2cos 2sin )(,0)(22222221=+--==x x x x x x u x u , 由洛必达法则:5242)2(0)(,02sin lim sin cos lim)(lim 21020<=<=-=-=→→→πππh x h x x x x x x h x x x ,,2sin sin cos )(2222222x x x x x x h -=-=,由ππ2472<<x ,5242)(2<<x h . 综上所述:⎪⎭⎫⎢⎣⎡+∞∈∈,52)2,0(k x ,π,方程k x f =')(无解 .(1)直线l :06sin 2cos 32=+-m θρθρ,曲线:1C θρsin 2m =; (2)45353343,3422=⇒=-=-=⇒==m m m AB m m B A B A ρρρρ(1)⎪⎭⎫⎝⎛-∈⇒+<⎪⎪⎪⎩⎪⎪⎪⎨⎧-≥+-<<-+-≤--=6,514102)(1,43123,223,43)(x x x f x x x x x x x f ,;(2)①若2-=x ,显然无解;②若2-≠x ,则2321++++≥x x x m ,令12)1()32(2321)(=++-+≥++++=x x x x x x x g (当且仅当123-≤≤-x 时等号成立) 1≥∴m。

江西省重点中学协作体2018届高三第二次联考数学(理)试题(精编含解析)

江西省重点中学协作体2018届高三第二次联考数学(理)试题(精编含解析)

江西省重点中学协作体2018届高三第二次联考数学(理)试卷第I卷一、选择题:本题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若(为虚数单位),则复数()A. B. C. D.【答案】B【解析】由可得:,故选B.2. 设集合,,,则中的元素个数为()A. B. C. D.【答案】C【解析】分析:由题意列表计算所有可能的值,然后结合集合元素的互异性确定集合M,最后确定其元素的个数即可.详解:结合题意列表计算M中所有可能的值如下: 2341234246836912观察可得:,据此可知中的元素个数为.本题选择C选项.点睛:本题主要考查集合的表示方法,集合元素的互异性等知识,意在考查学生的转化能力和计算求解能力.3. 已知命题直线过不同两点、,命题直线的方程为,则命题是命题的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C【解析】分析:由题意结合两点式直线式方程的特征即可确定正确的结果.详解:方程表示经过点、的两点式方程,直线的两点式可得表示经过任意两点的直线,据此可得:命题是命题的充要条件.本题选择C选项.点睛:本题主要考查两点式直线方程的应用范围,充要条件的判断等知识,意在考查学生的转化能力和计算求解能力.4. 《九章算术》是人类科学史上应用数学的最早巅峰,书中有这样一道题:“今有大夫、不更、簪褭、上造、公士,凡五人,共猎得五只鹿.欲以爵次分之,问各得几何?”其译文是“现有从高到低依次为大夫、不更、簪褭、上造、公士的五个不同爵次的官员,共猎得五只鹿,要按爵次高低分配(即根据爵次高低分配得到的猎物数依次成等差数列),问各得多少鹿?”已知上造分只鹿,则公士所得鹿数为()A. 只B. 只C. 只D. 只【答案】C【解析】分析:由题意将原问题转化为等差数列前n项和的问题,然后结合题意整理计算即可求得最终结果.详解:设大夫、不更、簪褭、上造、公士所分得的鹿依次为,由题意可知,数列为等差数列,且,原问题等价于求解的值.由等差数列前n项和公式可得:,则,数列的公差为,故.即公士所得鹿数为只.本题选择C选项.点睛:本题主要考查数列知识的综合运用,意在考查学生的转化能力和计算求解能力.5. 函数的减区间为( )A. B. C. D.【答案】D 【解析】函数的定义域为,由题得所以函数的单调减区间为,故选D.6. 已知双曲线的焦距是虚轴长的倍,则该双曲线的渐近线方程为( )A.B. C. D.【答案】A【解析】,,渐近线方程为,即,故选A.7. 如图所示的程序框图,则满足的输出有序实数对的概率为( )A. B. C. D.【答案】D 【解析】分析:由题意结合流程图和几何概型整理计算即可求得最终结果.详解:表示的平面区域为图中的正方形内部区域,满足的区域为图中应用部分的区域,正方形和图中的阴影部分区域均关于坐标原点直线对称,结合图形的对称性可知,满足题意的概率值为.本题选择D选项.点睛:数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A满足的不等式,在图形中画出事件A发生的区域,据此求解几何概型即可.8. 已知关于的方程在区间上有两个根,且,则实数的取值范围是()A. B. C. D.【答案】B【解析】分析:首先利用诱导公式化简所给的方程,然后数形结合整理计算即可求得最终结果.详解:由诱导公式可知:,绘制函数在区间上的图象如图所示,由题意可知函数与函数有两个不同的交点,且交点横坐标满足:,则和轴为临界条件,据此有:,解得:.本题选择B选项.点睛:函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.9. 已知一个三棱锥的三视图如图所示,主视图和俯视图都是直角梯形,左视图是正方形,则该几何体最长的棱长为()A. B. C. D.【答案】D【解析】分析:首先确定该几何体的空间结构,然后分别求得各条棱的长度,最后确定最长的棱长即可.详解:如图所示,在棱长为4的正方体中,点E为棱AD的中点,题中的三视图对应的几何体为三棱锥,其中,,,则该几何体最长的棱长为.本题选择D选项.点睛:本题主要考查三视图还原几何体,空间几何体的结构特征等知识,意在考查学生的转化能力和计算求解能力.10. 已知一袋中有标有号码、、的卡片各一张,每次从中取出一张,记下号码后放回,当三种号码的卡片全部取出时即停止,则恰好取次卡片时停止的概率为()A. B. C. D.【答案】B【解析】分析:由题意结合排列组合知识和古典概型计算公式整理计算即可求得最终结果.详解:根据题意可知,取5次卡片可能出现的情况有种;由于第5次停止抽取,所以前四次抽卡片中有且只有两种编号,所以总的可能有种;所以恰好第5次停止取卡片的概率为.本题选择B选项.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.11. 已知向量、、为平面向量,,且使得与所成夹角为.则的最大值为()A. B. C. D.【答案】A【解析】分析:首先由坐标结合几何意义确定向量对应的轨迹,然后利用圆的性质整理计算即可求得最终结果.详解:设向量与的夹角为,由题意可得:,则,如图所示,在平面直角坐标系中,,,不妨认为,,延长到,使得,则,点为平面直角坐标系中的点,,则,,则满足题意时,,结合为定点,且,由正弦定理:可得,则点C的轨迹为以为圆心,为半径的优弧上,当点三点共线,即点位于图中点的位置时,取得最大值,其最大值为.本题选择A选项.点睛:本题的核心是考查数量积的坐标运算和数形结合的数学思想.求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.12. 已知函数(),,对任意的,关于的方程在有两个不同的实数根,则实数的取值范围(其中为自然对数的底数)为()A. B. C. D.【答案】C【解析】分析:由题意分别考查函数和函数的性质,据此得到关于a的不等式组,求解不等式组即可求得最终结果.详解:函数的定义域为,且,当a=0时,f′(x)>0,f(x)在(0,+∞)单调递增.当a>0时,f′(x)>0,f(x)在(0,+∞)单调递增.当a<0时,f(x)在递减,在递增.,则,x∈(−∞,1),g′(x)>0,g(x)单调递增,x∈(1,+∞)时,g′(x)<0,g(x)单调递减,其中,则函数在区间上的值域为,在有两个不同的实数根,则必有,且:由的解析式有:,,,则满足题意时应有:,注意到函数是单调递增函数,且,据此可知方程的唯一实数根满足,即,则不等式的解集为,求解不等式可得.据此可得实数的取值范围是.本题选择C选项.点睛:本题主要考查函数单调性的应用,导函数研究函数的值域,导函数研究函数的单调性等知识,意在考查学生的转化能力和计算求解能力.第II卷二、填空题:本题共5个小题,每小题5分,共25分.13. 多项式的展开式中常数项是_____________.【答案】-672【解析】分析:由题意首先结合通项公式写出通项,然后结合展开式的性质整理计算即可求得最终结果.详解:展开式的通项公式为:,令可得:,则展开式的通项公式为:.点睛:(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.14. 若实数满足,则的最小值为_____________【答案】-3【解析】分析:首先画出可行域,然后结合目标函数的几何意义整理计算即可求得最终结果.详解:不等式组即:或,绘制不等式组表示的平面区域如图所示,目标函数即:,结合目标函数的几何意义可知目标函数表示点与可行域内连线斜率值加1的值,目标函数在点处取得最小值,据此可知目标函数的最小值为:.点睛:(1)本题是线性规划的综合应用,考查的是非线性目标函数的最值的求法.(2)解决这类问题的关键是利用数形结合的思想方法,给目标函数赋于一定的几何意义.15. 设是过抛物线焦点的弦,其垂直平分线交轴于点,设,则的值是________【答案】【解析】分析:首先画出题中所给的条件的示意图,然后结合抛物线的定义整理计算即可求得最终结果.详解:如图所示,设AB中点为E,作准线于点,准线于点,准线于点,由抛物线的定义可知:,则,轴,,则:,同理可得:,则,为的斜边的中线,则,结合可知四边形为筝形,故,据此可知:,结合可得:,且,据此可知四边形EHFG是平行四边形,则,从而:.点睛:本题主要考查抛物线定义的应用,数形结合的数学思想等知识,意在考查学生的转化能力和计算求解能力.16. 在中,点、在边上,满足.若,,则的面积为________【答案】【解析】分析:由题意结合正弦定理和函数的单调性首先求得∠ABC的值,然后结合三角形的性质整理计算即可求得最终结果.详解:如图所示,设,在△ABD和△ADE中应用正弦定理有:,,则:,即:,据此有:,令,则,则函数在定义域内单调递增,结合可得:.在△ABD中:,则:,,则.点睛:本题是导数问题与解三角形问题的综合问题,在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.三、解答题:本题共6小题,共75分,解答题应写出文字说明、证明过程和演算步骤.17. 已知等差数列的公差,其前项和为,且,,成等比数列.(1)求数列的通项公式;(2)若,数列的前项和为,求证:.【答案】(1).(2)见解析.【解析】分析:(1)由题意可设,,结合等比数列的性质可得,则数列的通项公式为.(2)由(1)可得,则,,据此可得.详解:(1)由得,,因为成等比数列,所以,即,整理得,即,因为,所以,所以.(2)由(1)可得,所以,所以,所以.点睛:本题考查的核心是裂项求和,使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.18. 如图,在四棱锥中,底面是平行四边形,,,,.(1)求证:平面平面;(2)若,试判断棱上是否存在与点不重合的点,使得直线与平面所成角的正弦值为,若存在,求出的值;若不存在,请说明理由.【答案】(1)证明见解析.(2)答案见解析.【解析】分析:(1)由题意结合几何关系可证得平面,结合面面垂直的判定定理可得平面平面.(2)结合(1)的结论可知平面,据此建立空间直角坐标系,假设棱上存在点,使得直线与平面所成角的正弦值为,设,由题意可得平面的一个法向量为,且,结合空间向量的结论得到关于的方程,解方程可知存在,使得直线与平面所成角的正弦值为.详解:(1)因为四边形是平行四边形,,所以,又,所以,所以,又,且,所以平面,因为平面,所以平面平面.(2)由(1)知平面,分别以所在直线为轴、轴,平面内过点且与直线垂直的直线为轴,建立空间直角坐标系,则,由,,可得,所以,假设棱上存在点,使得直线与平面所成角的正弦值为,设,则,,设平面的法向量为,则,即,令,可得,所以平面的一个法向量为,设直线与平面所成的角为,则:,解得或者(舍).所以存在,使得直线与平面所成角的正弦值为.点睛:本题主要考查面面垂直的判断定理,空间向量的应用等知识,意在考查学生的转化能力和计算求解能力.19. 为创建文明城市,我市从年开始建立红黑榜,激励先进,鞭策后进,全力推进文明城市创建工作.为了更好地促进该项工作,我市“文明办”对全市市民抽样,进行了一次创建文明城市相关知识的问卷调查(一位市民只能参加一次).通过随机抽样,得到参加问卷调查的人的得分(满分100分)统计结果如下表所示.组别频数(1)根据频数分布表可以大致认为,此次问卷调查的得分服从正态分布,近似为这1000人得分的平均值(同一组数据用该组数据区间的中点值表示),请用正态分布的知识求;(2)在(1)的条件下,市“文明办”决定按如下的方案对参与调查的市民进行奖励:(ⅰ)得分不低于的可以获得2次抽奖机会,得分低于的可以获得1次抽奖机会;(ⅱ)每次抽奖所获奖券和对应的概率为:中奖的奖券面值(单元:元)概率现有市民甲要参加此次问卷调查,记 (单位:元)为该市民参加问卷调查所获得的所有奖券面值和,求的分布列与数学期望.附:参考数据与公式,若,则①;②;③.【答案】(1)0.8186.(2)见解析.【解析】分析:(1)由题意结合题意可得,,结合正态分布图像的对称性可得.(2)由题意可知的可能取值为,,,.且;;;.据此可得分布列,结合分布列计算数学期望可得.详解:(1).故,,∴,.∴.综上,.(2)易知,获奖券面值的可能取值为,,,.;;;.的分布列为:∴.点睛:本题主要考查正态分布的应用,概率分布列和数学期望的求解等知识,意在考查学生的转化能力和计算求解能力.20. 已知椭圆:的离心率为,短轴为.点满足.(1)求椭圆的方程;(2)设为坐标原点,过点的动直线与椭圆交于点、,是否存在常数使得为定值?若存在,求出的值;若不存在,请说明理由.【答案】(1).(2)答案见解析.【解析】分析:(1)由题意结合平面向量数量积的坐标运算可得的方程为.(2)当不为轴时,设:,、.联立与的方程可得,结合韦达定理和平面向量数量积的坐标运算可得.当为轴时,也满足上述结论.则存在使得为定值.详解:(1),所以从而的方程为.(2)当不为轴时,设:,、.联立与的方程可得,所以,,.因为为定值,所以,解得.此时定值为.当为轴时,,..综上,存在使得为定值.点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.21. 已知,.(1)证明:;(2)若时,恒成立,求实数的取值范围.【答案】(1)见解析.(2)见解析.【解析】分析:(1)构造函数,结合函数的单调性可证得.据此进一步可证得.则题中的不等式得证.(2)设,则,则原问题成立的必要条件是.进一步证得当时可知实数的取值范围是.详解:(1)设,则,故在上单调递减,在上单调递增.从而.而当时,.(2)设,则,.要求在上恒成立必须有.即.以下证明:当时.只要证,只要证在上恒成立.令,则对恒成立,又,所以.从而不等式得证.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.选做题(请考生在第22、23两题中任选一题作答,如果全做,则按所做的第一题评分,作答时请写清题号)22. 在平面直角坐标系中,曲线的参数方程为(为参数,)以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为().(1)求曲线、的直角坐标方程.(2)若、分别为、上的动点,且、间距离的最小值为,求实数的值.【答案】(1),.(2)或者.【解析】分析:(1)消去参数可得的直角坐标方程为,极坐标方程化为直角坐标方程为.(2)设,,由点到直线距离公式可得到的距离,结合题意分类讨论可得或者.详解:(1)消去参数可得的直角坐标方程为,的方程即:,即,则直角坐标方程为:.(2)设,,则到的距离,.由、间距离的最小值为知:当时,得;当时,,得.综上:或者.点睛:本题主要考查参数方程与普通方程互化,极坐标方程与互化,极坐标方程的几何意义等知识,意在考查学生的转化能力和计算求解能力.23. 选修4-5:不等式选讲已知函数.(Ⅰ)若不等式对恒成立,求实数的取值范围;(Ⅱ)当时,函数的最小值为,求实数的值.【答案】(Ⅰ) (Ⅱ)【解析】试题分析:(1)由绝对值不等式可求得实数的取值范围.(2)以零点和分三段讨论。

【名校名卷速递】【(新课标Ⅰ)】_江西省重点中学协作体2018届高三第二次联考理科综合试题(解析版)

【名校名卷速递】【(新课标Ⅰ)】_江西省重点中学协作体2018届高三第二次联考理科综合试题(解析版)

绝密★启用前江西省重点中学协作体2018届高三第二次联考理科综合试题(考试时间:150分钟试卷满分:300分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

可能用到的相对原子质量:H 1 Li 7 B 11 C 12 N 14 O 16 Na 23 Mg 24 P 31 Cl 35.5 Ga 70 As 75第Ⅰ卷一、选择题:本题共13个小题,每小题6分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列细胞的结构与功能的叙述,正确的是()A.内质网既参与物质合成,也参与物质运输B.酵母菌在高尔基体中合成膜蛋白C.在细胞核内RNA能够传递和表达遗传信息D.在有丝分裂的分裂期中消失又出现的细胞结构只有核膜【答案】A【解析】滑面内质网参与脂质的和合成,粗面内质网参与分泌蛋白的合成、运输,A项正确;蛋白质的合成场所位于高尔基体,B项错误;遗传信息的表达需经过转录和翻译过程,翻译过程位于核糖体上,C 项错误;在细胞周期中消失又出现的细胞结构包括核膜、核仁等,D项错误。

2.判断下列有关实验的叙述,正确的是()A.在光镜的高倍镜下观察新鲜菠菜叶装片,可见叶绿体的结构B.低温诱导染色体加倍实验中,将大蒜根尖制成装片后再进行低温处理C.还原糖的鉴定实验中隔水加热时,试管中液体的液面应低于烧杯中水的液面D.制作藓类叶片临时装片观察叶绿体时,取藓类小叶放入生理盐水中,盖上盖玻片【答案】C【解析】在光学显微镜下可以观察到叶绿体的形态,不能观察到其内部结构,A项错误;低温诱导染色体加倍实验中,将大蒜根尖进行低温处理后再制成装片,B项错误;还原糖的鉴定实验中隔水加热时,试管中液体的液面应低于烧杯中水的液面,以使试管中液体被充分加热,C项正确;藓类小叶应放入清水中,D项错误。

江西省重点中学协作体2018届高三第二次联考理科数学(含答案)(2018.05)

江西省重点中学协作体2018届高三第二次联考理科数学(含答案)(2018.05)

1 2
C. (0, ]
1 2
D.
0,1
主视图 2 4 4 俯视图
左视图
9. 已知一个三棱锥的三视图如图所示,主视图和俯视图都 是直角梯形,左视图是正方形, 则该几何体最长的棱长 为 ( ) A. 4 2 B. 2 5 B. 2 13 D. 6
10.已知一袋中有标有号码 1、 2 、 3 的卡片各一张,每次从中取出一张,记下号码后放回,当三种号码的 卡片全部取出时即停止,则恰好取 5 次卡片时停止的概率为( ) A.
1 16
B.
3 32
C.
1 4
D.
1 2
8 . 已 知 关 于 x 的 方 程 sin( x ) sin(
x ) 2m 1 在 区 间 2
4 2
4 4
4
0, 2 上有两个根 x1 , x2 ,且 x1 x2
是( A. ( 1, 0] ) B. [ ,1)
,则实数 m 的取值范围
14 22 25 C. D. 81 81 81 11. 已知向量 a 、 b 、 c 为平面向量,| a || b | 2a b 1 ,且 c 使得 c 2 a 与 c b 所成夹角为 .则 | c | 的 3
B. 最大值为( A. 3 1 ) B. 3
(2 n 2) 2 3 (2)若 bn ,数列 bn 的前 n 项和为 Tn ,求证: Tn 2n . 2n Sn 1 2
18. (本小题满分 12 分)如图,在四棱锥 P ABCD 中,底面 ABCD 是平行四边形, AB AC 2 ,
AD 2 2 , PB 2 , PB AC .
2

江西省等三省十校2018届高三下学期联考数学(理)试卷(含答案)

江西省等三省十校2018届高三下学期联考数学(理)试卷(含答案)

