基于proe的机构运动仿真

合集下载

基于的ProE直摆凸轮机构运动仿真(DOC)

基于的ProE直摆凸轮机构运动仿真(DOC)

摘要本课题所研究的直、摆组合凸轮机构是一种新型的机构类型,该机构通过直动从动件凸轮机构与摆动从动件凸轮机构组成联动凸轮机构,能够将主动件的转动转化为从动件上某点沿预期的曲线轨迹并以预期的运动规律运动。

在对直、摆组合凸轮机构理论分析的基础上,我们对直、摆组合凸轮机构进行了Pro/e 运动仿真,精确求解出了各凸轮的理论廓线、实际廓线及各构件结构尺寸等。

丰富了机械原理学科的设计理论及内容,适应了在机构设计方面许多学者致力于寻求凸轮机构的精确解和使凸轮曲线多样化及从动件轨迹多样化的要求。

最后,选择预期圆线轨迹为例,利用计算机辅助设计(Pro/ENGINEER)对该机构进行零、部件及总体造型分析设计,并利用Pro/ENGINEER对该直、摆组合凸轮机构进行了运动仿真,以验证理论的正确性和可行性。

因此,对直、摆组合凸轮机构进行深入地研究有着较大的理论和现实意义,有广阔的应用前景。

关键词:Pro/e应用组合机构凸轮设计运动仿真AbstractThe Z.B Combinatory Cam Mechanism is a kind of new-type mechanism, it can come into a kind of combinatory-movement mechanism which joints translation driven member cam and swing follower cam .It can translate the revolution of the driving body into a point of the driven body which has the ability to move around the anticipation curvilinear path and move based on the anticipation movement rule.Based on the theory in analyzing Z.B Combinatory Cam Mechanism,we simulate the mechanism in applying VB,solving the profile of theory,reality,cutter of cams,and the subject and dimension of all components exactly.Enriching the design-theory and content of the subject about mechanical principal .Adapting the request of many scholars in component design for searching the exact solution about cam-entity and making the cam-curve various and follower-profile various.Lastly, taking the four-leaf rose curve for example, applying the Pro/ENGINEER to design the curve, entity and motive emulate for verifying the truth and feasibility of the theory.Nowadays, researching the Z.B Combinatory Cam Mechanism, having the significance in theory and reality .The prospect is extensive.Key words:Pro/ENGINEER Application Combination Mechanism Cam Design Motive Emulate目录第一章前言---------------------------------------------------------------------------------------------------11.1 直、摆组合凸轮机构的研究意义---------------------------------------------1 1.2 凸轮机构以及组合机构的研究和发展状况------------------------------------4 1.3 Pro/ENGINEER WildFire软件的简介------------------------------------------5 1.4 本课题的主要研究内容----------------------------------------------------6 第二章直、摆组合凸轮机构基本设计及计算机辅助设计---------------------------72.1 直、摆组合凸轮机构基本设计----------------------------------------------7 2.2 直、摆组合凸轮机构凸轮各种廓线设计--------------------------------------142.2.1直动凸轮廓线求解--------------------------------------------------152.2.1.1 直动凸轮理论廓线-------------------------------------------152.2.1.2 直动凸轮实际廓线-------------------------------------------152.2.2 摆动凸轮廓线求解-------------------------------------------------162.2.2.1 摆动凸轮理论廓线-------------------------------------------162.2.2.2 摆动凸轮实际廓线-------------------------------------------16 2.3 计算机辅助设计---------------------------------------------------------16 2.4 设计举例---------------------------------------------------------------17 2.5 本章小结---------------------------------------------------------------20 第三章直、摆组合凸轮机构Pro/ENGINEER的设计-------------------------------213.1 创建凸轮模型-----------------------------------------------------------21 3.2 运动仿真的设计---------------------------------------------------------23 3.3 Pro/ENGINEER实体运动仿真-----------------------------------------------253.4 机械仿真结果分析及保存-------------------------------------------------29第四章小结----------------------------------------------------------------32 参考文献-------------------------------------------------------------------33第一章前言1.1直、摆组合凸轮机构的研究意义本课题研究的是直、摆组合凸轮机构如图1-1所示。

proe机构运动仿真教程

proe机构运动仿真教程

proe机构运动仿真教程典型效果图1.1机构模块简介在进行机械设计时,建立模型后设计者往往需要通过虚拟的手段,在电脑上模拟所设计的机构,来达到在虚拟的环境中模拟现实机构运动的目的。

对于提高设计效率降低成本有很大的作用。

Pro/ engineer中“机构”模块是专门用来进行运动仿真和动态分析的模块。

PROE的运动仿真与动态分析功能集成在“机构”模块中,包括Mechanism design(机械设计)和Mechanism dynamics (机械动态)两个方面的分析功能。

使用“机械设计”分析功能相当于进行机械运动仿真,使用“机械设计”分析功能来创建某种机构,定义特定运动副,创建能使其运动起来的伺服电动机,来实现机构的运动模拟。

并可以观察并记录分析,可以测量诸如位置、速度、加速度等运动特征,可以通过图形直观的显示这些测量量。

也可创建轨迹曲线和运动包络,用物理方法描述运动。

使用“机械动态”分析功能可在机构上定义重力,力和力矩,弹簧,阻尼等等特征。

可以设置机构的材料,密度等特征,使其更加接近现实中的结构,到达真实的模拟现实的目的。

如果单纯的研究机构的运动,而不涉及质量,重力等参数,只需要使用“机械设计”分析功能即可,即进行运动分析,如果还需要更进一步分析机构受重力,外界输入的力和力矩,阻尼等等的影响,则必须使用“机械设计”来进行静态分析,动态分析等等。

1.2总体界面及使用环境在装配环境下定义机构的连接方式后,单击菜单栏菜单“应用程序”→“机构”,如图1-1所示。

系统进入机构模块环境,呈现图1-2所示的机构模块主界面:菜单栏增加如图1-3所示的“机构”下拉菜单,模型树增加了如图1-4所示“机构”一项内容,窗口右边出现如图1-5所示的工具栏图标。

