2018-2019学年北京市海淀区清华附中普通班七年级(下)期末数学试卷
北京市海淀区第二学期七年级数学期末考试及答案
海淀区第二学期七年级期末考试 数 学 试 卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. ( )1.不等式组3x -2>4的解集是( )A .x >2B .x >3 C. x <3 D . x <2( )2.若 a >b ,则下列结论中正确的是( )A .4 a <4 bB .a +c >b +cC .a -5<b -5D .-7a >-7b ( )3.下列计算中,正确的是( ) A .(m +2)2=m 2+4B .(3+y )( 3-y )= 9-y 2C .2x (x -1)= 2x 2-1D .(m -3)(m +1)= m 2-3( )4.如图,AF 是∠BAC 的平分线,EF ∥AC 交AB 于点E .若∠1=25°,则的度数为( )A .15°B .50°C .25°D .12.5°( )5.下列从左到右的变形正确进行因式分解的是( )A.(x +5)(x -5)=x 2-25B.x 2+x +1=x (x +1)+1C.-2x 2-2xy =-2x (x +y )D.3x +6xy +9xz =3x (2y +9z )( )6. 如图所示,点在AC 的延长线上,下列条件中能判断( )A.∠3=∠4B.C. D.( )7.9的平方根是( ).A .B .C .D .( )8.若,则点P (,)所在的象限是( ).A .第一象限B .第二象限C .第三象限D .第四象限 ( )9.下列各数中的无理数是( ).A .B .C .D . ( )10.关于,的二元一次方程组的解满足, 则的取值范围是( ) A . B . C . D .BAF ∠E CD AB // 180=∠+∠ACD D DCE D ∠=∠21∠=∠81±3±3-30<m 32m 140.35-38x y 3,354x y a x y a -=⎧⎨-=-⎩x y <a 35a >13a <3a 5<53a >二、填空题(本题共30分,每小题3分) 11.把方程写成用含x 的代数式表示y 的形式,则y = .12如果一个角等于54°,那么它的余角等于 度.13.在方程中,当时,y = . 14. 在平面直角坐标系中,点A 的坐标为(,).若线段AB ∥x 轴,且AB 的长为4,则点B 的坐标为 .15.已知 是关于x ,y 的方程组的解,那么的值是 . 16.如图,直线AB ,CD 相交于点O ,OE ⊥AB ,O 为垂足,∠EOD =26°,则∠AOC = .17.语句“x 的3倍与10的和小于或等于7”用不等式表示为 .18.已知23(2)0a b ++-=,则2011)a b (+的值为19.在直角三角形ABC 中,∠B =90°,则它的三条边AB ,AC ,BC 中,最长的边是 .20.在平面直角坐标系xOy 中,直线l 经过点A (,),点A 1,A 2,A 3,A 4,A 5,……按如图所示的规律排列在直线l 上.若直线l 上任意相邻两个点的横坐标都相差1、纵坐标也都相差1,则A 8的坐标为 ;若点A n (为正整数)的横坐标为2014,则= .三、解答题(本题共40分,每小题5分)1.解不等式.2. 解方程组310x y +-=231x y =--32x =-3-21,2x y =-⎧⎨=⎩31,24ax y x by +=⎧⎨-=⎩a b +1-0n n +4463x x x -≤-233,327.x y x y -=⎧⎨-=⎩3. 解不等式组.4.如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF交CD于点G,∠1=50︒,求∠2的度数.5.已知:如图,AB∥DC,AC和BD相交于点O,E是CD上一点,F是OD上一点,且∠1=∠A.(1)求证:FE∥OC;(2)若∠B=40°,∠1=60°,求∠OFE的度数.6.为了防控冬季呼吸道疾病,我校积极进行校园环境消毒工作,购买了甲、乙两种消毒液共100瓶,其中甲种每瓶6元,乙种每瓶9元,如果购买这两种消毒液共花去780元,求甲、乙两种消毒液各购买了多少瓶?4(1)78,25,3x xxx+≤-⎧⎪-⎨-<⎪⎩7.如图,在平面直角坐标系xOy 中,△ABC 三个顶点的坐标分别为A (,),B (,),C (,).将△ABC 向右平移5个单位长度,再向下平移4个单位长度,得到△,其中点,,分别为点A ,B ,C 的对应点.(1)请在所给坐标系中画出△,并直接写出点的坐标;(2)若AB 边上一点P 经过上述平移后的对应点为(,),用含,的式子表示点P 的坐标;(直接写出结果即可)(3)求△的面积.解:(1)点的坐标为 ;(2)点P 的坐标为 ;(3)8.在一次知识竞赛中,甲、乙两人进入了“必答题”环节.规则是:两人轮流答题,每人都要回答20个题,每个题回答正确得m 分,回答错误或放弃回答扣n 分.当甲、乙两人恰好都答完12个题时,甲答对了9个题,得分为39分;乙答对了10个题,得分为46分.(1)求m 和n 的值;(2)规定此环节得分不低于60分能晋级,甲在剩下的比赛中至少还要答对多少个题才能顺利晋级?解:5-14-41-1-'''A B C 'A 'B 'C '''A B C 'C 'P x y x y '''A B C 'C。
2018年北京市海淀区七年级数学期末试卷-含答案
2018年北京市海淀区七年级数学期末试卷学校 班级 姓名 成绩 一、选择题(每小题3分,共30分)第1~10题均有四个选项,符合题意的选项只有一个. 1. 5-的相反数是( )A .15B .15- C .5 D .5-2. 2017年10月18日上午9时,中国共产党第十九次全国代表大会在京开幕.“十九大”最受新闻网站关注.据统计,关键词“十九大”在1.3万个网站中产生数据174,000条.将174,000用科学记数法表示应为 ( )A .517.410⨯B .51.7410⨯C .417.410⨯D .60.17410⨯ 3. 下列各式中,不相等...的是( )A .(-3)2和-32B .(-3)2和32C .(-2)3和-23D .32-和32- 4. 下列是一元一次方程的是( )A .2230x x --=B .25x y +=C .112x x+= D .10x += 5. 如图,下列结论正确的是( )A. c a b >>B.11b c > C. ||||a b <D. 0abc >6. 下列等式变形正确的是( )A. 若35x -=,则35x =-B. 若1132x x -+=,则23(1)1x x +-= C. 若5628x x -=+,则5286x x +=+ D. 若3(1)21x x +-=,则3321x x +-=7. 下列结论正确的是 ( )A. 23ab -和2b a 是同类项B.π2不是单项式 C. a 比a -大D. 2是方程214x +=的解8. 将一副三角板按如图所示位置摆放,其中α∠与β∠一定互余的是( )A. B. C. D.9. 已知点A ,B ,C 在同一条直线上,若线段AB =3,BC =2,AC =1,则下列判断正确的是 ( )A. 点A 在线段BC 上B. 点B 在线段AC 上C. 点C 在线段AB 上D.点A 在线段CB 的延长线上10. 由m 个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m 能取到的最大值是 ( )A. 6B. 5C. 4D. 3二、填空题(每小题2分,共16分) 11. 计算:48°37'+53°35'=__________.12. 小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元则小何共花费 元.(用含a ,b 的代数式表示)13.已知,则= .14. 北京西站和北京南站是北京的两个铁路客运中心,如图,A ,B ,C 分别表示天安门、北京西站、北京南站, 经测量,北京西站在天安门的南偏西77°方向,北京南站在天安门的南偏西18°方向.则∠BAC = °.15. 若2是关于x 的一元一次方程的解,则a = ________. 16. 规定图形表示运算a b c --,图形表示运算x z y w --+.则+=________________(直接写出答案). 17. 线段AB =6,点C 在直线AB 上,BC =4,则AC 的长度为 .2|2|(3)0a b -++=a b b c azy wx 1324576北ACB从正面看从上面看BC18. 在某多媒体电子杂志的某一期上刊登了“正方形雪花图案的形成”的演示案例:作一个正方形,设每边长为4a ,将每边四等分,作一凸一凹的两个边长为a 的小正方形,得到图形如图(2)所示,称为第一次 变化,再对图(2)的每个边做相同的变化, 得到图形如图(3),称为第二次变化.如此 连续作几次,便可得到一个绚丽多彩的雪花 图案.如不断发展下去到第n 次变化时,图 形的面积是否会变化,________(填写“会” 或者“不会”),图形的周长为 .三、解答题(本题共54分,第19,20题每题6分,第21题4分,第22~25题每题6分,第26,27题每题7分) 19.计算:(1)()()21862⎛⎫-⨯-+- ⎪⎝⎭;(2)()411293⎛⎫-+-÷--- ⎪⎝⎭.20.解方程:(1) 3(21)15x -=; (2)71132x x-+-=. 21.已知37=3a b --,求代数式2(21)5(4)3a b a b b +-+--的值.22. 作图题:如图,已知点A ,点B,直线l 及l 上一点M .(1)连接MA ,并在直线l 上作出一点N ,使得点N 在点M 的左边, 且满足MN =MA ;(2)请在直线l 上确定一点O ,使点O 到点A 与点O 到点B 的距 离之和最短,并写出画图的依据. 23.几何计算:如图,已知∠AOB =40°,∠BOC =3∠AOB ,OD 平分∠AOC ,求∠COD 的度数. 解:因为∠BOC =3∠AOB ,∠AOB =40°所以∠BOC =__________°所以∠AOC =__________ + _________ =__________° + __________° =__________° 因为OD 平分∠AOC第二次变化第一次变化(3)(2)(1)AMA所以∠COD =12__________=__________°24. 如图1, 线段AB =10,点C , E , F 在线段AB 上.(1)如图2, 当点E , 点F 是线段AC 和线段BC 的中点时, 求线段EF 的长;(2)当点E , 点F 是线段AB 和线段BC 的中点时,请你 写出线段EF 与线段AC 之间的数量关系并简要说明理由.25. 先阅读,然后答题.阿基米德测皇冠的故事叙古拉国王艾希罗交给金匠一块黄金,让他做一顶王冠。
2018~2019学年北京海淀区人大附中初一下学期期末数学试卷(详解)
.
,向右平移 个单位,横坐标为
https:///#/print?id=c9e6efdac6a1412aba0bc051a82f1c5d&type=analyze
5/20
2020/5/8
故本题答案为:
.
教研云资源页
16. 如图, 是
的边 上的中线, 是
,则
②得
③,
将③代入①得
,
∴方程组的解为
.
(3)
① ,
②
化简①得
,即
,
化简②得
,即
,
∴
,
满足条件的整数解有 , , .
四、解答题(本大题共3小题,每小题6分,共18分)
25. 已知:如图, 为 上一点,点 , 分别在 两侧.
,
,
.
求证:
.
https:///#/print?id=c9e6efdac6a1412aba0bc051a82f1c5d&type=analyze
.
【答案】 【解析】 若
则
在实数范围内有意义,
,得
.
14. 用一组 , 的值说明命题“若
的值)
.
,则
【答案】 ,
【解析】
,但
.
故答案为: , .
”是错误的,这组值可以是(按顺序分别写出 、
15. 点
向下平移 个单位,再向右平移 个单位后的点的坐标为
.