江西省等三省十校2018届高三下学期联考数学(理科)试题(考试时间:120分钟 总分:150分)第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.)1. 已知集合{}2560A x x x =--≤,(){}ln 1B x y x ==-,则A B I 等于A. []1,6-B. (]1,6C. [)1,-+∞D. []2,3 2.设复数z 满足(1)3i z i -=+,则z = A .2 B .2 C .22 D .53.《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何? ”其大意:“已知直角三角形两直角边长分别为5步和12步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是 A .215π B . 320π C. 2115π- D . 3120π- 4.执行如右图所示的程序框图,则输出的s 的值是 A .7 B .6 C .5 D .35.在等差数列{}n a 中,已知47,a a 是函数2()43f x x x =-+的两个零点,则{}n a 的前10项和等于A . 18-B . 9C .18D .206.已知Rt ABC ∆,点D 为斜边BC 的中点, 62AB =u u u r , 6AC =u u u r , 12AE ED =u u u r u u u r ,则AE EB ⋅u u u r u u u r等于A. 14-B. 9-C. 9D.147. 已知12e a dx x=⎰,则()()4x y x a ++ 展开式中3x 的系数为A.24B.32C.44D.56 8.函数321y x =-的图象大致是A. B. C. D.9.已知双曲线2222:1(0,0)x y C a b a b-=>>的实轴长为16,左焦点分别为F ,M 是双曲线C 的一条渐近线上的点,且OM MF ⊥,O 为坐标原点,若16OMF S ∆=,则双曲线C 的离心率为A .5B .5C . 3D . 3310.已知函数()()sin 0,0,02f x A x A πωϕωϕ⎛⎫=+≠><< ⎪⎝⎭,若()03f f π⎛⎫=-⎪⎝⎭,则ω的最小值是 A . 3 B . 2 C. D 111. 如图,格纸上小正方形的边长为1,粗实线画出的 是某多面体的三视图,则该多面体的外接球表面积为 A. 31π B. 32π C. 41π D. 48π12.已知函数()f x 的定义域为R ,(2)()f x f x -=--且满足,其导函数'()f x ,当1x <-时,(1)[()(1)'()]0x f x x f x +++<,且(1)4,f =则不等式(1)8xf x -<的解集为A . (),2-∞-B .()2,+∞C . ()2,2-D . ()(),22,-∞-+∞U第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.)13. 若实数x y ,满足条件1230x x y y x≥⎧⎪-+≥⎨⎪≥⎩,则1y z x =+的最大值为14. 3sin 2,sin 2θθθθ=已知sin +cos =则 . 15. 已知,A B 是以F 为焦点的抛物线24y x =上两点,且满足4AF FB =u u u r u u u r,则弦AB 中点到准线距离为 .16. ∆∆在ABC 中,AB=AC,D 为AC 中点,BD=1,则ABC 的面积最大值为 . 三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或验算步骤.) 17. (12分)已知等比数列{}n a 的公比0q >,2318a a a =,且46,36,2a a 成等差数列.32()1求数列{}n a 的通项公式 ()2记2n nnb a =,求数列{}n b 的前n 项和n T 18. (12分)如图所示,该几何体是由一个直三棱柱ADE BCF -和一个四棱锥P ABCD -组合而成,其中AD AF ⊥,PA PB PC PD ===,2AE AD AB ===. (Ⅰ)证明:AD ⊥平面ABFE ;(Ⅱ)若四棱锥P ABCD -的高2,求二面角C AF P --的余弦值.19. (12分)“中国人均读书4.3本(包括络文学和教科书),比韩国的11本、法国的20本、日本的40本、犹太人的64本少得多,是世界上人均读书最少的国家.”这个论断被各种媒体反复引用,出现这样的统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国是传统的文明古国、礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了一天40名读书者进行调查,将他们的年龄分成6段:[)20,30, [)30,40, [)40,50, [)50,60, [)60,70, []70,80后得到如图所示的频率分布直方图.问:(1)估计在40名读书者中年龄分布在[)30,60的人数;(2)求40名读书者年龄的平均数和中位数; (3)若从年龄在[)60,80的读书者中任取2名,求这两名读书者年龄在[)70,80的人数X 的分布列及数学期望.20. (12分)已知椭圆2226:1(2)2x y C b b +=<< ,动圆P :22002()()3x x y y -+-= (圆心P 为椭圆C 上异于左右顶点的任意一点),过原点O 作两条射线与圆P 相切,分别交椭圆于M ,N 两点,且切线长最小值时,tan 2MOP ∠=. (Ⅰ)求椭圆C 的方程;(Ⅱ)判断MON ∆的面积是否为定值,若是,则求出该值;不是,请说明理由。

【高三数学试题精选】2018届高三数学理科联考试题(江西省九校有答案)

【高三数学试题精选】2018届高三数学理科联考试题(江西省九校有答案)
记(),则,
设则,是单调减函数,
则有,而,.
又是单调增函数,且..................8分
(3)由得,设,在等边三角形中,易知, ,由等边三角形性质知即
...............10分
,又
..............12分
22.解(1)直线的参数参数方程为为参数),
圆的极坐标方程为...............5分
2018届高三数学理科联考试题(江西省九校有答案)
5
分宜中学玉一中临川一中
②得
18解(1)
,即二面角……………12分
19解(1)两次点数之和为16,即两次的底面数字为(1,3),(2,2),(3,1),
……………5分
(2)的可能取值为0,1,2,3

…………(2)∵,∴四边形为平行四边形,
(2)圆的直角坐标方程为,把代入得
又...............10分
23.解(1)当时, ,原不等式等价于
或或
解得或或,所以不等式的解集为或....5分
(2)
....10分
5
显然直线的斜率存在,设的方程为,
把代入得,
由得,
∴,,
∵………………………7分

=,
令,∴,
∴…………………10分
当且仅当,即时取等号,
∴,此时的方程为。12分
21.解(1)
若则则函数在上单调递增,这与题设矛盾
易知在上单调递减,在上单调递增
且时, ;时,
.................4分
(2),两式相减得.

江西省九校2018届高三联考理科数学试题含答案.docx

江西省九校2018届高三联考理科数学试题含答案.docx

江西省九校 2018 届高三联考理科数学试题含答案分宜中学 玉山一中 临川一中2018 年江西省 南城一中 南康中学 高安中学高三联合考试彭泽一中 泰和中学 樟树中学数学试卷(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 满分 150 分 . 考试时间为 120 分钟 .2.本试卷分试题卷和答题卷,第Ⅰ卷(选择题)的答案应填在答题卷卷首相应的空格内,做 在第Ⅰ卷的无效 .第 Ⅰ卷(选择题共 60 分)一、 选择题:本大题共 12 小题 ,每小题5分 ,共 60 分 .在每小题给出的四个选项中,只有一项是符合题目要求的 .1.已知集合 A2 1 , Bx (x2)( x 1) 0 ,则 A B 等于()xxA . (0, 2)B . (1,2)C . ( 2,2)D . ( , 2) (0,)2.设 (12i )x x yi ,其中 x, y 是实数,则yi()xA . 1B . 2C . 3D .53.下面框图的 S 的输出值为 ()A . 5B . 6C . 8D . 13N (2, 2)4X 服从正态分布且.已知随机变量P( x 4)0.88 ,则 P(0 x 4) ()A . 0.88B . 0.76C . 0.24D .0.125.在各项不为零的等差数列a n 中,2a 2017 a 20182 2a 2019 0 ,数列 { b n } 是等比数列,且b2018a 2018 ,则 log 2 (b 2017b 2019 ) 的值为()A . 1B . 2C. 4D . 86.下列命题正确的个数是()( 1)函数 ycos 2 ax sin 2 ax 的最小正周期为”的充分不必要条件是 “a 1”.( 2)设 a { 1,, ,3}1,则使函数 yx a 的定义域为 R 且为奇函数的所有a 的值为 1,1,3 .2a ln x 在定义域上为增函数,则 a 0 .( 3)已知函数 f (x)2xA . 1B . 2C . 3D . 07.已知向量 a( x 2 , x 2), b (3, 1),c (1, 3) ,若 a // b ,则 a 与 c 夹角为( )A .B .2 5C .D .63368.如图,网格纸上小正方形的边长为1,粗线所画出的是某几何体的三视图,则该几何体的各条棱中最长的棱长为()A. 2 5B. 4 2C. 6D. 4 39.若关于 x 的不等式 (a 2a6) x sin a 无解,则 a( ) A. 3B.2C. 2D. 310.若 A 1,2 ,Bx 1 , y 1 ,C x 2 , y 2 是抛物线 y 24x 上不同的点,且 AB BC ,则 y 2 的取值范围是()A .( -,-6 ) [10,+)B .( - ,-6] (8,+ )C .( - ,-5] [8,+ )D .( - ,-5][10,+)2x y 411.已知动点 P( x, y) 满足:x,则 x 2 y 2 +4 y 的最小值为()2 x3 y 2 y3 xA . 2B .24 . 1D . 2Cx12.已知函数 f ( x) =ee ,x,( e 为自然对数的底数) ,则函数 y f ( f ( x)) f ( x)2 + 0x,x0.5x 4的零点的个数为 ()A . 2B . 3C . 4D .5第 II 卷(非选择题共 90 分)二、填空题 :本大题共 4 小题 ,每小题 5 分 ,共 20 分 .13. ( x1)(2x1)3 的展开式中的常数项为.xx14.已知 F 1、F 2 为双曲线的焦点,过F 2 作垂直于实轴的直线交双曲线于A 、B 两点, BF 1 交 y轴于点 C ,若 AC ⊥BF 1,则双曲线的离心率为.15.已知矩形 ABCD 的两边长分别为 AB 3 , BC 4 , O 是对角线 BD 的中点,E 是 AD 边上一点,沿 BE 将 ABE 折起,使得 A 点在平面 BDC 上的投影恰 为 O (如右图所示),则此时三棱锥 A BCD 的外接球的表面积是 .16.在 ABC 中,内角 A,B,C 所对的边分别是 a, b, c , b sin A , a1 b cos A ,1;( 2) S ABC 的最大值为12sin Ccos B 则有如下结论:( 1) c;4( 3)当 S ABC 取最大值时, b5 .3.则上述说法正确的结论的序号为三、解答题:共 70 分。

2018年江西省南昌二中高考数学二模试卷(理科)(解析版)

2018年江西省南昌二中高考数学二模试卷(理科)(解析版)