下拉菜单的每一个选项与工具栏每一个图标相对应。

用户既可以通过菜单选择进行相关操作。

也可以直接点击快捷工具栏图标进行操作。

图1-1 由装配环境进入机构环境图图1-2 机构模块下的主界面图图1-3 机构菜单图1-4 模型树菜单图1-5 工具栏图标图1-5所示的“机构”工具栏图标和图1-3中下拉菜单各选项功能解释如下:连接轴设置:打开“连接轴设置”对话框,使用此对话框可定义零参照、再生值以及连接轴的限制设置。

基于ProE的发动机曲柄连杆机构运动仿真

基于ProE的发动机曲柄连杆机构运动仿真
[2] 童 宝 宏 ,李 震,桂 长 林 .计 算 机 仿 真 技 术 及 其 在 内 燃机研究中的应用[J].合肥工业大学学报(自然科 学版),2003,(6):1146-1151.
[3] 詹友刚.Pro/ENGINEER 2001 教程[M].北京:清华大 学出版社,2003.
[4] 和 青 芳,徐 征 .Pro/ENGINEER Wildfire 产 品 设 计 与 机 构 动 力 学 分 析 [ M ] .北 京 : 机 械 工 业 出 版 社 , 2004.
[5] 张伯艳.MatLab 在科学和工程计算中的应用[J].电 脑学习,2001,(1):25-27.
Kinematical Simulation of Slider-Crank Mechanism of Engine Based on Pro/E
ZHAO Ming-yu, GAO Yu-zhi
Time/s
图 3 活塞随时间变化的位移曲线
232.8187957
Analysis Definition1::measure1/mm
221222..88118877995577
202.8187957
192.8187957
182.8187957
117622..88118877995577 1 52.8187957 0 2 4 6 8 10 12
收稿日期 作者简介
2004-08-15 赵明宇 1968- ,男 yahoo.com.cn
讲师
(E-mail)zhaomy00000@
Mechanism 的 Measures 后直接得到的分析结果 图 4 是将运行结果转化为 EXCELE 的图表方式输出 更 有利于结果的分析

PROE4.0曲柄滑块机构运动学仿真

PROE4.0曲柄滑块机构运动学仿真

曲柄滑块机构运动学仿真
1、目的
本文档旨在基于PROE4.0版本软件,设计一曲柄滑块机构,并仿真测量其关键点速度、加速度、位移等关键信息。

2、模型设计
2.1 整体尺寸介绍
模型主要包括底座、曲柄、连杆、滑块四个零部件,具体尺寸如图所示。

AB=28mm,BC=68mm,CE=435mm,AD=150mm,DF=60mm。

图1 关键位置尺寸
2.2 部件连接关系
1)底座为机架,固定连接,在PROE软件中,切记连接成“用户定义”-“缺省”
2)曲柄与底座为“铰接”。

与连杆也为“铰接”。

3)滑块与底座为“滑动杆”连接。

4)连杆一端与曲柄为“铰接”;再新建一连接关系,与滑块“铰接”。

3、运动学仿真设置
1)在装配完成后,点击“应用程序”-“机构”菜单,进入机构仿真界面。

2)添加伺服电机驱动,设置成如图界面,并在“速度”一栏,点击“速度、位置、加速度”
3)仿真。

点击仿真按钮,设置成如图所示,选择“运动学”仿真,并点击“运行”,机构开始动作。

4)回放,保存。

仿真完成后,点击回放按钮,可以回放仿真,并进行保存。

5)测量。

仿真结束后,可以测量关键信息,如关键点速度、加速度、位置等,如图所示。

在左上角可以显示相应曲线。

6)仿真结束后,保存。

下一次运行时,可以读取相关数据。

基于PROE的曲柄滑块机构的结构设计及运动仿真分析毕业论文

基于PROE的曲柄滑块机构的结构设计及运动仿真分析毕业论文

湖北文理学院毕业设计(论文)正文2011年 5 月 25日基于PRO/E的曲柄滑块机构的结构设计及运动仿真分析摘要:曲柄滑块机构是用曲柄和滑块来实现转动和移动相互转换的平面连杆机构,也称曲柄连杆机构。

曲柄滑块机构广泛应用于往复活塞式发动机、压缩机、冲床等的主机构中。

活塞式发动机以滑块为主动件,把往复移动转换为不整周或整周的回转运动;压缩机、冲床以曲柄为主动件,把整周转动转换为往复移动。

偏置曲柄滑块机构的滑块具有急回特性,锯床就是利用这一特性来达到锯条的慢进和空程急回的目的。

关键词:曲柄滑块;机构;设计;回转;往复;急回The structural design of the slider-crank mechanism and motion simulation analysis based on PRO/EAbstract: The slider-crank mechanism is a crank and slider torotate and move the conversion between the planar linkage, also known as crank linkage. The slider-crank mechanism is widely used in the reciprocating piston engines, compressors, presses and other institutions. Piston engine slider initiative pieces, the reciprocating motion is converted to not weeks or rotary movement of the whole week; compressors, presses crank driving part, the whole week rotation converted to move back and forth. Slider offset slider-crank mechanism with quick-return characteristics of the sawing machine is to use this feature to achieve the purpose of the quick return of the saw blade slowly into the empty process.Key words: crank slider; institutions; design; rotation; back and forth; quick return目录1绪论 11.1课题提出的目的和意义 11.2国内外的研究现状及发展趋势 21.3运动仿真技术及国内外运动仿真技术现状和发展概况 21.4主要研究内容、途径及技术路线 31.5本章小结 52 曲柄滑块机构简介 62.1曲柄滑块机构定义 62.2曲柄滑块机构的特性及应用 62.3曲柄滑块机构的分类 62.4偏心轮机构简介 72.5 本章小结 83曲柄滑块机构的动力学与运动学特性 9 3.1曲柄滑块的动力学特性 93.2曲柄滑块的运动学特性 103.3本章小结 114曲柄滑块机构零件设计 114.1 曲柄滑块机构总体分析 114.2曲柄滑块机构零件的三维造型 114.3本章小结 175 曲柄滑块机构的装配 185.1曲柄滑块机构的模型的创建步骤 18 5.2本章小结 196曲柄滑块机构运动仿真 206.1运动机构仿真 206.2机构仿真 206.3本章小结 22参考文献 23致谢 241绪论1.1课题提出的目的和意义当今任何一个国家,若其要在综合国力上取得优势地位,就必须在科学技术上取得优势。

