2011年四川内江中考数学试题及答案[1]

合集下载

2011年四川省内江中考数学试题及答案word版

2011年四川省内江中考数学试题及答案word版

2011年四川省内江市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、下列四个实数中,比1-小的数是( ) A 、2- B 、0 C 、1 D 、22、如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是( )A 、32°B 、58°C 、68°D 、60°3、某红外线遥控器发出的红外线波长为0.000 000 94m ,用科学记数法表示这个数是( ) A 、79.410-⨯mB 、79.410⨯mC 、89.410-⨯mD 、89.410⨯m4、在下列几何图形中,一定是轴对称图形的有( )A 、1个B 、2个C 、3个D 、4个5、为了解某市参加中考的32000名学生的体质情况,抽查了其中1600名学生的体重进行统计分析.下面叙述正确的是( ) A 、32000名学生是总体 B 、1600名学生的体重是总体的一个样本 C 、每名学生是总体的一个个体 D 、以上调査是普查6、下列多边形中,不能够单独铺满地面的是( ) A 、正三角形 B 、正方形 C 、正五边形 D 、正六边形7、某中学数学兴趣小组12名成员的年龄悄况如下:年龄(岁)1213141516人数 1 4 3 2 2则这个小组成员年龄的平均数和中位数分别是( ) A 、15,16 B 、13,15 C 、13,14 D 、14,148、由一些大小相同的小正方体搭成的几何体的俯视图如右图所示,其正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是( )9、如图,⊙O 是△ABC 的外接圆,∠BAC=60°,若⊙O 的半径0C 为2,则弦BC 的长为( )A 、1B 3C 、2D 、2310、小高从家骑自行车去学校上学,先走上坡路到达点A ,再走下坡路到达点B ,最后走平路到达学校,所用的时间与路程的关系如图所示.放学后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,那么他从学校到家需要的时间是( ) A 、14分钟 B 、17分钟 C 、18分钟 D 、20分钟11、如图,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADE=60°,BD=4,CE=43,则△ABC 的面积为( ) A 、83 B 、15 C 、93 D 、312、如图.在直角坐标系中,矩形ABC0的边OA 在x 轴上,边0C 在y 轴上,点B 的坐标为(1,3),将矩形沿对角线AC 翻折,B 点落在D 点的位置,且AD 交y 轴于点E .那么点D 的坐标为( )A 、412()55-,B 、213()55-,C 、113()25-,D 、312()55-,二、填空题{本大题共4小题,每小题5分,共20分.请将最后答案直接写在题中横线上.)13、“Welcomc to Senior High School.”(欢迎进入高中),在这段句子的所有英文字母中,字母O出现的频率是________。

四川省内江2011年中考数学试题及答案-解析版

四川省内江2011年中考数学试题及答案-解析版

四川省内江市2011年中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1、(2011•内江)下列四个实数中,比﹣1小的数是()A、﹣2B、0C、1D、2考点:实数大小比较。

专题:探究型。

分析:根据实数比较大小的法则进行比较即可.解答:解:∵﹣1<0,1>0,2>0,∴可排除B、C、D,∵﹣2<0,|﹣2|>|﹣1|,∴﹣2<﹣1.故选A.点评:本题考查的是实数比较大小的法则,即任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.2、(2011•内江)如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()A、32°B、58°C、68°D、60°考点:平行线的性质;余角和补角。

专题:计算题。

分析:本题主要利用两直线平行,同位角相等及余角的定义作答.解答:解:根据题意可知∠1+∠2=90°,所以∠2=90°﹣∠1=58°.故选B.点评:主要考查了平行线的性质和互余的两个角的性质.互为余角的两角的和为90°.解此题的关键是能准确的从图中找出这两个角之间的数量关系,从而计算出结果.3、(2011•内江)某红外线遥控器发出的红外线波长为0.000 000 94m,用科学记数法表示这个数是()A、9.4×10﹣7mB、9.4×107mC、9.4×10﹣8mD、9.4×108m考点:科学记数法—表示较小的数。

分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 000 94=9.4×10﹣7.故选A.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4、(2011•内江)在下列几何图形中,一定是轴对称图形的有()A、1个B、2个C、3个D、4个考点:轴对称图形。

2011年中考数学试题及答案

2011年中考数学试题及答案

2011年九年级教学质量检测数 学 试 题注意事项:本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;共120分.考试时间为120分钟.第Ⅰ卷 选择题 (共36分)一、选择题 (本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来填入题后的括号内,每小题选对得3分.) 1.下列根式中与18是同类二次根式的是( ). A .321 B .27 C .6 D .32.抛物线y =2x 2+4x -3的顶点坐标是( ).A .(1,-5)B .(-1,-5)C .(-1,-4)D .(-2,-7) 3.国家游泳中心——“水立方”是2008年北京奥运会标志性建筑之一,其工程占地面积为62828平方米,将62828用科学记数法表示是(保留三个有效数字)( ). A .62.8×103 B .6.28×104 C .6.2828×104 D .0.62828×105 4.数据0,-1,6,1,x 的众数为-1,则这组数据的方差是( ). A .2B .534C .2D .5265.如图,⊙O 的直径为10,弦AB 的长为6,M 是弦AB 上的一动点,则线段OM 的长的取值范围是( ). A .3≤OM ≤5 B .4≤OM ≤5 C .3<OM <5 D .4<OM <56.小明随机地在如图所示的正三角形及其内部区域投针,则针扎 到其内切圆(阴影)区域的概率为( ). A .21 B .π63C .π93 D .π33第6题图第11题图7.如图,□ABCD 中,对角线AC 和BD 相交于点O , 如果AC =12,BD =10,AB =m ,那么m 的取值范围是( ).A .1<m <11B .2<m <22C .10<m <12D .5<m <68.如图,P 1、P 2、P 3是双曲线上的三点.过这三点分别 作y 轴的垂线,得到三个三角形P 1A 1O 、P 2A 2O 、P 3A 3O , 设它们的面积分别是S 1、S 2、S 3,则( ). A .S 1<S 2<S 3 B .S 2<S 1<S 3 C .S 1<S 3<S 2 D .S 1=S 2=S 39.直线1l :1y k x b =+与直线2l :2y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式12k x b k x +>的解为( ).A .1x >-B .1x <-C .2x <-D .无法确定10.如图,将A B C △沿D E 折叠,使点A 与B C边的中点F 重合,下列结论中①EF AB ∥且12E F A B =;②BAF C AF ∠=∠;③DE AF 21S ADFE∙=四边形;④2B D F F E C B A C ∠+∠=∠, 一定正确的个数是( ). A .1B .2C .3D .411.若关于x 的一元二次方程ax 2+2x -5=0的两根中有且仅有一根在0和1 之间(不含0和1),则a 的取值范围是( ). A .a <3 B .a >3 C .a <-3 D .a >-312.如图,⊙O 是△ABC 的内切圆,切点分别是D 、E 、F ,已知∠A = 100°,∠C = 30°,则∠DFE 的度数是 ( ).A .55°B .60°C .65°D .70°DABCO第7题图xb +x第9题图第8题图第12题图第16题图第Ⅱ卷 非选择题(共84分)二、填空题(本题共5小题,共15分.只要求填写最后结果,每小题填对得3分.) 13.当m = 时,关于x 的分式方程213x m x +=--无解.14.已知关于x 的不等式组⎩⎨⎧--≥-0125a >x x 无解,则a 的取值范围是 .15.已知关于的一元二次方程012)1(2=-++x x k 有两个不相同的实数根,则k 的取值范围是 .16.如图,梯形ABCD 中,BC AD //,1===AD CD AB ,︒=∠60B直线MN 为梯形ABCD 的对称轴,P 为MN 上一点,那么PD PC +的最小值是 .17.在实数的原有运算法则中我们补充定义新运算“⊕”如下:当a ≥b 时,a ⊕b =b 2;当a <b 时,a ⊕b =a .则当x =2时,(1⊕x )-(3⊕x )的值为 . 三、解答题(本题共7小题,共69分.解答应写出文字说明、证明过程或推演步骤.)18.(本题满分8分)据《生活报》报道,有关部门要求各中小学要把“每天锻炼一小时”写入课表.为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图.请结合统计图回答下列问题: (1)该校对多少名学生进行了抽样调查?(2)本次抽样调查中,最喜欢篮球活动的有多少人?占被调查人数的百分比是多少?(3)若该校九年级共有200名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?图2图1最喜欢的体育活 动项目的人数/人育活动项目19.(本题满分9分)某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w (千克)随销售单价x (元/千克)的变化而变化,具体关系式为:w =-2x +240.设这种绿茶在这段时间内的销售利润为y (元),解答下列问题: (1)求y 与x 的关系式; (2)当x 取何值时,y 的值最大?(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?20.(本题满分9分)经过江汉平原的沪蓉(上海—成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从A 点开始沿岸边向正东方向前进100米到达点C 处,测得∠ACB=68°.(1)求所测之处江的宽度(.48.268tan ,37.068cos ,93.068sin ≈≈≈ ); (2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.21.(本题满分10分)如图,B D 为圆O 的直径,A B A C =,A D 交B C 于E ,2A E =,4E D =.(1)求证:A B E A D B △∽△,并求A B 的长;(2)延长D B 到F ,使B F B O =,连接F A ,那么直线F A 与⊙O 相切吗?为什么?22.(本题满分10分)荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.C23.(本题满分11分)如图,等腰梯形ABCD中,AD∥BC,AB=DC,AC⊥BD,过D点作DE∥AC 交BC的延长线于E点.(1)求证:四边形ACED是平行四边形;(2)若AD=3,BC=7,求梯形ABCD的面积.24.(本题满分12分)如图所示,在平面直角坐标系中,⊙M 经过原点O ,且与x 轴、y轴分别相交于A (-6,0),B (0,-8)两点.(1)请求出直线AB 的函数表达式;(2)若有一抛物线的对称轴平行于y 轴且经过点M ,顶点C 在⊙M 上,开口向下,且经过点B ,求此抛物线的函数表达式;(3)设(2)中的抛物线交x 轴于D ,E 两点,在抛物线上是否存在点P ,使得115PDE ABCS S =△△?若存在,请求出点P 的坐标;若不存在,请说明理由.数学参考答案一、选择题1.A2.B3.B4.B5.B6.C7.A8.D9.B10.B11.B12.C 二、填空题13.-6 14.a ≥3 15.k >-2,且k ≠-1 16.3 17.-318.解:(1)由图1知:4810181050++++=(名)………2分 答:该校对50名学生进行了抽样调查.(2)本次调查中,最喜欢篮球活动的有18人.………………3分x181003650⨯=%%………………………………………….4分∴最喜欢篮球活动的人数占被调查人数的36%. (3)1(302624)20-++=%%%% 20020100÷=% (人)…6分8100100016050⨯⨯=% (人)答:估计全校学生中最喜欢跳绳活动的人数约为160人.………8分 19.解:⑴ y =(x -50)∙ w =(x -50) ∙ (-2x +240)=-2x 2+340x -12000,∴y 与x 的关系式为:y =-2x 2+340x -12000........3分 ⑵ y =-2x 2+340x -12000=-2 (x -85) 2+2450,∴当x =85时,y 的值最大. ……………………………6分 ⑶ 当y =2250时,可得方程 -2 (x -85 )2+2450=2250. 解这个方程,得 x 1=75,x 2=95. 根据题意,x 2=95不合题意应舍去.∴当销售单价为75元时,可获得销售利润2250元.…………9分20.解:(1)在BAC Rt ∆中, 68=∠ACB ,∴24848.210068tan =⨯≈⋅= AC AB (米)答:所测之处江的宽度约为248米…………………………………3分 (2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识来解决问题的,只要正确即可得分……………9分21.(1)证明:A B A C = ,ABC C ∴=∠∠,C D = ∠∠,ABC D ∴=∠∠.又BAE D AB = ∠∠,ABE AD B ∴△∽△.A B A E A D A B∴=. AB 2=AD ·AE=(AE+ED )·AE=(2+4)×2=12.AB ∴=. ……………………………………………………5分(2)直线F A 与⊙O 相切.理由如下: 连接O A .BD 为⊙O 的直径,∴∠.BD ∴====1122B F B O B D ∴===⨯=AB = ,BF BO AB ∴==.90OAF ∴= ∠.∴直线F A 与⊙O 相切. ……………………………………10分22.解:(1)设租用一辆甲型汽车的费用是元,租用一辆乙型汽车的费用是元.由题意得解得答:租用一辆甲型汽车的费用是800元,租用一辆乙型汽车的费用是850元.……………………………………………………………3分 (2)设租用甲型汽车辆,则租用乙型汽车辆.由题意得解得……………………………………………………6分由题意知,为整数,或或共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆; 方案二:租用甲型汽车3辆,租用乙型汽车3辆; 方案三:租用甲型汽车4辆,租用乙型汽车2辆. 方案一的费用是(元); 方案二的费用是(元);方案三的费用是(元),所以最低运费是4900元.……………9分答:共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆; 方案二:租用甲型汽车3辆,租用乙型汽车3辆; 方案三:租用甲型汽车4辆,租用乙型汽车2辆.最低运费是4900元.……………………………………………10分 23.证: ⑴∵AD ∥BC ∴AD ∥CE 又∵DE ∥AC∴四边形ACED 是平行四边形……………… 3分 ⑵过D 点作DF ⊥BE 于F 点 ……………………4分∵DE ∥AC ,AC ⊥BD ∴DE ⊥BD ,即∠BDE=90° 由⑴知DE=AC ,CE=AD=3∵四边形ABCD 是等腰梯形∴AC=DB ………………………………………7分 ∴DE=DB ……………………………………8分∴△DBE 是等腰直角三角形,∴△DFB 也是等腰直角三角形 ∴DF=BF=21(7-3)+3=5……………………9分(也可运用:直角三角形斜边上的中线等于斜边的一半)()2553721DF BC)(AD 21S ABCD=⨯+=∙+=梯形……11分注:⑴过对角线交点O 作OF ⊥BC 于F ,延长FO 交AD 于H ,于是OH ⊥AD由△ABC ≌△DCB ,得到△OBC 是等腰直角三角形,OF=21BC=27同理OH=21AD=23,高HF=52327=+⑵过A 作AF ⊥BC 于F ,过D 作DH ⊥BC 于H ,由△AFC ≌△DHB得高AF=FC=21(AD+BC)=5⑶DOA COD BOC AOB ABCD S S S S S ∆∆∆∆+++=梯形(进行计算)24. 解:(1)设直线AB 的函数表达式为(y kx b k =+∵直线AB经过(60)(08)A B --,,,,∴由此可得60,8.k b b -+=⎧⎨=-⎩解得4,38.k b ⎧=-⎪⎨⎪=-⎩∴直线AB的函数表达式为483y x =--. (4)分(2)在R t AO B △中,由勾股定理,得10AB ===,x∵圆M 经过O A B ,,三点,且90AO B ∠=°,AB∴为圆M 的直径,∴半径5M A =,设抛物线的对称轴交x 轴于点N ,M N x ⊥∵,∴由垂径定理,得132A N O N O A ===.在R t A M N △中,4M N ===,541C N M C M N ∴=-=-=,∴顶点C 的坐标为(31)-,, 设抛物线的表达式为2(3)1y a x =++, 它经过(08)B -,,∴把0x =,8y =-代入上式,得28(03)1a -=++,解得1a =-,∴抛物线的表达式为22(3)168y x x x =-++=---.…………8分(3)如图,连结A C ,B C ,35213521ON MC 21AN MC 21S S S BMC AMC ABC ⨯⨯+⨯⨯=∙+∙=+=∆∆∆ =15在抛物线268y x x =---中,设0y =, 则2680x x ---=, 解得12x =-,24x =-.D E ∴,的坐标分别是(40)-,,(20)-,, 2D E ∴=;设在抛物线上存在点()P x y ,,使得111511515P D E A B C S S =⨯=△△=,则1y 221y DE 21S PDE =⨯⨯=∙=∆,1y ∴=±,当1y =时,2681x x ---=,解得123x x ==-,1(31)P ∴-,;当1y =-时,2681x x ---=-,解得13x =-+,23x =--2(3)P ∴-+-1,3(3)P ---1.综上所述,这样的P 点存在,且有三个,1(31)P -,,2(3)P -+-1,3(31)P ---.…………………….12分。