【答案】
【解析】 点
向下平移 个单位,纵坐标为
,
所以平移后点 坐标为
2/20
2020/5/8
【解析】 ⻄单坐标是
,雍和宫坐标是 教研,云资源页
所以一个格代表 ,
2019海淀区初一下数学期末试卷
2019海淀区初一下数学期末试卷一.单项选择题(每题3分,共30分)1.下列图中能说明21∠>∠一定成立的是( )A B C D2.在下列调查中,适宜..采用全面调查的是( ) A. 了解七(1)班学生校服的尺码情况 B. 了解我市中学生视力情况C. 检测一批电灯泡的使用寿命D. 调查电视台某综艺节目的收视率3.已知b a <,则下列四个不等式中,变形正确..的是( ) A .22->-b a B .b a 22->- C .b a 22> D .22+>+b a4.一个容量为80的样本最小值是50,最大值是143,取组距为10,则可以分为( )A .7组B .8组C .9组D .10组5.已知一个多边形的内角和为540°,则这个多边形为( )A .三角形B .四边形C .五边形D . 六边形6.如图,为了估计一池塘岸边两点A ,B 之间的距离,小丽同学在池塘一侧选取了一点P ,测得m PA 15=,m PB 10=,那么点A 与点B 之间的距离不可能...是( ) A .m 5 B .m 10C .m 15D .m 207.如图,ABC ∆中, 90=∠A ,点D 在AC 边上,BC DE //,若 351=∠,则B ∠的度数为( )A . 75B . 65C . 55D . 358.等腰三角形的两边分别长cm 4和cm 10,则这个等腰三角形的周长是( )A . cm 14B . cm 18C . cm 18和cm 24D . cm 249.已知二元一次方程组的解是⎩⎨⎧-=-=21y x ,则该方程组为( )A .⎩⎨⎧-=-=+23xy y xB .⎩⎨⎧=--=+323y x y xC .⎩⎨⎧=+=32y x y xD .⎩⎨⎧=-=-531y x y x10.如图,在ABC ∆中,已知D ,E ,F 分别是BC 、AD 、CE 的中点,且24cm S ABC =∆,则图中BEF ∆的面积是( )A .22cmB .21cmC .221cmD .241cm 二.填空题(每题3分,共21分)_____________________.12.在ABC ∆中, 80=∠A ,C B ∠=∠ ,则B ∠ =13.不等式1625+≤-x x 的负整数解....是 14.某中学为了解学生课余活动情况,现随机抽取部分学生进行调查,(每人只选一项)将结果绘成条形统计图,由此可估计该校2000名学生中有 名学生喜欢阅读.15.《九章算术》是我国东汉初年编订的一部数学经典著作,在它的“方程”一章里,一次方程组是由算筹布置而成的,《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2。
2018-2019学年北京市海淀区清华附中普通班七年级(下)期末数学试卷
2018-2019学年北京市海淀区清华附中普通班七年级(下)期末数学试卷一.选择题(每小题3分,共24分)1.(3分)用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是()A.B.C.D.2.(3分)下列各项调查中合理的是()A.对“您觉得该不该在公共场所禁烟”作民意调查,将要调查的问题放到访问量很大的网站上,这样大部分上网的人就可以看到调查问题并及时反馈B.为了了解全校同学喜欢课程情况,对某班男同学进行抽样调查C.“长征﹣3B火箭”发射前,采用抽样调查的方式检查其各零部件的合格情况D.采用抽样调查的方式了解国内外观众对电影《流浪地球》的观影感受3.(3分)如图,x的值是()A.80B.90C.100D.1104.(3分)方程x﹣y=﹣2与下面方程中的一个组成的二元一次方程组的解为,那么这个方程可以是()A.3x﹣4y=16B.2(x+y)=6x C.x+y=0D.﹣y=05.(3分)图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的()A.点A B.点B C.点C D.点D6.(3分)把一些书分给几名同学,若每人分11本,则有剩余,若(),依题意,设有x名同学,可列不等式7(x+4)>11x.A.每人分7本,则剩余4本B.每人分7本,则剩余的书可多分给4个人C.每人分4本,则剩余7本D.其中一个人分7本,则其他同学每人可分4本7.(3分)关于x,y的二元一次方程组有正整数解,则满足条件的整数m的值有()个.A.1B.2C.3D.48.(3分)为了了解2019年北京市乘坐地铁的每个人的月均花费情况,相关部门随机调查了1000人乘坐地铁的月均花费(单位:元),绘制了如下频数分布直方图,根据图中信息,下面三个推断中,合理的是()①小明乘坐地铁的月均花费是75元,那么在所调查的1000人中一定有超过一半的人月均花费超过小明;②估计平均每人乘坐地铁的月均花费的不低于60元;③如果规定消费达到一定数额可以享受折扣优惠,并且享受折扣优惠的人数控制在20%左右,那么乘坐地铁的月均花费达到120元的人可享受折扣.A.①②B.①③C.②③D.①②③二.填空题(每小题3分,共24分)9.(3分)已知a>b,则﹣4a+5﹣4b+5.(填>、=或<)10.(3分)两根木棒的长度分别为7cm和10cm,要选择第三根木棒,把它们钉成一个三角形框架,则第三根木棒的长度可以是cm(写出一个答案即可).11.(3分)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文.甲、乙两人原来各有多少钱?设甲原有x文钱,乙原有y 文钱,可列方程组是.12.(3分)若一个多边形的内角和是它的外角和的2倍,则经过这个多边形的一个顶点最多可以画条对角线.13.(3分)如图所示,要测量池塘AB宽度,在池塘外选取一点P,连接AP,BP并分别延长,使PC=P A,PD=PB,连接CD.测得CD长为10m,则池塘宽AB为m.理由是.14.(3分)已知方程组的解满足不等式x﹣y>0,则实数m的取值范围是.15.(3分)如图,CE是△ABC的外角∠ACD的平分线,且CE交BC的延长线于点E;则用等式表示∠BAC与∠B、∠E的关系为.16.(3分)某次的测试均为判断题,如果认为该题的说法正确,就在答案框的题号下填“√”,否则填“×”.测试共10道题,每题10分,满分100分.图中的小明,小红,小刚三张测试卷.小明和小红两张已判了分数,则该判小刚分.小明:12345678910得分××√×√××√√×90小红:12345678910得分×√√√×√×√√√40小刚:12345678910得分×√√√×××√√√三.解答题(本题共52分,第17,18则每题10分,第19~22题每题6分,第23题8分)17.(10分)解方程组:(1);(2);18.(10分)(1)解不等式:x+4>3(x﹣2)并把解集在数轴上表示出来.(2)x取哪些整数时,不等式5x﹣1<3(x+1)与﹣1≥﹣2都成立.19.(6分)如图,AD∥BC,∠BAD=90°,以点B为圆心,BC长为半径画弧,与射线AD 相交于点E,连接BE,过C点作CF⊥BE.垂足为F.(1)线段BF=(填写图中现有的一条线段);(2)证明你的结论.20.(6分)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.21.(6分)某校七(1)班学生为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,请解答以下问题;级别A B C D E F 月均用水量x(t)0<x≤55<x≤1010<x≤1515<x≤2020<x≤2525<x≤30频数(户)612m1042(1)本次调查采用的方式是(填“全面调查”或“抽样调查);(2)若将月均用水量的频数绘成形统计图,月均用水量“15<x≤20”组对应的圆心角度数是72°,则本次调查的样本容量是,表格中m的值是,补全频数分布直方图.(3)该小区有500户家庭,求该小区月均用水量超过15t的家庭大约有多少户?22.(6分)(1)对数轴上的点P进行如下操作:先把点P表示的数乘以,再把所得数对应的点向右平移1个单位,得到点P的对应点P′.点A,B在数轴t,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′.如图1,若点A表示的数是﹣3,则点A′表示的数是,若点B′表示的数是2,则点B 表示的数是;已知线段AB上的点E经过上述操作后得到的对应点E'点E重合,则点E表示的数是.(2)在平面直角坐标系xOy中,已知△ABC的顶点A(﹣2,0),B(2,0),C(2,4),对△ABC及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同个实数a,将得到的点先向右平移m单位,再向上平移n个单位(m>0,n>0),得到△ABC及其内部的点,其中点A,B的对应点分别为A′(1,2),B′(3,2).△ABC内部是否存在点F,使得点F经过上述操作后得到的对应点F′与点F重合,若存在,求出点F的坐标;若不存在请说明理由.23.(8分)已知CA=CB,CD是经过∠BCA顶点C的一条直线.E,F是直线CD上的两点,且∠BEC=∠CF A=α.(1)若直线CD在∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,α=90°,则BE CF;EF|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于α与∠BCA数量关系的条件,使①中的两个结论仍然成立,补全图形并证明.(2)如图3,若直线CD在∠BCA的外部,∠BCA=α,请用等式直接写出EF,BE,AF 三条线段的数量关系.(不要求证明)附加题(本题共20分,第24,25题每题3分,第26,27题每题4分,第28题6分)24.(3分)小明和小亮做加法游戏,小明在一个加数后面多写了一个0,得到的和为242;而小亮在另一个加数后面多写了一个0,得到的和为341,原来两个加数分别是多少?25.(3分)已知AD是△ABC的中线,若△ABD与△ACD的周长分别是14和12.△ABC 的周长是20,则AD的长为.26.(4分)油电混动汽车是一种节油、环保的新技术汽车.它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动汽车,节约燃油.某品牌油电混动汽车与普通汽车的相关成本数据估算如下:某人计划购入一辆上述品牌的汽车.他估算了用车成本,在只考虑车价和燃油成本的情况下,发现选择油电混动汽车的成本不高于选择普通汽车的成本.则他在估算时,预计行驶的公里数至少为多少公里?27.(4分)已知锐角三角形ABC的三个内角满足∠A>∠B>∠C,α是∠A﹣∠B,∠B﹣∠C以及90°﹣∠A中的最小者,则当∠B=度时,α的最大值为.28.(6分)如图,在平面直角坐标系中,B点坐标为(﹣2,0),A点坐标为(a,b),且b ≠0.(1)若b>0,且∠ABO:∠BAO:∠AOB=10:5:21,在AB上取一点C,使得y轴平分∠COA.在x轴上取点D,使得CD平分∠BCO,过C作CD的垂线CE,交x轴于E.①依题意补全图形;②求∠CEO的度数;(2)若b是定值,过O作直线AB的垂线OH,垂足为H,则OH的最大值是.(直接写出答案)2018-2019学年北京市海淀区清华附中普通班七年级(下)期末数学试卷一.选择题(每小题3分,共24分)1.(3分)用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是()A.B.C.D.【分析】根据高线的定义即可得出结论.【解答】解:B,C,D都不是△ABC的边BC上的高,故选:A.【点评】本题考查的是作图﹣基本作图,熟知三角形高线的定义是解答此题的关键.2.(3分)下列各项调查中合理的是()A.对“您觉得该不该在公共场所禁烟”作民意调查,将要调查的问题放到访问量很大的网站上,这样大部分上网的人就可以看到调查问题并及时反馈B.为了了解全校同学喜欢课程情况,对某班男同学进行抽样调查C.“长征﹣3B火箭”发射前,采用抽样调查的方式检查其各零部件的合格情况D.采用抽样调查的方式了解国内外观众对电影《流浪地球》的观影感受【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对“您觉得该不该在公共场所禁烟”作民意调查,将要调查的问题放到访问量很大的网站上,这样大部分上网的人就可以看到调查问题并及时反馈,调查具有局限性,故此选项错误;B、为了了解全校同学喜欢课程情况,对某班男同学进行抽样调查,错误,适合全面调查;C、“长征﹣3B火箭”发射前,采用抽样调查的方式检查其各零部件的合格情况,错误,适于全面调查;D、采用抽样调查的方式了解国内外观众对电影《流浪地球》的观影感受,故此选项正确.故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.(3分)如图,x的值是()A.80B.90C.100D.110【分析】根据四边形的内角和=360°列方程即可得到结论.【解答】解:根据四边形的内角和得,x+x+10+60+90=360,解得:x=100,故选:C.【点评】此题主要考查了多边形的内角与外角,关键是掌握四边形的内角和等于360°.4.(3分)方程x﹣y=﹣2与下面方程中的一个组成的二元一次方程组的解为,那么这个方程可以是()A.3x﹣4y=16B.2(x+y)=6x C.x+y=0D.﹣y=0【分析】把已知方程与各项方程联立组成方程组,使其解为x=2,y=4即可.【解答】解:A、联立得:,解得:,不合题意;B、联立得:,解得:,合题意;C、联立得:,解得:,不合题意;D、联立得:,不合题意;故选:B.