基于ProE的连杆机及运动仿真分析

基于ProE的连杆机及运动仿真分析

基于PRO/E的连杆机构设计及远动仿真分析摘要连杆机构是机械中常见的一种机构,是往复式内燃机的主要工作机构。

曲柄连杆机构是发动机实现工作循环,完成能量转换的主要远动零件。

虚拟装配与远动仿真是根据产品的形状特征.精度特性,利用计算计图形学和仿真技术,在计算机上模仿产品的实际装配过程.仿真模拟机器的远动过程。

通过对曲柄连杆机构进行有关运动学和理论分析与计算机仿真分析,利用PRO/E软件的装配功能,将曲柄连杆机构的各组成零件装配成活塞组件.连杆组件和曲柄组件,从而完成内燃机曲柄连杆机构的虚拟装配与运动仿真。

在内燃机的开发设计阶段应用这种方法可以大大缩短产品的开发周期,减少样机实验次数,快速的对市场做出反应,降低产品的成本,提高企业的竞争力。

关键词:曲柄连杆机构:虚拟装配:运动仿真;装配功能Based on Pro/E internal combustion engine connecting rod assembly and motion simulation of the virtualAbstractThe crank is a common machinery, reciprocating internal engine is the main working body. Crank the engine duty to achieve of the main moving parts of energy. Virtual and motion simulation based on tee shape of product precision features the use of computer graphics and simulation technology, the product on the computer to imitate the actual assembly process the movement of the machine Crank through the relevant kinematics and dynamics of the theoretical analysis and computer simulation analysis, the use of Pro/E, assembly features, the crank assembly of the constituent parts into a piston, connecting rod assemblies and crankshaft components, to complete the internet combustion engine connecting rod assembly and motion simulation of the virtual. The development of internal combustion engine design using this method can greatly shorten the product development cycle and reduce prototype test times, respond quickly to market, lower product costs and improve the competitiveness of enterprises.Keywords: crank Vrtual assembly; Motion simulation;assembly features目录1绪论 (5)1.1本课题研究的目的和意义 (6)1.2国内外的研究现状及发展趋势 (7)2设计的方案 (9)2.1研究的基本内容 (9)2.1.1连杆机构的结构设计 (9)1手压抽水机的结构特点 (9)2手压抽水机的设计 (9)3连杆机构的装配 (13)3.1手压抽水机的装配 (13)3.2伺服电动机定义 (22)3.3运动分析定义 (23)4本文总结 (24)5参考文献 (25)6致谢 (26)1绪论1.1本课题研究的目的和意义基于虚拟现实的产品虚拟拆装技术在新产品开发、产品的维护以及操作培训方面具有独特的作用。

ProE机构运动仿真初步

ProE机构运动仿真初步

Pro/Mechanism机构运动仿真初步Mechanism的操作流程如下:1.以connections方式建立欲分析之机构组装2.补足相关的运动配合条件3.设定初始位置4.加入驱动条件5.设定分析条件并仿真6.播放分析结果以下我们将以此流程,一步步完成一简单的Pro/Mechanism练习∙建立一新的组装档∙将platform.prt以内定的位置组进组装文件∙组装arm1,组装方式藉由点选Connections改成以connection方式组装(Axis alignment部分以arm1之A_1轴对应platform之A_1轴,Translation部分参考下图对应),组装过程中可使用Ctrl+Alt+鼠标右键动态拖曳调整∙组装arm2,组装方式与arm1相同(Axis alignment部分以arm2之A_2轴对应arm1之A_2轴,Translation部分参考下图对应)∙组装完成后点选Mechanism进入Mechanism环境∙点选Drag,以鼠标左键点取arm1或arm2上任意位置,保持按住并拖曳调整成如下图的位置由于我们尚未告诉系统arm2与platform之间的connection配合关系此时我们必须将此条件加入∙选取Model选项中的Cams设定arm2与platform之间的connection为Cams配合,对应参考如下图,至于Front Reference选PNT0,Back Reference则选PNT1,此时我们已完成本机构所需的connection设定∙使用Drag的功能再次拖曳,注意现在机构的运动方式与未加入Cams设定前有何不同接下来开始设定此机构的初始位置一般而言,若我们不设定机构的初始位置,Mechanism会以屏幕上目前的位置作为初始位置通常那只是我们在组装时的大略位置,因此建议还是加以设定∙选取Model Jt Axis Settings,选取arm1与platform之间的Pin connection,勾选Specify Reference并选取如下右图中的橘色面作为参考∙切换至Regen Value画面,勾选Specify Regeneration Value,输入45,作为将来regenerate之角度此时可试着设定不同的角度值并使用下方的Preview键,观察不同角度的变化要让机构产生动作我们必须加入动力条件,此时选择加上伺服马达动力条件∙选取Servo Motors,选取arm1与platform之间的Pin connection,切换到Profile画面将Specification改成Velocity,设定A值为10,如下图.此时可更改A为任意值,并点选下方的键,观察速度随着时间的数值变化当本练习所需要的条件设定完后,屏幕上看到的画面应如下图所示若没有问题,开始设定分析的条件选取Analyses,使用系统的默认值,点选Run键此时在屏幕上看到机构正以所加入的伺服马达动力开始运动仿真当运动到接近底部时,机构会停住并弹出一警告窗口,告诉我们系统无法继续运算,此为正常情形,因为我们输入的角度过大,当摇臂转到底部时会被底座卡住,而我们正是故意如此设定,因为我们想让系统为我们检查出机构在运动过程中产生的干涉∙选择abort离开并关闭窗口∙选取Results/Playback,勾选Global Interference作总体干涉检查,点选键系统将开始计算,当播放器出现并加以播放后,干涉的部分会以红色显示,如下图。

proe机构运动仿真教程(下)

proe机构运动仿真教程(下)