2011年中考数学试题及答案(Word版)

2011年中考数学试题及答案(Word版)

A OBCD A B C ED 中考数学试题一、选择题(本题共32分,每小题4分)1.- 34的绝对值是【 】A .- 4 3B . 4 3C .- 3 4D . 342.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为【 】A .66.6×107B .0.666×108C .6.66×108D .6.66×107 3.下列图形中,即是中心对称又是轴对称图形的是【 】A .等边三角形B .平行四边形C .梯形D .矩形 4.如图,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O , 若AD =1,BC =3,则OAOC的值为【 】 A . 1 2 B . 1 3 C . 1 4 D . 195则这10个区县该日最高气温的人数和中位数分别是【 】A .32,32B .32,30C .30,32D .32,316.一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为【 】 A .5 18 B . 1 3 C . 2 15 D . 1157.抛物线y =x 2-6x +5的顶点坐标为【 】A .(3,-4)B .(3,4)C .(-3,-4)D .(-3,4)8.如图,在△ABC 中,∠ACB =90°,∠BAC =30°,AB =2,D 是AB 边上的一个动点(不与点A 、B 重合),过点D 作CD 的垂线交射线CA 于点E .设AD =x ,CE =y ,则下列图象中,能表示y 与x 的函数关系图象大致是【 】二、填空题(本题共16分,每小题4分)9.若分式x ―8x的值为0,则x 的值等于________. 10.分解因式:a 3―10a 2+25a =______________.11.若右图是某几何体的表面展开图,则这个几何体是__________.12.在右表中,我们把第i 行第j 列的数记为a ij (其中i ,j 都是不大于5的正整数),对于表中的每个数a ij ,规定如下:当i ≥j 时,a ij =1;当i <j 时,a ij =0.例如:当i =2,j =1时,a =a =1.按此规定,a =_____;表中的25个数中,共有_____A .B .C .D .FE x13.计算:01)2(2730cos 221π-++-⎪⎭⎫⎝⎛- .14.解不等式:4(x -1)>5x -6.15.已知a 2+2ab +b 2=0,求代数式a (a +4b )-(a +2b )(a -2b )的值.16.如图,点A 、B 、C 、D 在同一条直线上,BE ∥DF ,∠A =∠F ,AB =FD .求证:AE =FC .17.如图,在平面直角坐标系xOy 中,一次函数y =-2x 的图象与反比例函数y = kx 的图象的一个交点为A (-1,n ).(1)求反比例函数y = kx的解析式;(2)若P 是坐标轴上一点,且满足P A =OA ,直接写出点P 的坐标.18.列方程或方程组解应用题:京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的 37.小王用自驾车方式上班平均每小时行驶多少千米?A B C D19.如图,在△ABC 中,∠ACB =90°,D 是BC 的中点,DE ⊥BC ,CE ∥AD .若AC =2,CE =4,求四边形ACEB 的周长.21.以下是根据北京市国民经济和社会发展统计公报中的相关数据,绘制统计图的一部分.请根据以上信息解答下列问题:(1)2008年北京市私人轿车拥有是多少万辆(结果保留三个有效数字)? (2)补全条形统计图;(3)汽车数量增多除造成交通拥堵外,还增加了碳排放量,为了了解汽车碳排放量的情况,小明同学通过网络了解到汽车的碳排放量与汽车排量有关.如:一辆排量为1.6L 的轿车,如果一年行驶1万千米,这一年,它碳排放量约为2.7吨.于是他调查了他所居住小区的150辆私人轿车,不同排量的轿车数量如下表所示.如果按照小明的统计数据,请你通过计算估计,2010年北京市仅排量为1.6L 的这类私人轿车(假设每辆车平均一行行驶1万千米)的碳排放总量约为多少万吨? 北京市2001~2010年私人轿车拥有量的年增长率统计图 北京市2001~2010年 私人轿车拥有量统计图A E F 图3 22.阅读下面材料:小伟遇到这样一个问题:如图1,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O .若梯形ABCD 的面积为1,试求以AC 、BD 、AD +BC 的长度为三边长的三角形的面积.小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他先后尝试了翻折、旋转、平移的方法,发现通过平移可以解决这个问题.他的方法是过点D 作AC 的平行线交BC 的延长线于点E ,得到的△BDE 即是以AC 、BD 、AD +BC 的长度为三边长的三角形(如图2).参考小伟同学的思考问题的方法,解决下列问题:如图3,△ABC 的三条中线分别为AD 、BE 、CF .(1)在图3中利用图形变换画出并指明以AD 、BE 、CF的长度为三边长的一个三角形(保留画图痕迹); (2)若△ABC 的面积为1,则以AD 、BE 、CF 的长度为三边长的三角形的面积等于_______.24.(7分)在□ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F .(1)在图1中,证明:CE =CF ; (2)若∠ABC =90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数; (3)若∠ABC =120°,FG ∥CE ,FG =CE ,分别连结DB 、DG (如图3),求∠BDG 的度数.B BADADC C EE G FABC DE GF 图1图2图3BBCADOADCEO图2图1数学试卷答案及评分参考13、解:()0122730221π-++-⎪⎭⎫⎝⎛- cos=1332322++⨯- =13332++- =332+.14、解:去括号,得6544->-x x移项, 得6454->-x x合并, 得2->-x 解得 2<x所以原不等式的解集是2<x . 15、解:()()()b a b a b a a 224-+-+ =()22244b a ab a --+ =244b ab +∵0222=++b ab a ∴0=+b a∴原式=()b a b +4=0. 16、证明:∵BE ∥DF , ∴∠ABE=∠D .在△ABE 和△FDC 中,∴△ABE ≌△FDC . ∴AE =FC .17、解(1)∵A (-1,n )在一次函数x y 2-=∴n =2-×(1-)=2.∴点A 的坐标为(-1,2).∵点A 在反比例函数xky =的图象上,∴2-=k .∴反比例函数的解析式为xy 2-=. ∠ABE=∠D AB=FD∠A=∠F18、解:设小王用自驾车方式上班平均每小时行使x 千米. 依题意,得xx 18739218⨯=+ 解得 27=x .经检验,27=x 是原方程的解,且符合题意. 答;小王用自驾车方式上班平均每小时行使27千米. 四、解答题19、解:∵∠ACB=90°,DE ⊥BC , ∴AC ∥DE .又∵CE ∥AD ,∴四边形ACED 的是平行四边形. ∴DE=AC=2.在Rt △CDE 中,由勾股定理得3222=-=DE CE CD . ∵D 是BC 的中点, ∴BC=2CD=34.在Rt △ABC 中,由勾股定理得13222=+=BC AC AB . ∵D 是BC 的中点,DE ⊥BC , ∴EB=EC=4.∴四边形ACEB 的周长= AC+CE+EB+BA=10+132. 21、解(1)146×(1+19%) =173.74≈174(万辆).∴2008年北京市私人轿车拥有量约是174万辆.(2)如右图. (3)276×15075×2.7=372.6(万吨) 估计2010年北京市仅排量为1.6L的这类私人轿车的碳排放总量约为372.6万吨.22、解:△BDE 的面积等于1 . (1)如图.以AD 、BE 、CF 的长度为三边长的一个三角形是 △CFP . (2)以AD 、BE 、CF 的长度为三边长的三角形的面积等于43. . 24、(1)证明:如图1. ∵AF 平分∠BAD , ∴∠BAF=∠DAF .∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD .∴∠DAF=∠CEF ,∠BAF=∠F .E∴CE =CF .(2)∠BDG =45°.(3)分别连结GB 、GE 、GC (如图2) ∵AB ∥DC ,∠ABC =120°, ∴∠ECF=∠ABC=120°.∵FG ∥CE 且FG =CE ,∴四边形CEGF 是平行四边形. 由(1)得CE =CF , ∴□CEGF 是菱形.∴EG =EC ,∠GCF=∠GCE=21∠ECF= 60°.∴△ECG 是等边三角形.∴EG =CG , ① ∠GEC=∠EGC=60°. ∴∠GEC=∠GCF .∴∠BEG=∠DCG . ②由AD ∥BC 及AF 平分∠BAD 可得∠BAE =∠AEB . ∴AB=BE .在□ABCD 中,AB=DC . ∴BE=DC . ③ 由①②③得△BEG ≌△DCG . ∴BG=DG ,∠1=∠2.∴∠BGD=∠1+∠3=∠2+∠3=∠EGC=60°. ∴∠BDG=2180BGD∠- =60°.图2。