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.5.(3分)图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的()A.点A B.点B C.点C D.点D【分析】根据全等三角形的性质和已知图形得出即可.【解答】解:∵△MNP≌△MEQ,∴点Q应是图中的D点,如图,故选:D.【点评】本题考查了全等三角形的性质,能熟记全等三角形的性质的内容是解此题的关键,注意:全等三角形的对应角相等,对应边相等.6.(3分)把一些书分给几名同学,若每人分11本,则有剩余,若(),依题意,设有x名同学,可列不等式7(x+4)>11x.A.每人分7本,则剩余4本B.每人分7本,则剩余的书可多分给4个人C.每人分4本,则剩余7本D.其中一个人分7本,则其他同学每人可分4本【分析】根据不等式表示的意义解答即可.【解答】解:由不等式7(x+4)>11x,可得,把一些书分给几名同学,若每人分7本,则可多分4个人;若每人分11本,则有剩余;故选:B.【点评】本题考查根据实际问题列不等式,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.7.(3分)关于x,y的二元一次方程组有正整数解,则满足条件的整数m的值有()个.A.1B.2C.3D.4【分析】根据方程组有正整数解,确定出整数m的值.【解答】解:,①﹣②×2得:(m+4)y=4,解得:y=,把y=代入②得:x=,由方程组有正整数解,得到x与y都为正整数,得到m+4=1,2,4,解得:m=﹣3,﹣2,0,共3个,故选:C.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.8.(3分)为了了解2019年北京市乘坐地铁的每个人的月均花费情况,相关部门随机调查了1000人乘坐地铁的月均花费(单位:元),绘制了如下频数分布直方图,根据图中信息,下面三个推断中,合理的是()①小明乘坐地铁的月均花费是75元,那么在所调查的1000人中一定有超过一半的人月均花费超过小明;②估计平均每人乘坐地铁的月均花费的不低于60元;③如果规定消费达到一定数额可以享受折扣优惠,并且享受折扣优惠的人数控制在20%左右,那么乘坐地铁的月均花费达到120元的人可享受折扣.A.①②B.①③C.②③D.①②③【分析】①求出80元以上的人数,由75~80元的人数不能确定可以判断此结论;②根据图中信息,可得大多数人乘坐地铁的月均花费在60﹣120之间,据此可得平均每人乘坐地铁的月均花费的范围;③该市1000人中,30%左右的人有300人,根据图形可得乘坐地铁的月均花费达到100元的人有300人可以享受折扣.【解答】解:①∵200+100+80+50+25+25+15+5=500,而75~80元的人数不能确定,∴在所调查的1000人中一定有一半或超过一半的人月均花费超过小明,此结论错误;②根据图中信息,可得大多数人乘坐地铁的月均花费在60~120之间,估计平均每人乘坐地铁的月均花费的范围是60~120,所以估计平均每人乘坐地铁的月均花费的不低于60元,此结论正确;③∵1000×20%=200,而80+50+25+25+15+5=200,∴乘坐地铁的月均花费达到120元的人可以享受折扣.此结论正确;综上,正确的结论为②③,故选:C.【点评】本题主要考查了频数分布直方图及用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.二.填空题(每小题3分,共24分)9.(3分)已知a>b,则﹣4a+5<﹣4b+5.(填>、=或<)【分析】根据不等式的基本性质即可解决问题.【解答】解:∵a>b,∴﹣4a<﹣4b,∴﹣4a+5<﹣4b+5,故答案为<.【点评】本题考查不等式的基本性质,应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.10.(3分)两根木棒的长度分别为7cm和10cm,要选择第三根木棒,把它们钉成一个三角形框架,则第三根木棒的长度可以是答案不唯一,如8cm(写出一个答案即可).【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.第三边的取值范围是大于10﹣7而小于10+7,即大于3而小于17.【解答】解:10﹣7<x<10+7,即3<x<17.故答案为答案不唯一,如8【点评】考查了三角形的三边关系.三角形的三边关系:第三边大于两边之差而小于两边之和.11.(3分)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文.甲、乙两人原来各有多少钱?设甲原有x文钱,乙原有y文钱,可列方程组是.【分析】根据甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文,可以列出方程组,从而可以解答本题.【解答】解:由题意可得,,故答案为:.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.12.(3分)若一个多边形的内角和是它的外角和的2倍,则经过这个多边形的一个顶点最多可以画3条对角线.【分析】首先设这个多边形有n条边,由题意得方程(n﹣2)×180=360×2,再解方程可得到n的值,然后根据n边形从一个顶点出发可引出(n﹣3)条对角线可得答案.【解答】解:设这个多边形有n条边,由题意得:(n﹣2)×180=360×2,解得;n=6,从这个多边形的一个顶点出发的对角线的条数是6﹣3=3,故答案为:3.【点评】此题主要考查了多边形的内角和外角,以及对角线,关键是掌握多边形的内角和公式.13.(3分)如图所示,要测量池塘AB宽度,在池塘外选取一点P,连接AP,BP并分别延长,使PC=P A,PD=PB,连接CD.测得CD长为10m,则池塘宽AB为10m.理由是全等三角形的对应边相等.【分析】这种设计方案利用了“边角边”判断两个三角形全等,利用对应边相等,得AB =CD.方案的操作性强,需要测量的线段和角度在陆地一侧即可实施.【解答】解:在△APB和△DPC中,∴△APB≌△DPC(SAS);∴AB=CD=10米(全等三角形的对应边相等).故池塘宽AB为10m.理由是全等三角形的对应边相等.故答案为:10,全等三角形的对应边相等.【点评】本题考查了全等三角形的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.14.(3分)已知方程组的解满足不等式x﹣y>0,则实数m的取值范围是m <1.【分析】将两个方程相减可得x﹣y=﹣2m+2,结合x﹣y>0得出关于m的不等式,解之可得.【解答】解:将两个方程相减可得x﹣y=﹣2m+2,∵x﹣y>0,∴﹣2m+2>0,解得:m<1,故答案为:m<1.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤和熟练运用等式的基本性质是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.15.(3分)如图,CE是△ABC的外角∠ACD的平分线,且CE交BC的延长线于点E;则用等式表示∠BAC与∠B、∠E的关系为∠BAC=2∠E+∠B.【分析】根据角平分线的定义得到∠ACE=∠DCE,根据三角形的外角性质计算即可.【解答】解:∵CE是△ABC的外角∠ACD的平分线,∴∠ACE=∠DCE,由三角形的外角性质可知,∠BAC=∠E+∠ACE,∠DCE=∠E+∠B,∴∠BAC=2∠E+∠B,故答案为:∠BAC=2∠E+∠B.【点评】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.16.(3分)某次的测试均为判断题,如果认为该题的说法正确,就在答案框的题号下填“√”,否则填“×”.测试共10道题,每题10分,满分100分.图中的小明,小红,小刚三张测试卷.小明和小红两张已判了分数,则该判小刚50分.小明:小红:小刚:【分析】仔细观察B、C的答案,可发现只有第6题答案不一样,因此可以讨论6的答案,结合A试卷及其得分,可得出答案.【解答】解:①假设第6题正确答案为×,则A、C二人做正确,B做错,那么A与B 应该有5个题的选择答案不一样,对比刚好满足;而B与C只有第6题答题不一样,所以C比B多做对第6题这一题,该判C为50分;②假设第6题正确答案为√,则A、C二人做错,B做正确,那么B还答对了另外3题,也即是A与B应该还有3个题的选择答案不一样,对比得出假设不存立;综上可得判C得50分.故答案为:50.【点评】本题属于应用类问题,解答本题需要我们仔细观察三份试卷的相同之处与不同之处,注意利用假设、论证的思想.三.解答题(本题共52分,第17,18则每题10分,第19~22题每题6分,第23题8分)17.(10分)解方程组:(1);(2);【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),①×3+②得:5x=15,解得:x=3,把x=3代入①得:y=2,则方程组的解为;(2)方程组整理得:,①﹣②得:6y=﹣18,解得:y=﹣3,把y=﹣3代入①得:x=﹣2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(10分)(1)解不等式:x+4>3(x﹣2)并把解集在数轴上表示出来.(2)x取哪些整数时,不等式5x﹣1<3(x+1)与﹣1≥﹣2都成立.【分析】(1)依据解不等式的基本步骤依次计算可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)x+4>3x﹣6,x﹣3x>﹣6﹣4,﹣2x>﹣10,x<5,将不等式的解集表示在数轴上如下:(2)解不等式5x﹣1<3(x+1),得:x<2,解不等式﹣1≥﹣2,得:x≥﹣2,则不等式组的解集为﹣2≤x<2,所以不等式组的整数解为﹣2、﹣1、0、1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(6分)如图,AD∥BC,∠BAD=90°,以点B为圆心,BC长为半径画弧,与射线AD 相交于点E,连接BE,过C点作CF⊥BE.垂足为F.(1)线段BF=AE(填写图中现有的一条线段);(2)证明你的结论.【分析】(1)由已知得BF=AE;(2)由AD与BC平行得到一对内错角相等,再由一对直角相等,且BE=CB,利用AAS 得到△AEB≌△FBC,利用全等三角形对应角相等即可得证.【解答】解:(1)BF=AE,故答案为:AE;(2)证明:∵CF⊥BE,∴∠A=∠BFC=90°,∵AD∥BC,∴∠AEB=∠FBC,在△AEB和△FBC中,,∴△AEB≌△FBC(AAS),∴BF=AE.【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.20.(6分)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.【分析】先利用三角形内角和定理可求∠ABC,在直角三角形ACD中,易求∠DAC;再根据角平分线定义可求∠CBF、∠EAF,可得∠DAE的度数;然后利用三角形外角性质,可先求∠AFB,再次利用三角形外角性质,容易求出∠BOA.【解答】解:∵∠CAB=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC﹣∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.【点评】本题考查了三角形内角和定理、角平分线定义、三角形外角性质.关键是利用角平分线的性质解出∠EAF、∠CBF,再运用三角形外角性质求出∠AFB.21.(6分)某校七(1)班学生为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,请解答以下问题;级别A B C D E F 月均用水量x(t)0<x≤55<x≤1010<x≤1515<x≤2020<x≤2525<x≤30频数(户)612m1042(1)本次调查采用的方式是抽样调查(填“全面调查”或“抽样调查);(2)若将月均用水量的频数绘成形统计图,月均用水量“15<x≤20”组对应的圆心角度数是72°,则本次调查的样本容量是50,表格中m的值是16,补全频数分布直方图.(3)该小区有500户家庭,求该小区月均用水量超过15t的家庭大约有多少户?【分析】(1)由“随机调查了该小区部分家庭”可得答案;(2)用B级别户数除以其所占比例可得样本容量,用总户数减去其它级别户数求出C 级别户数m的值;(3)利用样本估计总体思想求解可得.【解答】解:(1)由于是随机调查了该小区部分家庭,所以本次调查采用的方式是抽样调查,故答案为:抽样调查;(2)本次调查的样本容量是10÷=50,m=50﹣(6+12+10+4+2)=16,补全频数分布直方图如下:故答案为:50、16;(3)该小区月均用水量超过15t的家庭大约有500×=160(户).【点评】本题考查频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了用样本估计总体.22.(6分)(1)对数轴上的点P进行如下操作:先把点P表示的数乘以,再把所得数对应的点向右平移1个单位,得到点P的对应点P′.点A,B在数轴t,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′.如图1,若点A表示的数是﹣3,则点A′表示的数是0,若点B′表示的数是2,则点B 表示的数是3;已知线段AB上的点E经过上述操作后得到的对应点E'点E重合,则点E表示的数是.