proe机构运动仿真教程(下)1.4.5定义驱动定义完连接后就需要加饲服电机才能驱使机构运动,单击“机构”→“伺服电动机”或直接单击⼯具栏图标。

弹出“伺服电动机”对话框如图1-44所⽰。

在对话框右边有新建,编辑,复制,删除四个按钮,左边的列表框显⽰定义的饲服电动机名称和状态,在Pro/E中这样的对话框很多,可以⽅便的进⾏管理。

单击“新建”按钮弹出饲服电动机定义对话框。

图1-44 伺服电动机对话框1.“新建”按钮:可以创建伺服电动机。

2.“编辑”按钮:重新编辑选定的伺服电动机。

3.“复制”按钮:在原有的基础上重新创建同样的电动机。

4.“删除”按钮:删除选定的电动机。

单击“新建”弹出“伺服电动机定义”对话框。

1.“名称”⽂本框:系统⾃动建⽴缺省名称ServerMotor1,⽤户可以更改之。

2“类型”选项卡:指定伺服电动机的类型和⽅向等如图1-45所⽰。

(1)“从动图元”下拉列表框。

选择伺服电动机要驱动从动图元类型为连接轴型,点型和⾯型中的⼀种。

·连接轴:使某个接头作指定运动。

·点:使模型中的某个点作指定运动。

·平⾯:使模型中的某个平⾯作指定运动(2)单击可以在窗⼝中直接选定连接轴(3)“反向”按钮:改变伺服电动机的运动⽅向,单击反向按钮则机构中伺服电机黄⾊箭头指向相反的⽅向。

(4)“运动类型”:可以指定伺服电机的运动⽅式。

如果从动图元选择为连接轴,变为灰⾊不可选状态,同时系统⾃动选择为选转。

图1-45 伺服电动机定义对话框图1-46 轮廓选项卡3“轮廓”选项卡:可以指定伺服电机的速度,加速度位置等如图1-46所⽰。

(1)“规范”组合框:可以调出连接轴设置对话框,旁边的下拉框可以选择速度,加速度,位置三种类型。

对于不同的选项,相应会有不同的对话框出现。

位置:单击直接调⽤连接轴设置对话框设置连接轴。

选定的连接轴将以洋红⾊箭头标⽰,同时⾼亮显⽰绿⾊和橙⾊主体。

如图1-47所⽰图 1-47位置对话框类型速度:出现初始位置标签,选择当前。

基于ProE的凸轮机构运动仿真

基于ProE的凸轮机构运动仿真
Pro/E 软 件 为 机 构 提 供 了 仿 真 分 析 功 能 ,其 中 的 机 构 分 析 模 块 Mechanism,可 以 进 行 装 配 的 运 动 学 、动 力 学 分 析 和 仿真, 能够大大简化机构的设计开发过程, 缩短其开发周 期,减少开发费用,提高产品质量。
本文将以凸轮机构为例介绍其运动仿真的过程, 该凸 轮机构由凸轮、连杆、摆杆 1、摆杆 2、机架五个零件构成。
2 0 1 2. 0191 ( 中下 旬 刊 )
观理察工
基于 Pro/E 的凸轮机构运动仿真分析
中 图 分 类 号 :G712
郭丽
(南京信息职业技术学院 江苏·南京 210046)
文 献 标 识 码 :A
文章编号:1672-7894( 2012) 33-0091-02
摘 要 凸轮机构是各类机器中广泛使用的传动机构,本 文 通 过 Pro/E 软 件 对 凸 轮 机 构 的 实 体 建 模 和 运 动 仿 真 分 析,得到了摆杆的位移、速度、加速度的运动曲线,简化了设 计过程,提高了设计效率。 关键词 凸轮机构 Pro/E 运动仿真 运动分析 Motion Simulation Analysis of the Cam Mechanism with Pro/Engineer // Guo Li Abstract The cam mechanism is a kind of drive mecha- nisms, is widely used in various types of machines. The ar- ticle introduces the model and motion simulation analysis of the cam mechanism with the Pro/E software, gains the dis- placement, speed and acceleration curves of rocker, simpli- fies the design process, improves the design efficiency. Key words the cam mechanism;Pro/E;motion simulation;mo- tion analysis Author's address Nanjing College of Information Technolo- gy,210046,Nanjing,Jiangsu,China

基于proe的机构运动仿真

基于proe的机构运动仿真

软件学习曲线
ProE软件功能强大但学习曲线较陡峭,需要 用户花费一定时间来熟悉和掌握。
未来展望
06
基于ProE的机构运动仿真实践建议
提高仿真的精度和准确性
建立精确的模型
在建模过程中,应充分考虑机构的实际尺寸 、材料属性、装配关系等因素,确保模型与 实际机构的一致性。
优化仿真参数
根据机构运动特性和仿真需求,合理设置仿真参数 ,如时间步长、摩擦系数等,以提高仿真的精度和 准确性。
通过各种渠道宣传推广ProE软件 在机构运动仿真领域的应用,提 高软件的市场知名度和占有率。
THANKS
感谢观看
度和实用性。
02
机构运动仿真概述
机构运动仿真定义
机构运动仿真是一种利用计算机技术对机械机构进行模拟分析的方法,通过建立机构的数学模型,模拟机构的运动轨迹、受 力情况等特性,为机构的设计、优化和性能分析提供依据。
基于ProE的机构运动仿真是指使用ProE软件进行机构运动仿真的过程,ProE是一款广泛应用的CAD/CAE/CAM一体化软件, 具有强大的机构运动仿真功能。
CAM功能
支持数控加工编程,实现自动 化加工。
ProE软件应用领域
机械设计
汽车制造
航空航天
家电行业
用于设计各种机械零件、 机构和装置,如减速器、
连杆机构等。
用于汽车零部件的设计、 分析和优化,提高生产
效率和产品质量。
用于飞机和航天器的零 部件设计、分析和优化,
确保安全可靠。
用于家电产品的设计和 分析,提高产品的美观
机构运动仿真的重要性
提高设计效率
通过机构运动仿真,可以在设计 阶段预测和分析机构的运动性能, 避免后期修改和优化,大大提高 设计效率。