四川内江市中考数学试题(word版及答案).doc

四川内江市中考数学试题(word版及答案).doc
五、解答 (本大 共
3小 ,每小12分,共36分.解答 必 写ii必要的文字 明、
明 程或推演步 )
26、同学 ,我 曾 研究
n×n的正方形网格,得到了网格中正方形的 数的表达式
12
22
32
... n2.但n 100, 如何 算正方形的具体个数呢?下面我 就一起来
探究并解决个.首先,通探究我已知道
1
0 11 223...( n1)nn( n1)(n1)
3
,我 可以 做:
(1) 察并猜想:
12
22=(1+0)×
1+(1+1)×
2=l+0×1+2+1×2=(1+2)+(0×1+1×2)
12
22
32=(1+0
)×1+(1+1
)×2+(l+2)×3
=1+0×1+2+1×2+3+2×3
=(1+2+3)+(0×1+1×2+2×3)
.过点A的一次函数y3
k3x b与反比例函
数的图象交于另一点
C,与x轴交于点E(5,0).
(1)求正比例函数
y1、反比例函数
y2和一次函数y3的解析式;
k2
k1x时
x的取值范围.
(2)结合图象,求出当k3x b
x
四、填空 (本大 共
4小 ,每小
6分,共
24分.将最 答案直接填在 中横 上
.)
22、若
15.
316.
AB=CD
三、解答题
17.
解:原式=

2011年初中毕业升学考试(中考)数学试卷及答案

2011年初中毕业升学考试(中考)数学试卷及答案

数学试卷第1页(共10页)准考证号:**市2011年初中毕业生学业考试数学试卷【说明】全卷分为第Ⅰ卷和第Ⅱ卷,第Ⅰ卷1-2页,第Ⅱ卷3-10页。

考试时间120分钟,满分150分。

考试结束后,第Ⅱ卷和答题卡按规定装袋上交。

第Ⅰ卷(选择题 共40分)注意事项:1.答第Ⅰ卷前,考生务必将自己的学校、姓名、准考证号、考试科目填涂在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡 皮擦干净后,再选涂其他答案,不能答在试题卷上。

3.考试结束后,本试卷由考场统一收回,集中管理。

一、选择题:本大题共10个小题,每小题4分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求 1.-2的相反数A .-2B .2C .2±D .-2 2.下列分式是最简分式的A.b a a 232 B .a a a 32- C .22b a b a ++ D .222ba ab a -- 3.下列运算错误的是A .235a a a ⋅=B .347()m m =C .3363282c b a bc a =)( D .624m m m ÷= 4.一幅扑克牌(不含大小王),任意抽取一张,抽中方块的概率是 A .21 B .521 C .31 D .415.函数31--=x x y 的自变量x 的取值范围是 A .1x > B .1x >且3x ≠ C .1≥x D. 1≥x 且3x ≠数学试卷第2页(共10页)6.点(-2,3)关于原点对称的点的坐标是A .(2,3)B .(-2,-3)C .(2,-3)D .(-3,2) 7.如图:等腰梯形ABCD 中 ,AD ∥BC ,AB=DC , AD=3,AB=4,∠B=60︒,则梯形的面积是 A.310 B.320 C.346+ D.3812+ 8.计算2sin30︒-sin 245︒+cot60︒的结果A.3321+ B.3321+ C.23+ D.23-1+ 9.如图:△ABC 中,DE ∥BC ,AD:DB=1:2,下列选项正确的是A .DE:BC=1:2B .AE:AC=1:3C .BD:AB=1:3D .S DE A ∆:S ABC ∆=1:4( 第9题) (第10题)10.如图:在△ABC 中,∠ACB=90°,CD ⊥AB 于点D ,下列说法中正确的个数是①CD AB BC AC ⋅=⋅ ②DB AD AC ⋅=2③BA BD BC ⋅=2 ④DB AD CD ⋅=2A .1个B .2个C .3个D .4个CBEDABDAC数学试卷第3页(共10页)绝密★启用前【考试时间:2011年6月】**市2011年初中毕业生学业考试数学试卷第Ⅱ卷(非选择题 共110分)注意事项:1.第Ⅱ卷共8页,用钢笔或中性笔直接答在试卷上。

中考数学试题及答案内江

中考数学试题及答案内江

中考数学试题及答案内江一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 2B. 0.33333...C. √2D. 0.5答案:C2. 如果一个数的平方是16,那么这个数可能是:A. 4B. -4C. 4或-4D. 以上都不是答案:C3. 一个等腰三角形的两个底角相等,如果其中一个底角是40°,那么顶角的度数是:A. 100°B. 80°C. 60°D. 40°答案:B4. 下列哪个函数是一次函数?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^3答案:B5. 一个圆的半径是5厘米,那么它的周长是:A. 10π厘米B. 20π厘米C. 25π厘米D. 30π厘米答案:B6. 一个数的相反数是-3,那么这个数是:A. 3B. -3C. 0D. 6答案:A7. 下列哪个选项是不等式?A. 3x + 2 = 7B. 2x - 5 > 3C. 4x = 8D. 5x - 3 ≤ 7答案:D8. 如果一个多边形的内角和是900°,那么这个多边形的边数是:A. 5B. 6C. 7D. 8答案:C9. 一个等差数列的首项是2,公差是3,那么第5项是:A. 17B. 14C. 11D. 8答案:A10. 下列哪个选项是二次根式?A. √4B. √(-4)C. √(2x + 3)D. √9答案:C二、填空题(每题3分,共30分)11. 一个数的立方是-8,那么这个数是__-2__。