(2)在平面直角坐标系xOy中,已知△ABC的顶点A(﹣2,0),B(2,0),C(2,4),对△ABC及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同个实数a,将得到的点先向右平移m单位,再向上平移n个单位(m>0,n>0),得到△ABC及其内部的点,其中点A,B的对应点分别为A′(1,2),B′(3,2).△ABC内部是否存在点F,使得点F经过上述操作后得到的对应点F′与点F重合,若存在,求出点F的坐标;若不存在请说明理由.【分析】(1)根据题目规定,以及数轴上的数向右平移用加计算即可求出点A′,设点B 表示的数为a,根据题意列出方程求解即可得到点B表示的数,设点E表示的数为b,根据题意列出方程计算即可得解;(2)先根据向上平移横坐标不变,纵坐标加,向右平移横坐标加,纵坐标不变求出平移规律,然后设点F的坐标为(x,y),根据平移规律列出方程组求解即可.【解答】解:(1)点A′:﹣3×+1=﹣1+1=0,设点B表示的数为a,则a+1=2,解得a=3,设点E表示的数为b,则b+1=b,解得b=;故答案为:0,3,;(2)根据题意,得:,解得:,设点F的坐标为(x,y),∵对应点F′与点F重合,∴x+2=x,y+2=y,解得x=y=4,所以,点F的坐标为(4,4),∵点F的坐标为(4,4)不在△ABC内,故△ABC内部不存在点F,使得点F经过上述操作后得到的对应点F′与点F重合.【点评】本题考查了坐标与图形的变化,数轴上点右边的总比左边的大的性质,读懂题目信息是解题的关键.23.(8分)已知CA=CB,CD是经过∠BCA顶点C的一条直线.E,F是直线CD上的两点,且∠BEC=∠CF A=α.(1)若直线CD在∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,α=90°,则BE=CF;EF=|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于α与∠BCA数量关系的条件α+∠BCA=180°,使①中的两个结论仍然成立,补全图形并证明.(2)如图3,若直线CD在∠BCA的外部,∠BCA=α,请用等式直接写出EF,BE,AF 三条线段的数量关系EF=BE+AF.(不要求证明)【分析】(1)①求出∠BEC=∠AFC=90°,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可;②求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可;(2)求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可.【解答】解:(1)①∵∠BCA=90°,∠α=90°,。
2018-2019学年北京大学附中七年级(下)期末数学试卷
2018-2019学年北京大学附中七年级(下)期末数学试卷一、选择题(在每小题给出的四个选项中,只有一个是正确的,每小题3分,本题共30分)1.(3分)4的平方根是()A.2B.﹣2C.±D.±22.(3分)点A(2,1)关于x轴对称的点为A′,则点A′的坐标是()A.(2,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(1,2)3.(3分)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.11D.164.(3分)下列调查方式,你认为最合适的是()A.了解某种奶制品中蛋白质的含量,采用全面调查方式B.旅客上飞机前的安检,采用抽样调查方式C.了解北京市居民日平均用水量,采用全面调查方式D.了解北京市每天的流动人口数,采用抽样调查方式5.(3分)如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC的度数为()A.40°B.80°C.120°D.不能确定6.(3分)如图,边长相等的正方形、正六边形的一边重合,则∠1的度数为()A.20°B.25°C.30°D.35°7.(3分)将△ABC沿BC方向平移3个单位得△DEF,若△ABC的周长等于8个单位,则四边形ABFD的周长为()A.8B.12C.14D.168.(3分)如图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处.若∠1=129°,则∠2的度数为()A.49°B.50°C.51°D.52°9.(3分)若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.ac>bc B.ab>cb C.a+c>b+c D.a+b>c+b10.(3分)若关于x的不等式mx﹣n>0的解集是x<,则关于x的不等式(m+n)x>n﹣m的解集是()A.x<﹣B.x>﹣C.x<D.x>二、填空题(每空3分,共计39分)11.(3分)如果代数式﹣的值是非正数,则x的取值范围是.12.(3分)计算2(﹣1)﹣+的结果为.13.(3分)如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=128°,则∠DBC 的度数为.14.(3分)若一个多边形的每一个外角都等于40°,则这个多边形的边数是.15.(3分)在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点是格点.若格点P(2m﹣1,m+2)在第二象限,则m的值为.16.(12分)服装厂为了估计某校七年级学生穿每种尺码校服的人数,从该校七年级学生中随机抽取了50名学生的身高数据(单位:cm),绘制成了下面的频数分布表和频数分布直方图身高x频数145≤x<15010150≤x<15511155≤x<160m160≤x<1657165≤x<170n170≤x<1752(1)表中m=n=;(2)身高x满足160≤x<170的校服记为L号,则需要订购L号校服的学生占被调查学生的百分数为;若共有七年级学生400人,估计需要订购L号校服的学生人数.17.(3分)如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是.(不添加辅助线)18.(6分)在电路图中,“1”表示开关合上,“0”表示电路断开,“⊕”表示并联,“⊗”表示串联.如用算式表示为0⊗1=0;用算式表示为0⊕1=1.则图a用算式表示为:;图b用算式表示为:;根据图b的算式可以说明图b的电路是(填“连通”或“断开”).19.(3分)“直角”在初中几何学习中无处不在.课堂上李老师提出一个问题:如图1,已知∠AOB.判断∠AOB是否为直角(仅限用直尺和圆规).小丽的方法如图2,在OA、OB上分别取点C,D,以点C为圆心,CD长为半径画弧,交OB的反向延长线于点E.若OE=OD,则∠AOB=90°.李老师说小丽的作法正确,请你写出她作图的依据:.三、解答题(本题共31分)20.(5分)解二元一次方程组:21.(5分)解不等式组并求它的所有整数解.22.(6分)已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′(1)在图中画出△A′B′C′;(2)写出点A′、B′的坐标;(3)在y轴上是否存在一点P,使得△BCP与△ABC面积相等?若存在,求直接写出点P的坐标;若不存在,说明理由.23.(8分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M(1)求证:AP平分∠CAB;(2)若∠ACD=114°,求∠MAB的度数;(3)若CN⊥AM,垂足为N,求证:△CAN≌△CMN.24.(7分)已知:如图,∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B(1)在图1中,过点C作CE⊥CB,与直线MN交于点E,①依题意,补全图形;②证明:CE=CB(补充知识:等腰直角三角形三边长的比例为1:1:)请利用上述补充知识回答下列问题:③图1中,线段BD+AB与线段CB满足的数量关系是(直接写出结果即可)(2)当MN绕点A旋转到如图2和图3两个位置时,其它条件不变.在图2中,线段BD、AB、CB满足的数量关系是(直接写出结果即可)在图3中,线段BD、AB、CB满足的数量关系是(直接写出结果即可)2018-2019学年北京大学附中七年级(下)期末数学试卷参考答案与试题解析一、选择题(在每小题给出的四个选项中,只有一个是正确的,每小题3分,本题共30分)1.【解答】解:4的平方根是:±=±2.故选:D.2.【解答】解:根据轴对称的性质,得点A(2,1)关于x轴对称点A′的坐标是(2,﹣1),故选:A.3.【解答】解:设此三角形第三边的长为x,则10﹣4<x<10+4,即6<x<14,四个选项中只有11符合条件.故选:C.4.【解答】解:A、了解某种奶制品中蛋白质的含量,具有破坏性,应用抽样调查,故A错误;B、旅客上飞机前的安检,事关重大,采用普查方式,故B错误;C、了解北京市居民日平均用水量,采用抽样调查方式,故C错误;D、了解北京市每天的流动人口数,采用抽样调查方式,故D正确.故选:D.5.【解答】解:∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠BAD=∠CAE,∵∠BAE=120°,∠BAD=40°,∴∠BAC=∠BAE﹣∠CAE=120°﹣40°=80°.故选:B.6.【解答】解:正方形的内角和为360°,每一个内角为90°;正六边形的内角和为720°,每一个内角为120°,则∠1=120°﹣90°=30°,故选:C.7.【解答】解:∵△ABC沿BC方向平移3个单位得△DEF,∴AD=CF=3,AC=DF,∵△ABC的周长等于8,∴AB+BC+AC=8,∴四边形ABFD的周长=AB+BF+DF+AD=AB+BC+CF+AC+AD=8+3+3=14,故选:C.8.【解答】解:根据翻折的性质可知,∠DOE=∠A,∠HOG=∠B,∠EOF=∠C,又∵∠A+∠B+∠C=180°,∴∠DOE+∠HOG+∠EOF=180°,∴∠1+∠2=180°,又∵∠1=129°,∴∠2=51°.故选:C.9.【解答】解:由图可知,a<b<0,c>0,A、ac<bc,故本选项错误;B、ab>cb,故本选项正确;C、a+c<b+c,故本选项错误;D、a+b<c+b,故本选项错误.故选:B.10.【解答】解:∵关于x的不等式mx﹣n>0的解集是x<,∴m<0,=,解得m=5n,∴n<0,∴解关于x的不等式(m+n)x>n﹣m得,x<,∴x<=﹣,故选:A.二、填空题(每空3分,共计39分)11.【解答】解:由题意知﹣≤0,则3(2﹣x)≥0,6﹣3x≥0,﹣3x≥﹣6,x≤2,故答案为:x≤2.12.【解答】解:原式=2﹣2﹣+4=+2,故答案为:2+13.【解答】解:∵矩形直尺沿直线断开并错位,∴∠E=∠ADE=128°,∠DBC=180°﹣∠E,=180°﹣128°,=52°.故答案为:52°.14.【解答】解:360÷40=9,即这个多边形的边数是9.15.【解答】解:∵格点P(2m﹣1,m+2)在第二象限,∴,解不等式①得,m<,解不等式②得,m>﹣2,∴不等式的解集为﹣2<m<,∵点的横、纵坐标均为整数,∴m是整数,∴m的值为﹣1或0.故答案为:﹣1或0.16.【解答】解:(1)由题意m=15,n=50﹣10﹣11﹣15﹣7﹣2=5,故答案为15,5.(2)需要订购L号校服的学生占被调查学生的百分数为==10%,400×10%=40(人),故答案为10%,40人.17.【解答】解:添加的条件是:DF=DE(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等).理由如下:∵点D是BC的中点,∴BD=CD.在△BDF和△CDE中,∵,∴△BDF≌△CDE(SAS).故答案可以是:DF=DE.18.【解答】解:图a用算式表示为:1⊗(0⊕1)=1⊗1=1;图b用算式表示为:(0⊗0)⊕(0⊕1)=0⊕1=1;图b的算式可以说明图b的电路是连通.故答案为:1⊗(0⊕1)=1⊗1=1;(0⊗0)⊕(0⊕1)=0⊕1=;连通.19.【解答】解:由作图可知,CE=CD,∵OE=OD,∴CO⊥ED(等腰三角形的三线合一),∴∠COD=90°,故答案为等腰三角形的三线合一.三、解答题(本题共31分)20.【解答】解:由(1)×6得:3x+2y=36(3),由(2)×3得:3x﹣3y=﹣9(4),由(3)﹣(4)得:y=9,把y=9代入(2)得:x=6.∴方程组的解为.21.【解答】解:,由①得,x≥4,由②得,x<,所以,不等式组的解集是4≤x<,所以,它的整数解为:4,5,6.22.【解答】解:(1)如图所示:(2)由图可知,A'(0,4),B'(﹣1,1);(3)存在.设P(0,y),则y=1或y=﹣5,故点P的坐标是(0,1)或(0,﹣5).23.【解答】(1)证明:连接PE、PF,如图,由作法得AE=AF,PE=PF,而AP=AP,∴△AEP≌△AFP(SSS),∴∠EAP=∠F AP,即AP平分∠CAB;(2)解:∵CD∥AB,∴∠BAC+∠ACD=180°,∴∠BAC=180°﹣114°=66°,∵AP平分∠CAB,∴∠MAB=∠BAC=33°;(3)解:∵CD∥AB,∴∠BAM=∠CMA,∵∠CAM=∠BAM,∴∠CAM=∠CMA,∴CA=CM,∵CN⊥AM,∴∠CNA=∠CNM,在△CAN和△CMN中∴△CAN≌△CMN(AAS).24.【解答】解:(1)①依题意补全图形如图1,②证明:如图2,∵∠ACD=90°,又∵CE⊥CB,∴∠ECB=90°=∠ACD,∴∠1=∠2.∵DB⊥MN于点B,∴∠ABD=90°,∴∠BAC+∠D=180°.又∵∠BAC+∠EAC=180°,∴∠D=∠EAC.∴△CAE≌△CDB,∴CE=CB.③如图3,过点C作CE⊥CB于点C,与MN交于点E∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.∵DB⊥MN∴∠ABC+∠CBD=90°,∵CE⊥CB∴∠ABC+∠CEA=90°,∴∠CBD=∠CEA.又∵AC=DC,∴△ACE≌△DCB(AAS),∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴BE=CB.又∵BE=AE+AB,∴BE=BD+AB,∴BD+AB=CB,故答案为BD+AB=CB;(2)①如图4,过点C作CE⊥CB于点C,与MN交于点E,∵∠ACD=90°,∠ECB=90°,∴∠ACE=90°﹣∠DCE,∠BCD=90°﹣∠ECD,∴∠BCD=∠ACE.∵DB⊥MN,∴∠CAE=90°﹣∠AFC,∠D=90°﹣∠BFD,∵∠AFC=∠BFD,∴∠CAE=∠D,在△ACE和△DCB中,,∴△ACE≌△DCB(ASA),∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴BE=CB.又∵BE=AB﹣AE,∴BE=AB﹣BD,∴AB﹣BD=CB.②BD﹣AB=CB.如图5,过点C作CE⊥CB于点C,与MN交于点E,∵∠ACD=90°,∠BCE=90°,∴∠ACE=90°+∠ACB,∠BCD=90°+∠ACB,∴∠BCD=∠ACE.∵DB⊥MN,∴∠CAE=90°﹣∠AFC,∠D=90°﹣∠BFD,∵∠AFC=∠BFD,∴∠CAE=∠D,在△ACE和△DCB中,∴△ACE≌△DCB(ASA),∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴BE=CB.又∵BE=AE﹣AB,∴BE=BD﹣AB,∴BD﹣AB=CB.故答案为AB﹣BD=CB,BD﹣AB=CB.。