2018年江西省南昌二中高考数学二模试卷(理科)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的).1.(5分)设集合A={x|y=log2(2﹣x)},B={x|x2﹣3x+2<0},则∁A B=()A.(﹣∞,1)B.(﹣∞,1]C.(2,+∞)D.[2,+∞)2.(5分)在复平面内,复数+z对应的点的坐标为(2,﹣2),则在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)函数y=的图象大致是()A.B.C.D.4.(5分)已知直线m,n与平面α,β,γ满足α⊥β,α∩β=m,n⊥α,n⊂γ,则下列判断一定正确的是()A.m∥γ,α⊥γB.n∥β,α⊥γC.β∥γ,α⊥γD.m⊥n,α⊥γ5.(5分)执行如图所示的程序框图,则输出的S值为()A.1009B.﹣1009C.﹣1007D.10086.(5分)某人吃完饭后散步,在0到3小时内速度与时间的关系为v=t3﹣3t2+2t(km/h),这3小时内他走过的路程为()A.B.C.D.7.(5分)在斜二测画法,圆的直观图是椭圆,则这个椭圆的离心率为()A.B.C.D.无法求出8.(5分)如图,某建筑工地搭建的脚手架局部类似于一个2×2×3的长方体框架,一个建筑工人欲从A处沿脚手架攀登至B处,则其最近的行走路线中不连续向上攀登的概率为()A.B.C.D.9.(5分)已知函数f(x)=3sin x+2cos x,g(x)=3sin x﹣2cos x,若将函数f(x)的图象向右平移φ个单位后得到函数g(x)的图象,则cosφ=()A.B.C.D.10.(5分)某几何体的三视图如图所示,则该几何体的外接球的表面积为()A.25πB.26πC.32πD.36π11.(5分)设函数f(x)=e x(2x﹣1)﹣mx+m,其中m<1,若存在唯一的整数n,使得f (n)<0,则m的取值范围是$()A.[,1)B.[﹣,)C.[,)D.[﹣,1)12.(5分)已知点P(x,y)为不等式组表示的平面区域内的动点,则的取值范围是()A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)二项式()5的展开式中的常数项为.14.(5分)《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今三十织迄,问织几何.”其意思为:有个女子不善于织布,每天比前一天少织同样多的布,第一天织五尺,最后一天织一尺,三十天织完,则三十天共织布尺.15.(5分)在△ABC中,角A,B,C所对的边分别是a,b,c,又I为△ABC的内心,且b﹣c=4,b+c﹣a=6,则=.16.(5分)若函数y=f(x)满足f(a+x)+f(a﹣x)=2b(其中a2+b2≠0),则称函数y=f(x)为“中心对称函数”,称点(a,b)为函数f(x)的“中心点”.现有如下命题:①函数f(x)=sin x+1是“中心对称函数”;②若“中心对称函数”y=f(x)在R上的“中心点”为(a,f(a)),则函数F(x)=f(x+a)﹣f(a)是R上的奇函数;③函数f(x)=x3﹣3x2+6x﹣2是“中心对称函数”,且它的“中心点”一定为(1,2);④函数f(x)=2x﹣cos x是“中心对称函数”,且它的“中心点”一定为.其中正确的命题是.(写出所有正确命题的序号)三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(12分)已知等差数列{a n}中,公差d≠0,S7=35,且a2,a5,a11成等比数列.(1)求数列{a n}的通项公式;(2)若T n为数列{}的前n项和,且存在n∈N*,使得T n﹣λa n+1≥0成立,求实数λ的取值范围.18.(12分)在冬季,由于受到低温和霜冻的影响,蔬菜的价格会随着需求量的增加而上升,已知某供应商向饭店定期供应某种蔬菜,日供应量x与单价y之间的关系,统计数据如表所示:(Ⅰ)根据上表中的数据得出日供应量x与单价y之间的回归方程为y=ax b,求a,b的值;(Ⅱ)该地区有14个饭店,其中10个饭店每日对蔬菜的需求量在60kg以下(不含60kg),4个饭店对蔬菜的需求量在60kg以上(含60kg),则从这14个饭店中任取4个进行调查,记这4个饭店中对蔬菜需求量在60kg以下的饭店数量为X,求X的分布列及数学期望.参考公式及数据:对一组数据(x1,y1),(x2,y2),…,(x n,y n),其回归直线=x+的斜率和截距的最小二乘估计分别为:=,(lnx i•lny i)19.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为边长为2的菱形,∠DAB=60°,∠ADP=90°,面ADP⊥面ABCD,点F为棱PD的中点.(1)在棱AB上是否存在一点E,使得AF∥面PCE,并说明理由;(2)当二面角D﹣FC﹣B的余弦值为时,求直线PB与平面ABCD所成的角.20.(12分)如图,在平面直角坐标系xOy中,椭圆(a>b>0)的左、右顶点分别为A1,A2,上顶点为B(0,1),且椭圆的离心率为.(1)求椭圆的标准方程;(2)若点P是椭圆上位于第一象限的任一点,直线A1B,A2P交于点Q,直线BP与x轴交于点R,记直线A2Q,RQ的斜率分别为k1,k2.求证:2k2﹣k1为定值.21.(12分)已知函数f(x)=ln(x+1)+ax2(1)讨论f(x)的单调性;(2)若函数f(x)在定义域内有3个零点,求整数a的最小值.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.[选修4-4:坐标系与参数方程](共1小题,满分10分)22.(10分)在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2a cosθ(a>0),过点P(﹣2,﹣4)的直线l:(t为参数)与曲线C相交于M,N两点.(1)求曲线C的直角坐标方程和直线l的普通方程;(2)若|PM|,|MN|,|PN|成等比数列,求实数a的值.[选修4-5:不等式选讲](共1小题,满分0分)23.设函数f(x)=|x﹣3|﹣|x+1|,x∈R.(1)解不等式f(x)<﹣1;(2)设函数g(x)=|x+a|﹣4,且g(x)≤f(x)在x∈[﹣2,2]上恒成立,求实数a的取值范围.2018年江西省南昌二中高考数学二模试卷(理科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的).1.(5分)设集合A={x|y=log2(2﹣x)},B={x|x2﹣3x+2<0},则∁A B=()A.(﹣∞,1)B.(﹣∞,1]C.(2,+∞)D.[2,+∞)【解答】解:A={x|y=log2(2﹣x)}={x|x<2},B={x|x2﹣3x+2<0}={x|1<x<2},则∁A B={x|x≤1},故选:B.2.(5分)在复平面内,复数+z对应的点的坐标为(2,﹣2),则在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:由已知可得,+z=2﹣2i,∴z==2﹣2i+i=2﹣i.则,其对应点的坐标为(2,1),在第一象限.故选:A.3.(5分)函数y=的图象大致是()A.B.C.D.【解答】解:函数y=是偶函数,排除B.当x=10时,y=1000,对应点在x轴上方,排除A,当x>0时,y=x3lgx,y′=3x2lgx+x2lge,可知x=是函数的一个极值点,排除C.故选:D.4.(5分)已知直线m,n与平面α,β,γ满足α⊥β,α∩β=m,n⊥α,n⊂γ,则下列判断一定正确的是()A.m∥γ,α⊥γB.n∥β,α⊥γC.β∥γ,α⊥γD.m⊥n,α⊥γ【解答】解:对于A选项中的直线m与平面γ的位置关系无法判断,不正确,B选项中的直线n也可能落在平面β内,不正确;C选项中的平面β与平面β也可能相交,不正确D选项,因为n⊥α,n⊂γ,则α⊥γ;同时n⊥α,m⊂α,则m⊥n,所以D选项是正确的,故选:D.5.(5分)执行如图所示的程序框图,则输出的S值为()A.1009B.﹣1009C.﹣1007D.1008【解答】解:模拟程序的运行,可得程序框图的功能是计算并输出S=sin+2sin+3sin+…+2018sin的值,由于S=sin+2sin+3sin+…+2018sin=(1﹣2)+(3﹣4)+…+(2017﹣2018)=1009×(﹣1)=﹣1009.故选:B.6.(5分)某人吃完饭后散步,在0到3小时内速度与时间的关系为v=t3﹣3t2+2t(km/h),这3小时内他走过的路程为()A.B.C.D.【解答】解:v=t3﹣3t2+2t的原函数可为,路程为,故选:C.7.(5分)在斜二测画法,圆的直观图是椭圆,则这个椭圆的离心率为()A.B.C.D.无法求出【解答】解:圆的直观图确实是椭圆,但是这个椭圆并非是原坐标系下的标准椭圆方程.在斜二测画法下,直观图是有一定倾斜角的椭圆.所以这个椭圆的离心率无法求出.故选:D.8.(5分)如图,某建筑工地搭建的脚手架局部类似于一个2×2×3的长方体框架,一个建筑工人欲从A处沿脚手架攀登至B处,则其最近的行走路线中不连续向上攀登的概率为()A.B.C.D.【解答】解:根据题意,最近路线,那就是不能走回头路,不能走重复的路,∴一共要走3次向上,2次向右,2次向前,一共7次,∴最近的行走路线共有:n==5040,∵不能连续向上,∴先把不向上的次数排列起来,也就是2次向右和2次向前全排列,接下来,就是把3次向上插到4次不向上之间的空当中,5个位置排三个元素,也就是A53,则最近的行走路线中不连续向上攀登的共有m==1440种,∴其最近的行走路线中不连续向上攀登的概率p===.故选:B.9.(5分)已知函数f(x)=3sin x+2cos x,g(x)=3sin x﹣2cos x,若将函数f(x)的图象向右平移φ个单位后得到函数g(x)的图象,则cosφ=()A.B.C.D.【解答】解:函数f(x)=3sin x+2cos x=sin(x+θ),g(x)=3sin x﹣2cos x=sin(x﹣θ),tanθ=;若将函数f(x)的图象向右平移φ个单位后得到函数g(x)的图象,∴φ=2θ;∴cosφ=cos2θ=cos2θ﹣sin2θ===.故选:D.10.(5分)某几何体的三视图如图所示,则该几何体的外接球的表面积为()A.25πB.26πC.32πD.36π【解答】解:根据几何体的三视图,得;该几何体是以俯视图为底面,高为4的直三棱锥;如图所示;过点B作BM⊥AC于M,连接PM,则PM==5,BM=,∴PB2=PM2+BM2=25+3=28,又BC2=BM2+MC2=3+1=4,且PC2=P A2+AC2=42+42=32,∴PB2+BC2=PC2,∴△PBC是直角三角形,又△P AC是等腰直角三角形,∴PC是该直三棱锥的外接球直径,∴该外接球的半径为R=PC=2,∴外接球的表面积为4πR2=32π.故选:C.11.(5分)设函数f(x)=e x(2x﹣1)﹣mx+m,其中m<1,若存在唯一的整数n,使得f (n)<0,则m的取值范围是$()A.[,1)B.[﹣,)C.[,)D.[﹣,1)【解答】解:设函数g(x)=e x(2x﹣1),h(x)=mx﹣m,由题意知存在唯一的整数n使得g(n)在直线y=h(x)=mx﹣m的下方,∵g′(x)=e x(2x﹣1)+2e x=e x(2x+1),∴当x<﹣时,g′(x)<0,当x>﹣时,g′(x)>0,∴当x=﹣时,g(x)取最小值﹣2e﹣,当x=0时,g(0)=﹣1,当x=1时,g(1)=e>0,直线y=mx﹣m恒过定点(1,0)且斜率为m,故﹣m>g(0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣m﹣m,解得:≤m<1,故选:A.12.(5分)已知点P(x,y)为不等式组表示的平面区域内的动点,则的取值范围是()A.B.C.D.【解答】解:不等式组表示的平面区域如图:点P(x,y)为不等式组表示的平面区域内的动点,则的分母是可行域内的点与P(﹣1,0)的距离,分子是一条直线x﹣y+1=u,平移直线x﹣y+1=u,当直线经过可行域的A时,目标函数取得最小值,经过坐标原点时取得最大值.最小值为:=﹣,最大值为:=1.则的取值范围是:.故选:C.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)二项式()5的展开式中的常数项为﹣80.【解答】解:二项式(﹣)5的展开式的通项公式为T r+1=•(﹣2)r•,令﹣=0,求得r=3,∴展开式的常数项为×(﹣8)=﹣80,故答案为:﹣80.14.(5分)《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今三十织迄,问织几何.”其意思为:有个女子不善于织布,每天比前一天少织同样多的布,第一天织五尺,最后一天织一尺,三十天织完,则三十天共织布90尺.【解答】解:由题意每天织布的数量组成等差数列,在等差数列{a n}中,a1=5,a30=1,∴S30=═90(尺),故答案为:90.15.(5分)在△ABC中,角A,B,C所对的边分别是a,b,c,又I为△ABC的内心,且b﹣c=4,b+c﹣a=6,则=12.【解答】解:设AD=x,BD=y,CE=z,∵在△ABC中,角A,B,C所对的边分别是a,b,c,又I为△ABC的内心,且b﹣c=4,b+c﹣a=6,∴,解得x==3,如图,=﹣,∴=•()==||•b﹣||•c=||•(b﹣c)=3×4=12.故答案为:12.16.(5分)若函数y=f(x)满足f(a+x)+f(a﹣x)=2b(其中a2+b2≠0),则称函数y=f(x)为“中心对称函数”,称点(a,b)为函数f(x)的“中心点”.现有如下命题:①函数f(x)=sin x+1是“中心对称函数”;②若“中心对称函数”y=f(x)在R上的“中心点”为(a,f(a)),则函数F(x)=f(x+a)﹣f(a)是R上的奇函数;③函数f(x)=x3﹣3x2+6x﹣2是“中心对称函数”,且它的“中心点”一定为(1,2);④函数f(x)=2x﹣cos x是“中心对称函数”,且它的“中心点”一定为.其中正确的命题是①②③.(写出所有正确命题的序号)【解答】解:①∵函数f(x)=sin x+1,∴f(0+x)+f(0﹣x)=2,∴a=0,b=1,满足“准奇函数”的定义,故①正确;②若F(x)=f(x+a)﹣f(a),则F(﹣x)+F(x)=f(x+a)﹣f(a)+f(﹣x+a)﹣f(a)=f(a﹣x)+f(a+x)﹣2f(a),∵f(x)在R上的“中心点”为(a,f(a)),∴f(a﹣x)+f(a+x)=2f(a),即F(﹣x)+F(x)=f(a﹣x)+f(a+x)﹣2f(a)=0,∴F(﹣x)=﹣F(x),∴函数F(x)=f(x+a)﹣f(a)为R上的奇函数,∴②正确.③函数f(x)=x3﹣3x2+6x﹣2,∴f(1+x)+f(1﹣x)=(1+x)3﹣3(1+x)2+6(1+x)﹣2+(1﹣x)3﹣3(1﹣x)2+6(1﹣x)﹣2=4,∴点(1,2)为函数f(x)的“中心点”,③正确;④f(x)=2x﹣cos x,f(+x)+f(﹣x)=2,得a=,b=2π,它的“中心点”一定为(,2π).∴④错误.故答案为:①②③三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(12分)已知等差数列{a n}中,公差d≠0,S7=35,且a2,a5,a11成等比数列.(1)求数列{a n}的通项公式;(2)若T n为数列{}的前n项和,且存在n∈N*,使得T n﹣λa n+1≥0成立,求实数λ的取值范围.【解答】解:(1)由题意可得:,d≠0,化为,解得,∴a n=2+(n﹣1)=n+1.(2)==.∴T n=++…+=.不等式T n﹣λa n+1≥0,即﹣λ(n+2)≥0.化为:λ≤.∵=≤=.当且仅当n=2时取等号.∵存在n∈N*,使得T n﹣λa n+1≥0成立,∴实数λ的取值范围是.18.(12分)在冬季,由于受到低温和霜冻的影响,蔬菜的价格会随着需求量的增加而上升,已知某供应商向饭店定期供应某种蔬菜,日供应量x与单价y之间的关系,统计数据如表所示:(Ⅰ)根据上表中的数据得出日供应量x与单价y之间的回归方程为y=ax b,求a,b的值;(Ⅱ)该地区有14个饭店,其中10个饭店每日对蔬菜的需求量在60kg以下(不含60kg),4个饭店对蔬菜的需求量在60kg以上(含60kg),则从这14个饭店中任取4个进行调查,记这4个饭店中对蔬菜需求量在60kg以下的饭店数量为X,求X的分布列及数学期望.参考公式及数据:对一组数据(x1,y1),(x2,y2),…,(x n,y n),其回归直线=x+的斜率和截距的最小二乘估计分别为:=,(lnx i •lny i )【解答】解:(I )对y =ax b两边同取对数得lny =blnx +lna , 令v =lnx ,u =lny ,得u =bv +lna∴,∴,即a =e .(II )由题意知,X 的所有可能取值为0,1,2,3,4.,,,,.∴X 的分布列为∴.19.(12分)如图,在四棱锥P ﹣ABCD 中,底面ABCD 为边长为2的菱形,∠DAB =60°,∠ADP =90°,面ADP ⊥面ABCD ,点F 为棱PD 的中点. (1)在棱AB 上是否存在一点E ,使得AF ∥面PCE ,并说明理由;(2)当二面角D ﹣FC ﹣B 的余弦值为时,求直线PB 与平面ABCD 所成的角.【解答】解:(1)在棱AB上存在点E,使得AF∥面PCE,点E为棱AB的中点.理由如下:取PC的中点Q,连结EQ、FQ,由题意,FQ∥DC且,AE∥CD且,故AE∥FQ且AE=FQ.所以,四边形AEQF为平行四边形.所以,AF∥EQ,又EQ⊂平面PEC,AF⊄平面PEC,所以,AF∥平面PEC.(2)由题意知△ABD为正三角形,所以ED⊥AB,亦即ED⊥CD,又∠ADP=90°,所以PD⊥AD,且面ADP⊥面ABCD,面ADP∩面ABCD=AD,所以PD⊥面ABCD,故以D为坐标原点建立如图空间坐标系,设FD=a,则由题意知D(0,0,0),F(0,0,a),C(0,2,0),,,,设平面FBC的法向量为,则由得,令x=1,则,,所以取,显然可取平面DFC的法向量,由题意:=,所以a=1.由于PD⊥面ABCD,所以PB在平面ABCD内的射影为BD,所以∠PBD为直线PB与平面ABCD所成的角,易知在Rt△PBD中,从而∠PBD=45°,所以直线PB与平面ABCD所成的角为45°.20.(12分)如图,在平面直角坐标系xOy中,椭圆(a>b>0)的左、右顶点分别为A1,A2,上顶点为B(0,1),且椭圆的离心率为.(1)求椭圆的标准方程;(2)若点P是椭圆上位于第一象限的任一点,直线A1B,A2P交于点Q,直线BP与x轴交于点R,记直线A2Q,RQ的斜率分别为k1,k2.求证:2k2﹣k1为定值.【解答】(1)因为椭圆的上顶点为B(0,1),离心率为,所以…………………………………………………(2分)又a2=b2+c2,解得a2=4,b2=1,所以椭圆的标准方程是;…………………………………………………(4分)(2)根据题意,可得直线,直线A2Q:y=k1(x﹣2),由,解得.……………………………………(6分)由得,化简得,因为A2(2,0),所以,所以,将代入直线方程得:,所以.……………………………………………(10分)又因为B(0,1),所以,所以直线,令y=0得,.………………(12分)于是,所以,为定值.…………………………………………(16分)21.(12分)已知函数f(x)=ln(x+1)+ax2(1)讨论f(x)的单调性;(2)若函数f(x)在定义域内有3个零点,求整数a的最小值.【解答】解:(1)∵∴①当a=0时,,f(x)在(﹣1,+∞)为增函数;②a≠0由二次函数y=2ax2+2ax+1的对称轴为∈(﹣1,+∞),利用△=4a2﹣8a≤0,a∈(0,2]⇒y=2ax2+2ax+1≥0,f′(x)≥0,f(x)在(﹣1,+∞)为增函数;③当a<0时二次方程2ax2+2ax+1=0的两根:∴f(x)在为增函数,为减函数;④当a>2时二次方程2ax2+2ax+1=0的两根:∴f(x)在,为增函数,为减函数;综上①当a∈[0,2]时,f(x)在(﹣1,+∞)为增函数;②当a<0时,f(x)在为增函数,为减函数;③当a>2时f(x)在,为增函数,为减函数.(2)由f(x)的单调性和f(0)=0可知:①当a∈[0,2]时,f(x)在(﹣1,+∞)为增函数,不可能有三个零点;②当a<0时,f(x)在为增函数,为减函数,也不可能有三个零点;③当a>2时f(x)在,为增函数,为减函数;(记极大值点)∴∵x→﹣1,ln(x+1)→﹣∞⇒f(x)→﹣∞,且f(x)在定义域内有三个零点∴f(x0)>0即f(x)在分别有一个零点,结合f(0)=0符合题意.∵∴=设,ϕ(x)在上为减函数∵∴当符合题意当,即整数a的最小值为3.(2)另解:单调性分析,先控制a>2,再验证a=3满足若f(x)在定义域内有三个零点.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.[选修4-4:坐标系与参数方程](共1小题,满分10分)22.(10分)在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2a cosθ(a>0),过点P(﹣2,﹣4)的直线l:(t为参数)与曲线C相交于M,N两点.(1)求曲线C的直角坐标方程和直线l的普通方程;(2)若|PM|,|MN|,|PN|成等比数列,求实数a的值.【解答】解:(1)把代入ρsin2θ=2a cos θ,得y2=2ax(a>0),由(t为参数),消去t得x﹣y﹣2=0,∴曲线C的直角坐标方程y2=2ax(a>0),直线l的普通方程分别是x﹣y﹣2=0.(2)将化成标准参数方程(t为参数),将其代入y2=2ax,得:,设t1,t2是该方程的两根,则,∵|MN|2=|PM|•|PN|∴∴8(4+a)2﹣4×8(4+a)=8(4+a),解得a=1.[选修4-5:不等式选讲](共1小题,满分0分)23.设函数f(x)=|x﹣3|﹣|x+1|,x∈R.(1)解不等式f(x)<﹣1;(2)设函数g(x)=|x+a|﹣4,且g(x)≤f(x)在x∈[﹣2,2]上恒成立,求实数a的取值范围.【解答】解:(1)由条件知函数f(x)=|x﹣3|﹣|x+1|=,由f(x)<﹣1,解得x>.(2)由g(x)≤f(x)得|x+a|﹣4≤|x﹣3|﹣|x+1|,由函数f(x)、g(x)的图象可知,0≤﹣a≤4,∴﹣4≤a≤0,a的取值范围是[﹣4,0].。

江西省重点中学盟校2018届高三第二次联考理科综合试题含答案

江西省重点中学盟校2018届高三第二次联考理科综合试题含答案

江西省重点中学盟校2018届高三第二次联考理科综合试卷考生注意:1.答题前,考生将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答,在试卷上作答,答案无效。

考试结束,监考员将试题卷、答题卡一并回收。

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

共300分。

本卷共21小题,每小题6分,共126分可能用到的相对原子质量:H-1 C-12 O-16 Na-23 S-32一、选择题:本题共13小题,每小题6分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的。

1.下列关于构成真核细胞的元素及化合物的相关叙述,正确的是()A.组成神经元的元素都是以化合物的形式存在,且K+进出神经元的载体种类不同B.生命活动都需要降低化学反应活化能的酶和直接供能物质ATP参与C.细胞生物中只有DNA能携带遗传信息,其遗传特征主要也由DNA决定D.RNA聚合酶、解旋酶只能通过核孔进入细胞核发挥作用2.生命系统中整体与部分(Ⅰ、Ⅱ、Ⅲ)的关系如下图所示,下列叙述错误..的是()A.若整体代表固醇,且Ⅰ、Ⅱ代表性激素和维生素D,则Ⅲ是动物细胞Array膜的成分B.若整体为人体有氧呼吸,且存在有过程Ⅰ→Ⅱ→Ⅲ的关系,则过程Ⅱ发生的场所是产生二氧化碳的唯一场所C.若整体代表物质跨膜运输的方式,且Ⅰ代表自由扩散,则Ⅱ、Ⅲ都需要载体蛋白D.若整体为生产者的同化量,则Ⅰ、Ⅱ分别表示生产者流入初级消费者能量、流入分解者的能量,则Ⅲ为未被利用的能量3.春夏时期常见的传染性结膜炎,俗称“红眼病”,常见伴有双眼发烫、红肿、多泪、刺痛等症状,根据传染源可分为细菌性结膜炎和病毒性结膜炎。

下列有关叙述不正确的是()A.泪液中的溶菌酶可以对结膜上的病原体起免疫作用,这属于人体的第一道防线B.细菌在细胞质中通过自身的核糖体合成蛋白质,而病毒的细胞质中没有核糖体C.细菌可以在普通培养基上生长,而病毒不能,两者一定共有的元素是C、H、O、N D.病毒性结膜炎引起体内细胞免疫后,效应T 细胞使靶细胞裂解死亡,但还需借助体液免疫产生的抗体及吞噬细胞的吞噬作用才能彻底消灭其内的病毒4.2017年10月诺贝尔生理学奖或医学奖授予美国科学家杰弗里·霍尔、迈克尔·罗斯巴什和迈克尔·杨,以表彰他们发现控制昼夜节律的分子机制。

江西省2018届高三阶段性检测考试(二)(理)数学试题及答案解析

江西省2018届高三阶段性检测考试(二)(理)数学试题及答案解析

江西省2018届高三阶段性检测考试(二)数学试题(理)第Ⅰ卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设,,函数的定义域为,值域为,则的图象可以是()A. B.C. D.2. 已知,则()A. B. C. D.3. 曲线在点处的切线方程是()A. B.C. D.4. 已知为角的终边上的一点,且,则的值为()A. 1B. 3C.D.5. 已知函数的导函数是,且,则实数的值为()A. B. C. D. 16. 已知,,,则()A. B. C. D.7. ()A. 7B.C.D. 48. 已知函数图象的一个对称中心为,且,要得到函数的图象可将函数的图象()A. 向左平移个单位长度B. 向左平移个单位长度C. 向右平移个单位长度D. 向右平移个单位长度9. 函数的图象大致为()A. B.C. D.10. 如图是函数的部分图象,则函数的零点所在的区间是()A. B. C. D.11. 黑板上有一道有解的解三角形的习题,一位同学不小心把其中一部分擦去了,现在只能看到:在中,角的对边分别为,已知,解得,根据以上信息,你认为下面哪个选项可以作为这个习题的其余已知条件()A. B.C. D.12. 已知定义域为的偶函数满足:,有,且当时,,若函数在区间内至少有三个不同的零点,则实数的取值范围是()A. B. C. D.第Ⅱ卷二、填空题13. 若“”是“函数的图象不过第三象限”的必要不充分条件,则实数能取的最大整数为__________.14. 由曲线所围成图形的面积是,则__________.15. 在中,内角的对边分别为,角为锐角,且,则的取值范围为__________.16. 设函数,若方程恰好有三个根,分别为,则的取值范围是__________.三、解答题(解答应写出文字说明、证明过程或演算步骤.)17. 已知,.(1)求的值;(2)求的值;(3)求的值.18. 已知函数是奇函数.(1)求实数的值;(2)用定义证明函数在上的单调性;(3)若对任意的,不等式恒成立,求实数的取值范围.19. 已知函数的一条对称轴为,且最高点的纵坐标是.(1)求的最小值及此时函数的最小正周期、初相;(2)在(1)的情况下,设,求函数在上的最大值和最小值.20. 已知分别是的角所对的边,且.(1)求角;(2)若,求的面积.21. 若函数对任意,都有,则称函数是“以为界的类斜率函数”.(1)试判断函数是否为“以为界的类斜率函数”;(2)若实数,且函数是“以为界的类斜率函数”,求的取值范围.22. 设函数,其中.(1)讨论的单调性;(2)若函数存在极值,对于任意的,存在正实数,使得,试判断与的大小关系并给出证明.【参考答案】第Ⅰ卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1. 【答案】B【解析】因为定义域为,所以舍去A;因为值域为,所以舍去D;因为对于定义域内每一个x有且只有一个y值,所以去掉C;选B.2. 【答案】D【解析】因为,所以,,选D.3. 【答案】D【解析】由,得,则切线的斜率为,又所以切线方程为:,即故选:D4. 【答案】A5. 【答案】B【解析】,选B.6. 【答案】C【解析】,,,,选C.7.【答案】C【解析】.故选:C8. 【答案】C【解析】因为函数图象的一个对称中心为,所以,因为,所以,,从而的图象可将函数的图象向右平移个单位长度得到,选C.9. 【答案】A【解析】当时,,所以当时,,且只有一个极值点,所以舍去B,C,D,选A.10. 【答案】B【解析】为单调递增函数,又,所以,因此零点所在的区间是,选B.11. 【答案】D【解析】若,则;若,则无解;若,则;若则,选D.12.【答案】B【解析】由已知,令,得,为偶函数,,,,是周期为的周期函数.画出函数及的图象,可知当过点时,函数及的图象恰有两个交点,从而函数在上恰有两个零点,由,得,当时,函数在上至少有三个零点,故选B.第Ⅱ卷二、填空题(每题5分,满分20分)13.【答案】-1【解析】试题分析:,∵函数的图象不过第三象限,∴,即.则“”是“”的必要不充分条件,∴,则实数能取的最大整数为.故答案为.14.【答案】1【解析】由,得图象的交点坐标为,所以曲线所围成图形的面积是,所以故答案为:115.【答案】【解析】设,则,由,得,.由余弦定理得由角为锐角得,所以,所以,即.故答案为:16. 【答案】【解析】作图像,由图像可得,的取值范围是三、解答题(解答应写出文字说明、证明过程或演算步骤.)17. 解:(1)因为,所以,得.又,所以.(2).(3)因为,所以.18. 解:(1)∵函数的定义域为,且是奇函数,∴,解得.此时,满足,即是奇函数.∴.(2)任取,且,则,,于是,即,故函数在上是增函数.(3)由及是奇函数,知,又由在上是增函数,得,即对任意的恒成立,∵当时,取最小值,∴.19. 解:(1),因为函数的一条对称轴为,所以,解得.又,所以当时,取得最小正值.因为最高点的纵坐标是,所以,解得,故此时.此时,函数的最小正周期为,初相为.(2),因为函数在上单调递增,在上单调递减,所以在上的最大值为,最小值为.20. 解:(1)由余弦定理,得,又,所以.(2)由,得,得,再由正弦定理得,所以.①又由余弦定理,得,②由①②,得,得,得,联立,得,.所以.所以.所以的面积.21. 解:(1)设,所以对任意,,符合题干所给的“以为界的类斜率函数”的定义.故是“以为界的类斜率函数”.(2)因为,且.所以函数在区间上是增函数,不妨设.则,.所以等价于.即.设.则等价于函数在区间上单调递减.即在区间上恒成立.即在区间上恒成立.又在区间上单调递减.所以,所以。