12. 如果一个直角三角形的两条直角边分别是3和4,那么斜边的长度是__5__。

13. 一个数的绝对值是5,那么这个数可以是__±5__。

14. 一个数的倒数是1/4,那么这个数是__4__。

15. 如果一个数的平方根是2,那么这个数是__4__。

16. 一个等腰三角形的底边长是6厘米,如果腰长是底边长的两倍,那么腰长是__12厘米__。

四川省内江市中考数学试卷含解析版.docx

四川省内江市中考数学试卷含解析版.docx

2018年四川省内江市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2018•内江)﹣3的绝对值是( )A .﹣3B .3C .−13D .132.(3分)(2018•内江)小时候我们用肥皂水吹泡泡,其泡沫的厚度约0.000326毫米,用科学记数法表示为( )A .3.26×10﹣4毫米B .0.326×10﹣4毫米C .3.26×10﹣4厘米D .32.6×10﹣4厘米3.(3分)(2018•内江)如图是正方体的表面展开图,则与“前”字相对的字是( )A .认B .真C .复D .习4.(3分)(2018•内江)下列计算正确的是( )A .a +a=a 2B .(2a )3=6a 3C .(a ﹣1)2=a 2﹣1D .a 3÷a=a 25.(3分)(2018•内江)已知函数y=√x+1x−1,则自变量x 的取值范围是( ) A .﹣1<x <1 B .x ≥﹣1且x ≠1 C .x ≥﹣1 D .x ≠1 6.(3分)(2018•内江)已知:1a ﹣1b =13,则ab b−a 的值是( ) A .13 B .﹣13C .3D .﹣3 7.(3分)(2018•内江)已知⊙O 1的半径为3cm ,⊙O 2的半径为2cm ,圆心距O 1O 2=4cm ,则⊙O 1与⊙O 2的位置关系是( )A .外高B .外切C .相交D .内切8.(3分)(2018•内江)已知△ABC 与△A 1B 1C 1相似,且相似比为1:3,则△ABC 与△A 1B 1C 1的面积比为( )A .1:1B .1:3C .1:6D .1:99.(3分)(2018•内江)为了了解内江市2018年中考数学学科各分数段成绩分布情况,从中抽取400名考生的中考数学成绩进行统计分析,在这个问题中,样本是指()A.400B.被抽取的400名考生C.被抽取的400名考生的中考数学成绩D.内江市2018年中考数学成绩10.(3分)(2018•内江)如图,在物理课上,小明用弹簧秤将铁块A悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则如图能反映弹簧秤的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图是()A.B.C.D.11.(3分)(2018•内江)如图,将矩形ABCD沿对角线BD折叠,点C落在点E 处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31°B.28°C.62°D.56°12.(3分)(2018•内江)如图,在平面直角坐标系中,△ABC的顶点A在第一象限,点B,C的坐标分别为(2,1),(6,1),∠BAC=90°,AB=AC,直线AB交y轴于点P,若△ABC与△A′B′C′关于点P成中心对称,则点A′的坐标为()A.(﹣4,﹣5)B.(﹣5,﹣4)C.(﹣3,﹣4)D.(﹣4,﹣3)二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)(2018•内江)分解因式:a3b﹣ab3=.14.(5分)(2018•内江)有五张卡片(形状、大小、质地都相同),上面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆.将卡片背面朝上洗匀,从中抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是.15.(5分)(2018•内江)关于x的一元二次方程x2+4x﹣k=0有实数根,则k的取值范围是.16.(5分)(2018•内江)已知,A、B、C、D是反比例函数y=8x(x>0)图象上四个整数点(横、纵坐标均为整数),分别过这些点向横轴或纵轴作垂线段,以垂线段所在的正方形(如图)的边长为半径作四分之一圆周的两条弧,组成四个橄榄形(阴影部分),则这四个橄榄形的面积总和是(用含π的代数式表示).三、解答题(本大题共5小题,共44分)17.(7分)(2018•内江)计算:√8﹣|﹣√2|+(﹣2√3)2﹣(π﹣3.14)0×(12)﹣2.18.(9分)(2018•内江)如图,已知四边形ABCD 是平行四边形,点E ,F 分别是AB ,BC 上的点,AE=CF ,并且∠AED=∠CFD .求证:(1)△AED ≌△CFD ;(2)四边形ABCD 是菱形.19.(9分)(2018•内江)为了掌握八年级数学考试卷的命题质量与难度系数,命题组教师赴外地选取一个水平相当的八年级班级进行预测,将考试成绩分布情况进行处理分析,制成频数分布表如下(成绩得分均为整数):组别成绩分组 频数 频率 147.5~59.5 2 0.05 259.5~71.5 4 0.10 371.5~83.5 a 0.2 483.5~95.5 10 0.25 595.5~107.5 b c 6107.5~120 6 0.15 合计 40 1.00根据表中提供的信息解答下列问题:(1)频数分布表中的a= ,b= ,c= ;(2)已知全区八年级共有200个班(平均每班40人),用这份试卷检测,108分及以上为优秀,预计优秀的人数约为 ,72分及以上为及格,预计及格的人数约为 ,及格的百分比约为 ;(3)补充完整频数分布直方图.20.(9分)(2018•内江)如图是某路灯在铅垂面内的示意图,灯柱AC 的高为11米,灯杆AB 与灯柱AC 的夹角∠A=120°,路灯采用锥形灯罩,在地面上的照射区域DE 长为18米,从D ,E 两处测得路灯B 的仰角分别为α和β,且tanα=6,tanβ=34,求灯杆AB 的长度.21.(10分)(2018•内江)某商场计划购进A,B两种型号的手机,已知每部A 型号手机的进价比每部B型号手机进价多500元,每部A型号手机的售价是2500元,每部B型号手机的售价是2100元.(1)若商场用50000元共购进A型号手机10部,B型号手机20部,求A、B 两种型号的手机每部进价各是多少元?(2)为了满足市场需求,商场决定用不超过7.5万元采购A、B两种型号的手机共40部,且A型号手机的数量不少于B型号手机数量的2倍.①该商场有哪几种进货方式?②该商场选择哪种进货方式,获得的利润最大?四、填空题(本大题共4小题,每小题6分,共24分)22.(6分)(2018•内江)已知关于x的方程ax2+bx+1=0的两根为x1=1,x2=2,则方程a(x+1)2+b(x+1)+1=0的两根之和为.23.(6分)(2018•内江)如图,以AB为直径的⊙O的圆心O到直线l的距离OE=3,⊙O的半径r=2,直线AB不垂直于直线l,过点A,B分别作直线l的垂线,垂足分别为点D,C,则四边形ABCD的面积的最大值为.24.(6分)(2018•内江)已知△ABC的三边a,b,c,满足a+b2+|c﹣6|+28=4√a−1+10b,则△ABC的外接圆半径=.25.(6分)(2018•内江)如图,直线y=﹣x+1与两坐标轴分别交于A,B两点,将线段OA分成n等份,分点分别为P1,P2,P3,…,P n﹣1,过每个分点作x轴的垂线分别交直线AB于点T1,T2,T3,…,T n﹣1,用S1,S2,S3,…,S n﹣1分别表示Rt△T1OP1,Rt△T2P1P2,…,Rt△T n﹣1P n﹣2P n﹣1的面积,则S1+S2+S3+…+S n﹣1=.五、解答题(本大题共3小题,每小题12分,共36分)26.(12分)(2018•内江)如图,以Rt△ABC的直角边AB为直径作⊙O交斜边AC于点D,过圆心O作OE∥AC,交BC于点E,连接DE.(1)判断DE与⊙O的位置关系并说明理由;(2)求证:2DE2=CD•OE;(3)若tanC=43,DE=52,求AD的长.27.(12分)(2018•内江)对于三个数a,b,c,用M{a,b,c}表示这三个数的中位数,用max{a,b,c}表示这三个数中最大数,例如:M{﹣2,﹣1,0}=﹣1,max{﹣2,﹣1,0}=0,max{﹣2,﹣1,a}={a(a≥−1)−1(a<−1)解决问题:(1)填空:M{sin45°,cos60°,tan60°}=,如果max{3,5﹣3x,2x﹣6}=3,则x的取值范围为;(2)如果2•M{2,x+2,x+4}=max{2,x+2,x+4},求x的值;(3)如果M{9,x2,3x﹣2}=max{9,x2,3x﹣2},求x的值.28.(12分)(2018•内江)如图,已知抛物线y=ax2+bx﹣3与x轴交于点A(﹣3,0)和点B(1,0),交y轴于点C,过点C作CD∥x轴,交抛物线于点D.(1)求抛物线的解析式;(2)若直线y=m(﹣3<m<0)与线段AD、BD分别交于G、H两点,过G点作EG⊥x轴于点E,过点H作HF⊥x轴于点F,求矩形GEFH的最大面积;(3)若直线y=kx+1将四边形ABCD分成左、右两个部分,面积分别为S1,S2,且S1:S2=4:5,求k的值.2018年四川省内江市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2018•内江)﹣3的绝对值是()A.﹣3 B.3 C.−13D.13【考点】15:绝对值.【专题】11 :计算题.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:|﹣3|=3.故﹣3的绝对值是3.故选:B.【点评】考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2018•内江)小时候我们用肥皂水吹泡泡,其泡沫的厚度约0.000326毫米,用科学记数法表示为()A.3.26×10﹣4毫米B.0.326×10﹣4毫米C.3.26×10﹣4厘米D.32.6×10﹣4厘米【考点】1J:科学记数法—表示较小的数.【专题】1 :常规题型.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000326毫米,用科学记数法表示为3.26×10﹣4毫米.故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)(2018•内江)如图是正方体的表面展开图,则与“前”字相对的字是()A.认B.真C.复D.习【考点】I8:专题:正方体相对两个面上的文字.【专题】55:几何图形.【分析】由平面图形的折叠及正方体的展开图解题.对于正方体的平面展开图中相对的面一定相隔一个小正方形.【解答】解:由图形可知,与“前”字相对的字是“真”.故选:B.【点评】本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)(2018•内江)下列计算正确的是()A.a+a=a2B.(2a)3=6a3C.(a﹣1)2=a2﹣1 D.a3÷a=a2【考点】4C:完全平方公式;35:合并同类项;47:幂的乘方与积的乘方;48:同底数幂的除法.【分析】根据合并同类项运算法则和积的乘方法则、完全平方公式以及同底数幂的除法法则逐项计算即可.【解答】解:A,a+a=2a≠a2,故该选项错误;B,(2a)3=8a3≠6a3,故该选项错误C,(a﹣1)2=a2﹣2a+1≠a2﹣1,故该选项错误;D,a3÷a=a2,故该选项正确,故选:D.【点评】本题考查了并同类项运算法则和积的乘方法则、完全平方公式以及同底数幂的除法法则,解题的关键是熟记以上各种运算法则.5.(3分)(2018•内江)已知函数y=√x+1x−1,则自变量x 的取值范围是( ) A .﹣1<x <1 B .x ≥﹣1且x ≠1 C .x ≥﹣1 D .x ≠1【考点】E4:函数自变量的取值范围.【专题】33 :函数思想.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.【解答】解:根据题意得:{x +1≥0x −1≠0, 解得:x ≥﹣1且x ≠1.故选:B .【点评】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.6.(3分)(2018•内江)已知:1a ﹣1b =13,则ab b−a 的值是( ) A .13 B .﹣13C .3D .﹣3 【考点】6B :分式的加减法;64:分式的值.【专题】11 :计算题;513:分式.【分析】由1a ﹣1b =13知b−a ab =13,据此可得答案. 【解答】解:∵1a ﹣1b =13, ∴b−a ab =13, 则ab b−a=3, 故选:C .【点评】本题主要考查分式的加减法,解题的关键是掌握分式加减运算法则与分式的性质.7.(3分)(2018•内江)已知⊙O 1的半径为3cm ,⊙O 2的半径为2cm ,圆心距O1O2=4cm,则⊙O1与⊙O2的位置关系是()A.外高B.外切C.相交D.内切【考点】MJ:圆与圆的位置关系.【专题】55:几何图形.【分析】由⊙O1的半径为3cm,⊙O2的半径为2cm,圆心距O1O2为4cm,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.【解答】解:∵⊙O1的半径为3cm,⊙O2的半径为2cm,圆心距O1O2为4cm,又∵2+3=5,3﹣2=1,1<4<5,∴⊙O1与⊙O2的位置关系是相交.故选:C.【点评】此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题的关键.8.(3分)(2018•内江)已知△ABC与△A1B1C1相似,且相似比为1:3,则△ABC 与△A1B1C1的面积比为()A.1:1 B.1:3 C.1:6 D.1:9【考点】S7:相似三角形的性质.【专题】55D:图形的相似.【分析】利用相似三角形面积之比等于相似比的平方,求出即可.【解答】解:已知△ABC与△A1B1C1相似,且相似比为1:3,则△ABC与△A1B1C1的面积比为1:9,故选:D.【点评】此题考查了相似三角形的性质,熟练掌握相似三角形的性质是解本题的关键.9.(3分)(2018•内江)为了了解内江市2018年中考数学学科各分数段成绩分布情况,从中抽取400名考生的中考数学成绩进行统计分析,在这个问题中,样本是指()B.被抽取的400名考生C.被抽取的400名考生的中考数学成绩D.内江市2018年中考数学成绩【考点】V3:总体、个体、样本、样本容量.【专题】54:统计与概率.【分析】直接利用样本的定义,从总体中取出的一部分个体叫做这个总体的一个样本,进而分析得出答案.【解答】解:为了了解内江市2018年中考数学学科各分数段成绩分布情况,从中抽取400名考生的中考数学成绩进行统计分析,在这个问题中,样本是指被抽取的400名考生的中考数学成绩.故选:C.【点评】此题主要考查了样本的定义,正确把握定义是解题关键.10.(3分)(2018•内江)如图,在物理课上,小明用弹簧秤将铁块A悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则如图能反映弹簧秤的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图是()A.B.C.D.【考点】E6:函数的图象.【分析】根据在铁块开始露出水面到完全露出水面时,排开水的体积逐渐变小,根据阿基米德原理和称重法可知y的变化,注意铁块露出水面前读数y不变,离开水面后y不变,即可得出答案.【解答】解:露出水面前排开水的体积不变,受到的浮力不变,根据称重法可知铁块开始露出水面到完全露出水面时,排开水的体积逐渐变小,根据阿基米德原理可知受到的浮力变小,根据称重法可知y变大;铁块完全露出水面后一定高度,不再受浮力的作用,弹簧秤的读数为铁块的重力,故y不变.故选:C.【点评】本题考查了函数的图象,用到的知识点是函数值随时间的变化,注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.11.(3分)(2018•内江)如图,将矩形ABCD沿对角线BD折叠,点C落在点E 处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31°B.28°C.62°D.56°【考点】JA:平行线的性质.【专题】11 :计算题.【分析】先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE 的度数.【解答】解:∵四边形ABCD为矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°﹣∠BDC=90°﹣62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿对角线BD折叠,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.12.(3分)(2018•内江)如图,在平面直角坐标系中,△ABC 的顶点A 在第一象限,点B ,C 的坐标分别为(2,1),(6,1),∠BAC=90°,AB=AC ,直线AB 交y 轴于点P ,若△ABC 与△A′B′C′关于点P 成中心对称,则点A′的坐标为( )A .(﹣4,﹣5)B .(﹣5,﹣4)C .(﹣3,﹣4)D .(﹣4,﹣3)【考点】R4:中心对称;KW :等腰直角三角形;R7:坐标与图形变化﹣旋转.【专题】531:平面直角坐标系.【分析】先求得直线AB 解析式为y=x ﹣1,即可得出P (0,﹣1),再根据点A 与点A'关于点P 成中心对称,利用中点公式,即可得到点A′的坐标.