2018年清华附中初一下期末数学试卷(平行班)
EDC B A C B A 初一第二学学期期末 (平行班)数学(清华附中初17级) 2018年7月 一、选择题(每题3分,共24分) 1、36的平方根是( )A 、6±B 、 6C 、-6D 、6± 2、如图,在正方形网格中建立平面直角坐标系,若A (0,2),B (1, 1)则点C 的坐标为( ) A 、(1,-2)B 、(1,-1)C 、(2,-1)D 、(2, 1)3.2018年1~4月我国新能源乘用车的月销量情况如图所示,则下列说法错误的是( )A . 1月份销量为2.2万辆B . 从2月到3月的月销量增长最快C . 4月份销量比3月份增加了1万辆D . 1~4月新能源乘用车销量逐月增加4、不等式组4261x x m ->-⎧⎨->-⎩无解,则m 的取值范围是( )A 、5m ≥B 、6m ≥C 、6m >D 、6m ≤5、如图,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 、CE 交于点O ,连接AO ,则图中共有全等的三角形的对数为( )A 、3对B 、4对C 、5对D 、6对6、有公共顶点A 、B 的正五边形和正六边形按如图所示位置摆放,连接AC 交正六边形于点D ,则∠ADE 的度数为( )A 、144°B 、74°C 、84°D 、54°7、某种袜子原零售价每双5元,凡购买2双以上(含两双)。
商场推出两种优惠销售办法:第一种是“一双按原价,其余按原价七折优惠”,第二种是“全部按原价的八折优惠”,你在购买相同数量的情况下要使第一种办法比第二种办法得到的优惠多,最少需要购买袜子( )双。
A 、5双 B 、4双 C 、3双 D 、2双8、∠AOB 的平分线为OC ,点D 、E 分别在射线OA 、OB 上,P 在射线OC 上。
(1)PD ⊥OA ,PE ⊥OB (2)OD =OE (3)DE ⊥OP (4)∠DPO =∠EPO 其中能够使得PD =PE 的条件有( )A 、1个B 、2个C 、3个D 、4个 二、填空题(每题3分,共24分)9、正多边形的一个内角为156°,它的边数是_________.10、如图,在平面直角坐标系xoy中,点A,点B的坐标分别为(0, 2),(-1, 0将线段AB沿x轴的正方形平移,若点B的对应点的坐标为'B(2,0),则点A的对应点为________.11、已知△ABC的两条边长分别为3和5,则第三边C的取值范围是_________.12、陈红同学要用一根铁丝制作一个有两条边长分别为15cm和30cm那么陈红应该准备________cm长的铁丝。
北京市清华大学附属中学七年级下册数学期末试卷测试卷(含答案解析)
北京市清华大学附属中学七年级下册数学期末试卷测试卷(含答案解析)一、解答题1.如图,直线AB∥直线CD,线段EF∥CD,连接BF、CF.(1)求证:∠ABF+∠DCF=∠BFC;(2)连接BE、CE、BC,若BE平分∠ABC,BE⊥CE,求证:CE平分∠BCD;(3)在(2)的条件下,G为EF上一点,连接BG,若∠BFC=∠BCF,∠FBG=2∠ECF,∠CBG=70°,求∠FBE的度数.2.已知直线AB//CD,点P、Q分别在AB、CD上,如图所示,射线PB按逆时针方向以每秒12°的速度旋转至PA便立即回转,并不断往返旋转;射线QC按逆时针方向每秒3°旋转至QD停止,此时射线PB也停止旋转.(1)若射线PB、QC同时开始旋转,当旋转时间10秒时,PB'与QC'的位置关系为;(2)若射线QC先转15秒,射线PB才开始转动,当射线PB旋转的时间为多少秒时,PB′//QC′.3.如图1,已知直线CD∥EF,点A,B分别在直线CD与EF上.P为两平行线间一点.(1)若∠DAP=40°,∠FBP=70°,则∠APB=(2)猜想∠DAP,∠FBP,∠APB之间有什么关系?并说明理由;(3)利用(2)的结论解答:①如图2,AP1,BP1分别平分∠DAP,∠FBP,请你写出∠P与∠P1的数量关系,并说明理由;②如图3,AP 2,BP 2分别平分∠CAP ,∠EBP ,若∠APB =β,求∠AP 2B .(用含β的代数式表示)4.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,求证:90A C ∠+∠=︒;(2)如图2,过点B 作BD MA ⊥的延长线于点D ,求证:ABD C ∠=∠;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,且BF 平分DBC ∠,BE 平分ABD ∠,若AFC BCF ∠=∠,3BFC DBE ∠=∠,求EBC ∠的度数.5.综合与实践背景阅读:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行两条直线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础.已知:AM ∥CN ,点B 为平面内一点,AB ⊥BC 于B .问题解决:(1)如图1,直接写出∠A 和∠C 之间的数量关系; (2)如图2,过点B 作BD ⊥AM 于点D ,求证:∠ABD =∠C ;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,BF 平分∠DBC ,BE 平分∠ABD ,若∠FCB +∠NCF =180°,∠BFC =3∠DBE ,则∠EBC = .二、解答题6.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,点B 在两条平行线外,则A ∠与C ∠之间的数量关系为______; (2)点B 在两条平行线之间,过点B 作BD AM ⊥于点D . ①如图2,说明ABD C ∠=∠成立的理由;②如图3,BF 平分DBC ∠交DM 于点,F BE 平分ABD ∠交DM 于点E .若180,3FCB NCF BFC DBE ∠∠∠∠+=︒=,求EBC ∠的度数.7.已知:三角形ABC 和三角形DEF 位于直线MN 的两侧中,直线MN 经过点C ,且BC MN ⊥,其中A ABC CB =∠∠,DEF DFE ∠=∠,90∠+∠=︒ABC DFE ,点E 、F 均落在直线MN 上.(1)如图1,当点C 与点E 重合时,求证://DF AB ;聪明的小丽过点C 作//CG DF ,并利用这条辅助线解决了问题.请你根据小丽的思考,写出解决这一问题的过程. (2)将三角形DEF 沿着NM 的方向平移,如图2,求证://DE AC ;(3)将三角形DEF 沿着NM 的方向平移,使得点E 移动到点E ',画出平移后的三角形DEF ,并回答问题,若DFE α∠=,则∠=CAB ________.(用含α的代数式表示) 8.阅读下面材料:小颖遇到这样一个问题:已知:如图甲,//,AB CD E 为,AB CD 之间一点,连接,,35,37BE DE B D ∠=︒∠=︒,求BED ∠的度数.她是这样做的: 过点E 作//,EF AB 则有,BEF B ∠=∠ 因为//,AB CD 所以//.EF CD ① 所以,FED D ∠=∠所以,BEF FED B D ∠+∠=∠+∠ 即BED ∠=_ ; 1.小颖求得BED ∠的度数为__ ; 2.上述思路中的①的理由是__ ; 3.请你参考她的思考问题的方法,解决问题:已知:直线//,a b 点,A B 在直线a 上,点,C D 在直线b 上,连接,,AD BC BE 平分,ABC DE∠平分,ADC ∠且,BE DE 所在的直线交于点E .(1)如图1,当点B 在点A 的左侧时,若,ABC ADC αβ∠=∠=,则BED ∠的度数为 ;(用含有,αβ的式子表示).(2)如图2,当点B 在点A 的右侧时,设,ABC ADC αβ∠=∠=,直接写出BED ∠的度数(用含有,αβ的式子表示).9.已知,如图①,∠BAD =50°,点C 为射线AD 上一点(不与A 重合),连接BC . (1)[问题提出]如图②,AB ∥CE ,∠BCD =73 °,则:∠B = .(2)[类比探究]在图①中,探究∠BAD 、∠B 和∠BCD 之间有怎样的数量关系?并用平行....线的性质....说明理由. (3)[拓展延伸]如图③,在射线BC 上取一点O ,过O 点作直线MN 使MN ∥AD ,BE 平分∠ABC 交AD 于E 点,OF 平分∠BON 交AD 于F 点,//OG BE 交AD 于G 点,当C 点沿着射线AD 方向运动时,∠FOG 的度数是否会变化?若变化,请说明理由;若不变,请求出这个不变的值.10.已知:ABC 和同一平面内的点D .(1)如图1,点D 在BC 边上,过D 作//DE BA 交AC 于E ,//DF CA 交AB 于F .根据题意,在图1中补全图形,请写出EDF ∠与BAC ∠的数量关系,并说明理由;(2)如图2,点D 在BC 的延长线上,//DF CA ,EDF BAC ∠=∠.请判断DE 与BA 的位置关系,并说明理由.(3)如图3,点D 是ABC 外部的一个动点.过D 作//DE BA 交直线AC 于E ,//DF CA 交直线AB 于F ,直接写出EDF ∠与BAC ∠的数量关系,并在图3中补全图形.三、解答题11.在ABC 中,100BAC ∠=︒,A ABC CB =∠∠,点D 在直线BC 上运动(不与点B 、C 重合),点E 在射线AC 上运动,且ADE AED ∠=∠,设DAC n ∠=︒.(1)如图①,当点D 在边BC 上,且40n =︒时,则BAD ∠=__________︒,CDE ∠=__________︒;(2)如图②,当点D 运动到点B 的左侧时,其他条件不变,请猜想BAD ∠和CDE ∠的数量关系,并说明理由;(3)当点D 运动到点C 的右侧时,其他条件不变,BAD ∠和CDE ∠还满足(2)中的数量关系吗?请在图③中画出图形,并给予证明.(画图痕迹用黑色签字笔加粗加黑) 12.如图1,已知AB ∥CD ,BE 平分∠ABD ,DE 平分∠BDC . (1)求证:∠BED =90°;(2)如图2,延长BE 交CD 于点H ,点F 为线段EH 上一动点,∠EDF =α,∠ABF 的角平分线与∠CDF 的角平分线DG 交于点G ,试用含α的式子表示∠BGD 的大小; (3)如图3,延长BE 交CD 于点H ,点F 为线段EH 上一动点,∠EBM 的角平分线与∠FDN 的角平分线交于点G ,探究∠BGD 与∠BFD 之间的数量关系,请直接写出结论: .13.如图,直线//PQ MN ,一副直角三角板,ABC DEF ∆∆中,90,45,30,60ACB EDF ABC BAC DFE DEF ︒︒︒︒∠=∠=∠=∠=∠=∠=.(1)若DEF ∆如图1摆放,当ED 平分PEF ∠时,证明:FD 平分EFM ∠.(2)若,ABC DEF ∆∆如图2摆放时,则PDE ∠=(3)若图2中ABC ∆固定,将DEF ∆沿着AC 方向平移,边DF 与直线PQ 相交于点G ,作FGQ ∠和GFA ∠的角平分线GH FH 、相交于点H (如图3),求GHF ∠的度数.(4)若图2中DEF ∆的周长35,5cm AF cm =,现将ABC ∆固定,将DEF ∆沿着CA 方向平移至点F 与A 重合,平移后的得到''D E A ∆,点D E 、的对应点分别是''D E 、,请直接写出四边形'DEAD 的周长.(5)若图2中DEF ∆固定,(如图4)将ABC ∆绕点A 顺时针旋转,1分钟转半圈,旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF ∆的一条边平行时,请直接写出旋转的时间.14.互动学习课堂上某小组同学对一个课题展开了探究.小亮:已知,如图三角形ABC ,点D 是三角形ABC 内一点,连接BD ,CD ,试探究BDC ∠与A ∠,1∠,2∠之间的关系.