江西省2018届高三六校联考数学(理)试题(解析版)

江西省2018届高三六校联考数学(理)试题(解析版)

2018年江西省六校高三联考理科数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设全集是实数集,函数的定义域为,,则()A. B. C. D.【答案】D【解析】,所以,选D.2.复数的共轭复数记作,已知复数对应复平面上的点,复数满足,则()A. B. C. D.【答案】A【解析】【分析】由已知可得z1=﹣1﹣i,则,代入•z2=﹣2,变形后利用复数代数形式的乘除运算化简求得z2,则答案可求.【详解】解:由已知可得z1=﹣1﹣i,则,又•z2=﹣2,∴,∴|z2|.故选:A.【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.3.我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大创举,这个伟大创举与我国古老的算法—“辗转相除法”实质一样.如图的程序框图源于“辗转相除法”,当输入,时,输出的()A. 30B. 6C. 2D. 8【答案】C【解析】执行循环得:,结束循环,输出,选C.4.下列命题中:(1)“”是“”的充分不必要条件(2)定义在上的偶函数最小值为5;(3)命题“,都有”的否定是“,使得”(4)已知函数的定义域为,则函数的定义域为.正确命题的个数为()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】(1) ,所以“”是“”的充分不必要条件;(2)为偶函数,所以,因为定义区间为,所以,因此最小值为5;(3)命题“,都有”的否定是“,使得”;(4)由条件得;因此正确命题的个数为(1)(2)(4),选C.5.在内随机地取一个数,则事件“直线与圆有公共点”发生的概率为()A. B. C. D.【解析】若直线与圆有公共点,则因此概率为,选A6.一个四棱锥的三视图如图所示,则其体积为()A. 11B. 12C. 13D. 16【答案】D【解析】几何体如图,则体积为,选D.点睛:空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.7.已知在各项为正数的等比数列中,与的等比中项为4,则当取最小值时首项等于()A. 32B. 16C. 8D. 4【解析】设各项为正数的等比数列的公比为∵与的等比中项为4∴∴∴当且仅当,即时取等号,此时故选A8.设满足约束条件,若目标函数的取值范围恰好是的一个单调递增区间,则的一个值为()A. B. C. D.【答案】D【解析】作出不等式组对应的平面区域如图:则z的几何意义为区域内的点D(﹣2,0)的斜率,由图象知DB的斜率最小,DA的斜率最大,由,即A(﹣1,2),则DA的斜率k DA=2,由即B(﹣1,﹣2),则DB的斜率k DB=-2,则﹣2≤z≤2,故的取值范围是[﹣2,2],故[﹣2,2]是函数的一个单增区间,故故得到答案为C。

江西重点中学2018届高三第二次联考数学(理)试题(图片版)

江西重点中学2018届高三第二次联考数学(理)试题(图片版)

江西省重点中学盟校2018届高三第二次联考数学(理科)试卷参考答案一、选择题二、填空题13.65π14. 4 15. 213+或 13+ 16.22116题提示:可设θ=∠APQ ,在三角形AOP 正弦定理可得:θsin 3=OP ,同理在三角形AOQ 可得:)3sin(3πθ+=OP .三、解答题17.(1)∵1310n n S S +--=⇒12,310n n n S S -≥--=.∴130n n a a +-=,又∵213a a = ∴{}n a 为等比数列13n n a -⇒=. ……5分 (2)33n n n n n b a ==.……6分231123133333n n n n n T --=+++⋅⋅⋅++⇒234111231333333n n n n n T +-=+++⋅⋅⋅++ 23121111333333n n n n T +⇒=+++⋅⋅⋅+-⇒n n n T 343243⋅+-=. ……12分 18.(1)连接AC 交BD 于点O ,显然AE OG//,⊄OG 平面AEF ,⊂AE 平面AEF ,可得//OG 平面AEF ,同理//BD 平面AEF ,O BD OG = , 又⊂OG BD ,平面BDGH ,可得:平面//BDGH 平面 AEF . ……5分(2)过点O 在平面BDEF 中作z 轴BD ⊥,显然z 轴、OB 、OC 两两垂直,如图所示建立空间直角坐标系. ……7分)0,3,0(C ,)3,0,1(-E ,)3,0,1(F ,)0,0,1(-D ,)33,1(,--=,)0,3,1(--=,)0,0,2(=.设平面CDE 与平面CDF 法向量分别为),,(1111z y x n = ,),,(2222z y x n =.⎪⎩⎪⎨⎧=--=+--0303311111y x z y x ,设)0,1,3(1-=n ;⎩⎨⎧==+--020331111x z y x ,设)1,3,0(2=n .…10分 43223,cos 21-=⋅->=<n n,综上:面CED 与平面CEF 所成角的余弦值为43. …12分19. 解:(1)由表中数据计算得:5.3=x ,525=y ,5.17)(261=-∑=x xi i,412)(261=-∑=y y i i ,∴75.099.04125.1784)()())((2126161>≈⨯=----=∑∑∑===y y x x y y x x r ni ii iii i.综上y 与x 的线性相关程度较高. ……4分又8.45.1784)())((ˆ26161==---=∑∑==x xy y x xbi ii i i,2.5088.45.3525ˆ=⨯-=∴a, 故所求线性回归方程:.25088.4ˆ+=x y.……7分(2)X 服从超几何分布,所有可能取值为1,2,3,4,)4,3,2,1(49436)(=-==k C kC k C k X P所以X 的分布列为期望3896442542110314522111)(=⨯=⨯+⨯+⨯+⨯=X E……12分20.(1)设1PF 的中点为M ,在三角形12PFF 中,由中位线得:212OM PF =, 当两个圆相内切时 ,两个圆的圆心距等于两个圆的半径差,即1122OM PF =-∴2112112422PF PF PF PF =-⇒+=, 即2a =, 又21=e∴1,c b == ∴椭圆方程为:22143x y +=……5分(2)由已知0≠PQ k 可设直线:1PQ x my =-,1122(,),(,)P x y Q x y22221(34)690143x my m y my x y =-⎧⎪⇒+--=⎨+=⎪⎩122PQRPOQSSy y ==-=1t =≥,原式=212121313t t t t=++,当1t =时,min 1(3)4t t +=∴max()3PQR S=……12分21. (1)0sin )(),,0(=-⇒=∈x kx k x f x π,令()π,0,sin )(∈-=x x kx x g .此时x k x g cos )(-='①若1-≤k ,)(x g 在()π,0递减,0)0(=g ,无零点;②若1≥k ,)(x g 在()π,0递增,0)0(=g ,无零点;…… 2分③若11<<-k ,)(x g 在()0,0x 递减,()π,0x 递增,其中k x =0cos . Ⅰ.若01≤<-k ,则0)(,0)0(≤=πg g ,此时)(x g 在()π,0无零点; Ⅱ.若10<<k ,则0)(,0)0(>=πg g ,此时)(x g 在()π,0有唯一零点; 综上所述:当0≤k 或1≥k 时,无零点;当10<<k 时,有1个零点.… 5分(2)解法一:k x xx x x f =-='2sin cos )(,令)2,0(,cos sin )(2π∈-+=x x x x kx x h ,)2(sin )(k x x x h +='①若21≥k ,)(x h 在()π2,0递增,0)0(=h ,无零点;。