【解答】解:∵点B ,C 的坐标分别为(2,1),(6,1),∠BAC=90°,AB=AC , ∴△ABC 是等腰直角三角形,∴A (4,3),设直线AB 解析式为y=kx +b ,则{3=4k +b 1=2k +b, 解得{k =1b =−1, ∴直线AB 解析式为y=x ﹣1,令x=0,则y=﹣1,∴P (0,﹣1),又∵点A 与点A'关于点P 成中心对称,∴点P 为AA'的中点,设A'(m ,n ),则m+42=0,3+n 2=﹣1, ∴m=﹣4,n=﹣5,∴A'(﹣4,﹣5),故选:A .【点评】本题考查了中心对称,等腰直角三角形的运用,利用待定系数法得出直线AB 的解析式是解题的关键.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)(2018•内江)分解因式:a 3b ﹣ab 3= ab (a +b )(a ﹣b ) .【考点】55:提公因式法与公式法的综合运用.【分析】0【解答】解:a 3b ﹣ab 3,=ab (a 2﹣b 2),=ab (a +b )(a ﹣b ).【点评】014.(5分)(2018•内江)有五张卡片(形状、大小、质地都相同),上面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆.将卡片背面朝上洗匀,从中抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是 25. 【考点】X4:概率公式;P3:轴对称图形;R5:中心对称图形.【分析】由五张卡片①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆中,既是轴对称图形,又是中心对称图形的①⑤,直接利用概率公式求解即可求得答案.【解答】解:∵五张卡片①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆中,既是轴对称图形,又是中心对称图形的①⑤,∴从中抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是:25. 故答案为:25. 【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.15.(5分)(2018•内江)关于x 的一元二次方程x 2+4x ﹣k=0有实数根,则k 的取值范围是 k ≥﹣4 .【考点】AA :根的判别式.【专题】45 :判别式法.【分析】根据方程的系数结合根的判别式△≥0,即可得出关于k 的一元一次不等式,解之即可得出结论.【解答】解:∵关于x 的一元二次方程x 2+4x ﹣k=0有实数根,∴△=42﹣4×1×(﹣k )=16+4k ≥0,解得:k ≥﹣4.故答案为:k ≥﹣4.【点评】本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.16.(5分)(2018•内江)已知,A 、B 、C 、D 是反比例函数y=8x(x >0)图象上四个整数点(横、纵坐标均为整数),分别过这些点向横轴或纵轴作垂线段,以垂线段所在的正方形(如图)的边长为半径作四分之一圆周的两条弧,组成四个橄榄形(阴影部分),则这四个橄榄形的面积总和是 5π﹣10 (用含π的代数式表示).【考点】G5:反比例函数系数k 的几何意义;G6:反比例函数图象上点的坐标特征.【专题】11 :计算题.【分析】通过观察可知每个橄榄形的阴影面积都是一个圆的面积的四分之一减去一个直角三角形的面积再乘以2,分别计算这5个阴影部分的面积相加即可表示.【解答】解:∵A 、B 、C 、D 、E 是反比例函数y=8x(x >0)图象上五个整数点, ∴x=1,y=8;x=2,y=4;x=4,y=2;x=8,y=1;∴一个顶点是A 、D 的正方形的边长为1,橄榄形的面积为:2(πr 24−r 22)=2(π−24)r 2=π−22; 一个顶点是B 、C 的正方形的边长为2,橄榄形的面积为:π−22r 2=2(π﹣2);∴这四个橄榄形的面积总和是:(π﹣2)+2×2(π﹣2)=5π﹣10.故答案为:5π﹣10.【点评】本题主要通过考查橄榄形的面积的计算来考查反比例函数图象的应用,关键是要分析出其图象特点,再结合性质作答.三、解答题(本大题共5小题,共44分)17.(7分)(2018•内江)计算:√8﹣|﹣√2|+(﹣2√3)2﹣(π﹣3.14)0×(12)﹣2.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【专题】1 :常规题型.【分析】直接利用零指数幂的性质以及负整数指数幂的性质、绝对值的性质、二次根式的性质分别化简得出答案.【解答】解:原式=2√2﹣√2+12﹣1×4=√2+8.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(9分)(2018•内江)如图,已知四边形ABCD是平行四边形,点E,F分别是AB,BC上的点,AE=CF,并且∠AED=∠CFD.求证:(1)△AED≌△CFD;(2)四边形ABCD是菱形.【考点】L9:菱形的判定;KD:全等三角形的判定与性质;L5:平行四边形的性质.【专题】14 :证明题.【分析】(1)由全等三角形的判定定理ASA证得结论;(2)由“邻边相等的平行四边形为菱形”证得结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠A=∠C.在△AED与△CFD中,{∠A=∠CAE=CF∠AED=∠CFD∴△AED≌△CFD(ASA);(2)由(1)知,△AED≌△CFD,则AD=CD.又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.【点评】考查了菱形的判定,全等三角形的判定与性质以及平行四边形的性质,解题的关键是掌握相关的性质与定理.19.(9分)(2018•内江)为了掌握八年级数学考试卷的命题质量与难度系数,命题组教师赴外地选取一个水平相当的八年级班级进行预测,将考试成绩分布情况进行处理分析,制成频数分布表如下(成绩得分均为整数):组别成绩分组频数频率147.5~59.520.5259.5~71.40.15371.5~83.5a0.2483.5~95.51.25595.5~17.5b c617.5~12060.15合计41.根据表中提供的信息解答下列问题:(1)频数分布表中的a=8,b=10,c=0.25;(2)已知全区八年级共有200个班(平均每班40人),用这份试卷检测,108分及以上为优秀,预计优秀的人数约为1200人,72分及以上为及格,预计及格的人数约为6800人,及格的百分比约为85%;(3)补充完整频数分布直方图.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.【专题】1 :常规题型;542:统计的应用.【分析】(1)根据第一组的频数和频率结合频率=频数总数,可求出总数,继而可分别得出a、b、c的值.(2)根据频率=频数总数的关系可分别求出各空的答案.(3)根据(1)中a、b的值即可补全图形.【解答】解:(1)∵被调查的总人数为2÷0.05=40人,∴a=40×0.2=8,b=40﹣(2+4+8+10+6)=10,c=10÷40=0.25,故答案为:8、10、0.25;(2)∵全区八年级学生总人数为200×40=8000人,∴预计优秀的人数约为8000×0.15=1200人,预计及格的人数约为8000×(0.2+0.25+0.25+0.15)=6800人,及格的百分比约为170200×100%=85%,故答案为:1200人、6800人、85%;(3)补全频数分布直方图如下:【点评】本题主要考查频数分布直方图及频率分布表的知识,难度不大,解答本题的关键是掌握频率=频数总数.20.(9分)(2018•内江)如图是某路灯在铅垂面内的示意图,灯柱AC的高为11米,灯杆AB与灯柱AC的夹角∠A=120°,路灯采用锥形灯罩,在地面上的照射区域DE 长为18米,从D ,E 两处测得路灯B 的仰角分别为α和β,且tanα=6,tanβ=34,求灯杆AB 的长度.【考点】TA :解直角三角形的应用﹣仰角俯角问题.【专题】552:三角形.【分析】过点B 作BF ⊥CE ,交CE 于点F ,过点A 作AG ⊥AF ,交BF 于点G ,则FG=AC=11.设BF=3x 知EF=4x 、DF=BF tan∠BDF,由DE=18求得x=4,据此知BG=BF ﹣GF=1,再求得∠BAG=∠BAC ﹣∠CAG=30°可得AB=2BG=2.【解答】解:过点B 作BF ⊥CE ,交CE 于点F ,过点A 作AG ⊥AF ,交BF 于点G ,则FG=AC=11.由题意得∠BDE=α,tan ∠β=34. 设BF=3x ,则EF=4x在Rt △BDF 中,∵tan ∠BDF=BF DF ,∴DF=BF tan∠BDF =3x 6=12x , ∵DE=18,∴12x +4x=18. ∴x=4.∴BF=12,∴BG=BF﹣GF=12﹣11=1,∵∠BAC=120°,∴∠BAG=∠BAC﹣∠CAG=120°﹣90°=30°.∴AB=2BG=2,答:灯杆AB的长度为2米.【点评】本题主要考查解直角三角形﹣仰角俯角问题,解题的关键是结合题意构建直角三角形并熟练掌握三角函数的定义及其应用能力.21.(10分)(2018•内江)某商场计划购进A,B两种型号的手机,已知每部A 型号手机的进价比每部B型号手机进价多500元,每部A型号手机的售价是2500元,每部B型号手机的售价是2100元.(1)若商场用50000元共购进A型号手机10部,B型号手机20部,求A、B 两种型号的手机每部进价各是多少元?(2)为了满足市场需求,商场决定用不超过7.5万元采购A、B两种型号的手机共40部,且A型号手机的数量不少于B型号手机数量的2倍.①该商场有哪几种进货方式?②该商场选择哪种进货方式,获得的利润最大?【考点】FH:一次函数的应用;9A:二元一次方程组的应用;CE:一元一次不等式组的应用.【专题】1 :常规题型.【分析】(1)设A、B两种型号的手机每部进价各是x元、y元,根据每部A型号手机的进价比每部B型号手机进价多500元以及商场用50000元共购进A型号手机10部,B型号手机20部列出方程组,求出方程组的解即可得到结果;(2)①设A种型号的手机购进a部,则B种型号的手机购进(40﹣a)部,根据花费的钱数不超过7.5万元以及A型号手机的数量不少于B型号手机数量的2倍列出不等式组,求出不等式组的解集的正整数解,即可确定出购机方案;②设A种型号的手机购进a部时,获得的利润为w元.列出w关于a的函数解析式,根据一次函数的性质即可求解.【解答】解:(1)设A、B两种型号的手机每部进价各是x元、y元,根据题意得:{x =y +50010x +20y =50000, 解得:{x =2000y =1500,答:A 、B 两种型号的手机每部进价各是2000元、1500元;(2)①设A 种型号的手机购进a 部,则B 种型号的手机购进(40﹣a )部, 根据题意得:{2000a +1500(40−a)≤75000a ≥2(40−a), 解得:803≤a ≤30, ∵a 为解集内的正整数,∴a=27,28,29,30,∴有4种购机方案:方案一:A 种型号的手机购进27部,则B 种型号的手机购进13部;方案二:A 种型号的手机购进28部,则B 种型号的手机购进12部;方案三:A 种型号的手机购进29部,则B 种型号的手机购进11部;方案四:A 种型号的手机购进30部,则B 种型号的手机购进10部;②设A 种型号的手机购进a 部时,获得的利润为w 元.根据题意,得w=500a +600(40﹣a )=﹣100a +24000,∵﹣10<0,∴w 随a 的增大而减小,∴当a=27时,能获得最大利润.此时w=﹣100×27+24000=21300(元). 因此,购进A 种型号的手机27部,购进B 种型号的手机13部时,获利最大. 答:购进A 种型号的手机27部,购进B 种型号的手机13部时获利最大.【点评】此题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式组的应用,找出满足题意的等量关系与不等关系是解本题的关键.四、填空题(本大题共4小题,每小题6分,共24分)22.(6分)(2018•内江)已知关于x 的方程ax 2+bx +1=0的两根为x 1=1,x 2=2,则方程a (x +1)2+b (x +1)+1=0的两根之和为 1 .【考点】AB :根与系数的关系;A9:换元法解一元二次方程.【专题】11 :计算题.【分析】利用整体的思想以及根与系数的关系即可求出答案.【解答】解:设x +1=t ,方程a (x +1)2+b (x +1)+1=0的两根分别是x 3,x 4, ∴at 2+bt +1=0,由题意可知:t 1=1,t 2=2,∴t 1+t 2=3,∴x 3+x 4+2=3故答案为:1【点评】本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.23.(6分)(2018•内江)如图,以AB 为直径的⊙O 的圆心O 到直线l 的距离OE=3,⊙O 的半径r=2,直线AB 不垂直于直线l ,过点A ,B 分别作直线l 的垂线,垂足分别为点D ,C ,则四边形ABCD 的面积的最大值为 12 .【考点】LL :梯形中位线定理.【专题】11 :计算题.【分析】先判断OE 为直角梯形ADCB 的中位线,则OE=12(AD +BC ),所以S 四边形ABCD =OE•CD=3CD ,只有当CD=AB=4时,CD 最大,从而得到S 四边形ABCD 最大值.【解答】解:∵OE ⊥l ,AD ⊥l ,BC ⊥l ,而OA=OB ,∴OE 为直角梯形ADCB 的中位线,∴OE=12(AD +BC ), ∴S 四边形ABCD =12(AD +BC )•CD=OE•CD=3CD ,当CD=AB=4时,CD 最大,S 四边形ABCD 最大,最大值为12.【点评】本题考查了梯形中位线:梯形的中位线平行于两底,并且等于两底和的一半.24.(6分)(2018•内江)已知△ABC 的三边a ,b ,c ,满足a +b 2+|c ﹣6|+28=4√a −1+10b ,则△ABC 的外接圆半径= 258. 【考点】MA :三角形的外接圆与外心;16:非负数的性质:绝对值;1F :非负数的性质:偶次方;23:非负数的性质:算术平方根;KQ :勾股定理.【专题】17 :推理填空题.【分析】根据题目中的式子可以求得a 、b 、c 的值,从而可以求得△ABC 的外接圆半径的长.【解答】解:∵a +b 2+|c ﹣6|+28=4√a −1+10b ,∴(a ﹣1﹣4√a −1+4)+(b 2﹣10b +25)+|c ﹣6|=0,∴(√a −1﹣2)2+(b ﹣5)2+|c ﹣6|=0,∴√a −1−2=0,b ﹣5=0,c ﹣6=0,解得,a=5,b=5,c=6,∴AC=BC=5,AB=6,作CD ⊥AB 于点D ,则AD=3,CD=4,设△ABC 的外接圆的半径为r ,则OC=r ,OD=4﹣r ,OA=r ,∴32+(4﹣r )2=r 2,解得,r=258, 故答案为:258.【点评】本题考查三角形的外接圆与外心、非负数的性质、勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.25.(6分)(2018•内江)如图,直线y=﹣x +1与两坐标轴分别交于A ,B 两点,将线段OA 分成n 等份,分点分别为P 1,P 2,P 3,…,P n ﹣1,过每个分点作x 轴的垂线分别交直线AB 于点T 1,T 2,T 3,…,T n ﹣1,用S 1,S 2,S 3,…,S n ﹣1分别表示Rt △T 1OP 1,Rt △T 2P 1P 2,…,Rt △T n ﹣1P n ﹣2P n ﹣1的面积,则S 1+S 2+S 3+…+S n ﹣1= 14﹣14n.【考点】F8:一次函数图象上点的坐标特征;D2:规律型:点的坐标.【专题】2A :规律型;531:平面直角坐标系.【分析】如图,作T 1M ⊥OB 于M ,T 2N ⊥P 1T 1.由题意可知:△BT 1M ≌△T 1T 2N≌△T n ﹣1A ,四边形OMT 1P 1是矩形,四边形P 1NT 2P 2是矩形,推出S △BT 1M =12×1n×1n =12n ,S 1=12S 矩形OMT 1P 1,S 2=12S 矩形P 1NT 2P 2, 可得S 1+S 2+S 3+…+S n ﹣1=12(S △AOB ﹣n ⋅S △NBT 1). 【解答】解:如图,作T 1M ⊥OB 于M ,T 2N ⊥P 1T 1.由题意可知:△BT 1M ≌△T 1T 2N ≌△T n ﹣1A ,四边形OMT 1P 1是矩形,四边形P 1NT 2P 2是矩形,∴S △BT 1M =12×1n ×1n =12n 2,S 1=12S 矩形OMT 1P 1,S 2=12S 矩形P 1NT 2P 2, ∴S 1+S 2+S 3+…+S n ﹣1=12(S △AOB ﹣n ⋅S △NBT 1)=12×(12﹣n ×12n 2)=14﹣14n. 故答案为14﹣14n. 【点评】本题考查一次函数的应用,规律型﹣点的坐标、三角形的面积、矩形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分割法求阴影部分面积.五、解答题(本大题共3小题,每小题12分,共36分)26.(12分)(2018•内江)如图,以Rt △ABC 的直角边AB 为直径作⊙O 交斜边AC 于点D ,过圆心O 作OE ∥AC ,交BC 于点E ,连接DE .(1)判断DE 与⊙O 的位置关系并说明理由;(2)求证:2DE 2=CD•OE ;(3)若tanC=43,DE=52,求AD 的长.。