小明:可以用三角形内角和定理去解决. 小丽:用外角的相关结论也能解决.(1)请你在横线上补全小明的探究过程: ∵180BDC DBC BCD ∠+∠+∠=︒,(______) ∴180BDC DBC BCD ∠=︒-∠-∠,(等式性质) ∵12180A DBC BCD ∠+∠+∠+∠+∠=︒, ∴12180A DBC BCD ∠+∠+∠=︒-∠-∠, ∴12BDC A ∠=∠+∠+∠.(______) (2)请你按照小丽的思路完成探究过程; (3)利用探究的结果,解决下列问题:①如图①,在凹四边形ABCD 中,135BDC ∠=︒,25B C ∠=∠=︒,求A ∠=______; ②如图②,在凹四边形ABCD 中,ABD ∠与ACD ∠的角平分线交于点E ,60A ∠=︒,140BDC ∠=︒,则E ∠=______;③如图③,ABD ∠,ACD ∠的十等分线相交于点、1F 、2F 、…、9F ,若120BDC ∠=︒,364BF C ∠=︒,则A ∠的度数为______;④如图④,BAC ∠,BDC ∠的角平分线交于点E ,则B ,C ∠与E ∠之间的数量关系是______;⑤如图⑤,ABD ∠,BAC ∠的角平分线交于点E ,40C ∠=︒,140BDC ∠=︒,求AEB ∠的度数.15.已知//,MN GH 在Rt ABC 中,90,30ACB BAC ∠=︒∠=︒,点A 在MN 上,边BC 在GH 上,在Rt DEF △中,90,DFE ∠=︒边DE 在直线AB 上,45EDF ∠=︒;(1)如图1,求BAN ∠的度数;(2)如图2,将Rt DEF △沿射线BA 的方向平移,当点F 在M 上时,求AFE ∠度数;(3)将Rt DEF △在直线AB 上平移,当以A D F 、、为顶点的三角形是直角三角形时,直接写出FAN 度数.【参考答案】一、解答题1.(1)证明见解析;(2)证明见解析;(3)∠FBE =35°. 【分析】(1)根据平行线的性质得出∠ABF =∠BFE ,∠DCF =∠EFC ,进而解答即可; (2)由(1)的结论和垂直的定义解答即可;解析:(1)证明见解析;(2)证明见解析;(3)∠FBE =35°. 【分析】(1)根据平行线的性质得出∠ABF =∠BFE ,∠DCF =∠EFC ,进而解答即可; (2)由(1)的结论和垂直的定义解答即可; (3)由(1)的结论和三角形的角的关系解答即可. 【详解】证明:(1)∵AB ∥CD ,EF ∥CD , ∴AB ∥EF , ∴∠ABF =∠BFE , ∵EF ∥CD , ∴∠DCF =∠EFC ,∴∠BFC =∠BFE +∠EFC =∠ABF +∠DCF ; (2)∵BE ⊥EC , ∴∠BEC =90°, ∴∠EBC +∠BCE =90°,由(1)可得:∠BFC =∠ABE +∠ECD =90°, ∴∠ABE +∠ECD =∠EBC +∠BCE , ∵BE 平分∠ABC , ∴∠ABE =∠EBC , ∴∠ECD =∠BCE , ∴CE 平分∠BCD ;(3)设∠BCE =β,∠ECF =γ, ∵CE 平分∠BCD , ∴∠DCE =∠BCE =β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE+∠DCE=∠BEC=90°,∴∠ABE=90°﹣β,∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ,∵BE平分∠ABC,∴∠CBE=∠ABE=90°﹣β,∴∠CBG=∠CBE+∠GBE,∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,整理得:2γ+β=55°,∴∠FBE=∠FBG+∠GBE=2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.【点睛】本题主要考查平行线的性质,解决本题的关键是根据平行线的性质解答.2.(1)P B′⊥QC′;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′【分析】(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O,过O作OE∥AB,根解析:(1)PB′⊥QC′;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′【分析】(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O,过O作OE∥AB,根据平行线的性质求得∠POE和∠QOE的度数,进而得结论;(2)分三种情况:①当0<t≤15时,②当15<t≤30时,③当30<t<45时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间.【详解】解:(1)如图1,当旋转时间30秒时,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,过O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案为:PB′⊥QC′;(2)①当0<t≤15时,如图,则∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②当15<t≤30时,如图,则∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③当30<t≤45时,如图,则∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;综上,当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′.【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题.3.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=.【分析】(1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=解析:(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=1 1802β︒-.【分析】(1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=∠DAP,再根据平行公理求出CD∥EF然后根据两直线平行,内错角相等可得∠MPB=∠FBP,最后根据∠APM+∠MPB=∠DAP+∠FBP等量代换即可得证;(2)结论:∠APB=∠DAP+∠FBP.(3)①根据(2)的规律和角平分线定义解答;②根据①的规律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根据角平分线的定义和平角等于180°列式整理即可得解.【详解】(1)证明:过P作PM∥CD,∴∠APM =∠DAP .(两直线平行,内错角相等),∵CD ∥EF (已知),∴PM ∥CD (平行于同一条直线的两条直线互相平行),∴∠MPB =∠FBP .(两直线平行,内错角相等),∴∠APM +∠MPB =∠DAP +∠FBP .(等式性质) 即∠APB =∠DAP +∠FBP =40°+70°=110°. (2)结论:∠APB=∠DAP +∠FBP .理由:见(1)中证明.(3)①结论:∠P=2∠P 1;理由:由(2)可知:∠P =∠DAP +∠FBP ,∠P 1=∠DAP 1+∠FBP 1,∵∠DAP =2∠DAP 1,∠FBP =2∠FBP 1,∴∠P =2∠P 1.②由①得∠APB =∠DAP +∠FBP ,∠AP 2B =∠CAP 2+∠EBP 2,∵AP 2、BP 2分别平分∠CAP 、∠EBP ,∴∠CAP 2=12∠CAP ,∠EBP 2=12∠EBP ,∴∠AP 2B =12∠CAP +12∠EBP , = 12(180°-∠DAP )+ 12(180°-∠FBP ),=180°- 12(∠DAP +∠FBP ),=180°- 12∠APB ,=180°- 12β.【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线. 4.(1)见解析;(2)见解析;(3).【分析】(1)先根据平行线的性质得到,然后结合即可证明;(2)过作,先说明,然后再说明得到,最后运用等量代换解答即可; (3)设∠DBE=a ,则∠BFC=3解析:(1)见解析;(2)见解析;(3)︒=∠105EBC .【分析】(1)先根据平行线的性质得到C BDA ∠=∠,然后结合AB BC ⊥即可证明;(2)过B 作//BH DM ,先说明ABD CBH ∠=∠,然后再说明//BH NC 得到CBH C ∠=∠,最后运用等量代换解答即可;(3)设∠DBE =a ,则∠BFC =3a ,根据角平分线的定义可得∠ABD =∠C =2a ,∠FBC =12∠DBC =a +45°,根据三角形内角和可得∠BFC +∠FBC +∠BCF =180°,可得∠AFC =∠BCF 的度数表达式,再根据平行的性质可得∠AFC +∠NCF =180°,代入即可算出a 的度数,进而完成解答.【详解】(1)证明:∵//AM CN ,∴C BDA ∠=∠,∵AB BC ⊥于B , ∴90B ∠=︒,∴90A BDA ∠+∠=︒,∴90A C ∠+∠=︒;(2)证明:过B 作//BH DM ,∵BD MA ⊥,∴90ABD ABH ∠+∠=︒,又∵AB BC ⊥,∴90ABH CBH ∠+∠=︒,∴ABD CBH ∠=∠,∵//BH DM ,//AM CN∴//BH NC ,∴CBH C ∠=∠,∴ABD C ∠=∠;(3)设∠DBE =a ,则∠BFC =3a ,∵BE 平分∠ABD ,∴∠ABD =∠C =2a ,又∵AB ⊥BC ,BF 平分∠DBC ,∴∠DBC =∠ABD +∠ABC =2a +90,即:∠FBC =12∠DBC =a +45°又∵∠BFC +∠FBC +∠BCF =180°,即:3a +a +45°+∠BCF =180°∴∠BCF =135°-4a ,∴∠AFC =∠BCF =135°-4a ,又∵AM //CN ,∴∠AFC +∠ NCF =180°,即:∠AFC +∠BCN +∠BCF =180°,∴135°-4a +135°-4a +2a =180,解得a =15°,∴∠ABE =15°,∴∠EBC =∠ABE +∠ABC =15°+90°=105°.【点睛】本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键.5.(1);(2)见解析;(3)105°【分析】(1)通过平行线性质和直角三角形内角关系即可求解.(2)过点B 作BG ∥DM ,根据平行线找角的联系即可求解.(3)利用(2)的结论,结合角平分线性质解析:(1)90A C ∠+∠=︒;(2)见解析;(3)105°【分析】(1)通过平行线性质和直角三角形内角关系即可求解.(2)过点B 作BG ∥DM ,根据平行线找角的联系即可求解.(3)利用(2)的结论,结合角平分线性质即可求解.【详解】解:(1)如图1,设AM 与BC 交于点O ,∵AM ∥CN ,∴∠C =∠AOB ,∵AB ⊥BC ,∴∠ABC =90°,∴∠A +∠AOB =90°,∠A +∠C =90°,故答案为:∠A +∠C =90°;(2)证明:如图2,过点B 作BG ∥DM ,∵BD ⊥AM ,∴DB ⊥BG ,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.故答案为:105°.【点睛】本题考查平行线性质,画辅助线,找到角的和差倍分关系是求解本题的关键.二、解答题6.(1)∠A+∠C=90°;(2)①见解析;②105°【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)①过点B作BG∥DM,根据平行线找角的联系即可求解;②先过点B作BG∥解析:(1)∠A+∠C=90°;(2)①见解析;②105°【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)①过点B作BG∥DM,根据平行线找角的联系即可求解;②先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得2α+β+3α+3α+β=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【详解】解:(1)如图1,AM与BC的交点记作点O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°;(2)①如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥DM,BG CN//,∴∠C=∠CBG,∠ABD=∠C;②如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.7.(1)见解析;(2)见解析;(3)见解析;.【分析】(1)过点C作,得到,再根据,,得到,进而得到,最后证明;(2)先证明,再证明,得到,问题得证;(3)根据题意得到,根据(2)结论得到∠D解析:(1)见解析;(2)见解析;(3)见解析;2 .