2018年江西省五市八校联考高考数学二模试卷(理科)Word版含解析

2018年江西省五市八校联考高考数学二模试卷(理科)Word版含解析

2018年江西省五市八校联考高考二模试卷(理科数学)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数=( )A .1﹣3iB .1+3iC .﹣1+3iD .﹣1﹣3i2.已知集合,,则(∁R M )∩N=( )A .(0,2]B .[0,2]C .∅D .[1,2]3.已知等比数列{a n }的各项都为正数,且a 3,成等差数列,则的值是( )A .B .C .D .4.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为,则该几何体的俯视图可以是( )A .B .C .D .5.在区间[0,2]内随机取出两个数,则这两个数的平方和在区间[0,2]内的概率为( )A .B .C .D .6.执行如图所示的程序框图,则输出的结果是( )A .6B .﹣6C .5D .﹣57.中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为a ,b ,c ,三角形的面积S 可由公式求得,其中p 为三角形周长的一半,这个公式也被称为海伦﹣秦九韶公式,现有一个三角形的边长满足a+b=12,c=8,则此三角形面积的最大值为( )A .B .C .D .8.设[x]表示不超过x 的最大整数,如[1]=1,[0.5]=0,已知函数f (x )=﹣k (x >0),若方程f (x )=0有且仅有3个实根,则实数k 的取值范围是( )A .B .C .D .9.某学校高三年级有2个文科班,3个理科班,现每个班指定1人,对各班的卫生进行检查,若每班只安排一人检查,且文科班学生不检查文科班,理科班学生不检查自己所在的班,则不同安排方法的种数是( ) A .24 B .32 C .48 D .8410.倾斜角为的直线l 过抛物线y 2=ax (a >0)的焦点F ,且与抛物线交于点A 、B ,l 交抛物线的准线于点C (B 在A 、C 之间),若,则a=( )A .1B .2C .3D .411.设P 是正方体ABCD ﹣A 1B 1C 1D 1的对角面BDD 1B 1(含边界)内的点,若点P 到平面ABC 、平面ABA 1、平面ADA 1的距离相等,则符合条件的点P ( ) A .仅有一个B .有有限多个C .有无限多个D .不存在12.若关于x 不等式xlnx ﹣x 3+x 2≤ae x 恒成立,则实数a 的取值范围是( )A .[e ,+∞)B .[0,+∞)C .D .[1,+∞)二.填空题:本大题共4小题,每小题5分,共20分.13.已知||=1,||=,且⊥(﹣),则向量与向量的夹角是 .14.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨,B 原料2吨;生产每吨乙产品要用A 原料1吨,B 原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18吨.那么该企业可获得最大利润是 .15.已知数列{a n }满足a 1=,a n+1=(n ∈N *),若不等式++t•a n ≥0恒成立,则实数t 的取值范围是 .16.函数的图象向左平移个单位长度后对应的函数是奇函数,函数.若关于x的方程f(x)+g(x)=﹣2在[0,π)内有两个不同的解α,β,则cos(α﹣β)的值为.三、解答题:本大题共5小题,共70分.解答题写出文字说明、证明过程或演算步骤.17.(12分)在△ABC中,∠A、∠B、∠C所对边长分别为a、b、c,已知,且.(1)求∠A的大小;(2)若,sinB+sinC=1,求△ABC的面积S.18.(12分)如图,在四面体ABCD中,平面ABC⊥平面BCD,DC⊥BC,,BC=2,AC=1.(1)求证:AB⊥AD;(2)设E是BD的中点,若直线CE与平面ACD的夹角为30°,求四面体ABCD外接球的表面积.19.(12分)春节来临,有农民工兄弟A 、B 、C 、D 四人各自通过互联网订购回家过年的火车票,若订票成功即可获得火车票,即他们获得火车票与否互不影响.若A 、B 、C 、D 获得火车票的概率分别是,其中p 1>p 3,又成等比数列,且A 、C 两人恰好有一人获得火车票的概率是. (1)求p 1,p 3的值;(2)若C 、D 是一家人且两人都获得火车票才一起回家,否则两人都不回家.设X 表示A 、B 、C 、D 能够回家过年的人数,求X 的分布列和期望EX .20.(12分)过点P (a ,﹣2)作抛物线C :x 2=4y 的两条切线,切点分别为A (x 1,y 1),B (x 2,y 2).(Ⅰ) 证明:x 1x 2+y 1y 2为定值;(Ⅱ) 记△PAB 的外接圆的圆心为点M ,点F 是抛物线C 的焦点,对任意实数a ,试判断以PM 为直径的圆是否恒过点F ?并说明理由.21.(12分)已知函数f(x)=lnx+x2﹣2ax+1(a为常数).(1)讨论函数f(x)的单调性;(2)若存在x0∈(0,1],使得对任意的a∈(﹣2,0],不等式2me a(a+1)+f(x)>a2+2a+4(其中e为自然对数的底数)都成立,求实数m的取值范围.请考生在第22~23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,直线l的参数方程为(t为参数).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ=2cos(θ﹣).(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)求曲线C上的点到直线l的距离的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a﹣1|+|x﹣2a|.(Ⅰ)若f(1)<3,求实数a的取值范围;(Ⅱ)若a≥1,x∈R,求证:f(x)≥2.2018年江西省五市八校联考高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数=( )A .1﹣3iB .1+3iC .﹣1+3iD .﹣1﹣3i【考点】A5:复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简得答案.【解答】解: =.故选:A .【点评】本题考查复数代数形式的乘除运算,是基础的计算题.2.已知集合,,则(∁R M )∩N=( )A .(0,2]B .[0,2]C .∅D .[1,2]【考点】1H :交、并、补集的混合运算.【分析】先化简集合M ,N 求出M 的补集,找出M 补集与N 的交集即可【解答】解:∵<1,即﹣1<0,即<0,等价于x (x ﹣2)>0,解得x >2或x <0,则M=(﹣∞,0)∪(2,+∞), ∴(∁R M )=[0,2],∵N={y|y=}=[0,+∞),∴(∁R M )∩N=[0,2], 故选:B【点评】本题考查分式不等式的解法,考查集合的交、补运算,属于中档题.3.已知等比数列{a n }的各项都为正数,且a 3,成等差数列,则的值是( )A .B .C .D .【考点】88:等比数列的通项公式.}的公比为q,且q>0,由题意和等差中项的性质列出方程,由等比数【分析】设等比数列{an列的通项公式化简后求出q,由等比数列的通项公式化简所求的式子,化简后即可求值.【解答】解:设等比数列{a}的公比为q,且q>0,n,成等差数列,∵a3∴,则,化简得,q2﹣q﹣1=0,解得q=,则q=,∴====,故选A.【点评】本题考查等比数列的通项公式,以及等差中项的性质的应用,属于基础题.4.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为,则该几何体的俯视图可以是()A.B.C.D.【考点】L7:简单空间图形的三视图.【分析】该几何体为正方体截去一部分后的四棱锥P﹣ABCD,作出图形,可得结论.【解答】解:该几何体为正方体截去一部分后的四棱锥P﹣ABCD,如图所示,该几何体的俯视图为D.故选:D.【点评】本题考查棱锥体积的计算,考查三视图,考查数形结合的数学思想,比较基础.5.在区间[0,2]内随机取出两个数,则这两个数的平方和在区间[0,2]内的概率为()A. B.C.D.【考点】CF:几何概型.【分析】首先分析题目求这两个数的平方和也在区间[0,2]内的概率,可以联想到用几何的方法求解,利用面积的比值直接求得结果.【解答】解:将取出的两个数分别用x,y表示,则x,y∈[0,2]要求这两个数的平方和也在区间[0,2]内,即要求0≤x2+y2≤2,故此题可以转化为求0≤x2+y2≤2在区域内的面积比的问题.即由几何知识可得到概率为=;故选:D.【点评】此题考查等可能时间概率的问题,利用几何概型的方法解决本题,概率知识在高考中难度有所下降,对利用古典概型和几何概型的基本方法要熟练掌握.6.执行如图所示的程序框图,则输出的结果是()A.6 B.﹣6 C.5 D.﹣5【考点】EF:程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当i=1时,满足进行循环的条件,执行循环体后,S=﹣1,i=2;当i=2时,满足进行循环的条件,执行循环体后,S=1,i=3;当i=3时,满足进行循环的条件,执行循环体后,S=﹣2,i=4;当i=4时,满足进行循环的条件,执行循环体后,S=2,i=5;当i=5时,满足进行循环的条件,执行循环体后,S=﹣3,i=6;当i=6时,满足进行循环的条件,执行循环体后,S=3,i=7;当i=7时,满足进行循环的条件,执行循环体后,S=﹣4,i=8;当i=8时,满足进行循环的条件,执行循环体后,S=4,i=9;当i=9时,满足进行循环的条件,执行循环体后,S=﹣5,i=10;当i=10时,满足进行循环的条件,执行循环体后,S=5,i=11;当i=11时,不满足进行循环的条件,故输出S值为5,故选:C【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.7.中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为a,b,c,三角形的面积S可由公式求得,其中p为三角形周长的一半,这个公式也被称为海伦﹣秦九韶公式,现有一个三角形的边长满足a+b=12,c=8,则此三角形面积的最大值为()A.B.C.D.【考点】EL:秦九韶算法.【分析】由题意,p=10,S==,利用基本不等式,即可得出结论.【解答】解:由题意,p=10,S==≤=8,∴此三角形面积的最大值为8.故选B.【点评】本题考查面积的计算,考查基本不等式的运用,属于中档题.8.设[x]表示不超过x的最大整数,如[1]=1,[0.5]=0,已知函数f(x)=﹣k(x>0),若方程f(x)=0有且仅有3个实根,则实数k的取值范围是()A.B.C.D.【考点】54:根的存在性及根的个数判断.【分析】由f(x)=0得=k,令g(x)=,作出g(x)的图象,利用数形结合即可得到k的取值范围.【解答】解:由f(x)=﹣k=0得=k,若x>0,设g(x)=,则当0<x<1,[x]=0,此时g(x)=0,当1≤x<2,[x]=1,此时g(x)=,此时,当2≤x<3,[x]=2,此时g(x)=,此时<g(x)≤1,当3≤x<4,[x]=3,此时g(x)=,此时<g(x)≤1,当4≤x<5,[x]=4,此时g(x)=,此时<g(x)≤1,作出函数g(x)的图象,要使f(x)=﹣k有且仅有三个零点,即函数g(x)=k有且仅有三个零点,则由图象可知<k≤,故选:C.【点评】本题主要考查函数零点的应用,根据函数和方程之间的关系构造函数g(x),利用数形结合是解决本题的关键.难度较大.9.某学校高三年级有2个文科班,3个理科班,现每个班指定1人,对各班的卫生进行检查,若每班只安排一人检查,且文科班学生不检查文科班,理科班学生不检查自己所在的班,则不同安排方法的种数是()A.24 B.32 C.48 D.84【考点】D8:排列、组合的实际应用.【分析】根据题意,分3步进行分析:①、在3个理科班的学生中任选2人,去检查2个文科班,②、剩余的1个理科班的学生去检查其他的2个理科班,③、将2个文科班学生安排检查剩下的2个理科班,分别求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,分3步进行分析:①、在3个理科班的学生中任选2人,去检查2个文科班,有C32A22=6种情况;②、剩余的1个理科班的学生不能检查本班,只能检查其他的2个理科班,有2种情况,③、将2个文科班学生全排列,安排检查剩下的2个理科班,有A22=2种情况;则不同安排方法的种数6×2×2=24种;故选:A.【点评】本题考查排列、组合的综合运用,涉及分步和分类计数原理,关键是依据题意,进行分步分析.10.倾斜角为的直线l过抛物线y2=ax(a>0)的焦点F,且与抛物线交于点A、B,l交抛物线的准线于点C(B在A、C之间),若,则a=()A.1 B.2 C.3 D.4【考点】KN:直线与抛物线的位置关系.【分析】求得焦点即准线方程.根据三角形的相似关系,求得2丨EF丨=丨CF丨,根据抛物线的定义,即可求得a的值.【解答】解:过A和D做AD⊥l,BG⊥l,垂足分别为D和G,准线l交x轴于E,由抛物线的焦点(,0),准线方程x=﹣,则丨EF丨=,且丨BG丨=丨BF丨,由∠AFx=,则∠FCD=,sin∠FCD===,,则丨BG丨=,由2丨EF丨=丨CF丨,即2×=丨BC丨+丨BF丨=+=4,故a=4,故选:D.【点评】本题考查抛物线的定义,直线与抛物线的位置关系,相似三角形的性质,考查计算能力,数形结合思想,属于中档题.11.设P 是正方体ABCD ﹣A 1B 1C 1D 1的对角面BDD 1B 1(含边界)内的点,若点P 到平面ABC 、平面ABA 1、平面ADA 1的距离相等,则符合条件的点P ( ) A .仅有一个B .有有限多个C .有无限多个D .不存在【考点】MK :点、线、面间的距离计算.【分析】设P 是正方体ABCD ﹣A 1B 1C 1D 1的对角面BDD 1B 1(含边界)内的点,若点P 到平面ABC 、平面ABA 1、平面ADA 1的距离相等,则符合条件的点P 是正方体的中心,即可得出结论. 【解答】解:设P 是正方体ABCD ﹣A 1B 1C 1D 1的对角面BDD 1B 1(含边界)内的点,若点P 到平面ABC 、平面ABA 1、平面ADA 1的距离相等,则符合条件的点P 是正方体的中心, 故选A .【点评】本题考查点面距离,考查学生分析解决问题的能力,比较基础.12.若关于x 不等式xlnx ﹣x 3+x 2≤ae x 恒成立,则实数a 的取值范围是( )A .[e ,+∞)B .[0,+∞)C .D .[1,+∞)【考点】3R :函数恒成立问题. 【分析】x ∈R 时,e x >0恒成立,把不等式xlnx ﹣x 3+x 2≤ae x 化为a ≥;设f(x)=,x∈(0,+∞);求出f(x)的最大值即可得出a的取值范围.【解答】解:x∈R时,e x>0恒成立,∴关于x不等式xlnx﹣x3+x2≤ae x化为a≥;设f(x)=,其中x∈(0,+∞);则f′(x)=,设g(x)=lnx+1﹣xlnx+x3﹣4x2+2x,其中x∈(0,+∞);则g′(x)=﹣lnx﹣1+3x2﹣8x+2=3x2﹣8x+1+﹣lnx<0,∴g(x)是单调减函数,且g(1)=0,∴x=1时,f(x)取得最大值0,∴实数a的取值范围是[0,+∞).故选:B.【点评】本题考查了不等式恒成立问题,也考查了利用导数研究函数的单调性与求最值问题,是综合题.二.填空题:本大题共4小题,每小题5分,共20分.13.已知||=1,||=,且⊥(﹣),则向量与向量的夹角是.【考点】9S:数量积表示两个向量的夹角.【分析】由条件利用两个向量垂直的性质、两个向量的数量积的定义求得cosθ的值,可得向量与向量的夹角θ的值.【解答】解:设向量与向量的夹角是θ,则由题意可得•(﹣)=﹣=1﹣1××cosθ=0,求得cosθ=,可得θ=,故答案为:.【点评】本题主要考查两个向量的数量积的定义,两个向量垂直的性质,属于基础题.14.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨.那么该企业可获得最大利润是27万元.【考点】7D:简单线性规划的应用.【分析】先设该企业生产甲产品为x吨,乙产品为y吨,列出约束条件,再根据约束条件画出可行域,设z=5x+3y,再利用z的几何意义求最值,只需求出直线z=5x+3y过可行域内的点时,从而得到z值即可.【解答】解:设该企业生产甲产品为x吨,乙产品为y吨,则该企业可获得利润为z=5x+3y,且,联立,解得 x=3 y=4,由图可知,最优解为P(3,4),∴z的最大值为z=5×3+3×4=27(万元).故答案为:27万元.【点评】在解决线性规划的应用题时,其步骤为:①分析题目中相关量的关系,列出不等式组,即约束条件⇒②由约束条件画出可行域⇒③分析目标函数Z与直线截距之间的关系⇒④使用平移直线法求出最优解⇒⑤还原到现实问题中.15.已知数列{an}满足a1=,an+1=(n∈N*),若不等式++t•an≥0恒成立,则实数t的取值范围是[﹣9,+∞).【考点】8H:数列递推式.【分析】由数列{an}满足a1=,an+1=(n∈N*),两边取倒数可得:﹣=1.利用等差数列的通项公式即可得出an.不等式++t•an≥0化为:t≥﹣.再利用基本不等式的性质即可得出.【解答】解:由数列{an}满足a1=,an+1=(n∈N*),两边取倒数可得:﹣=1.∴数列是等差数列,公差为1,首项为2.∴=2+(n﹣1)=n+1,∴an=.不等式++t•an≥0化为:t≥﹣.∵+5≥2=4,当且仅当n=2时取等号.∵﹣≤﹣9.∵实数t的取值范围若不等式++t•an≥0恒成立,∴t≥﹣9.则实数t的取值范围[﹣9,+∞).故答案为:[﹣9,+∞).【点评】本题考查了等差数列的通项公式、基本不等式的性质,考查了推理能力与计算能力,属于中档题.16.函数的图象向左平移个单位长度后对应的函数是奇函数,函数.若关于x的方程f(x)+g(x)=﹣2在[0,π)内有两个不同的解α,β,则cos (α﹣β)的值为 .【考点】HJ :函数y=Asin (ωx+φ)的图象变换.【分析】利用函数y=Asin (ωx+φ)的图象变换规律,利用三角函数的图象,可得sin (2α+θ)=﹣,sin (2β+θ)=﹣,从而得到2α+θ=π+θ,2β+θ=2π﹣θ,进而得到cos(α﹣β)=cos (θ﹣)=sin θ的值.【解答】解:函数的图象向左平移个单位长度后,得到y=2sin(2x++Φ)的图象;∵对应的函数是奇函数,∴ +Φ=k π,k ∈Z ,即Φ=k π﹣,∴Φ=﹣,即f (x )=2sin(2x ﹣).∵函数,关于x 的方程f (x )+g (x )=﹣2在[0,π)内有两个不同的解α,β,即2sin (2x ﹣)+(2+)cos2x=﹣2在[0,π)内有两个不同的解α,β,即sin2x+cos2x=﹣1 在[0,π)内有两个不同的解α,β,即sin (2x+θ)=﹣1(其中,cos θ=,sin θ=,θ为锐角)在[0,π)内有两个不同的解α,β,即方程sin (2x+θ)=﹣在[0,π)内有两个不同的解α,β.∵x ∈[0,π),∴2x+θ∈[θ,2π+θ),∴sin (2α+θ)=﹣,sin (2β+θ)=﹣,∴2α+θ=π+θ,2β+θ=2π﹣θ,∴2α﹣2β=﹣π+2θ,α﹣β=θ﹣,cos (α﹣β)=cos (θ﹣)=sin θ=,故答案为:.【点评】本题主要考查函数y=Asin (ωx+φ)的图象变换规律,三角函数的图象的对称性,诱导公式,正弦函数的定义域和值域,属于基础题.三、解答题:本大题共5小题,共70分.解答题写出文字说明、证明过程或演算步骤.17.(12分)(2017•江西二模)在△ABC中,∠A、∠B、∠C所对边长分别为a、b、c,已知,且.(1)求∠A的大小;(2)若,sinB+sinC=1,求△ABC的面积S.【考点】HR:余弦定理;9R:平面向量数量积的运算.【分析】(1)根据,可得bsinC+2csinBcosA=0,由正弦定理得bc+2cbcosA=0,进而得出.(2)由(1)及余弦定理得a2=b2+c2+bc,了由正弦定理可得sin2A=sin2B+sin2C+sinBsinC,化简整理再利用三角形面积计算公式即可得出.【解答】解:(1)∵,∴(sinC,sinBcosA)•(b,2c)=0,∴bsinC+2csinBcosA=0…(2分)由正弦定理得bc+2cbcosA=0…(4分)∵b≠0,c≠0∴…∵0<A<π∴…(6分)(2)由(1)及余弦定理得a2=b2+c2+bc,得sin2A=sin2B+sin2C+sinBsinC即…(8分)又sinB+sinC=1,解得…(9分)∵∴b=c=2…(11分)∴△ABC的面积…(12分)【点评】本题考查了正弦定理余弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.18.(12分)(2017•江西二模)如图,在四面体ABCD中,平面ABC⊥平面BCD,DC⊥BC,,BC=2,AC=1.(1)求证:AB⊥AD;(2)设E是BD的中点,若直线CE与平面ACD的夹角为30°,求四面体ABCD外接球的表面积.【考点】MI:直线与平面所成的角;LG:球的体积和表面积;LR:球内接多面体.【分析】(1)证明DC⊥BC,AB⊥CD,推出AB⊥AC,然后证明AB⊥平面ADC,得到AB⊥AD.(2)取AD的中点F,连接EF,则EF∥BA,证明EF⊥平面ADC,连接FC,说明∠ECF=30°,求出以四面体ABCD的外接球的半径然后求解即可.【解答】解:(1)证明:由平面ABC⊥平面BCD,DC⊥BC,得DC⊥平面ABC,∴AB⊥CD…(2分)又由,BC=2,AC=1,得BC2=AB2+AC2,所以AB⊥AC…(4分)故AB⊥平面ADC,所以AB⊥AD…(6分)(2)取AD的中点F,连接EF,则EF∥BA,因为AB⊥平面ADC∴EF⊥平面ADC…(8分)连接FC,则∠ECF=30°,∴…(9分)又∠BAD=∠BCD=90°,所以四面体ABCD的外接球的半径…(11分)故四面体ABCD的外接球的表面积=…(12分)(向量解法酌情给分)【点评】本题考查直线与平面垂直的判定定理的应用,几何体的外接球的表面积的求法,直线与平面所成角的应用,考查空间想象能力以及计算能力.19.(12分)(2017•甘肃二模)春节来临,有农民工兄弟A、B、C、D四人各自通过互联网订购回家过年的火车票,若订票成功即可获得火车票,即他们获得火车票与否互不影响.若A、B、C、D获得火车票的概率分别是,其中p1>p3,又成等比数列,且A、C两人恰好有一人获得火车票的概率是.(1)求p1,p3的值;(2)若C、D是一家人且两人都获得火车票才一起回家,否则两人都不回家.设X表示A、B、C、D能够回家过年的人数,求X的分布列和期望EX.【考点】CH:离散型随机变量的期望与方差;CG:离散型随机变量及其分布列.【分析】(1)由A、C两人恰好有一人获得火车票的概率是,列出方程组,能求出p1,p3的值.(2)由题意知X的可能取值为0,1,2,3,4,分别求出相应的概率,由此能求出X的分布列和EX.【解答】解:(1)∵A、C两人恰好有一人获得火车票的概率是,∴…(1分)联立方程组,…(3分)由p1>p3,解得.…(2)由题意知X的可能取值为0,1,2,3,4,…(6分)…(7分)…(8分)…(9分)…(10分)∴X的分布列为:…(11分)…(12分)【点评】本题考查古典概型及应用,考查概率的计算,考查计数原理,考查离散型随机变量的分布列、数学期望的求法及应用,解答本题的关键是正确理解离散型随机变量的分布列的性质,是中档题.20.(12分)(2017•江西二模)过点P (a ,﹣2)作抛物线C :x 2=4y 的两条切线,切点分别为A (x 1,y 1),B (x 2,y 2). (Ⅰ) 证明:x 1x 2+y 1y 2为定值;(Ⅱ) 记△PAB 的外接圆的圆心为点M ,点F 是抛物线C 的焦点,对任意实数a ,试判断以PM 为直径的圆是否恒过点F ?并说明理由. 【考点】KN :直线与抛物线的位置关系.【分析】(Ⅰ) 求导,求得直线PA 的方程,将P 代入直线方程,求得,同理可知.则x 1,x 2是方程x 2﹣2ax ﹣8=0的两个根,则由韦达定理求得x 1x 2,y 1y 2的值,即可求证x 1x 2+y 1y 2为定值;设切线方程,代入抛物线方程,由△=0,则k 1k 2=﹣2,分别求得切线方程,代入即可求证x 1x 2+y 1y 2为定值;(Ⅱ) 直线PA 的垂直平分线方程为,同理求得直线PB 的垂直平分线方程,求得M 坐标,抛物线C 的焦点为F (0,1),则,则.则以PM 为直径的圆恒过点F .【解答】解:(Ⅰ)证明:法1:由x 2=4y ,得,所以.所以直线PA 的斜率为.因为点A (x 1,y 1)和B (x 2,y 2)在抛物线C 上,所以,.所以直线PA 的方程为.…(1分)因为点P (a ,﹣2)在直线PA 上,所以,即.…(2分)同理,.…(3分)所以x 1,x 2是方程x 2﹣2ax ﹣8=0的两个根.所以x1x2=﹣8.…(4分)又,…所以x1x2+y1y2=﹣4为定值.…(6分)法2:设过点P(a,﹣2)且与抛物线C相切的切线方程为y+2=k(x﹣a),…(1分),消去y得x2﹣4kx+4ka+8=0,由△=16k2﹣4(4ak+8)=0,化简得k2﹣ak﹣2=0.…(2分)所以k1k2=﹣2.…(3分)由x2=4y,得,所以.所以直线PA的斜率为,直线PB的斜率为.所以,即x1x2=﹣8.…(4分)又,…所以x1x2+y1y2=﹣4为定值.…(6分)(Ⅱ)法1:直线PA的垂直平分线方程为,…(7分)由于,,所以直线PA的垂直平分线方程为.①…(8分)同理直线PB的垂直平分线方程为.②…(9分)由①②解得,,所以点.…(10分)抛物线C的焦点为F(0,1),则.由于,…(11分)所以.所以以PM为直径的圆恒过点F.…(12分)另法:以PM为直径的圆的方程为.…(11分)把点F(0,1)代入上方程,知点F的坐标是方程的解.所以以PM为直径的圆恒过点F.…(12分)法2:设点M的坐标为(m,n),则△PAB的外接圆方程为(x﹣m)2+(y﹣n)2=(m﹣a)2+(n+2)2,由于点A(x1,y1),B(x2,y2)在该圆上,则,.两式相减得(x1﹣x2)(x1+x2﹣2m)+(y1﹣y2)(y1+y2﹣2n)=0,①…(7分)由(Ⅰ)知,代入上式得,…(8分)当x1≠x2时,得8a﹣4m+a3﹣2an=0,②假设以PM为直径的圆恒过点F,则,即(﹣m,n﹣1)•(﹣a,﹣3)=0,得ma﹣3(n﹣1)=0,③…(9分)由②③解得,…(10分)所以点.…(11分)当x1=x2时,则a=0,点M(0,1).所以以PM为直径的圆恒过点F.…(12分)【点评】本题考查直线与抛物线的位置关系,考查中点坐标公式,韦达定理的应用,考查利用导数求抛物线的切线方程,考查计算能力,属于中档题.21.(12分)(2017•江西二模)已知函数f(x)=lnx+x2﹣2ax+1(a为常数).(1)讨论函数f(x)的单调性;(2)若存在x0∈(0,1],使得对任意的a∈(﹣2,0],不等式2me a(a+1)+f(x)>a2+2a+4(其中e为自然对数的底数)都成立,求实数m的取值范围.【考点】6K:导数在最大值、最小值问题中的应用;3E:函数单调性的判断与证明;7E:其他不等式的解法.【分析】(1)求出函数的导函数,对二次函数中参数a进行分类讨论,判断函数的单调区间;(2)根据(1),得出f (x 0)的最大值,问题可转化为对任意的a ∈(﹣2,0],不等式2me a (a+1)﹣a 2+﹣4a ﹣2>0都成立,构造函数h (a )=2me a (a+1)﹣a 2+﹣4a ﹣2,根据题意得出m 的范围,由h (0)>0得m >1,且h (﹣2)≥0得m ≤e 2,利用导函数,对m 进行区间内讨论,求出m 的范围.【解答】解:(I )f (x )=lnx+x 2﹣2ax+1,f'(x )=+2x ﹣2a=,令g (x )=2x 2﹣2ax+1,(i )当a ≤0时,因为x >0,所以g (x )>0,函数f (x )在(0,+∞)上单调递增;(ii )当0<a 时,因为△≤0,所以g (x )>0,函数f (x )在(0,+∞)上单调递增;(iii )当a >时,x 在(,)时,g (x )<0,函数f (x )单调递减;在区间(0,)和(,+∞)时,g (x )>0,函数f (x )单调递增;(II )由(I )知当a ∈(﹣2,0],时,函数f (x )在区间(0,1]上单调递增, 所以当x ∈(0,1]时,函数f (x )的最大值是f (1)=2﹣2a ,对任意的a ∈(﹣2,0], 都存在x 0∈(0,1],使得不等式a ∈(﹣2,0],2me a (a+1)+f (x 0)>a 2+2a+4成立, 等价于对任意的a ∈(﹣2,0],不等式2me a (a+1)﹣a 2+﹣4a ﹣2>0都成立,记h (a )=2me a (a+1)﹣a 2+﹣4a ﹣2,由h (0)>0得m >1,且h (﹣2)≥0得m ≤e 2, h'(a )=2(a+2)(me a ﹣1)=0, ∴a=﹣2或a=﹣lnm , ∵a ∈(﹣2,0], ∴2(a+2)>0,①当1<m <e 2时,﹣lnm ∈(﹣2,0),且a ∈(﹣2,﹣lnm )时,h'(a )<0,a ∈(﹣lnm ,0)时,h'(a )>0,所以h (a )最小值为h (﹣lnm )=lnm ﹣(2﹣lnm )>0, 所以a ∈(﹣2,﹣lnm )时,h (a )>0恒成立;②当m=e 2时,h'(a )=2(a+2)(e a+2﹣1),因为a ∈(﹣2,0],所以h'(a )>0, 此时单调递增,且h (﹣2)=0,所以a ∈(﹣2,0],时,h (a )>0恒成立; 综上,m 的取值范围是(1,e 2].【点评】考查了导函数的应用和利用构造函数的方法,对存在问题进行转化,根据导函数解决实际问题.请考生在第22~23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(2017•江西二模)在直角坐标系xOy中,直线l的参数方程为(t为参数).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ=2cos(θ﹣).(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)求曲线C上的点到直线l的距离的最大值.【考点】QH:参数方程化成普通方程;Q4:简单曲线的极坐标方程.【分析】(Ⅰ)将直线l的参数方程消去t参数,可得直线l的普通方程,将ρcosθ=x,ρsinθ=y,ρ2=x2+y2,带入ρ=2cos(θ﹣)可得曲线C的直角坐标方程.(Ⅱ)法一:设曲线C上的点为,点到直线的距离公式建立关系,利用三角函数的有界限可得最大值.法二:设与直线l平行的直线为l':x+y+b=0,当直线l'与圆C相切时,得,点到直线的距离公式可得最大值.【解答】解:(Ⅰ)由直线l的参数方程消去t参数,得x+y﹣4=0,∴直线l的普通方程为x+y﹣4=0.由=.得ρ2=2ρcosθ+2ρsinθ.将ρ2=x2+y2,ρcosθ=x,ρsinθ=y代入上式,得:曲线C的直角坐标方程为x2+y2=2x+2y,即(x﹣1)2+(y﹣1)2=2.(Ⅱ)法1:设曲线C上的点为,则点P到直线l的距离为==当时,∴曲线C上的点到直线l的距离的最大值为;法2:设与直线l平行的直线为l':x+y+b=0.当直线l'与圆C相切时,得,解得b=0或b=﹣4(舍去).∴直线l'的方程为x+y=0.那么:直线l与直线l'的距离为故得曲线C上的点到直线l的距离的最大值为.【点评】本题考查点的极坐标和直角坐标的互化,以及利用平面几何知识解决最值问题.[选修4-5:不等式选讲]23.(2017•成都四模)已知函数f(x)=|x+a﹣1|+|x﹣2a|.(Ⅰ)若f(1)<3,求实数a的取值范围;(Ⅱ)若a≥1,x∈R,求证:f(x)≥2.【考点】R5:绝对值不等式的解法;R4:绝对值三角不等式.【分析】(Ⅰ)通过讨论a的范围得到关于a的不等式,解出取并集即可;(Ⅱ)基本基本不等式的性质证明即可.【解答】解:(Ⅰ)因为f(1)<3,所以|a|+|1﹣2a|<3.①当a≤0时,得﹣a+(1﹣2a)<3,解得,所以;②当时,得a+(1﹣2a)<3,解得a>﹣2,所以;③当时,得a﹣(1﹣2a)<3,解得,所以;综上所述,实数a的取值范围是.(Ⅱ)因为a≥1,x∈R,所以f(x)=|x+a﹣1|+|x﹣2a|≥|(x+a﹣1)﹣(x﹣2a)|=|3a﹣1|=3a﹣1≥2.【点评】本题考查了解绝对值不等式问题,考查绝对值的意义,是一道中档题.。