初三试卷-2011年四川省内江市初中数学中考试卷答案

初三试卷-2011年四川省内江市初中数学中考试卷答案

初三试卷:2011年四川省内江市初中数学中考试卷答案
2011年四川省内江市初中中考数学试卷
一、选择题
题号 1 2 3 4 5 6 7 8 9 10 11 12答案 A B A C
B C D B D D C A
二、填空题
13. 0.2 14. 30 15. 16. AB=CD
三、解答题
18. 数量关系为:BE=EC,位置关系是:BE⊥EC.证明:∵△AED 是直角三角形,∠AED=90,且有一个锐角是45,∴∠EAD=∠EDA=45,∴AE=DE,∵∠BAC=90,∴∠EAB=∠EAD+∠BAC=90+45=135,∠EDC=∠ADC-∠EDA=180-45=135,∴∠EAB=∠EDC,∵D 是AC的中点,∴AD= AB,∵AC=2AB,∴AB=DC,∴△EAB≌△EDC,∴EB=EC,且∠AEB=∠AED=90,∴∠DEC+∠BED=∠AED=∠BED=90,∴BE⊥ED.
②当AB为对角线时,只要线段PQ与线段AB互相平分即可,线段AB中点为G,PQ必过G点且与y轴交于Q点,过点P作x轴的垂线交于点H,可证得△PHG≌△QOG,∴GO=GH,∵线段AB的中点G的横坐标为1,∴此时点P横坐标为2,由此当x=2时,y=-1,∴这是有符合条件的点P 3(2,-1),∴所以符合条件的点为:P1的坐标为(-4,7),P2的坐标为(4,5/3);P 3(2,-1).。

2011年中考数学试题精选汇编《实数》

2011年中考数学试题精选汇编《实数》
A.-4 B.-1 C.- D.
【答案】B
7.(2011山东济宁,1,3分)计算―1―2的结果是
A.-1 B.1 C.-3 D.3
【答案】C
8.(2011四川广安,2,3分)下列运算正确的是()
A. B.
C. D. [来源:学科网]
【答案】C
9.(2011重庆江津,1,4分)2-3的值等于( )
A.1 B.-5 C.5 D.-1·
2011年中考数学试题精选汇编
《实数》
一、选择题
1.(2011福建泉州,1,3分)如在实数0,- , ,|-2|中,最小的是().
A. B.- C.0D.|-2|
【答案】B
2.(2011广东广州市,1,3分)四个数-5,-0.1, , 中为无理数的是().
A.-5B.-0.1C. D.
【答案】D
3.(2011山东滨州,1, 3分)在实数π、 、 、sin30°,无理数的个数为( )
16.(2011广东汕头,11,6分)计算:
【解】原式=1+ -4
=0
17.(2011浙江省嘉兴,17,8分)(1)计算: .
【答案】原式=4+1-3=2
18.(2011浙江丽水,17,6分)计算:|-1|- -(5-π)0+4cos45°.
【解】原式=1- ×2 -1+4× =1- -1+2 = .
A.3B.30C.1D.0
【答案】C
26.(2011湖南湘潭市,1,3分)下列等式成立是
A. B. C. ÷ D.
【答案】A
27.(2011台湾全区,2)计算 之值为何?
A.9 B.27 C.279 D.407
【答案】C
28.(2011台湾全区,12)12.判断312是96的几倍?

