勾股定理与全等三角形
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、已知:如图,△ABC中,△C=90°,D为AB的中点,E、F分别在AC、BC上,且DE△DF.求证:AE2+BF2=EF2.
2、如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点,
求证:(1)△ACE≌△BCD;(2)AD2+DB2=DE2.
3、如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=2,求AD的长.
4、如图①,已知点D在AB上,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,且M为EC的中点.
(1)求证:△BMD为等腰直角三角形.
(思路点拨:考虑M为EC的中点的作用,可以延长DM交BC于N,构造△CMN≌△EMD,于是ED=CN=DA,即可以证明△BND也是等腰直角三角形,且BM是等腰三角形底边的中线就可以了.)请你完成证明过程:
(2)将△ADE绕点A再逆时针旋转90°时(如图②所示位置),△BMD为等腰直角三角形的结论是否仍成立?若成立,请证明:若不成立,请说明理由.
1、证明:延长ED到G,使DG=DE,连接EF、FG、CG,如图所示:
△DF=DF,△EDF=△FDG=90°,DG=DE
△△EDF△△GDF(SAS),
△EF=FG
又△D为斜边BC中点
△BD=DC
又△△BDE=△CDG,DE=DG
△△BDE△△CDG(SAS)
△BE=CG,△B=△BCG
△AB△CG
△△GCA=180°-△A=180°-90°=90°
在Rt△FCG中,由勾股定理得:
FG2=CF2+CG2=CF2+BE2
△EF2=FG2=BE2+CF2.
证明:过点A作AM△BC,交FD延长线于点M,连接EM.△AM△BC,
△△MAE=△ACB=90°,△MAD=△B.
△AD=BD,△ADM=△BDF,
△△ADM△△BDF.
△AM=BF,MD=DF.
又DE△DF,△EF=EM.
△AE2+BF2=AE2+AM2=EM2=EF2.
2、证明:(1)∵∠ACB=∠ECD,
∴∠ACD+∠BCD=∠ACD+∠ACE,
即∠BCD=∠ACE.
∵BC=AC,DC=EC,
∴△ACE≌△BCD.
(2)∵△ACB是等腰直角三角形,
∴∠B=∠BAC=45度.
∵△ACE≌△BCD,
∴∠B=∠CAE=45°
∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴AD2+AE2=DE2.
由(1)知AE=DB,
∴AD2+DB2=DE2.
3、解答:(1)证明:∵AD⊥BC,∠BAD=45°,
∴△ABD是等腰直角三角形,
∴AD=BD,
∵BE⊥AC,AD⊥BC,
∴∠CAD+∠ACD=90°,
∠CBE+∠ACD=90°,
∴∠CAD=∠CBE,
在△ADC和△BDF中,
∠CAD=∠CBE
AD=BD
∠ADC=∠BDF=90°
,
∴△ADC≌△BDF(ASA),
∴BF=AC,
∵AB=BC,BE⊥AC,
∴AC=2AE,
∴BF=2AE;
(2)解:∵△ADC≌△BDF,∴DF=CD=
2
,
在Rt△CDF中,CF=
DF2+CD2
=
2 2+ 2 2
=2,
∵BE⊥AC,AE=EC,∴AF=CF=2,
∴AD=AF+DF=2+
2
4、解答:(1)证明:延长DM交BC于N,
∵∠EDA=∠ABC=90°,
∴DE∥BC,
∴∠DEM=∠MCB,
在△EMD和△CMN中
∠DEM=∠NCM
EM=CM
∠EMD=∠NMC
,∴△EMD≌△CMN,
∴CN=DE=DA,MN=MD,
∵BA=BC,
∴BD=BN,
∴△DBN是等腰直角三角形,且BM是底边的中线,∴BM⊥DM,∠DBM=
1
2
∠DBN=45°=∠BDM,
∴△BMD为等腰直角三角形.
(2)解:△BMD为等腰直角三角形的结论仍成立,证明:作CN∥DE交DM的延长线于N,连接BN,∴∠E=∠MCN=45°,
∵∠DME=∠NMC,EM=CM,
∴△EMD≌△CMN(ASA),
∴CN=DE=DA,MN=MD,
在△DBA和△NBC中
DA=CN
∠DAB=∠BCN,
BA=BC
∴△DBA≌△NBC,
∴∠DBA=∠NBC,DB=BN,
∴∠DBN=∠ABC=90°,
∴△DBN是等腰直角三角形,且BM是底边的中线,
∴BM⊥DM,∠DBM=
1
2
∠DBN=45°=∠BDM,
∴△BMD为等腰直角三角形.
(注:可编辑下载,若有不当之处,请指正,谢谢!)