江西省名校学术联盟2018届高三教学质量检测考试(二)数学(理)试卷(含答案)

江西省名校学术联盟2018届高三教学质量检测考试(二)数学(理)试卷(含答案)

江西名校学术联盟2018届高三年级教学质量检测考试(二)理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}52|{-==x y x A ,}0)2)(3(|{<+-=x x x B ,则=B A I ( )A . )2,25[B .]25,3(-C . )3,25[D .]25,2(- 2.已知向量)4,2(-=,)3,8,10(x --=,若n m //,则=x ( ) A . 4 B . -4 C .2 D .-23.已知等差数列}{n a 的前n 项和n S )(*N n ∈,若6321=S ,则=++15117a a a ( ) A . 6 B . 9 C .12 D . 154.已知函数)(x f 的图像关于原点对称,且周期为4,当)2,0(∈x 时,4)8()(2--=x x f ,则=)102(f ( )[参考数据:)5.6,6(102∈]A . 36B .-36 C. 18 D .-185.已知直线l 将圆0266:22=++-+y x y x C 的周长平分,且直线l 不经过第三象限,则直线l 的倾斜角θ的取值范围为( )A .]135,90[0B . ]120,90[0C. ]135,60[0D .]150,90[06.陀螺是汉族民间最早的娱乐工具之一,也作陀罗,闽南语称作“干乐”,北方叫作“冰尜”或“打老牛”.陀螺的主体形状一般是由上面部分的圆柱和下面部分的圆锥组成,从前的制作材料多为木头,现代多为塑料或铁制,玩耍时可用绳子缠绕用力抽绳,使其直立旋转;或利用发条的弹力使其旋转,下图画出的是某陀螺模型的三视图,已知网络纸中小正方形的边长为1,则该陀螺模型的体积为( )A .π3107 B .π33316+ C. π9932+ D .π33332+ 7.将函数ϕπϕsin )22cos(cos )sin 21()(2++-=x x x f 的图像向右平移3π个单位后,所得函数图像关于原点对称,则ϕ的取值可能为( ) A .6πB .3π-C.2πD .65π8.“033>-mnn m ”是“n m ln ln >”的( )[参考公式:))((2233b ab a b a b a +-+=+,))((2233b ab a b a b a ++-=-] A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要9.已知正方体1111ABCD A B C D -的体积为1,点M 在线段BC 上(点M 异于C B ,两点),点N 为线段1CC 的中点,若平面AMN 截正方体1111ABCD A B C D -所得的截面为四边形,则线段BM 的取值范围为( )A . ]31,0( B .]21,0( C. )1,21[ D .]32,21[10.已知)2,0(πθ∈,且3512sin 12=+θθcso ,则=θ2tan ( )A . 247B .724 C. 247± D .724±11.已知函数⎩⎨⎧≥++-<-=1,241|,)1(log |)(22x x x x x x f ,现有如下说法:①函数)(x f 的单调增区间为)1,0(和)2,1(;②不等式2)(>x f 的解集为)4,43()3,(Y --∞; ③函数1)21(--+=xx f y 有6个零点. 则上述说法中,正确结论的个数有( )A . 0个B . 1个 C.2个 D .3个12.已知定义在),0()0,(+∞-∞Y 上的函数)(x f 的导函数为)('x f ,且4)(3)('x ex f x xf x=-,28)2(e f =,则e x f >)(的解集为( )A .),(),(2121+∞--∞e e Y B .),(21+∞e C. ),1()1,(+∞--∞Y D .),1(+∞二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知实数y x ,满足⎪⎩⎪⎨⎧≤≥++≤331y y x y x ,则y x z 23-=的最大值为 .14.已知圆Ω过点)1,5(A ,)3,5(B ,)1,1(-C ,则圆Ω的圆心到直线012:=+-y x l 的距离为 .15.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且2=a ,0cos cos =-B c C b ,332sin sin =B A ,则ABC ∆的面积为 . 16.已知数列}{n a 的通项公式为)(1)1(1*N n n n n n a n ∈+++=,记数列}{n a 的前n 项和n S ,则在201721,,S S S Λ中,有 个有理数.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知函数)0,0)(6sin()(>>+=ωπωM x M x f 的大致图像如图所示,其中)1,0(A ,C B ,为函数)(x f 的图像与x 轴的交点,且π=||BC .(1)求ω,M 的值;(2)若函数x x f x g cos )()(=,求函数)(x g 在区间]2,6[ππ上的最大值和最小值. 18. 已知数列}{n a 的前n 项和n S )(*N n ∈,且2n S n =,数列}{n b 是首项为1,公比为q 的等比数列.(1)若数列}{n n b a +是等差数列,求该等差数列的通项公式; (2)求数列}{n n b n a ++的前n 项和n T . 19. 已知ABC ∆中,角060=B ,8=AB . (1)若12=AC ,求ABC ∆的面积; (2)若点N M ,满足NC MN BM ==32||=BM ,求AM 的值.20. 已知等差数列}{n a 满足53=a ,其前6项和为36,等比数列}{n b 的前n 项和)(212*1N n S n n ∈-=-. (1)求数列}{n a 、}{n b 的通项公式; (2)求数列}{n n b a 的前n 项和n T .21. 在如图所示的五面体ABCDEF 中,CD AB //,22==AD AB ,0120=∠=∠BCD ADC ,四边形EDCF 是正方形,二面角A DC E --的大小为090.(1)在线段AB 上找出一点G ,使得//EG 平面BDF ,并说明理由. (2)求直线EC 与平面BDF 所成角的正弦值. 22.已知函数xeax x f 22)(=,其中e 为自然对数的底数.(1)若1-=a ,求曲线x x f x g ln )()(+=在点))1(,1(g 处的切线方程; (2)若关于x 的不等式x xe xe xf 2212)(≥++在]0,(-∞上恒成立,求实数a 的取值范围.试卷答案1.【答案】C【解析】依题意,{}{}5252502A x y x x x x x ⎧⎫==-=-≥=≥⎨⎬⎩⎭,()(){}{}32023B x x x x x =-+<=-<<,故⎪⎭⎫⎢⎣⎡=⋂3,25B A ,故选C.2.【答案】A【解析】因为m u r //n r,故()40283x -=⋅--,解得4x =,故选A.3.【答案】B【解析】依题意,()()1217152121216322a a a a S ++===,故7151162a a a +==, 故711159a a a ++=,故选B.4.【答案】B【解析】依题意 ,函数()f x 为奇函数,则(()(21021088210f f f ==--, 因为()82100,2-,故((210821036f f =--=-,故选B. 5.【答案】A【解析】依题意,圆()()22:3316C x y -++=,易知直线l 过圆C 的圆心()3,3-;因为直线l 不经过第三象限,结合正切函数图象可知,0090,135θ⎡⎤∈⎣⎦,故选A.6.【答案】D【解析】依题意,该陀螺模型由一个四棱锥、一个圆柱以及一个圆锥拼接而成,故所求几何体的体积221132442333233333V πππ=⨯⨯⨯+⨯⨯+⨯⨯⨯=+,故选D. 7.【答案】A【解析】依题意,()()cos 2cos sin 2sin cos 2f x x x x ϕϕϕ=-=+,故向右平移3π个单位后,得到2cos 23y x πϕ⎛⎫=+- ⎪⎝⎭,故()232Z k k ππϕπ-=-+∈,则()6Z k k πϕπ=+∈,观察可知,故选A.8.【答案】B【解析】依题意,()()223300m n m mn n m n mn mn -++->⇔>0m n mn -⇔>110n m⇔->11n m ⇔>,而1111ln ln ln ln ln ln 0m n m n m n n m>⇔-<-⇔<⇔>>, 故“330m n mn->”是“ln ln m n >”的必要不充分条件,故选B.9.【答案】B【解析】依题意,正方体ABCD -A 1 B 1 C 1 D 1的棱长为1;如图所示,当点M 为线段BC 的中点时,由题意可知,截面为四边形AMND 1,从而当102BM <≤时,截面为四边形,当12BM >时,截面为五边形,故线段BM 的取值范围为10,2⎛⎤ ⎥⎝⎦,故选B.10.【答案】D【解析】依题意,()12sin cos 35sin cos θθθθ+=,令sin cos t θθ+=,则原式化为2112352t t -=⋅,解得75t =(57t =-舍去);故7sin cos 5θθ+=,则12sin cos 25θθ=,即22sin cos 12sin cos 25θθθθ=+,即2tan 121tan 25θθ=+,即212tan 25tan 120θθ-+=,解得34tan 43θ=或,则22tan 24tan 21tan 7θθθ==±-,故选D. 11.【答案】C【解析】作出()()22log 1,1,42,1,x x f x x x x ⎧-<⎪=⎨-++≥⎪⎩的图象如下所示,观察可知函数()f x 的单调增区间为()()0,11,2和,故①正确;()()22112log 12,422,x x f x x x x <⎧≥⎧⎪>⇔⎨⎨->-++>⎪⎩⎩,,或解得3344x x <-<<或,故②正确;令1210f x x ⎛⎫+--= ⎪⎝⎭,解得121f x x ⎛⎫+-= ⎪⎝⎭,而()1f x =有3个解11,,252-+;分别令1121,,252x x +-=-+,即分别有151,,452x x +=+,结合1y x x =+的图象可知,方程151,,452x x +=+有4个实数解,即函数121y f x x ⎛⎫=+-- ⎪⎝⎭有4个零点,故③错误,故选C.12.【答案】D 【解析】依题意,()()4'3xxf x f x x e-=,则()()4'3xxf x f x e x-=,即()()326'3x x f x x f x e x-=,故()3'x f x e x ⎡⎤=⎢⎥⎣⎦,故()3x f x e c x =+;因为()228f e =,故0c =,故()3x f x x e =;易知当0x <时,()0f x <,故只需考虑0x >的情况即可;因为()23'3x x f x x e x e =+,可知当0x >时,()'0f x >,故函数()f x 在()0,+∞上单调递增;注意到()1f e =,故()f x e >的解集为()1,+∞,故选D.13.【答案】6【解析】作出不等式组所表示的平面区域如下图阴影部分所示,观察可知,当直线32z x y =-过点()4,3C 时,z 取最大值,最大值为6.14.5 【解析】依题意,圆Ω的圆心是线段AB 与AC 中垂线的交点,故圆心为()2,2,到直线:210l x y -+=的距离55d ==. 15.2【解析】由cos cos 0b C c B -=可知,sin cos sin cos 0B C C B -=,即()sin 0B C -=,故B C =,故b c =,又sin 23sin A B =,则3a =故222222()33cos 2223b b ac b B b ac b +-+-===⨯⋅,因为2a =,所以3b c ==3cos B =6sin B =, 所以116sin 23222ABC S a c B ∆=⋅⋅=⨯=16.【答案】43【解析】依题意,()()111111n n na n n n n n n n n n n+-===+++++++1n n =+,故12 (11)n n S a a a n =+++=-+,因为44201845<<,故22212,3,...,44n +=,故有43个有理数.17.解:(1)依题意,2T BC π==,故2T π=,故21Tπω==; 因为()0,1A ,故sin16M π⋅=,故2M =;(2)由(1)知),6sin(2)(π+=x x f依题意,2()()cos cos 2sin()cos cos 6g x f x x x x x x x π=⋅=⋅+=+=1cos 222x x ++=1sin 2)62x π++(; 当62x ππ≤≤时,23x ππ≤≤,72266x πππ≤+≤,故1sin 2126x π⎛⎫-≤+≤ ⎪⎝⎭,故()302g x ≤≤,故函数()g x 在区间,62ππ⎡⎤⎢⎥⎣⎦上的最大值为32,最小值为0.18.解:(1)当1n =时,111a S ==;当2n ≥时,()221121n n n a S S n n n -=-=--=-,故()21*N n a n n =-∈;因为{}n n a b +是等差数列,故112233,,a b a b a b +++成等差数列, 即22(3)25q q +=++,解得1q =,所以n b =1; 所以2n n a b n +=,符合要求;(2)由(1)知,()121*N n n n a n b n n q n -++=-++∈;所以()11111111(21)nnnnnnnk n k k k k k k k k k k k T a k b a k b k k q-========++=++=-++∑∑∑∑∑∑∑=∑∑=-=+-nk k n k qk 111)13(21132n k k n n q -=+=+∑,当1q =时,2233322n n n n nT n ++=+=; 当1q ≠时,23121nn n n q T q +-=+-. 19.解:(1)在△ABC 中,设角C B A ,,所对的边分别为c b a ,,,由正弦定理sin sin bc B C=,得sin sin c B C b === 又b c >,所以B C >,则C为锐角,所以cos C =, 则sin sin()sin cos cos sin A B C B C B C =+=+12=+=所以△ABC的面积1sin 482S bc A ===+.方法二:由余弦定理可得22126428cos60a a =+-⋅⋅⋅o ,解得644+=a , 所以△ABC 的面积3822423)644(821sin 21+=⨯+⨯⨯==B ac S . (2)由题意得M,N 是线段BC 的两个三等分点,设BM x =,则2BN x =,AN =,又60B =o ,8AB =, 在△ABN 中,由余弦定理得2212644282cos60x x x =+-⋅⋅⋅o , 解得2x =(负值舍去), 则4BN =,所以222AB AN BN =+, 所以90ANB ∠=°, 在Rt △AMN中,AM ===20.解:(1)设等差数列{}n a 的公差为d ,由已知得1125,61536,a d a d +=⎧⎨+=⎩解得11,2,a d =⎧⎨=⎩所以()21*N n a n n =-∈;对数列{}n b ,因为1122n n S -=-,当1n =时,11211b S ==-=, 当2n ≥时,112111122222n n n n n n b S S ----⎛⎫⎛⎫=-=---= ⎪ ⎪⎝⎭⎝⎭; 综上所述,()112*N n n b n -=∈;(6分) (2)由(1)得1212n n n n a b --=,所以122135232112222n n n n n T ----=+++++…,①23111352321222222n n n n n T ---=+++++…,② -①②得:2211112123113222222n n n nn n T --+=+++++-=-…,所以4662n nnT+=-=12326-+-nn.21. 解:(1)当点G为线段AB的中点时,EG //平面BDF;取AB的中点G,连接EG;因为//AB CD,0120ADC BCD∠=∠=,22AB AD==,所以1DC=,又四边形EDCF是正方形,所以//EF BG,EF BG=, 故四边形EFBG为平行四边形,故//EG BF,因为EG⊄平面BDF,BF⊂平面BDF,故EG//平面BDF(2)因为四边形EDCF是正方形,二面角E DC A--的大小为90°,所以ED⊥平面ABCD.在△ABD中,由余弦定理得3BD=,所以AD BD⊥.如图,以D为原点,以DA DB DE,,所在直线分别为,,x y z轴建立空间坐标系,则(0,0,0)D,13(,,0)22C-,(0,0,1)E,(0,3,0)B,13(,,1)22F-,所以13(,,1)22EC=--u u u r,13(,,1)22DF=-u u u r,(0,3,0)DB=u u u r,设平面BDF的法向量为(,,)x y z=n,由0.DBDF⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u r,nn所以301322yx y z⎧=⎪⎨-++=⎪⎩,取1z=,则2,0x y==,得(2,0,1)=n,(10分)故所求正弦值为210sin525ECECθ⋅===⋅u u u ru u u rnn.22.解:(1)依题意,22(x)()ln e +ln x g f x x x x =+=-,2221g'(x)2e 2e +x x x x x =--, 故2(1)e g =-,而2g'(1)4e +1=-,故所求方程为()()22e 4e +11y x +=--, 即()224e +13e 1y x =-+-;(2)()2222()2e 1e e 2110x x x f x x ax x ++≥⇔+-+≥;依题意,当0x ≤时,()22e 2110x ax x +-+≥;即当0x ≤时,221210e x ax x +-+≥; 设()22121e x h x ax x =+-+,则2221()222(1)e e x xh x ax ax '=+-=+-, 设21()1e x m x ax =+-,则22()ex m x a '=+. ①当2a ≥-时,220,2ex x ≤∴≥Q ,从而()0m x '≥(当且仅当0x =时,等号成立) ()211ex m x ax ∴=+-在(],0-∞上单调递增, 又()00,m =∴Q 当0x ≤时,()0m x ≤,从而当0x ≤时,()0h x '≤,()22121ex h x ax x ∴=+-+在(],0-∞上单调递减,又()00h =Q , 从而当0x ≤时,()0h x ≥,即221210e x ax x +-+≥, 于是当0x ≤时,22()2e 1e x x f x x ++≥;②当2a <-时,令()0m x '=,得220,e x a +=12ln 0,2x a ⎛⎫∴=-< ⎪⎝⎭ 故当]12(ln(),02x a ∈-时, ()222e 0e x x a m x a ⎛⎫'=+< ⎪⎝⎭, ()211e x m x ax ∴=+-在]12(ln(),02a-上单调递减, 又()00,m =∴Q 当]12(ln(),02x a∈-时,()0m x ≥, 从而当]12(ln(),02x a∈-时,()0h x '≥, ()22121e x h x ax x ∴=+-+在]12(ln(),02a -上单调递增,又()00h =Q ,从而当12(ln(),0)2x a ∈-时,()0h x <,即221210ex ax x +-+< 于是当12(ln(),0)2x a ∈-时,22()2e 1e x x f x x ++<, 不符合题意, 综上所述,实数a 的取值范围为[)2,-+∞.。