2011年中考数学试题分类37_投影与视图

2011年中考数学试题分类37_投影与视图

第37章 投影与视图一、选择题1. (2011浙江金华,2,3分)如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是( )A .6B .5C .4D .3 【答案】B2. (2011湖北鄂州,12,3分)一个几何体的三视图如下:其中主视图都是腰长为4、底边为2的等腰三角形,则这个几何体的侧面展开图的面积为( ) A .2πB .12π C . 4πD .8π【答案】C3. (2011安徽芜湖,3,4分)如图所示,下列几何体中主视图、左视图、俯视图都相同的 是().【答案】C4. (2011福建福州,3,4分)在下列几何体中,主视图、左视图与俯视图都是相同的圆,该几何体是 ( )第12题图42 2 4左视图右视图 俯视图ABDC【答案】A5. (2011江苏扬州,5,3分)如图是由几块小立方块所搭成的几何体的俯视图,小正方体中的数字表示该位置小立方块的个数,则该几何体的主视图是()【答案】A6. (2011山东德州2,3分)一个几何体的主视图、左视图、俯视图完全相同,它一定是(A)圆柱(B)圆锥(C)球体(D)长方体【答案】C7. (2011山东济宁,8,3分)如图,是有几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是()A. 3个B. 4个C. 5个D. 6个【答案】B8. (2011山东日照,5,3分)如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为()【答案】C9. (2011山东泰安,6 ,3分)下列几何体:(第8题)其中,左视图是平等四边形的有( )A.4个B.3个C. 2个D.1个` 【答案】B10.(2011山东威海,10,3分)如图是由一些大小相同的小立方体组成的几何体的主视图和左视图, 则组成这个几何体的小立方体的个数不可能是( )A .3个B .4个C . 5个D .6个 【答案】D11. (2011山东烟台,2,4分)从不同方向看一只茶壶,你认为是俯视效果图的是( )【答案】A12. (2011浙江杭州,8,3)如图是一个正六棱柱的主视图和左视图,则图中的a =( )A .23B .3C .2 D.1【答案】B13. (2011宁波市,6,3分)如图所示的物体的府视图是ABCD(第4题图)【答案】D14. (2011浙江衢州,1,3分)如下图,下列几何体的俯视图是右面所示图形的是( )【答案】A15. (2011浙江绍兴,4,4分)由5个相同的正方体搭成的几何体如图所示,则它的左视图是( )A. B. C. D.主视方向【答案】D16. (2011浙江台州,2,4分)下列四个几何体中,主视图是三角形的是( )【答案】B17. (2011浙江温州,3,4分)如图所示的物体由两个紧靠在一起的圆柱体组成,它的主视图是( )【答案】A主视方向A.B. C. D. (第4题)A.B. C. D.18. (2011浙江义乌,4,3分)如图,下列水平放置的几何体中,主视图不是..长方形的是( )【答案】B19. (2011浙江省嘉兴,5,4分)两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是( ) (A )两个外离的圆 (B )两个外切的圆 (C )两个相交的圆(D )两个内切的圆【答案】D20.(2011浙江丽水,2,3分)如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是( )A .6B .5C .4D .3【答案】B21. (2011江西,3,3分)将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是( ).【答案】C22. (2011甘肃兰州,6,4分)如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的主视图是水平面主视方向(第5题)A .B .C .D .A .B .C .D .【答案】D23. (2011湖南常德,10,3分)如图3,是由四个相同的小正方形组成的立体图形,它的左视图是( )【答案】A24. (2011江苏连云港,8,3分)如图,是由8个相同的小立方块搭成的几何体,它的三个视图都是2×2的正方形,若拿掉若干个小立方块后(几何体不倒掉...),其三个视图仍都为2×2的正方形,则最多能拿掉小立方块的个数为( ) A .1B .2C .3D .4【答案】B25. (2011江苏宿迁,3,3分)下列所给的几何体中,主视图是三角形的是(▲)【答案】B26. (2011江苏泰州,4,3分)右图是一个几何体的三视图,则这个几何体是图3主视方向A B CD21 11正面A .B .C .D .俯视图左视图主视图A .圆锥B .圆柱C .长方体D . 球体 【答案】A27. (2011山东济宁,10,3分)如图,是某几何体的三视图及相关数据,则下面判断正确的是A .a c >B .b c >C .2224a b c += D .222a b c +=【答案】D28. (2011山东聊城,2,3分)如图,空心圆柱的左视图是( )【答案】C29. (2011四川成都,2,3分)如图所示的几何体的俯视图是D【答案】Dac2b第10题30. (2011四川广安,9,3分)由n 个相同的小正方体堆成的几何体,其视图如下所示,则n 的最大值是( ) A .18 B .19 C .20 D .21【答案】A31. (2011四川内江,8,3分)由一些大小相同的小正方体搭成的几何体的俯视图如右图所示,其正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是12213ABCD【答案】B32. (2011四川宜宾,6,3分)如图所示的几何体的正视图是( )【答案】D33. (2011重庆綦江,3,4分)如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是( )A .B .C .D . 【答案】:CA .B. C. D.(第6题图)主视图俯视图34.(2011江西南昌,3,3分)将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是().A. B. C. D. 图甲图乙第3题图【答案】C35.(2011江苏淮安,4,3分)如图所示的几何体的主视图是()A. B. C. D.【答案】B36.(2011江苏南通,6,3分)下列水平放置的几何体中,俯视图是矩形的是【答案】B37.(2011四川绵阳8,3)由四个相同的小正方体搭建了一个积木,它的三视图如右图所示,则这个积木可能是【答案】B38. (2011四川乐山4,3分)如图(2),在正方体ABCD-A 1B 1C 1D 1中,E 、F 、G 分别是 AB 、BB 1、BC 的中点,沿EG 、EF 、FG 将这个正方体切去一个角后,得到的几何体的俯视图是【答案】 B39. (2011四川凉山州,11,4分)一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的表面积为( )A .66B .48C .48236D .57【答案】A40. (2011安徽芜湖,3,4分)如图所示,下列几何体中主视图、左视图、俯视图都相同的是【答案】CABCD41. (2011湖北武汉市,8,3分)右图是某物体的直观图,它的俯视图是A .B .C .D . 【答案】A42. (2011湖北黄石,5,3分)如图(1)所示的几何体的俯视图是【答案】B43. (2011湖南衡阳,3,3分)如图所示的几何体的主视图是( )A .B .C .D .【答案】B44. (2011贵州贵阳,4,3分)一个几何体的三视图如图所示,则这个几何体是主视图 左视图 俯视图(第4题图)(A )圆柱 (B )三棱锥 (C )球 (D )圆锥 【答案】D45. (2011广东肇庆,3,3分)如图是一个几何体的实物图,则其主视图是图DCBA【答案】C46. (2011湖北襄阳,8,3分)有一些相同的小立方块搭成的几何体的三视图如图2所示,则搭成该几何体的小立方块有A.3块B.4块C.6块D.9块【答案】B47. (2011湖南永州,10,3分)如图所示的几何体的左视图是( )【答案】B .48. (2011江苏盐城,3,3分)下面四个几何体中,俯视图为四边形的是【答案】D49. (2011山东东营,3,3分)一个几何体的三视图如图所示,那么这个几何体是( )【答案】C50. (2011江苏镇江,3,2分)已知某几何体的三个视图(如图),此几何体是( )A B CD A . B . C .D(第10题)图2主视图左视图 俯视图A.正三棱柱B. 三棱锥C. 圆锥D. 圆柱【答案】C51.(2011内蒙古乌兰察布,5,3分)如图是由五个相同的小正方体搭成的几何体,它的主视图是()【答案】B52.(2011重庆市潼南,6,4分)如图,在四个几何体中,主视图与其它几何体的主视图的形状不同的是【答案】C53.(2011安徽,3,4分)下图是五个相同的小正方体搭成的几何体,其左视图是()A. B.C.D.【答案】A54.(2011广东湛江4,3分)下面四个几何体中,主视图是四边形的几何体有6题图A B CD第5题图A CB D正面圆锥 圆柱 球 正方体 A 1个 B 2个 C 3个 D 4个【答案】B55. (2011贵州安顺,6,3分)如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是( )A .B .C .D .【答案】A56. (2011湖南湘潭市,4,3分)一个几何体的三视图如下图所示,这个几何体是A.球B. 圆柱C.长方体D.圆锥【答案】B57. (2011湖北荆州,4,3分)如图,位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2:5,且三角尺的一边长为8cm ,则投影三角尺的对应边长为 A . 8cm B .20cm C .3.2 cm D .10cm【答案】B左视图 俯视图主视图58. (2011湖北宜昌,6,3分) 如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向远移时,圆形阴影的大心的变化情况是( ). A.越来越小 B.越来越大 C.大小不变 D.不能确定【答案】A59.(2011湖北宜昌,8,3分)一个圆锥体按如图所示摆放,它的主视图是( ).【答案】A二、填空题1. (2011山东菏泽,12,3分)如图是正方体的展开图,则原正方体相对 两个面上的数字之和的最小值的是 .【答案】62. (2011山东东营,17,4分)如图,观察由棱长为1的小立方体摆成的图形,寻找规律:如图①中; 共有1个小立方体,其中1个看得见,0个看不见;如图②中;把共有8个小立方体,其中7个看得见,1个看不见;如图③中;共有27个小立方体,其中19个看得见,8个看不见;……,则第⑥个图中,看得见的小立方体有______________个【答案】913. (2011山东枣庄,14,4分)如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是 .【答案】左视图4. (2010湖北孝感,14,3分)一个几何体是由一些大小相同的小正方体摆成的,其主视图与左视图如图所示,则组成这个几何体的小正方体最少有个.主视图 左视图【答案】5 三、解答题1. (2011广东广州市,20,10分)5个棱长为1的正方体组成如图5的几何体.(1)该几何体的体积是 (立方单位),表面积是 (平方单位) (2)画出该几何体的主视图和左视图【答案】(1)5,22正面图5主视图左视图。

内江中考数学试题及答案

内江中考数学试题及答案

内江中考数学试题及答案一、选择题1.设函数f(x) = 2x + 1,那么f(3)的值为多少?A. 4B. 6C. 7D. 8答案:C2.已知a + b = 5,ab = 6,求a² + b²的值。

A. 14B. 25C. 29D. 37答案:B3.已知正方形ABCD的边长为8cm,P为AB边上任意一点,连接PC并延长至交BC于点E,如图所示。

若BE的长度为10cm,那么PC 的长度是多少?(图略)A. 6cmB. 8cmC. 12cmD. 14cm答案:C二、填空题1. 若m = 3,n = -2,求2m - 3n的值为 _______。

答案:122. 已知y = 2x² - 3x + 1,求当x = -2时,y的值为 _______。

答案:173. 设二次函数y = ax² + bx + 1的图像与x轴有两个交点,且顶点坐标为(2, 1),则a + b的值为 _______。

答案:0三、解答题1. 已知一条直线上有三个点A(-2, 3),B(4, 1),C(x, 5),且AC = 2AB,求点C的坐标。

解析:由题意可得:AC = 2AB即√[(x - (-2))² + (5 - 3)²] = 2√[(x - 4)² + (5 - 1)²]经过计算,得到:x = -8 或 x = 4所以,点C的坐标为(-8, 5) 或 (4, 5)。

2. 在平面直角坐标系中,点M(x, 0)与点N(0, y)关于直线y = -x对称,且点M到直线y = 3x的距离为2√2,求点N的坐标。

解析:由题意可得,点M到直线y = 3x的距离为2√2,即∣y - 3x∣ =2√2又因为点M与点N关于直线y = -x对称,所以点N的坐标为(0, -2x)。

代入∣y - 3x∣ = 2√2,得到:∣-2x - 3x∣ = 2√2解得:x = ±√2所以,点N的坐标为(0, ±2√2)。

四川省内江市中考数学试卷及答案

四川省内江市中考数学试卷及答案

四川省达州市中考数学试卷本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至10页。

考试时间120分钟,满分120分。

第I 卷(选择题 共30分)温馨提示:1、 答第卷前,请考生务必将姓名、准考证号、考试科目等按要求填涂在机读卡上。

2、 每小题选出正确答案后,请用2B 铅笔把机读卡上对应题号的答案标号涂黑。

3、 考试结束后,请将本试卷和机读卡一并交回。

一、选择题:(每小题3分,共30分)1、 向东行驶3km,记作+3km ,向西行驶2km 记作BA. +2kmB. -2kmC. +3kmD. -3km2、2014年5月21日,中国石油天然气集团公司与俄罗斯天然气工业股份公司在上海签署了《中俄东线供气购销合同》,这份有效期为30年的合同规定,从2018年开始供气,每年的天然气供应量为380亿立方米,380亿立方米用科学记数法表示为A A. 3.8×1010m 3B. 38×109m 3C. 380×108m 3D. 3.8×1011m 33x 的取值范围是D A. x ≥-2 B. x >-2 C. x <2 D. x ≤24、小颖同学到学校领来n 盒粉笔,整齐地摞在讲桌上,其三视图如图所示,则n 的值是B俯视图左视图主视图A .6 B. 7 C. 8 D. 95、一家特色煎饼店提供厚度相同、直径不同的两种煎饼,甲种煎饼直径20厘米卖价10元,乙种煎饼直径30厘米卖价15元,请问:买哪种煎饼划算?BPDABCFF1CoAA1GGBB1DXYO1A. 甲B. 乙C. 一样D.无法确定 6、下列说法中错误的是CA. 将油滴入水中,油会浮出水面是一个必然事件 B .1、2、3、4这组数据的中位数是2.5 C. 一组数据的方差越小,这组数据的稳定性越差 D .要了解某种灯管的使用寿命,一般采用抽样调查 7、如图,在四边形ABCD 中,∠A+∠D=α,∠ABC 的平分线与 ∠BCD 的平分线交于点P ,则∠P=C A. 01902α-B. 01902α+ C. 12α D. 0360α- 8、直线y=kx+b 不经过第四象限,则cA.k >0 b >0B.k <0 b >0C. k >0 b ≥0D. k <0 b ≥09、如图,以点O 为支点的杠杆,在A 端用竖直向上的拉力将重为G 的物体匀速拉起,当杠杆OA 水平时,拉力为F ;当杠杆被拉至OA 1时,拉力为F 1,过点B /作B 1C ⊥OA ,过点A 1作A 1D ⊥OA ,垂足分别为点C 、D 。