Pro/E软件与机构运动的仿真

Pro/E软件与机构运动的仿真

Pro/E软件与机构运动的仿真摘要:本文讨论了机械原理(机械基础)教学中机构运动仿真视频的作用及其优势,着重对用Pro/E软件制作机构运动的多媒体仿真视频进行了探讨。

关键词:Pro/E;机构运动;多媒体仿真一.前言随着多媒体技术的确发展,其应用已遍及社会生活的各个角落,正在对人们的工作方式、生活方式带来巨大的变革。

同样,多媒体技术对教学也产生了积极的效应,能为学生提供最理想的教学环境。

由于多媒体具有图、文、声并茂及活动影象的特点,具有许多宝贵的特性与功能。

主要表现为;直观性,能突破视觉的限制,多角度地观察对象,并能够突出要点;图文声像并茂,多角度调动学生的情绪、注意力和兴趣。

动态性,动态反映机构运动的全过程,有效地突破了传统教学难点;通过多媒体对真实情景的模拟,培养学生的探索、创造能力;传统的机构运动教学多半是用挂图进行讲述,既没有立体感,也没有动态感,没有接触过机械的学生很难想象出机构运动的情形,如果在多媒体教学环境中,通过动画、图形、声音的演示,加上教师深入浅出的讲解,学生会在不知不觉中学到知识。

这样学生就能够在原有认知结构和生活经验的基础上,认同我们的概念和思维方式,并强化到自己新的认知结构中,形成自己新的概念和思维方式。

Pro/E软件平台能直接仿真机构各零件的造型与装配,可进行机构运动的仿真,甚至可以仿真一台机器的运行。

对机构的运动进行多角度、多方位的观查,还可进行透视和剖视情况观查。

并能将运动的画面生成视频文件,供离开Pro/E 软件平台时进行演示。

二.Pro/E简介Pro/E全称是“Pro ENGINEER”由美国PTC(参数)公司开发的一款三维软件。

Pro/E软件具有操作容易、使用方便、修改方便的特点。

因此在机械三维实体造型设计中得到了广泛的应用。

具有很强的实体造型、虚拟装配和仿真运行能力。

功能界面清楚明确,让使用者视觉和心理都有一种轻松感。

目前已经成为机械设计、家电设计、模具设计等行业所普遍采用的三维软件。

ProE机构运动仿真设计及分析

ProE机构运动仿真设计及分析

活塞速度的测量结果,也可导出为EXCEL和文本格式
测量特征也可加入到运动分析中,进行结果查看,图形输出,如测量连杆大头最外边 与缸体裙部的距离。
应将测量保存为一个特征,然后才能进行测量分析
回放:轨迹曲线
轨迹曲线用来表示机构中某一元素相对于另一零件的运动。分为“轨迹曲线”与“凸轮 合成曲线”两种: “轨迹曲线”表示机构中某一点或顶点相对于另一零件的运动。 “凸轮合成曲线”表示机构中某曲线或边相对于另一零件的运动。 菜单:插入--->轨迹曲线
序号
1 2 3 4 5 6 7
8 9 10 11
名称
自由度 旋转 平移
0
0
1
0
0
1
1
1
1
2
说明
使用一个或多个基本约束,交元件与组件连接在一起,连接后,元件与组件成为一个 主体,相互间没有自由度。 由一个轴对齐约束加一个与轴垂直的平移约束组成。元件可以绕轴旋转,不能平移。 例如,活塞销,齿轮、曲轴等。 由一个轴对齐约束与一个旋转约束组成,元件可沿轴平移,但不能旋转。如活塞。 由一个轴对齐约束组成,元件可绕轴旋转同时可沿轴向平移。如挺柱、气门等。
定义并约束相对运动的主体之间的关系。
自由度(Degrees 允许的机械系统运动。连接的作用是约束主体之间的相对运动,减少系统可能的
of Freedom)
总自由度。
执行电动机( Force Motor)
作用于旋转轴或平移轴上(引起运动)的力。
机构(Joints)
特定的连接类型(例如销钉机构、滑块机构和球机构)
选取运动轴,曲柄连杆机构选 择曲轴的销钉连接图标 反向按钮改变旋向
定义轮廓,“规范”为位置时模选 项定义为斜坡曲轴旋转一圈360度, 图形中可以查看定义的轮廓,横坐 标为时间

proe机械运动仿真

proe机械运动仿真

proe机械运动仿真Pro/Engineer(ProE)是一种先进的计算机辅助设计(CAD)软件,可以进行机械运动仿真,提供了一种方便的方式来模拟机械系统的动态行为,以预测其行为和性能。

本文将介绍ProE机械运动仿真的基本原理及步骤,以及运动仿真在机械设计中的应用。

一、ProE机械运动仿真的基本原理和步骤机械运动仿真(Motion Simulation)是计算机辅助工程(CAE)的一种重要分支,主要用于仿真机械系统运动学和动力学行为以及实验研究的虚拟环境中。

ProE机械运动仿真可以帮助工程师模拟和优化机械系统的动态行为,以便更好地了解和改进产品性能,并节省设计时间和成本。

1. ProE机械运动仿真的基本原理ProE机械运动仿真基于三维计算机模型,具体步骤如下:(1)建立三维模型首先,需要使用ProE的塑性建模工具来创建机械部件的三维模型。

(2)定义约束在模型中,需要对各个部件进行约束,以模拟真实机械部件的连接和约束关系。

例如,可以使用ProE的运动关系约束(Motion Constraint)对两个部件进行连接,或使用轴向约束(Axial Constraint)将部件约束到固定轴上。