【分析】(1)过点C 作//CG DF ,得到DFE FCG ∠=∠,再根据90BCF ∠=︒,90∠+∠=︒ABC DFE ,得到ABC BCG ∠=∠,进而得到//CG AB ,最后证明//DF AB ;(2)先证明90ACB DEF ∠+∠=︒,再证明90ACB ACE ∠+∠=︒,得到DEF ACE ∠=∠,问题得证;(3)根据题意得到DFE DEF α∠=∠=,根据(2)结论得到∠DEF =∠ECA =α,进而得到=90BC AC A B α=∠︒-∠,根据三角形内角和即可求解.【详解】解:(1)过点C 作//CG DF ,DFE FCG ∴∠=∠,BC MN ⊥,90BCF ∴∠=︒,90BCG FCG ∴∠+∠=︒,90BCG DFE ∴∠+∠=︒,90ABC DFE ∠+∠=︒,ABC BCG ∴∠=∠,//CG AB ∴,//DF AB ∴;(2)解:ABC ACB ∠=∠,DEF DFE ∠=∠,又90ABC DFE ∠+∠=︒,90ACB DEF ∴∠+∠=︒,BC MN ⊥,90BCM ∴∠=︒,90ACB ACE ∴∠+∠=︒,DEF ACE ∴∠=∠,//DE AC ∴;(3)如图三角形DEF 即为所求作三角形.∵DFE α∠=,∴DFE DEF α∠=∠=,由(2)得,DE ∥AC ,∴∠DEF =∠ECA =α,∵90ACB ACE ∠+∠=︒,∴∠ACB =90α︒-,∴ =90BC AC A B α=∠︒-∠,∴∠A =180°-A ABC CB -∠∠=2α.故答案为为:2α.【点睛】本题考查了平行线的判定,三角形的内角和等知识,综合性较强,熟练掌握相关知识,根据题意画出图形是解题关键.8.;2.平行于同一条直线的两条直线平行;3.(1);(2).【分析】1、根据角度和计算得到答案;2、根据平行线的推论解答;3、(1)根据角平分线的性质及1的结论证明即可得到答案;(2)根据B解析:1.72;2.平行于同一条直线的两条直线平行;3.(1)1122αβ+;(2)1118022αβ-+. 【分析】1、根据角度和计算得到答案;2、根据平行线的推论解答;3、(1)根据角平分线的性质及1的结论证明即可得到答案;(2)根据BE 平分,ABC DE ∠平分,ADC ∠求出11,22ABE CDE αβ∠=∠=,过点E 作EF ∥AB ,根据平行线的性质求出∠BEF =12α,11801802DEF CDE β∠=︒-∠=︒-,再利用周角求出答案.【详解】1、过点E 作//,EF AB则有,BEF B ∠=∠因为//,AB CD所以//.EF CD ①所以,FED D ∠=∠所以,BEF FED B D ∠+∠=∠+∠即BED ∠=72;故答案为:72;2、过点E 作//,EF AB则有,BEF B ∠=∠因为//,AB CD所以EF ∥CD (平行于同一条直线的两条直线平行),故答案为:平行于同一条直线的两条直线平行;3、(1)∵BE 平分,ABC DE ∠平分,ADC ∠ ∴1111,2222ABE ABC CDE ADC αβ∠=∠=∠=∠=, 过点E 作EF ∥AB ,由1可得∠BED =BEF FED ABE CDE ∠+∠=∠+∠,∴∠BED =1122αβ+, 故答案为:1122αβ+;(2)∵BE 平分,ABC DE ∠平分,ADC ∠∴1111,2222ABE ABC CDE ADC αβ∠=∠=∠=∠=, 过点E 作EF ∥AB ,则∠ABE =∠BEF =12α, ∵//,AB CD∴EF ∥CD ,∴180CDE DEF ∠+∠=︒,∴11801802DEF CDE β∠=︒-∠=︒-, ∴11360360(180)22BED DEF BEF βα∠=︒-∠-∠=︒-︒--=1118022αβ-+.【点睛】此题考查平行线的性质:两直线平行内错角相等,两直线平行同旁内角互补,平行线的推论,正确引出辅助线是解题的关键.9.(1);(2),见解析;(3)不变,【分析】(1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度(2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系; (3)运用解析:(1)23︒;(2)BCD A B ∠=∠+∠,见解析;(3)不变, 25FOG ∠=︒【分析】(1)根据平行线的性质求出50A DCE ∠=∠=︒,再求出BCE ∠的度数,利用内错角相等可求出角的度数;(2)过点C 作CE ∥AB ,类似(1)利用平行线的性质,得出三个角的关系;(3)运用(2)的结论和平行线的性质、角平分线的性质,可求出FOG ∠的度数,可得结论.【详解】(1)因为CE ∥AB ,所以50A DCE ∠=∠=︒,B BCE ∠=∠因为∠BCD =73 °,所以23BCE BCD DCE ∠=∠-∠=︒,故答案为:23︒(2)BCD A B ∠=∠+∠,如图②,过点C 作CE ∥AB ,则A DCE ∠=∠,B BCE ∠=∠.因为BCD DCE BCE ∠=∠+∠,所以BCD BAD B ∠=∠+∠,(3)不变,设ABE x ∠=,因为BE 平分ABC ∠,所以CBE ABE x ∠=∠=.由(2)的结论可知BCD BAD ABC ∠=∠+∠,且50BAD ︒∠=,则:502BCD x ∠=︒+.因为MN ∥AD ,所以502BON BCD x ∠=∠=︒+,因为OF 平分BON ∠, 所以1252COF NOF BON x ∠=∠=∠=︒+. 因为OG ∥BE ,所以COG CBE x ∠=∠=,所以2525FOG COF COG x x ∠=∠-∠=+-=︒︒.【点睛】本题考查了平行线的性质和角平分线的定义,解题关键是熟练运用平行线的性质证明角相等,通过等量代换等方法得出角之间的关系.10.(1)图见解析,,理由见解析;(2),理由见解析;(3)图见解析,【分析】(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得;(2)如图(见解析),先根据平行线的性质可解析:(1)图见解析,EDF BAC ∠=∠,理由见解析;(2)//DE BA ,理由见解析;(3)图见解析,EDF BAC ∠=∠或180EDF BAC ∠+∠=︒.【分析】(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,EDF BFD B B D AC F ∠=∠∠∠=,由此即可得;(2)如图(见解析),先根据平行线的性质可得BAC BOD ∠=∠,再根据等量代换可得EDF BOD ∠=∠,然后根据平行线的判定即可得;(3)先根据点D 的位置画出如图(见解析)的两种情况,再分别利用平行线的性质、对顶角相等即可得.【详解】(1)由题意,补全图形如下:EDF BAC ∠=∠,理由如下://DE BA ,EDF BFD ∴∠=∠,//DF CA ,BA BFD C ∴∠=∠,EDF BAC ∴∠=∠;(2)//DE BA ,理由如下:如图,延长BA 交DF 于点O ,//DF CA ,BAC BOD ∴∠=∠,EDF BAC ∠=∠,EDF BOD ∴∠=∠,//DE BA ∴;(3)由题意,有以下两种情况:①如图3-1,EDF BAC ∠=∠,理由如下://DE BA ,180E EAF ∴∠+∠=︒,//DF CA ,180E EDF ∴∠+∠=︒,EAF EDF ∴∠=∠,由对顶角相等得:BAC EAF ∠=∠,EDF BAC ∴∠=∠;②如图3-2,180EDF BAC ∠+∠=︒,理由如下://DE BA ,180EDF F ∴∠+∠=︒,//DF CA ,BAC F ∴∠=∠,180EDF BAC ∴∠+∠=︒.【点睛】本题考查了平行线的判定与性质等知识点,较难的是题(3),正确分两种情况讨论是解题关键.三、解答题11.(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC解析:(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC 中利用三角形内角和定理求出∠ABC=∠ACB=40°,根据三角形外角的性质得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形内角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°;(2)如图②,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=1802n︒-.根据三角形外角的性质得出∠CDE=∠ACB-∠AED=1002n-︒,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,从而得出结论∠BAD=2∠CDE;(3)如图③,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=1802n︒-.根据三角形外角的性质得出∠CDE=∠ACD-∠AED=1002n︒+,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,从而得出结论∠BAD=2∠CDE.【详解】解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,∴∠ADC=∠ABC+∠BAD=40°+60°=100°.∵∠DAC=40°,∠ADE=∠AED,∴∠ADE=∠AED=70°,∴∠CDE=∠ADC-∠ADE=100°-70°=30°.故答案为60,30.(2)∠BAD=2∠CDE,理由如下:如图②,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=1802n︒-,∵∠ACB=∠CDE+∠AED,∴∠CDE=∠ACB-∠AED=40°-1802n︒-=1002n-︒,∵∠BAC=100°,∠DAC=n,∴∠BAD=n-100°,∴∠BAD=2∠CDE.(3)成立,∠BAD=2∠CDE,理由如下:如图③,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=1802n︒-,∵∠ACD=∠CDE+∠AED,∴∠CDE=∠ACD-∠AED=140°-1802n︒-=1002n︒+,∵∠BAC=100°,∠DAC=n,∴∠BAD=100°+n,∴∠BAD=2∠CDE.【点睛】本题考查了三角形内角和定理,三角形外角的性质,从图形中得出相关角度之间的关系是解题的关键.12.(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°解析:(1)见解析;(2)∠BGD=902a︒-;(3)2∠BGD+∠BFD=360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB=12(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°,从而根据∠BED=180°﹣(∠EBD+∠EDB)即可得到答案;(2)过点G作GP∥AB,根据AB∥CD,得到GP∥AB∥CD,从而得到∠BGD=∠BGP+∠PGD=∠ABG+∠CDG,然后根据∠EBD+∠EDB=90°,∠ABD+∠BDC=180°,得到∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,再利用角平分线的定义求出2∠ABG+2∠CDG=90°﹣α即可得到答案;(3)过点F、G分别作FM∥AB、GM∥AB,从而得到AB∥GM∥FN∥CD,得到∠BGD=∠BGM+∠DGM=∠4+∠6,根据BG平分∠FBP,DG平分∠FDQ,∠4=12∠FBP=12(180°﹣∠3),∠6=12∠FDQ=12(180°﹣∠5),即可求解.【详解】解:(1)证明:∵BE平分∠ABD,∴∠EBD=12∠ABD,∵DE平分∠BDC,∴∠EDB=12∠BDC,∴∠EBD+∠EDB=12(∠ABD+∠BDC),∵AB∥CD,∴∠ABD+∠BDC=180°,∴∠EBD+∠EDB=90°,∴∠BED=180°﹣(∠EBD+∠EDB)=90°.(2)解:如图2,由(1)知:∠EBD+∠EDB=90°,又∵∠ABD+∠BDC=180°,∴∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,∵BG平分∠ABE,DG平分∠CDF,∴∠ABE=2∠ABG,∠CDF=2∠CDG,∴2∠ABG+2∠CDG=90°﹣α,过点G作GP∥AB,∵AB∥CD,∴GP∥AB∥CD∴∠ABG=∠BGP,∠PGD=∠CDG,∴∠BGD=∠BGP+∠PGD=∠ABG+∠CDG=902α-;(3)如图,过点F、G分别作FN∥AB、GM∥AB,∵AB∥CD,∴AB∥GM∥FN∥CD,∴∠3=∠BFN,∠5=∠DFN,∠4=∠BGM,∠6=∠DGM,∴∠BFD=∠BFN+∠DFN=∠3+∠5,∠BGD=∠BGM+∠DGM=∠4+∠6,∵BG平分∠FBP,DG平分∠FDQ,∴∠4=12∠FBP=12(180°﹣∠3),∠6=12∠FDQ=12(180°﹣∠5),∴∠BFD+∠BGD=∠3+∠5+∠4+∠6,=∠3+∠5+12(180°﹣∠3)+12(180°﹣∠5),=180°+12(∠3+∠5),=180°+12∠BFD,整理得:2∠BGD+∠BFD=360°.【点睛】本题主要考查了平行线的性质与判定,角平分线的性质和三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.13.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s 【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可.