2011年中考数学试题分类32 圆的有关性质

2011年中考数学试题分类32 圆的有关性质

第32章 圆的有关性质一、选择题1. (2011广东湛江16,4分)如图,,,A B C 是O 上的三点,30BAC ︒∠=,则BOC ∠= 度.【答案】602. (2011安徽,7,4分)如图,⊙O 的半径是1,A 、B 、C 是圆周上的三点,∠BAC =36°,则劣弧 ⌒BC 的长是( ) A .π5B .25πC .35πD .45π【答案】B3. (2011福建福州,9,4分)如图2,以O 为圆心的两个同心圆中,大圆的弦AB 切小圆于点C ,若120AOB ∠= ,则大圆半径R 与小圆半径r 之间满足( )A.R = B .3R r =C .2R r =D.R =【答案】C4. (2011山东泰安,10 ,3分)如图,⊙O 的弦AB 垂直平分半径OC ,若AB =6,则⊙O图2的半径为()A. 2B.2 2C.22D.62【答案】A5. (2011四川南充市,9,3分)在圆柱形油槽内装有一些油。

截面如图,油面宽AB 为6分米,如果再注入一些油 后,油面AB 上升1分米,油面宽变为8分米,圆柱形油槽直径MN 为( )(A )6分米 (B )8分米 (C )10分米 (D )12分米 【答案】C6. (2011浙江衢州,1,3分)一个圆形人工湖如图所示,弦AB 是湖上的一座桥,已知桥AB 长100m ,测得圆周角45ACB ∠=︒,则这个人工湖的直径AD 为( )A.B.C.D.【答案】B7. (2011浙江绍兴,4,4分)如图,AB O 为的直径,点C 在O 上,若16C ∠=︒,则BOC ∠的度数是( )A.74︒B. 48︒C. 32︒D. 16︒【答案】C8. (2011浙江绍兴,6,4分)一条排水管的截面如图所示.已知排水管的截面圆半径10OB ,截面圆圆心O 到水面的距离OC 是6,则水面宽AB 是( )A.16B.10C.8D.6【答案】A9. (2011浙江省,5,3分)如图,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( ) A. 12个单位 B. 10个单位 C.4个单位 D. 15个单位【答案】B10.(2011四川重庆,6,4分)如图,⊙O 是△A BC 的外接圆,∠OCB =40°则∠A 的度数等于( )A . 60°B . 50°C . 40°D . 30°【答案】B11.(2011浙江省嘉兴,6,4分)如图,半径为10的⊙O中,弦AB的长为16,则这条弦的弦心距为()(A)6 (B)8 (C)10 (D)12【答案】A12.(2011台湾台北,16)如图(六),BD为圆O的直径,直线ED为圆O的切线,A、C两点在圆上,AC平分∠BAD且交BD于F点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

COAB一、选择题:(本大题12个小题,共36分)1. 下列四个实数中,比-1小的数是( ) A .-2 B .0 C .1 D .22. 如图,把一块直角三角板的直角顶点放在直尺的一边上,如果132∠=°,那么2∠的度数是( )A .32°B .58°C .68°D .60°3. 某红外线遥控器发出的红外线波长为0.00000094m ,用科学记数法表示这个数是( )A .79.410m -⨯B .79.410m ⨯C .89.410m -⨯ D .89.410m ⨯4. 在下列几何图形中,一定是轴对称图形的有( )扇形 等腰梯形 菱形 直角三角形A .1个B .2个C .3个D .4个 5. 为了解某市参加中考的32000名学生的体重情况,抽查了其中1600名学生的体重进行统计分析.下面叙述正确的是( ) A .32000名学生是总体B .1600名学生的体重是总体的一个样本C .每名学生是总体的一个样本D .以上调查是普查6. 下列多边形中,不能够单独铺满地面的是()C .11岁时男女生身高增长速度基本相同A .正三角形B .正方形C .正五边形D .正六边形7. 某中学数学兴趣小组12名成员的年龄情况如下:年龄(岁) 1213 14 15 16 人数1 4322则这个小组成员年龄的平均数和中位数分别是( )A .15;16B .13;15C .13;14D .14;148. 由一些大小相同的小正方体搭成的几何体的俯视图如右图所示,其正方形中的数字表示该位 置上的小正方体的个数,那么该几何体的主视图是( )9. 如图,圆O 是△ABC 的外接圆,∠BAC =60°,若圆O 的半径OC 为2,则弦BC 的长为 A .1B .3C .2D .232011年四川内江中考数学试题 (满分100分,考试时间120分钟)BC AD EHFGE ADBC10. 小高从家骑自行车去学校上学,先走上坡路到达点A ,再走下坡路到达点B ,最后走平路到达学校,所用的时间与路程的关系如图所示.放学后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,那么他从学校到家需要的时间是( ) A .14分钟 B .17分钟 C .18分钟 D .20分钟11. 如图,在等边△ABC 中,D 为BC 边上一点,E为AC 边上一点,且∠ADE =60°,BD =4,CE =43,则△ABC 的面积为 A .83 B .15 C .93D .12312. 如图,在直角坐标系中,矩形ABCO 的边OA在x 轴上,边OC 在y 轴上,点B 的坐标为(1,3),将矩形沿对角线AC 翻折,B 点落在D 点的位置,且AD 交y 轴于点E .那么D 点的坐标为 A .412,55⎛⎫- ⎪⎝⎭B .213,55⎛⎫- ⎪⎝⎭C .113,25⎛⎫- ⎪⎝⎭D .312,55⎛⎫- ⎪⎝⎭二、填空题:(本大题4个小题,每小题5分, 共20分)13. “WelcometoSeniorHighSchool .”(欢迎进入高中),在这段句子的所有英文字母中,字母O 出现的频率是_____.14. 如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120°,则圆锥的母线长是. 15. 如果分式23273x x --的值为0,则x 的值应为_____.16. 如图,点E 、F 、G 、H 分别是任意四边形ABCD中AD 、BD 、BC 、CA 的中点,当四边形ABCD 的边至少满足_____条件时,四边形EFGH 是菱形.三、解答题:(本大题5个小题,共44分)17. (7分)计算:3tan30°()2011π--0812+--18. (9分)如图,在Rt ABC ∆中,BAC ∠=90°,AC =2AB ,点D 是AC 的中点.将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A 、D 重合,连结BE 、EC .试猜想线段BE 和EC 的数量及位置关系,并证明你的猜想.19.(9分)小英和小明姐弟二人准备一起去观看端午节龙舟赛,但因家中临时有事,必须留下一人在家,于是姐弟二人采用游戏的方式来确定谁先去看龙舟赛.游戏规则是:在不透明的口袋中分别放入2个白色和1个黄色的乒乓球,它们除颜色外其余都相同.游戏时先由小英从口袋中任意摸出1个乒乓球记下颜色后放回并摇匀,再由小明从口袋中摸出1个乒乓球,记下颜色.如果姐弟二人摸到的乒乓球颜色相同,则小英赢,否则小明赢.(1)请用树状图或列表的方法表示游戏中所有可能出现的结果.(2)这个游戏规则对游戏双方公平吗?请说明理由.20.(9分)放风筝是大家喜爱的一种运动.星期天的上午小明在大洲广场上放风筝.如图他在A处时不小心让风筝挂在了一棵树的树梢上,风筝固定在了D处.此时风筝线AD与水平线的夹角为30°.为了便于观察,小明迅速向前边移动边收线到达了离A处7米的B处,此时风筝线BD与水平线的夹角为45°.已知点A、B、C在同一条直线上,ACD∠=90°.请你求出小明此时所收回的风筝线的长度是多少米?(本题中风筝线均视为线段,2 1.4143 1.732≈≈,,最后结果精确到1米)21.(10分)如图,正比例函数11y k x=与反比例函数22kyx=相交于A、B点,已知点A的坐标为(4,n),BD⊥x轴于点D,且4B D OS=.过点A的一次函数33y k x b=+与反比例函数的图象交于另一点C,与x轴交于点E(5,0).(1)求正比例函数1y、反比例函数2y和一次函数3y的解析式;(2)结合图象,求出当231kk x b xx+>>k时x的取值范围.加试卷(共60分)一、填空题:(本大题4个小题,每小题6分,共24分)1.若201120121m=-,则54322011m m m--的值是_______.2.如图,在△ABC中,点D、E分别是边AB、AC的中点,DF过EC的中点G并与BC的延长线交于点F,BE与DF交于点O.若△ADE的面积为S,则四边形BOGC的面积=_______.3.已知()()22635363m n m m n-+-=---,则m-n=________.4. 在直角坐标系中,正方形1111A B C O 、222133321n n n n A B C C A B C C A B C C -、、…、按如图所示的方式放置,其中点123n A A A A 、、、…、均在一次函数y =kx +b的图象上,点123n C C C C 、、、…、均在x 轴上.若点1B 的坐标为(1,1),点2B 的坐标为(3,2),则点n A 的坐标为_________.二、解答题(本大题3个小题,每小题12分,共36分)5. 同学们,我们曾经研究过n n ⨯的正方形网格,得到了网格中正方形的总数的表达式为2222123n +++…+.但n 为100时,应如何计算正方形的具体个数呢?下面我们就一起来探究并解决这个问题.首先,通过探究我们已经知道()()()10112231+1-13n n n n n ⨯+⨯+⨯+-⨯=…+时,我们可以这样做:(1)观察并猜想:2212+=()()101112+⨯++⨯=1+01212⨯++⨯=()()120112++⨯+⨯222123++=()()101112+⨯++⨯()123++⨯=1+01212⨯++⨯323++⨯ =()()123011223+++⨯+⨯+⨯22221234+++=()()101112+⨯++⨯()123++⨯+____________=1+01212⨯++⨯323++⨯+____________ =()()1234_____________++++……(2)归纳结论: 2222123n +++…+=()()101112+⨯++⨯()123++⨯++…()11n n ⎡+-⎤⎣⎦=1+01212⨯++⨯323++⨯()1n n n +⋯++-⨯ =(__________)[]___________+=_____________+_____________=16⨯________(3)实践应用:通过以上探究过程,我们就可以算出当n 为100时,正方形网格中正方形的总个数是________.6. 某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台和液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液晶显示器5台,共需要资金4120元. (1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商计划购进这两种商品共50台,而可用于购买这两种商品的自己不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?7. 如图,抛物线213y x mx n =-+与x 轴交于A 、B两点,与y 轴交于点C (0,-1),且对称轴x =1.(1)求出抛物线的解析式及A 、B 两点的坐标; (2)在x 轴下方的抛物线上是否存在点D ,使四边形ABCD 的面积为3.若存在,求出点D 的坐标;若不存在,说明理由(使用图1); (3)点Q 在y 轴上,点P 在抛物线上,要使Q 、P 、A 、B 为顶点的四边形是平行四边形,请求出所有满足条件的点P 的坐标(使用图2).四川内江卷参考答案一、选择题1 2 3 4 5 6 A B A C B C 7 8 9 10 11 12 DBDBCA二、填空题13.1514.203315.-3 16.平行四边形三、解答题17.21+ 18.相等且垂直 19.不公平 20.10米21.(1)112y x =,28y x =,3210y x =-+(2)1<x <4加试卷一、填空题1.02.74S3.-24.()1121,2n n ---二、解答题5.(1)()134+⨯,()434+⨯,01122334⨯+⨯+⨯+⨯ (2)1+2+…+n ,()0112231n n ⨯+⨯+⨯++- ,()12n n +,()()1113n n n +-,()()121n n n ++ (3)338350 6.(1)60,800(2)4400元7.(1)212133y x x =--,()1,0A -,()3,0B(2)()1241,,2,13D D ⎛⎫-- ⎪⎝⎭(3)()1254,7,4,3P P ⎛⎫- ⎪⎝⎭。

相关文档
最新文档