(3)定义动力学行为在模型中,需要定义机械系统的动力学行为,即受到的各种力和扭矩的作用。

(4)运行仿真分析在构建模型和定义运动学和动力学特性后,可以运行仿真分析来模拟系统的动态行为。

ProE提供了一套强大的仿真分析工具,可以帮助用户准确地预测机械系统的行为和性能。

2. ProE机械运动仿真的步骤ProE的机械运动仿真主要包括以下步骤:(1)建立三维模型使用ProE的建模工具创建机械系统的三维模型,并定义其结构和组成部分。

这包括机械部件的几何形状和运动特性。

(2)定义运动关系和约束ProE提供了多种约束类型,可用于定义机械部件之间的约束关系。

例如,可以使用运动关系约束将两个部件连接在一起,并定义它们之间的运动范围。

(3)定义动力学行为在模型中添加力、重力、摩擦等动力学特性,并定义它们的大小和方向。

ProE机构运动仿真.pptx

ProE机构运动仿真.pptx

进入与退出机构模块
➢ 进入机构模块:装配环境-应用程序-机构 ➢ 退出机构模块:应用程序-标准
机构运动仿真与分析流程
装配 模型
机构 模块
机构 连接
分析 回放
伺服 电动机
分析 测量
01 02 03 04 05 06
案例流程
01
02
03
04
05
06
07
C 教学小结
教学小结
装配模型
机构环境
机构分析
一起High—Pro/E机构运动仿真
A 任务导入
任务导入
连杆机构
齿轮机构
01
03
齿轮机构
02
04
汽车引擎 蝴蝶飞舞
B 教学过程
课堂学习
有趣的人形波浪仿真,一起玩起来! 素材
知识点
操作 流程
素质 目标
机构运动仿真基础
概述
➢ 在Pro/E的的机构模块中,可以对一个机构装 置进行运动仿真分析,除了查看机构的运行状 态,检查机构运行时有无碰撞外,还能进行进 一步的位置分析、运动分析、动态分析、静态 分析和力平衡分析,为检验和进一步改进机构 的设计提供参考数据。
“ 01
“ 02
“ 03
➢ Pro/E提供多种“连接”类 型、各种连接类型允许不同 的运动自由度、每种连接类 型都与一组预定义的约束集 相关联。
➢ 定义运动副 凸轮运动副、齿轮运动副…
➢ 定义伺服电动机 电动机名称、选择从动图元、 方向、定义运动函数…
➢ 机构分析的类型 ➢ 定义机构分析 ➢ 运动回放与干涉检查
D 教学反思
教学反思
零部件组装
02
01
03
连接类型、运动副、 伺服电动机

PROE运动仿真基础-四连杆机构

PROE运动仿真基础-四连杆机构

将各个杆件组装在一起,形成 一个完整的四连杆机构模型。
添加运动副和运动驱动
在装配模式下,将四连杆机构添加到 装配文件中。
添加运动驱动,指定运动副的运动方 式和运动参数,如速度和加速度。
选择合适的运动副类型,如旋转副或 移动副,将运动副添加到相应的杆件 上。
设置初始条件和运动参数
01
根据需要设置初始条件,如初始角度或初始位置。
ProE运动仿真基础-四 连杆机构
目 录
• 四连杆机构简介 • Pro/E运动仿真基础 • 四连杆机构在Pro/E中的建模 • 四连杆机构运动仿真分析 • 四连杆机构优化设计 • 案例分析与实践
01
四连杆机构简介
定义与特点
定义
四连杆机构是一种由四个杆件相互连 接而成的机械结构,通过改变杆件的 长度或相对位置,可以实现复杂的运 动轨迹和运动形式。
02
根据实际需求,设置运动参数,如运动时间、运动 轨迹等。
03
运行仿真,观察四连杆机构的运动情况,并调整参 数以优化机构性能。
04
四连杆机构运动仿真分 析
仿真运行与结果查看
01
启动Pro/E软件,打开四连杆机构 模型。
02
在菜单栏中选择“工具”-“机 构”-“仿真”,进入仿真界面。
在仿真界面中设置仿真参数,如 时间、步数等,然后点击“运行 ”按钮开始仿真。
机构的运动特性,如周期性、
死点等。
06
案例二:平面四杆机构的优化设计
总结词:通过Pro/E软件对 平面四杆机构进行优化设计
,提高其运动性能。
建立平面四杆机构的几何模 型。
定义设计变量、约束条件和 目标函数。
详细描述
使用Pro/E的优化工具进行 优化设计。

ProE机构仿真

ProE机构仿真

ProE机构仿真ProE机构仿真教程——ProE基于骨架模型实现运动仿真教程(wildfire野火3.0) 作者:无维网李有财很多网友问道这个问题,小可献丑,把一点体会与大家分享。

在TOP_DOWN设计中,利用骨架模型,实现运动的仿真,对于提高设计效率和协同作业,有着极高的适用意义。

下面我们用一个简单的例子,说明如何利用骨架线,来引导整体模型的仿真运动。

首先新建一个组立文档,然后新建一个骨架模型,如图:在此骨架模型中,画出需要运动的骨架线,并标注各条线的长度,和一个驱动角度。

如图:然后针对驱动角度,写出一个关系式,来驱动骨架线的运动模拟。

关系式如下:angle=angle+5if angle>=360angle=0endifd4:0=angle意思是:我们给角度一个驱动值,这里我设定值为5.当角度大于了360度之后,(也就是转了一圈),让这个角度归零,重新开始。

如图:写完这个关系式,用再生模拟一下,如果不报错,说明是成功的。

接下来的事情就简单了。

我们用发布几何的方式,分别把4条线发布到4个零件中去,如图:然后对每个模型加入相关几何特征,完成零件的制作。

如图:在装配档里,我们可以一直按住再生,让整个模型动起来:在更改零件的时候,我们只需要对骨架零件的尺寸进行修改,整个模型就会自动更新,实现TOP_DOWN的设计思路。