2018年江西省赣州市高考数学二模试卷(理科)Word版含解析

2018年江西省赣州市高考数学二模试卷(理科)Word版含解析

2018年江西省赣州市高考二模试卷(理科数学)一、选择题:本大题共12小题,每小题5分,在每一小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z满足(1﹣i)2•z=1+2i,则在复平面内复数对应的点为()A.B.C.D.P)∪Q=R,则a的取值范围是()2.已知集合P={x|x2﹣2x﹣8≤0},Q={x|x≥a},(∁RA.(﹣2,+∞)B.(4,+∞)C.(﹣∞,﹣2] D.(﹣∞,4]3.对于下列说法正确的是()A.若f(x)是奇函数,则f(x)是单调函数B.命题“若x2﹣x﹣2=0,则x=1”的逆否命题是“若x≠1,则x2﹣x﹣2=0”∈R,C.命题p:∀x∈R,2x>1024,则¬p:∃xD.命题“∃x∈(﹣∞,0),2x<x2”是真命题4.如图,ABCD是以O为圆心、半径为2的圆的内接正方形,EFGH是正方形ABCD的内接正方形,且E、F、G、H分别为AB、BC、CD、DA的中点.将一枚针随机掷到圆O内,用M表示事件“针落在正方形ABCD内”,N表示事件“针落在正方形EFGH内”,则P(N|M)=()A.B. C.D.5.函数(其中e是自然对数的底数)的大致图象为()A.B.C.D.6.已知双曲线的离心率为,则抛物线x 2=4y 的焦点到双曲线的渐近线的距离是( )A .B .C .D .7.正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,点E ,F 分别是棱D 1C 1,B 1C 1的中点,过E ,F 作一平面α,使得平面α∥平面AB 1D 1,则平面α截正方体的表面所得平面图形为( ) A .三角形 B .四边形 C .五边形 D .六边形8.执行如图所示的程序框图,若输入的a=16,b=4,则输出的n=( )A .4B .5C .6D .79.已知公差不为0的等差数列{a n }与等比数列,则{b n }的前5项的和为( )A .142B .124C .128D .14410.如图所示,为了测量A ,B 处岛屿的距离,小明在D 处观测,A ,B 分别在D 处的北偏西15°、北偏东45°方向,再往正东方向行驶40海里至C 处,观测B 在C 处的正北方向,A 在C 处的北偏西60°方向,则A ,B 两处岛屿间的距离为( )A.海里B.海里C.海里D.40海里11.已知动点A(xA ,yA)在直线l:y=6﹣x上,动点B在圆C:x2+y2﹣2x﹣2y﹣2=0上,若∠CAB=30°,则xA的最大值为()A.2 B.4 C.5 D.612.已知函数f(x)=x+e x﹣a,,其中e为自然对数的底数,若存在实数x0,使f(x)﹣g(x)=4成立,则实数a的值为()A.n2﹣1 B.1﹣1n2 C.1n2 D.﹣1n2二、填空题:本大题共4小题,每小题5分.13.已知向量=(1,﹣2),⊥,|2﹣|=5,则||= .14.若的展开式中存在常数项,则常数项为.15.某多面体的三视图如图所示,则该多面体外接球的体积为.16.如图所示,由直线x=a,x=a+1(a>0),y=x2及x轴围成的曲边梯形的面积介于小矩形与大矩形的面积之间,即.类比之,若对∀n∈N+,不等式恒成立,则实数k等于.三、解答题:解答须写出文字说明、证明过程和演算步骤.17.已知函数f(x)=sinωxcosωx﹣(ω>0)图象的两条相邻对称轴为.(1)求函数y=f(x)的对称轴方程;(2)若函数y=f(x)﹣在(0,π)上的零点为x1,x2,求cos(x1﹣x2)的值.18.某经销商从外地水产养殖厂购进一批小龙虾,并随机抽取40只进行统计,按重量分类统计结果如图:(1)记事件A为:“从这批小龙虾中任取一只,重量不超过35g的小龙虾”,求P(A)的估计值;(2)若购进这批小龙虾100千克,试估计这批小龙虾的数量;(3)为适应市场需求,了解这批小龙虾的口感,该经销商将这40只小龙虾分成三个等级,如下表:按分层抽样抽取10只,再随机抽取3只品尝,记X为抽到二等品的数量,求抽到二级品的期望.19.如图,五面体ABCDE 中,四边形ABDE 是菱形,△ABC 是边长为2的正三角形,∠DBA=60°,.(1)证明:DC ⊥AB ;(2)若点C 在平面ABDE 内的射影H ,求CH 与平面BCD 所成的角的正弦值.20.如图,椭圆的离心率为,顶点为A 1、A 2、B 1、B 2,且.(1)求椭圆C 的方程;(2)P 是椭圆C 上除顶点外的任意点,直线B 2P 交x 轴于点Q ,直线A 1B 2交A 2P 于点E .设A 2P 的斜率为k ,EQ 的斜率为m ,试问2m ﹣k 是否为定值?并说明理由.21.已知函数f(x)=x2﹣x,g(x)=e x﹣ax﹣1(e为自然对数的底数).(1)讨论函数g(x)的单调性;(2)当x>0时,f(x)≤g(x)恒成立,求实数a的取值范围.选修4-4:坐标系与参数方程22.在直角坐标系xOy中,直线(t为参数,)与圆C:x2+y2﹣2x ﹣4x+1=0相交于点A,B,以O为极点,x轴正半轴为极轴建立极坐标系.(1)求直线l与圆C的极坐标方程;(2)求的最大值.选修4-5:不等式选讲23.已知函数f(x)=m﹣|2﹣x|,且f(x+2)>0的解集为(﹣1,1).(1)求m的值;(2)若正实数a,b,c,满足a+2b+3c=m.求的最小值.2018年江西省赣州市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每一小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z满足(1﹣i)2•z=1+2i,则在复平面内复数对应的点为()A.B.C.D.【考点】A4:复数的代数表示法及其几何意义.【分析】利用复数的运算法则、共轭复数的定义、几何意义即可得出.【解答】解:(1﹣i)2•z=1+2i,∴﹣2i•z=1+2i,∴﹣2i•z•i=i•(1+2i),∴2z=i﹣2,解得z=﹣1+i.则在复平面内复数=﹣1﹣i对应的点为.故选:A.2.已知集合P={x|x2﹣2x﹣8≤0},Q={x|x≥a},(∁RP)∪Q=R,则a的取值范围是()A.(﹣2,+∞)B.(4,+∞)C.(﹣∞,﹣2] D.(﹣∞,4]【考点】1H:交、并、补集的混合运算.【分析】先求出集合P,从而得到CR P={x|x<﹣2或x>4},再由Q={x|x≥a},(∁RP)∪Q=R,能求出a的取值范围.【解答】解:∵集合P={x|x2﹣2x﹣8≤0}={x|﹣2≤x≤4},∴CRP={x|x<﹣2或x>4},∵Q={x|x≥a},(∁RP)∪Q=R,∴a≤﹣2,故a的取值范围是(﹣∞,﹣2].故选为:C.3.对于下列说法正确的是()A.若f(x)是奇函数,则f(x)是单调函数B.命题“若x2﹣x﹣2=0,则x=1”的逆否命题是“若x≠1,则x2﹣x﹣2=0”∈R,C.命题p:∀x∈R,2x>1024,则¬p:∃xD.命题“∃x∈(﹣∞,0),2x<x2”是真命题【考点】2K:命题的真假判断与应用.【分析】由奇函数y=在(﹣∞,0),(0,+∞)递减,即可判断A;由原命题的逆否命题的形式,即可判断B;由全称命题的否定为特称命题,注意不等号,即可判断C;由x=﹣1,代入计算即可判断D.【解答】解:对于A,若f(x)是奇函数,则f(x)是单调函数,不一定,比如y=不是单调函数,在(﹣∞,0),(0,+∞)递减,故A错;对于B,命题“若x2﹣x﹣2=0,则x=1”的逆否命题是“若x≠1,则x2﹣x﹣2≠0”,故B错;∈R,2≤1024,故C错;对于C,命题p:∀x∈R,2x>1024,则¬p:∃x对于D,命题“∃x∈(﹣∞,0),2x<x2”是真命题,正确,比如x=﹣1,2﹣1=<1.故选:D.4.如图,ABCD是以O为圆心、半径为2的圆的内接正方形,EFGH是正方形ABCD的内接正方形,且E、F、G、H分别为AB、BC、CD、DA的中点.将一枚针随机掷到圆O内,用M表示事件“针落在正方形ABCD内”,N表示事件“针落在正方形EFGH内”,则P(N|M)=()A.B. C.D.【考点】CM:条件概率与独立事件.【分析】由题意,正方形EFGH与正方形ABCD的边长比为,面积比为,即可求出P(N|M).【解答】解:由题意,正方形EFGH与正方形ABCD的边长比为,面积比为,∴P(N|M)=,故选C.5.函数(其中e是自然对数的底数)的大致图象为()A.B.C.D.【考点】3O:函数的图象.【分析】根据指数函数的性质判断f(x)的符号,从而得出正确选项.【解答】解:当x<0时,0<e2x<1,∴f(x)<0,当x>0时,e2x>1,∴f(x)<0,故选A.6.已知双曲线的离心率为,则抛物线x2=4y的焦点到双曲线的渐近线的距离是()A. B. C.D.【考点】KC:双曲线的简单性质.【分析】由双曲线的离心率求得=2,即可求得双曲线的渐近线方程,由抛物线的焦点坐标,由点到直线的距离公式,即可求得抛物线x2=4y的焦点到双曲线的渐近线的距离.【解答】解:由双曲线的离心率e===,即=2,则双曲线的渐近线方程y=±x,即y=±2x,抛物线x2=4y的焦点F(0,1),则F(0,1)到y±2x=0的距离d==,∴抛物线x2=4y的焦点到双曲线的渐近线的距离,故选B.7.正方体ABCD﹣A1B1C1D1的棱长为1,点E,F分别是棱D1C1,B1C1的中点,过E,F作一平面α,使得平面α∥平面AB1D1,则平面α截正方体的表面所得平面图形为()A.三角形B.四边形C.五边形D.六边形【考点】LA:平行投影及平行投影作图法.【分析】分别取BB1、AB、AD、DD1中点G、H、M、N,连结FG、GH、MH、MN、EN,推导出平面EFGHMN∥平面AB1D1,由此能求出平面α截正方体的表面所得平面图形为六边形.【解答】解:分别取BB1、AB、AD、DD1中点G、H、M、N,连结FG、GH、MH、MN、EN,∵点E,F分别是棱D1C1,B1C1的中点,∴EF∥MH∥B1D1,MN∥FG∥AD1,GH∥EN∥AB1,∵MH∩GH=H,AB1∩B1D1=B1,∴平面EFGHMN∥平面AB1D1,∵过E,F作一平面α,使得平面α∥平面AB1D1,∴平面α截正方体的表面所得平面图形为六边形.故选:D.8.执行如图所示的程序框图,若输入的a=16,b=4,则输出的n=()A .4B .5C .6D .7【考点】EF :程序框图.【分析】模拟程序的运行,依次写出每次循环得到的n ,a ,b 的值,当a=121.5,b=128时满足条件a ≤b ,退出循环,输出n 的值为5. 【解答】解:模拟程序的运行,可得 a=16,b=4,n=1 a=24,b=8不满足条件a ≤b ,执行循环体,n=2,a=36,b=16 不满足条件a ≤b ,执行循环体,n=3,a=54,b=32 不满足条件a ≤b ,执行循环体,n=4,a=81,b=64 不满足条件a ≤b ,执行循环体,n=5,a=121.5,b=128 满足条件a ≤b ,退出循环,输出n 的值为5. 故选:B .9.已知公差不为0的等差数列{a n }与等比数列,则{b n }的前5项的和为( )A .142B .124C .128D .144 【考点】89:等比数列的前n 项和.【分析】b 1=a 2=2+d ,b 2=a 4=2+3d ,b 3=a 8=2+7d ,利用(2+3d )2=(2+d )(2+7d ),d ≠0,解得d .即可得出公比q,再利用求和公式即可得出.【解答】解:b1=a2=2+d,b2=a4=2+3d,b3=a8=2+7d,则(2+3d)2=(2+d)(2+7d),d≠0,解得d=2.∴b1=4,b2=8,公比q=2.∴{bn}的前5项的和==124.故选:B.10.如图所示,为了测量A,B处岛屿的距离,小明在D处观测,A,B分别在D处的北偏西15°、北偏东45°方向,再往正东方向行驶40海里至C处,观测B在C处的正北方向,A在C处的北偏西60°方向,则A,B两处岛屿间的距离为()A.海里B.海里C.海里D.40海里【考点】HU:解三角形的实际应用.【分析】分别在△ACD和△BCD中利用正弦定理计算AD,BD,再在△ABD中利用余弦定理计算AB.【解答】解:连接AB,由题意可知CD=40,∠ADC=105°,∠BDC=45°,∠BCD=90°,∠ACD=30°,∴∠CAD=45°,∠ADB=60°,在△ACD中,由正弦定理得,∴AD=20,在Rt△BCD中,∵∠BDC=45°,∠BCD=90°,∴BD=CD=40.在△ABD中,由余弦定理得AB==20.故选A.11.已知动点A(xA ,yA)在直线l:y=6﹣x上,动点B在圆C:x2+y2﹣2x﹣2y﹣2=0上,若∠CAB=30°,则xA的最大值为()A.2 B.4 C.5 D.6【考点】J9:直线与圆的位置关系.【分析】由题意,当AB是圆的切线时,∠CAB最大,此时CA=4,即可求得点A的横坐标的最大值.【解答】解:由题意,当AB是圆的切线时,∠CAB最大,此时CA=4,即可求得点A的横坐标的最大值.点A的坐标满足:(x﹣1)2+(y﹣1)2=16与y=6﹣x,解得x=5或x=1.∴点A的横坐标的最大值为5.故选C.12.已知函数f(x)=x+e x﹣a,,其中e为自然对数的底数,若存在实数x0,使f(x)﹣g(x)=4成立,则实数a的值为()A.n2﹣1 B.1﹣1n2 C.1n2 D.﹣1n2【考点】2I:特称命题.【分析】求出f(x)﹣g(x)的解析式,令,根据函数的单调性求出h(x)的最小值,结合不等式的性质求出对应的a的值即可.【解答】解:f(x)﹣g(x)=,令,则,知h(x)在上是减函数,在(0,+∞)上是增函数,所以h(x)min=h(0)=0,又所以f(x)﹣g(x)≥4,当且仅当即x=0,a=﹣ln2,故选:D.二、填空题:本大题共4小题,每小题5分.13.已知向量=(1,﹣2),⊥,|2﹣|=5,则||= .【考点】9R:平面向量数量积的运算.【分析】由条件容易得出,这样对的两边同时平方即可求出的值,进而求出的值.【解答】解:;∴,且;∴=;∴;∴.故答案为:.14.若的展开式中存在常数项,则常数项为﹣84 .【考点】DB:二项式系数的性质.【分析】写出二项式(x﹣)n的展开式的通项,要使的展开式中存在常数项,再由x,y的指数为0求得n,r的值,则答案可求.r(﹣1)r x n﹣3r y﹣r,【解答】解:(x﹣)n的展开式的通项为Cn要使的展开式中存在常数项,则,解得r=3,n=9,3(﹣1)3=﹣=﹣84,则常数项为:C9故答案为:﹣8415.某多面体的三视图如图所示,则该多面体外接球的体积为.【考点】LG:球的体积和表面积;L7:简单空间图形的三视图.【分析】根据三视图得出空间几何体是镶嵌在正方体中的四棱锥O﹣ABCD,正方体的棱长为2,A,D为棱的中点,利用球的几何性质求解即可.【解答】解:根据三视图得出:该几何体是镶嵌在正方体中的四棱锥O﹣ABCD,正方体的棱长为2,A,D为棱的中点.根据几何体可以判断:球心应该在过A,D的平行于底面的中截面上,设球心到截面BCO的距离为x,则到AD的距离为:2﹣x,∴R2=x2+()2,R2=12+(2﹣x)2,解得出:x=,R=,该多面体外接球的体积为: =,故答案为.16.如图所示,由直线x=a,x=a+1(a>0),y=x2及x轴围成的曲边梯形的面积介于小矩形与大矩形的面积之间,即.类比之,若对∀n∈N,不等式+恒成立,则实数k等于 2 .【考点】6G:定积分在求面积中的应用.【分析】利用定义可得即相加求出即可.【解答】解:因为,所以<klnx|<,即,同理,…,,累加得所以ln4=k[ln(2n)﹣lnn)],所以ln4=kln2,故k=2,故答案为:2.三、解答题:解答须写出文字说明、证明过程和演算步骤.17.已知函数f(x)=sinωxcosωx﹣(ω>0)图象的两条相邻对称轴为.(1)求函数y=f(x)的对称轴方程;(2)若函数y=f(x)﹣在(0,π)上的零点为x1,x2,求cos(x1﹣x2)的值.【考点】GL:三角函数中的恒等变换应用;H2:正弦函数的图象.【分析】(1)利用二倍角和辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,根据两条相邻对称轴为.求解出ω,即可求解对称轴方程.(2)利用零点为x 1,x 2,求解x 1,x 2的对称轴.即可求cos (x 1﹣x 2)的值.【解答】解:(1)函数化简可得f (x )==由题意可得周期T=π,∴∴故函数y=f (x )的对称轴方程为即(2)由函数y=f (x )﹣在(0,π)上的零点为x 1,x 2,可知,且.易知(x 1,f (x 1))与(x 2,f (x 2))关于对称,则,∴==sin (2)=.18.某经销商从外地水产养殖厂购进一批小龙虾,并随机抽取40只进行统计,按重量分类统计结果如图:(1)记事件A 为:“从这批小龙虾中任取一只,重量不超过35g 的小龙虾”,求P (A )的估计值;(2)若购进这批小龙虾100千克,试估计这批小龙虾的数量;(3)为适应市场需求,了解这批小龙虾的口感,该经销商将这40只小龙虾分成三个等级,如下表:按分层抽样抽取10只,再随机抽取3只品尝,记X为抽到二等品的数量,求抽到二级品的期望.【考点】CH:离散型随机变量的期望与方差;CG:离散型随机变量及其分布列.【分析】(1)由于40只小龙虾中重量不超过35g的小龙虾有6+10+12(只),利用古典概率计算公式即可得出.(2)求出其平均数,可得从统计图中可以估计每只小龙虾的重量.(3)由题意知抽取一等品、二等品、三等品分别为4只、5只、1只,X=0,1,2,3.利用超几何分布列的概率的计算公式即可得出.【解答】解:(1)由于40只小龙虾中重量不超过35g的小龙虾有6+10+12=28(只)所以.(2)从统计图中可以估计每只小龙虾的重量=(克)所以购进100千克,小龙虾的数量约有100000÷28.5≈3509(只)(3)由题意知抽取一等品、二等品、三等品分别为4只、5只、1只,X=0,1,2,3则可得,,,所以.19.如图,五面体ABCDE中,四边形ABDE是菱形,△ABC是边长为2的正三角形,∠DBA=60°,.(1)证明:DC⊥AB;(2)若点C在平面ABDE内的射影H,求CH与平面BCD所成的角的正弦值.【考点】MI:直线与平面所成的角;LO:空间中直线与直线之间的位置关系.【分析】(1)取AB的中点O,连OC,OD,证明:AB⊥平面DOC,即可证明DC⊥AB;(2)若点C在平面ABDE内的射影H,建立空间直角坐标系,利用向量方法求CH与平面BCD 所成的角的正弦值.【解答】(1)证明:如图,取AB的中点O,连OC,OD,因为△ABC是边长为2的正三角形,所以,又四边形ABDE是菱形,∠DBA=60°,所以△DAB是正三角形,所以,而OD∩OC=O,所以AB⊥平面DOC,所以AB⊥CD.(2)解:由(1)知OC=CD,平面DOC⊥平面ABD,因为平面DOC与平面ABD的交线为OD,所以点C在平面ABDE内的射影H必在OD上,所以H是OD的中点,如图所示建立空间直角坐标系O﹣xyz,,,所以,,,设平面BDC的法向量为,则,取,则x=3,z=1,即平面BCD 的一个法向量为.所以CH 与平面BCD 所成的角的正弦值为=.20.如图,椭圆的离心率为,顶点为A 1、A 2、B 1、B 2,且.(1)求椭圆C 的方程;(2)P 是椭圆C 上除顶点外的任意点,直线B 2P 交x 轴于点Q ,直线A 1B 2交A 2P 于点E .设A 2P 的斜率为k ,EQ 的斜率为m ,试问2m ﹣k 是否为定值?并说明理由.【考点】KL :直线与椭圆的位置关系.【分析】(1)由椭圆的离心率公式,根据向量数量积的坐标运算,即可求得c 的值,求得a 的值,即可求得椭圆的标准方程;(2)直线A 2P 的方程为y=k (x ﹣2),代入椭圆方程,求得P 点坐标,直线B 2P 的方程为=(),求得Q 点坐标,联立求得E 点坐标,求得m ,则(定值).【解答】解:(1)由,则,由题意及图可得A1(﹣a,0),B1(0,﹣b),B2(0,b),∴又,则a2﹣b2=3,∴∴∴椭圆C的方程为:;(2)证明:由题意可知A1(﹣2,0),A2(2,0),B1(0,﹣1),B2(0,1),由A2P的斜率为k,则直线A2P的方程为y=k(x﹣2),由,得(1+4k2)x2﹣16k2x+16k2﹣4=0,其中,则,,则直线B2P的方程为=(),令y=0,则,即直线A1B2的方程为x﹣2y+2=0,由解得,则,则EQ的斜率,∴(定值),2m﹣k为定值.21.已知函数f(x)=x2﹣x,g(x)=e x﹣ax﹣1(e为自然对数的底数).(1)讨论函数g(x)的单调性;(2)当x>0时,f(x)≤g(x)恒成立,求实数a的取值范围.【考点】6E:利用导数求闭区间上函数的最值;6B:利用导数研究函数的单调性.【分析】(1)求出g'(x)=e x﹣a,由a≤0和a>0分类讨论,由此能求出结果.(2)当x>0时,令,则令φ(x)=e x(x﹣1)﹣x2+1(x>0),则φ'(x)=x(e x﹣2),由此利用导数性质能求出实数a 的取值范围.【解答】解:(1)∵g(x)=e x﹣ax﹣1,∴g'(x)=e x﹣a①若a≤0,g'(x)>0,g(x)在(﹣∞,+∞)上单调递增;②若a>0,当x∈(﹣∞,lna]时,g'(x)<0,g(x)单调递减;当x∈(lna,+∞)时,g'(x)>0,g(x)单调递增.(2)当x>0时,x2﹣x≤e x﹣ax﹣1,即令,则令φ(x)=e x(x﹣1)﹣x2+1(x>0),则φ'(x)=x(e x﹣2)当x∈(0,ln2)时,φ'(x)<0,φ(x)单调递减;当x∈(ln2,+∞)时,φ'(x)>0,φ(x)单调递增又φ(0)=0,φ(1)=0,∴当x∈(0,1)时,φ(x)<0,即h'(x)<0,∴h(x)单调递减;当x∈(0,+∞)时,φ(x)=(x﹣1)(e x﹣x﹣1>0,即h'(x)>0,∴h(x)单调递增,∴h(x)=h(1)=e﹣1,min∴实数a的取值范围是(﹣∞,e﹣1].选修4-4:坐标系与参数方程22.在直角坐标系xOy中,直线(t为参数,)与圆C:x2+y2﹣2x ﹣4x+1=0相交于点A,B,以O为极点,x轴正半轴为极轴建立极坐标系.(1)求直线l与圆C的极坐标方程;(2)求的最大值.【考点】QH:参数方程化成普通方程;Q4:简单曲线的极坐标方程.【分析】(1)利用三种方程的转化方法,求直线l与圆C的极坐标方程;(2)利用极径的意义,即可求的最大值.【解答】解:(1)直线l的极坐标方程为θ=α(ρ∈R),圆C的极坐标方程为ρ2﹣2ρcosθ﹣4ρsinθ+1=0,(2)θ=α,代入ρ2﹣2ρcosθ﹣4ρsinθ+1=0,得ρ2﹣2ρcosα﹣4ρsinα+1=0,显然==,所以的最大值为.选修4-5:不等式选讲23.已知函数f(x)=m﹣|2﹣x|,且f(x+2)>0的解集为(﹣1,1).(1)求m的值;(2)若正实数a,b,c,满足a+2b+3c=m.求的最小值.【考点】RA:二维形式的柯西不等式;R4:绝对值三角不等式.【分析】(1)由f(x+2)>0得|x|<m,求出解集,利用f(x+2)>0的解集为(﹣1,1),求m的值;(2)由(1)知a+2b+3c=1,利用柯西不等式即可求的最小值.【解答】解:(1)因为f(x+2)=m﹣|x|所以由f(x+2)>0得|x|<m由|x|<m有解,得m>0,且其解集为(﹣m,m)又不等式f(x+2)>0解集为(﹣1,1),故m=1(2)由(1)知a+2b+3c=1,又a,b,c是正实数,由柯西不等式得当且仅当时取等号故的最小值为9.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江西省重点中学协作体2018届高三第二次联考数学(理)试卷第I卷一、选择题:本题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若(为虚数单位),则复数()A. B. C. D.【答案】B【解析】由可得:,故选B.2. 设集合,,,则中的元素个数为()A. B. C. D.【答案】C【解析】分析:由题意列表计算所有可能的值,然后结合集合元素的互异性确定集合M,最后确定其元素的个数即可.详解:结合题意列表计算M中所有可能的值如下:观察可得:,据此可知中的元素个数为.本题选择C选项.点睛:本题主要考查集合的表示方法,集合元素的互异性等知识,意在考查学生的转化能力和计算求解能力.3. 已知命题直线过不同两点、,命题直线的方程为,则命题是命题的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C【解析】分析:由题意结合两点式直线式方程的特征即可确定正确的结果.详解:方程表示经过点、的两点式方程,直线的两点式可得表示经过任意两点的直线,据此可得:命题是命题的充要条件.本题选择C选项.点睛:本题主要考查两点式直线方程的应用范围,充要条件的判断等知识,意在考查学生的转化能力和计算求解能力.4. 《九章算术》是人类科学史上应用数学的最早巅峰,书中有这样一道题:“今有大夫、不更、簪褭、上造、公士,凡五人,共猎得五只鹿.欲以爵次分之,问各得几何?”其译文是“现有从高到低依次为大夫、不更、簪褭、上造、公士的五个不同爵次的官员,共猎得五只鹿,要按爵次高低分配(即根据爵次高低分配得到的猎物数依次成等差数列),问各得多少鹿?”已知上造分只鹿,则公士所得鹿数为()A. 只B. 只C. 只D. 只【答案】C【解析】分析:由题意将原问题转化为等差数列前n项和的问题,然后结合题意整理计算即可求得最终结果.详解:设大夫、不更、簪褭、上造、公士所分得的鹿依次为,由题意可知,数列为等差数列,且,原问题等价于求解的值.由等差数列前n项和公式可得:,则,数列的公差为,故.即公士所得鹿数为只.本题选择C选项.点睛:本题主要考查数列知识的综合运用,意在考查学生的转化能力和计算求解能力.5. 函数的减区间为()A. B. C. D.【答案】D【解析】函数的定义域为,由题得所以函数的单调减区间为,故选D.6. 已知双曲线的焦距是虚轴长的倍,则该双曲线的渐近线方程为()A. B. C. D.【答案】A【解析】,,渐近线方程为,即,故选A.7. 如图所示的程序框图,则满足的输出有序实数对的概率为()A. B. C. D.【答案】D【解析】分析:由题意结合流程图和几何概型整理计算即可求得最终结果.详解:表示的平面区域为图中的正方形内部区域,满足的区域为图中应用部分的区域,正方形和图中的阴影部分区域均关于坐标原点直线对称,结合图形的对称性可知,满足题意的概率值为.本题选择D选项.点睛:数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A满足的不等式,在图形中画出事件A发生的区域,据此求解几何概型即可.8. 已知关于的方程在区间上有两个根,且,则实数的取值范围是()A. B. C. D.【答案】B【解析】分析:首先利用诱导公式化简所给的方程,然后数形结合整理计算即可求得最终结果.详解:由诱导公式可知:,绘制函数在区间上的图象如图所示,由题意可知函数与函数有两个不同的交点,且交点横坐标满足:,则和轴为临界条件,据此有:,解得:.本题选择B选项.点睛:函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.9. 已知一个三棱锥的三视图如图所示,主视图和俯视图都是直角梯形,左视图是正方形,则该几何体最长的棱长为()A. B. C. D.【答案】D【解析】分析:首先确定该几何体的空间结构,然后分别求得各条棱的长度,最后确定最长的棱长即可.详解:如图所示,在棱长为4的正方体中,点E为棱AD的中点,题中的三视图对应的几何体为三棱锥,其中,,,则该几何体最长的棱长为.本题选择D选项.点睛:本题主要考查三视图还原几何体,空间几何体的结构特征等知识,意在考查学生的转化能力和计算求解能力.10. 已知一袋中有标有号码、、的卡片各一张,每次从中取出一张,记下号码后放回,当三种号码的卡片全部取出时即停止,则恰好取次卡片时停止的概率为()A. B. C. D.【答案】B【解析】分析:由题意结合排列组合知识和古典概型计算公式整理计算即可求得最终结果.详解:根据题意可知,取5次卡片可能出现的情况有种;由于第5次停止抽取,所以前四次抽卡片中有且只有两种编号,所以总的可能有种;所以恰好第5次停止取卡片的概率为.本题选择B选项.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.11. 已知向量、、为平面向量,,且使得与所成夹角为.则的最大值为()A. B. C. D.【答案】A【解析】分析:首先由坐标结合几何意义确定向量对应的轨迹,然后利用圆的性质整理计算即可求得最终详解:设向量与的夹角为,由题意可得:,则,如图所示,在平面直角坐标系中,,,不妨认为,,延长到,使得,则,点为平面直角坐标系中的点,,则,,则满足题意时,,结合为定点,且,由正弦定理:可得,则点C的轨迹为以为圆心,为半径的优弧上,当点三点共线,即点位于图中点的位置时,取得最大值,其最大值为.本题选择A选项.点睛:本题的核心是考查数量积的坐标运算和数形结合的数学思想.求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.12. 已知函数(),,对任意的,关于的方程在有两个不同的实数根,则实数的取值范围(其中为自然对数的底数)为A. B. C. D.【答案】C【解析】分析:由题意分别考查函数和函数的性质,据此得到关于a的不等式组,求解不等式组即可求得最终结果.详解:函数的定义域为,且,当a=0时,f′(x)>0,f(x)在(0,+∞)单调递增.当a>0时,f′(x)>0,f(x)在(0,+∞)单调递增.当a<0时,f(x)在递减,在递增.,则,x∈(−∞,1),g′(x)>0,g(x)单调递增,x∈(1,+∞)时,g′(x)<0,g(x)单调递减,其中,则函数在区间上的值域为,在有两个不同的实数根,则必有,且:由的解析式有:,,,则满足题意时应有:,注意到函数是单调递增函数,且,据此可知方程的唯一实数根满足,即,则不等式的解集为,求解不等式可得.据此可得实数的取值范围是.本题选择C选项.点睛:本题主要考查函数单调性的应用,导函数研究函数的值域,导函数研究函数的单调性等知识,意在考查学生的转化能力和计算求解能力.第II卷二、填空题:本题共5个小题,每小题5分,共25分.13. 多项式的展开式中常数项是_____________.【答案】-672【解析】分析:由题意首先结合通项公式写出通项,然后结合展开式的性质整理计算即可求得最终结果.详解:展开式的通项公式为:,令可得:,则展开式的通项公式为:.点睛:(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.14. 若实数满足,则的最小值为_____________【答案】-3【解析】分析:首先画出可行域,然后结合目标函数的几何意义整理计算即可求得最终结果.详解:不等式组即:或,绘制不等式组表示的平面区域如图所示,目标函数即:,结合目标函数的几何意义可知目标函数表示点与可行域内连线斜率值加1的值,目标函数在点处取得最小值,据此可知目标函数的最小值为:.点睛:(1)本题是线性规划的综合应用,考查的是非线性目标函数的最值的求法.(2)解决这类问题的关键是利用数形结合的思想方法,给目标函数赋于一定的几何意义.15. 设是过抛物线焦点的弦,其垂直平分线交轴于点,设,则的值是________【答案】【解析】分析:首先画出题中所给的条件的示意图,然后结合抛物线的定义整理计算即可求得最终结果.详解:如图所示,设AB中点为E,作准线于点,准线于点,准线于点,由抛物线的定义可知:,则,轴,,则:,同理可得:,则,为的斜边的中线,则,结合可知四边形为筝形,故,据此可知:,结合可得:,且,据此可知四边形EHFG是平行四边形,则,从而:.点睛:本题主要考查抛物线定义的应用,数形结合的数学思想等知识,意在考查学生的转化能力和计算求解能力.16. 在中,点、在边上,满足.若,,则的面积为________【答案】【解析】分析:由题意结合正弦定理和函数的单调性首先求得∠ABC的值,然后结合三角形的性质整理计算即可求得最终结果.详解:如图所示,设,在△ABD和△ADE中应用正弦定理有:,,则:,即:,据此有:,令,则,则函数在定义域内单调递增,结合可得:.在△ABD中:,则:,,则.点睛:本题是导数问题与解三角形问题的综合问题,在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.三、解答题:本题共6小题,共75分,解答题应写出文字说明、证明过程和演算步骤.17. 已知等差数列的公差,其前项和为,且,,成等比数列.(1)求数列的通项公式;(2)若,数列的前项和为,求证:.【答案】(1).(2)见解析.【解析】分析:(1)由题意可设,,结合等比数列的性质可得,则数列的通项公式为.(2)由(1)可得,则,,据此可得. 详解:(1)由得,,因为成等比数列,所以,即,整理得,即,因为,所以,所以.(2)由(1)可得,所以,所以,所以.点睛:本题考查的核心是裂项求和,使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.18. 如图,在四棱锥中,底面是平行四边形,,,,.(1)求证:平面平面;(2)若,试判断棱上是否存在与点不重合的点,使得直线与平面所成角的正弦值为,若存在,求出的值;若不存在,请说明理由.【答案】(1)证明见解析.(2)答案见解析.【解析】分析:(1)由题意结合几何关系可证得平面,结合面面垂直的判定定理可得平面平面.(2)结合(1)的结论可知平面,据此建立空间直角坐标系,假设棱上存在点,使得直线与平面所成角的正弦值为,设,由题意可得平面的一个法向量为,且,结合空间向量的结论得到关于的方程,解方程可知存在,使得直线与平面所成角的正弦值为.详解:(1)因为四边形是平行四边形,,所以,又,所以,所以,又,且,所以平面,因为平面,所以平面平面.(2)由(1)知平面,分别以所在直线为轴、轴,平面内过点且与直线垂直的直线为轴,建立空间直角坐标系,则,由,,可得,所以,假设棱上存在点,使得直线与平面所成角的正弦值为,设,则,,设平面的法向量为,则,即,令,可得,所以平面的一个法向量为,设直线与平面所成的角为,则:,解得或者(舍).所以存在,使得直线与平面所成角的正弦值为.点睛:本题主要考查面面垂直的判断定理,空间向量的应用等知识,意在考查学生的转化能力和计算求解能力.19. 为创建文明城市,我市从年开始建立红黑榜,激励先进,鞭策后进,全力推进文明城市创建工作.为了更好地促进该项工作,我市“文明办”对全市市民抽样,进行了一次创建文明城市相关知识的问卷调查(一位市民只能参加一次).通过随机抽样,得到参加问卷调查的人的得分(满分100分)统计结果如下表所示.(1)根据频数分布表可以大致认为,此次问卷调查的得分服从正态分布,近似为这1000人得分的平均值(同一组数据用该组数据区间的中点值表示),请用正态分布的知识求;(2)在(1)的条件下,市“文明办”决定按如下的方案对参与调查的市民进行奖励:(ⅰ)得分不低于的可以获得2次抽奖机会,得分低于的可以获得1次抽奖机会;(ⅱ)每次抽奖所获奖券和对应的概率为:现有市民甲要参加此次问卷调查,记(单位:元)为该市民参加问卷调查所获得的所有奖券面值和,求的分布列与数学期望.附:参考数据与公式,若,则①;②;③.【答案】(1)0.8186.(2)见解析.【解析】分析:(1)由题意结合题意可得,,结合正态分布图像的对称性可得.(2)由题意可知的可能取值为,,,.且;;;.据此可得分布列,结合分布列计算数学期望可得.详解:(1).故,,∴,.∴.综上,.(2)易知,获奖券面值的可能取值为,,,.;;;.的分布列为:∴.点睛:本题主要考查正态分布的应用,概率分布列和数学期望的求解等知识,意在考查学生的转化能力和计算求解能力.20. 已知椭圆:的离心率为,短轴为.点满足.(1)求椭圆的方程;(2)设为坐标原点,过点的动直线与椭圆交于点、,是否存在常数使得为定值?若存在,求出的值;若不存在,请说明理由.【答案】(1).(2)答案见解析.【解析】分析:(1)由题意结合平面向量数量积的坐标运算可得的方程为.(2)当不为轴时,设:,、.联立与的方程可得,结合韦达定理和平面向量数量积的坐标运算可得.当为轴时,也满足上述结论.则存在使得为定值.详解:(1),所以从而的方程为.(2)当不为轴时,设:,、.联立与的方程可得,所以,,.因为为定值,所以,解得.此时定值为.当为轴时,,..综上,存在使得为定值.点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.21. 已知,.(1)证明:;(2)若时,恒成立,求实数的取值范围.【答案】(1)见解析.(2)见解析.【解析】分析:(1)构造函数,结合函数的单调性可证得.据此进一步可证得.则题中的不等式得证.(2)设,则,则原问题成立的必要条件是.进一步证得当时可知实数的取值范围是.详解:(1)设,则,故在上单调递减,在上单调递增.从而.而当时,.(2)设,则,.要求在上恒成立必须有.即.以下证明:当时.只要证,只要证在上恒成立.令,则对恒成立,又,所以.从而不等式得证.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.选做题(请考生在第22、23两题中任选一题作答,如果全做,则按所做的第一题评分,作答时请写清题号)22. 在平面直角坐标系中,曲线的参数方程为(为参数,)以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为().(1)求曲线、的直角坐标方程.(2)若、分别为、上的动点,且、间距离的最小值为,求实数的值.【答案】(1),.(2)或者.【解析】分析:(1)消去参数可得的直角坐标方程为,极坐标方程化为直角坐标方程为.(2)设,,由点到直线距离公式可得到的距离,结合题意分类讨论可得或者.详解:(1)消去参数可得的直角坐标方程为,的方程即:,即,则直角坐标方程为:.(2)设,,则到的距离,.由、间距离的最小值为知:当时,得;当时,,得.综上:或者.点睛:本题主要考查参数方程与普通方程互化,极坐标方程与互化,极坐标方程的几何意义等知识,意在考查学生的转化能力和计算求解能力.23. 选修4-5:不等式选讲已知函数.(Ⅰ)若不等式对恒成立,求实数的取值范围;(Ⅱ)当时,函数的最小值为,求实数的值.【答案】(Ⅰ) (Ⅱ)【解析】试题分析:(1)由绝对值不等式可求得实数的取值范围.(2)以零点和分三段讨论。

相关文档
最新文档