当然,您也可以将各个零件用稍钉连接的方式重新装配一遍,以便在机构中做更好的运动模拟。

这里模型比较简单,就不在对此进行说明。

下面是电子书下载。

大家给点小费吧;P ;P论坛附件(下载需登录)老大,看看,这是为什么呢,照着写得,怎么会是无效符号呢你需要先添加一个参数:名称就是你取的angle(也可是其他名字,便于你识别和理解的),参数类型:实数,参数值:0-360之间任取(角度嘛:lol )。

proe机构运动仿真教程

proe机构运动仿真教程

proe机构运动仿真教程Pro/E是一款专业的三维参数化设计软件,具备强大的建模、绘图和分析功能,同时也支持运动仿真。

Pro/E机构运动仿真可以帮助设计师在设计机构时预测机构在运动过程中的动态行为和工作状态,从而提高设计的准确性和效率。

本教程将介绍Pro/E机构运动仿真的基础知识和操作步骤。

一、机构运动仿真概述机构运动仿真是指通过计算机模拟机构在不同工作状态下的动态行为和运动学、动力学特性,以评估机构的工作效率、可靠性和稳定性等。

机构运动仿真可以帮助设计师预测机构在实际工作中的行为,包括运动范围、速度、加速度和力等指标。

与传统的试制方法相比,机构运动仿真可以极大地降低试制成本和时间,同时也提高了设计的准确性和效率。

二、机构运动仿真的基础知识1. 机构机构是由两个或多个刚体通过连杆、齿轮、曲柄等连接构成的机械系统。

机构的功能是将输入运动和输出运动分离,从而实现不同类型的运动转换。

机构的类型根据连接的刚体个数可分为二级机构和三级机构;根据传递运动的方式可分为平面机构和空间机构;根据传递运动的数量可分为单自由度机构和多自由度机构。

2. 运动学和动力学运动学是研究机构运动的几何学原理,包括机构末端轨迹、速度、加速度和角度等指标;而动力学是研究机构运动的动力学原理,包括机构的力学特性、动力特性和能量特性等。

机构运动仿真需要同时考虑机构的运动学和动力学特性,并进行分析和仿真。

3. 运动学链运动学链是指连接机构各个部件的连杆、齿轮和副件等构成的运动链路。

运动学链的结构会影响机构的运动学性能,因此在机构运动仿真前需要建立运动学链模型,并确定各个部件之间的关系和运动学指标等。

三、机构运动仿真的操作步骤机构运动仿真需要按照以下基本步骤进行:1. 建立模型并确定机构类型在Pro/E中打开新的机构模型,并根据实际需求从零开始建立机构模型。

确定机构类型,包括二级机构或三级机构、平面机构或空间机构、单自由度机构或多自由度机构等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴 承 ( Bearing ) 1
3
点与边或轴线对齐
二、建立运动模型
2. 质量属性
运动模型的质量属性包括密度、 体积、质量、重心和惯性矩。对于不 需要考虑“力”的情况,例如纯粹的 机械运动,可以不设置质量属性。
“定义属性”有三个选项:“缺 省”、“密度”和“质量属性”。一 般只需要对“密度”进行设置即可; 如果不指定相关设置,系统则会指派 “缺省”的设置。
添加负荷 删除负荷 添加所有负荷
添加电动机 删除电动机 添加所有电动机
1. 运动学
五、运动分析
在不考虑力、质量、惯性的情况下, 仅对机构进行运动分析时,可以使用“运 动学、重复组件”的类型。 由于仅考虑机构的运动,所以这两种 类型不需要指定质量属性、弹簧、阻尼器、 重力、力/力矩以及执行电动机等。外部 负荷选项卡为灰显状态。
类型分为两种,一种是连接轴伺服电机,用于定义某一旋转轴的 旋转运动,可用于运动分析,另一种是几何伺服电机,用于创建 复杂的运动如螺旋运动,不能用于运动分析。
4. 伺服电机(续)
定义轮廓,“规范”为位置时 模选项定义为斜坡曲轴旋转一圈 360度,图形中可以查看定义的 轮廓,横坐标为时间
5. 实例演练
插 齿 机 构 运 动 仿 真
销钉连接 圆柱连接
牛头刨床机构运动仿真
销钉连接 滑动杆连接
三、运动副
1. 凸轮
凸轮运动副通过两个元件进行定义,可以使用指定曲面或曲线 的方式来定义凸轮及凸轮的工作区域。如果勾选“自动选择”,那 么在选取一个曲面后,系统会自动选取包含此曲面在内的所有相切 曲面。
曲面 曲线 曲线 曲面
轴对齐
二、建立运动模型
1. 运动连接(续)
轴对齐
④ 柱面 具有一个旋转自由度和一个沿 轴向的平移自由度,使用“轴对齐” 的约束限制其他4个自由度。 ⑤ 平面 具有两个平移自由度和一个旋 转自由度,使用“平面”约束限制 其他3个自由度。
二、建立运动模型
1. 运动连接(续)
⑥球 具有 3 个旋转自由度,使用“点对齐”约束来限制 3 个平移自 由度。 ⑦ 焊接 6个自由度被完全限制,使用“坐标系(重合)”约束所有自 点对齐 由度。 ⑧ 轴承 具有 3 个旋转自由度和 一个平移自由度,相当于 “球”连接的基础上再加一 个平移自由度,使用“点与 轴线对齐”来限制其他两个 自由度。
6. 初始条件
初始条件包括初始位置和初始速度两个 方面。点击按钮 初始位置的确定需要 借助快照功能,从事先创建好的快照得到主 体的位置。由于速度为矢量,所以在指出模 的同时还要指出其方向,
点速度 连接轴速度 角速度 相对于槽的切线速度 评估 删除
进行动态分析 时用到
五、运动分析
完成运动模型及运动环境的设置后, 需要对机构进行分析。点击按钮
齿轮类型分为一般、正、锥、涡轮、 齿条与小齿轮。 对于所有类型,需对每一个齿轮选 取连接轴,传动比一般都采用齿数比的 方式予以确定。 对于齿条类,齿条的定义通常需要 指出“滑动杆”连接轴,传动比定义一 般使用 mm/rev,即齿轮旋转一周,齿条 前进的距离。
三、运动副
2. 齿轮(续)
实例演练
四、运动环境

建立伺服电动机
仿真运动的动力源

创建运动副
为组件中某两个相连接的元件设置置运动环境
增加重力、执行电动机、弹簧、阻尼器和力/扭矩等

进行运动分析 获取结果
工作流程图
建立连接 连接轴设置 运动副 伺服电机 设置运动环境 建立运动模型 重力 执行电机 弹簧 阻尼 力/扭矩 初始条件 机构运动分析 回放
五、运动分析
2. 动态
在考虑力、质量、惯性等外力作用的 情况下,对机构进行分析可以使用“动态” 的类型。 选取该类型后,定义对话框下方的初 始配置选项变为了“初始条件”,可以直 接选取已设置好的初始条件。 需要注意的是,动态类型中,不能为 伺服电机指定起止时间,而只能从开始到 结束。
销钉连接
焊接
五、运动分析
二、建立运动模型
1. 运动连接(续)
自由度 连接类型 刚性(Rigid) 销钉(Pin) 平移 0 0 旋转 0 1 0 1 1 3 0 约束 完全 轴对齐;平面或点对齐 轴对齐;平面或点对齐 轴对齐 平面匹配/对齐 点与点对齐 坐标系对齐
滑动杆( Slider ) 1 圆柱( Cylinder ) 1 平 面 ( Plannar ) 2 球(Ball) 焊接(Weld) 0 0
“属性”选项卡能够控制凸轮之间是否分离和摩擦系数,如 果勾选了“启用分离”,那么两个凸轮将会在运动过程中分开。
三、运动副
1. 凸轮(续)
实例演练:棘轮机构
三、运动副
2. 齿轮
使用齿轮运动副可以控制两个连 接轴之间的速度关系。齿轮运动副通 过两个元件进行定义,彼此间无需相 互接触。
三、运动副
2. 齿轮(续)
菜单:插入--->轨迹曲线
“轨迹曲线”可选2D或3D, “凸轮合成曲线”只能是2D。
六、获取结果
2. 测量
通过测量功能,可以了解到机构运动过 程中精确的参数。点击按钮
绘制图形
新建测量 编辑测量 复制测量 删除测量
综合演练
G
80 1080 deg/s 30
行星齿轮机构运动
挖掘机摇臂受力分析
物理模型求解
四、运动环境
3. 弹簧
通过弹簧可以在运动机构中产生线性弹力。直接点击按钮 弹簧的参照类型有“连接轴”及“点至点”两种,通常选取 连接轴,对于之间没有连接的两个主体,可以采用点至点的参照 类型。弹力大小的公式“力 = K*(x - U)”当中,K为弹簧刚度 系数,U为弹簧未拉伸时的长度。
四、运动环境
运动干涉检测
运动学 动态 静态 力平衡 重复组件
获取分析结果
运动包络
测量 轨迹曲线
二、建立运动模型
轴对齐
1. 运动连接
① 刚性 6个自由度被完全限制。 ② 销钉 仅有一个旋转自由度,使用“轴对 齐”和“平移”两个约束来限制其他 5 个自由度 。
旋转
平移
③ 滑动杆 仅有一个沿轴向的平移自由度,使 用“轴对齐”和“旋转”两个约束限制 其他5个自由度。
固定主体
G
五、运动分析
4. 力平衡
力平衡用于分析机构处于某一 形态时,为保证其静平衡所需施加 的外力。 由于进行平衡分析需要使机构 保持零自由度,所以需要借助连接 锁定、在两个主体间锁定,使机构 在添加测力计锁定后自由度减为零。
主体锁定 连接锁定 测力计锁定 删除锁定
自由度检测
六、获取结果
1. 回放
二、建立运动模型
3. 拖动及快照
拖动功能可以在允许的运动 范围内移动元组件,快照功能可 以保存当前运动机构的位置状态。
二、建立运动模型
4. 伺服电机
伺服电动机能够为机构提供驱动。通过伺服电动机可以实现旋 转及平移运动,并且能以函数的方式定义运动轮廓。
选取运动轴,曲柄连杆机
构选择曲轴的销钉连接图
标反向按钮改变旋向
3. 静态
静态类型主要用于研究机构中主体平 衡时的受力情况。由于静态分析中不考虑 速度及惯性,所以能比动态更快的找到平 衡状态,定义对话框中也因此无需对起止 时间进行设置。 其中“最大步距因子”能够改变静态 分析中的缺省步长,它是一个处于0到1的 常数。在分析具有较大加速度的机构时, 推荐减小此值。
基于proe的机构运动仿真
机构设计基础
在Pro/E中的[应用程序]机构 模块进行装配的运动学分析和仿
真。结果可以以动画的形式表示,
也可以以参数和数值的形式输出。 可以检查运动件是否产生干涉, 干涉体积,运动件的轨迹等。 还可以进行运动的优化设计。
一、运动仿真基本流程

创建连接
销钉、圆柱、滑动杆、平面和球连接等
使用回放功能主要可以实现运动干涉检测、创建运动包络和动 态影像捕捉。指令为点击按钮
停止
创建运动包络 保存为*.fra文件 播 放 动 画
逆向播放 重新开始 上一帧 循环播放
正向播放 快进至结尾 下一帧 结尾处反转
捕捉为图片 或动态影像
回放:轨迹曲线
轨迹曲线用来表示机构中某一元素相对于另一零件的运动。分为“轨迹曲线” 与“凸轮合成曲线”两种: “轨迹曲线”表示机构中某一点或顶点相对于另一零件的运动。 “凸轮合成曲线”表示机构中某曲线或边相对于另一零件的运动。
1. 重力
通过重力选项,可以对重力加速度的数值及方向进行设置。 指令为直接点击按钮 缺省情况下,重力并未被启用,分析 过程中欲使组件模拟真实的重力环境,需要在分析定义对话框的 外部载荷选项卡中勾选“启用重力”选项。
四、运动环境
2. 执行电动机
使用执行电动机可以为运动机构施加载荷。直接点击按钮 和伺服电动机类似,执行电动机也需要连接轴以施加作用,模分 为9种类型。
4. 阻尼
与弹簧不同,阻尼为耗散力,它可以作用于连接轴、两主体 之间、槽运动副。 直接点击按钮 ,其中C为阻尼系数。
四、运动环境
5. 力/扭矩
可以通过力/扭矩来模拟机构运动的外部环境。 直接点击按钮 其类型分为“点力”与“主体扭矩”,即力与扭矩。和其他 矢量相同,定义需要指出“模”和“方向”。
四、运动环境
相关文档
最新文档