【详解】(1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°−∠PEF=180°−120°=60°,∴∠MFD=∠MFE−∠DFE=60°−30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如图2,过点E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF−∠KEA,又∵∠DEF=60°.∴∠PDE=60°−45°=15°,故答案为:15°;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA,∵∠FGQ和∠GFA的角平分线GH、FH相交于点H,∴∠QGH=12∠FGQ,∠HFA=12∠GFA,∵∠DFE=30°,∴∠GFA=180°−∠DFE=150°,∴∠HFA=12∠GFA=75°,∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°,∴∠GFL=∠GFA−∠LFA=150°−45°=105°,∴∠RHG=∠QGH=12∠FGQ=12(180°−105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四边形DEAD′的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:BC∥DE时,如图5,此时AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF时,如图6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°−∠ACB=90°,∴∠CAK=90°−∠BKA=15°,∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°,∴3t=120,解得:t =40,综上所述,△ABC 绕点A 顺时针旋转的时间为10s 或30s 或40s 时,线段BC 与△DEF 的一条边平行.【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键.14.(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤【分析】(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断; (2)想要利用外角的性质求解,就需要构造外解析:(1)三角形内角和180°;等量代换;(2)见解析;(3)①85A ∠=︒;②100E ∠=︒;③40A ∠=︒;④2B C E ∠-∠=∠;⑤130︒【分析】(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断;(2)想要利用外角的性质求解,就需要构造外角,因此延长BD 交AC 于E ,然后根据外角的性质确定1BEC A ∠=∠+∠,2BDC BEC ∠=∠+∠,即可判断BDC ∠与A ∠,1∠,2∠之间的关系;(3)①连接BC ,然后根据(1)中结论,代入已知条件即可求解;②连接BC ,然后根据(1)中结论,求得ABD ACD ∠+∠的和,进而得到DBC DCB ∠+∠的和,然后根据角平分线求得EBD ECD ∠+∠的和,进而求得80EBC ECB ∠+∠=︒,然后利用三角形内角和定理180E EBC ECB ∠+∠+∠=︒,即可求解;③连接BC ,首先求得18060DBC DCB BDC ∠+∠=︒-∠=︒,然后根据十等分线和三角形内角和的性质得到333180=116CBF BC F F B C =︒-∠︒∠+∠,然后得到ABD ACD ∠+∠的和,最后根据(1)中结论即可求解;④设BD 与AE 的交点为点O ,首先利用根据外角的性质将∠BOE 用两种形式表示出来,然后得到BAE ABD E BDE ∠+∠=∠+∠,然后根据角平分线的性质,移项整理即可判断; ⑤根据(1)问结论,得到BAC ABD ∠+∠的和,然后根据角平分线的性质得到BAE ABE ∠+∠的和,然后利用三角形内角和性质即可求解.【详解】(1)∵180BDC DBC BCD ∠+∠+∠=︒,(三角形内角和180°)∴180BDC DBC BCD ∠=︒-∠-∠,(等式性质)∵12180A DBC BCD ∠+∠+∠+∠+∠=︒,∴12180A DBC BCD ∠+∠+∠=︒-∠-∠,∴12BDC A ∠=∠+∠+∠.(等量代换)故答案为:三角形内角和180°;等量代换.(2)如图,延长BD 交AC 于E ,由三角形外角性质可知,1BEC A ∠=∠+∠,2BDC BEC ∠=∠+∠,∴12BDC A ∠=∠+∠+∠.(3)①如图①所示,连接BC ,,根据(1)中结论,得BDC A ABD ACD ∠=∠+∠+∠,∴=135252585A BDC ABD ACD ∠=∠-∠-∠︒-︒-︒=︒,∴85A ∠=︒;②如图②所示,连接BC ,,根据(1)中结论,得BDC A ABD ACD ∠=∠+∠+∠,∴=1406080ABD ACD BDC A ∠+∠=∠-∠︒-︒=︒,∵ABD ∠与ACD ∠的角平分线交于点E , ∴12EBD ABD ∠=∠,12ECD ACD ∠=∠, ∴()11140222EBD ECD ABD ACD ABD ACD ∠+∠=∠+∠=∠+∠=︒, ∵140BDC ∠=︒,180BDC DBC DCB ∠+∠+∠=︒,∴18040DBC DCB BDC ∠+∠=︒-∠=︒,∴80EBC ECB ∠+∠=︒,∵180E EBC ECB ∠+∠+∠=︒,∴100E ∠=︒;③如图③所示,连接BC ,,根据(1)中结论,得BDC A ABD ACD ∠=∠+∠+∠,∵120BDC ∠=︒,180BDC DBC DCB ∠+∠+∠=︒,∴18060DBC DCB BDC ∠+∠=︒-∠=︒,∵ABD ∠与ACD ∠的十等分线交于点3F , ∴3710DBF ABD ∠=∠,3710DCF ACD ∠=∠, ∴()33777101010DBF DCF ABD ACD ABD ACD ∠+∠=∠+∠=∠+∠, ∴()333371060CBF BCF EBF ECF A DBC D A CB BD CD ∠+∠=+︒∠+∠=∠+∠+∠+∠, ∵333180CBF BCF BF C +∠=︒∠+∠,∴333180=116CBF BC F F B C =︒-∠︒∠+∠,∴80ABD ACD ︒∠+∠=,∴()1208040A BDC ABD ACD ∠=∠-∠+∠=︒-︒=︒,∴40A ∠=︒;④如图④所示,设BD 与AE 的交点为点O ,∵AE 平分BAC ∠,BD 平分BDC ∠, ∴12BAE BAC ∠=∠,12BDE BDC ∠=∠, ∵BOE BAE ABD ∠=∠+∠,BOE E BDE ∠=∠+∠,∴BAE ABD E BDE ∠+∠=∠+∠, ∴()11+22BAC ABD E BAC ABD ACD ∠+∠=∠+∠+∠∠, ∴()1111+2222E BAC ABD ACD BAC ABD ABD ACD ∠=∠+∠∠-∠-∠=∠-∠,即2B C E ∠-∠=∠;⑤∵ABD ∠,BAC ∠的角平分线交于点E , ∴()1502BAE ABE BAC ABD ∠+∠=∠+∠=︒, ∴()180********AEB BAE ABE ∠=︒-∠+∠=︒-︒=︒.【点睛】本题考查了三角形内角和定量,外角的性质,以及辅助线的做法,重点是观察题干中的解题思路,然后注意角平分线的性质,逐渐推到即可求解.15.(1)60°;(2)15°;(3)30°或15°【分析】(1)利用两直线平行,同旁内角互补,得出,即可得出结论;(2)先利用三角形的内角和定理求出,即可得出结论;(3)分和两种情况求解即可得解析:(1)60°;(2)15°;(3)30°或15°【分析】(1)利用两直线平行,同旁内角互补,得出90CAN ∠=︒,即可得出结论;(2)先利用三角形的内角和定理求出AFD ∠,即可得出结论;(3)分90DAF ∠=︒和90AFD ∠=︒两种情况求解即可得出结论.【详解】解:(1)//MN GH ,180ACB NAC ∴∠+∠=︒,90ACB ∠=︒,90CAN ∴∠=︒,30BAC ∠=︒,9060BAN BAC ∴∠=︒-∠=︒;(2)由(1)知,60BAN ∠=︒,45EDF ∠=︒,18075AFD BAN EDF ∴∠=︒-∠-∠=︒,90DFE ∠=︒,15AFE DFE AFD ∴∠=∠-∠=︒;(3)当90DAF ∠=︒时,如图3,由(1)知,60BAN ∠=︒,30FAN DAF BAN ∴∠=∠-∠=︒;当90AFD ∠=︒时,如图4,90DFE ∠=︒,∴点A ,E 重合,45EDF ∠=︒,45DAF ∴∠=︒,由(1)知,60BAN ∠=︒,15FAN BAN DAF ∴∠=∠-∠=︒,即当以A 、D 、F 为顶点的三角形是直角三角形时,FAN ∠度数为30或15︒.【点睛】此题是三角形综合题,主要考查了平行线的性质,三角形的内角和定理,角的和差的计算,求出60BAN ∠=︒是解本题的关键.。
2018-2019学年度北京市七年级数学第二学期期末考试卷及答案有详细解析
2018-2019学年度北京市七年级数学第二学期期末考试卷一、选择题1、若把不等式x+2≤0的解集在数轴上表示出来,则正确的是( ) A . B .C .D .2、PM2.5是指大气中直径小于或等于2.5微米的颗粒物,2.5微米等于0.0000025米,把0.0000025用科学记数法表示为()A .2.5×106B .0.25×10-5C .2.5×10-6D .25×10-73、将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是( )A .30°B .45°C .60°D .65° 4、已知,则下列不等式一定成立的是( )A .B .C .D .5、下列计算正确的是( )A .2a+3a=6aB .a 2+a 3=a 5C .a 8÷a 2=a 6D .(a 3)4= a 76、是二元一次方程的一个解,则a 的值为( )A .1B .31C .3D .-1 7、下列因式分解正确的是( ) A . B .C .D .8、小文统计了本班同学一周的体育锻练情况,并绘制了直方图 ①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8; ③这个班同学一周参加体育锻炼时间的中位数是9; ④这个班同学一周参加体育锻炼时间的平均值为8. 根据图中信息,上述说法中正确的是( )……订…………○线※※内※※答※※题※※……订…………○A.①②B.②③C.③④D.①④9、某市居民用电的电价实行阶梯收费,收费标准如下表:七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是()A.100 B.396 C.397 D.40010、用小棋子摆出如下图形,则第n个图形中小棋子的个数为()A.n B.2n C.n2D.n2+1二、填空题11、因式分解:=__________________。
2018~2019学年北京海淀区人大附中初一下学期期末数学试卷(详解)
2/20
2020/5/8
【解析】 ⻄单坐标是
,雍和宫坐标是 教研,云资源页
所以一个格代表 ,
南锣鼓巷是从雍和宫左移 个单位,下移 个单位故其坐标为
.
故选: .
6. 如图, 处在 处的北偏东 方向, 处在 处的北偏⻄ 方向.则
等于( ).
北
北
A.
B.
C.
D.
【答案】 D
【解析】 依题可知,
.
7. 下列等式正确的是( ).
3/20
2020/5/8
【答案】 A
教研云资源页
【解析】 由所给天平可知,物体 的质量
.
在数轴上表示如下:
故选 .
9. 若一个等腰三⻆形的两边⻓分别为 和 ,则这个三⻆形的周⻓为( ).
A.
B.
C.
D. 或
【答案】 C
【解析】 ∵等腰三⻆形的两边分别是 和 ,
∴应分为两种情况:① 为底, 为腰,则
【解析】 正多边形每个内⻆为 故选 .
,则每个外⻆为 ,边数
D. .
5. 如图是北京市地铁部分线路示意图.若分别以正东、正北方向为 轴, 轴的正方向建立平面直
⻆坐标系,表示⻄单的点的坐标为
,表示雍和宫的点的坐标为 ,则表示南锣鼓巷的
点的坐标是( ).
A.
B.
C.
D.
【答案】 B
https:///#/print?id=c9e6efdac6a1412aba0bc051a82f1c5d&type=analyze
的面积是
.
的边 上的中线,若
的面积是
【答案】
【解析】 ∵ 是
的边 上的中线,且
2018~2019学年北京海淀区人大附中初一下学期期末数学试卷
2018~2019学年北京海淀区⼈⼤附中初⼀下学期期末数学试卷⼀、选择题(本⼤题共12⼩题,每⼩题3分,共36分)1.A.B.C.D.或平⾯直⻆坐标系内,点到轴的距离是( ).2. A.若,则B.若,则C.若,则D.若,则下列说法不⼀定成⽴的是( ).3. A.B.C.D.下列各选项的结果表示的数中,不是⽆理数的是( ).如图,直径为单位的圆从数轴上的原点沿着数轴⽆滑动地顺时针滚动⼀周到达点,点表示的数的算术平⽅根的⽴⽅根4. A.B.C.D.若正多边形的⼀个内⻆是,则该正多边形的边数是( ).5.如图是北京市地铁部分线路示意图.若分别以正东、正北⽅向为轴,轴的正⽅向建⽴平⾯直⻆坐标系,表示⻄单的点的坐标为,表示雍和宫的点的坐标为,则表示南锣⿎巷的点的坐标是( ).A. B. C. D.6. A. B. C. D.如图,处在处的北偏东⽅向,处在处的北偏⻄⽅向.则等于( ).北北7. A.B.C.D.下列等式正确的是( ).8. A. B.C. D.如图天平右盘中的每个砝码的质量都是,则物体的质量的取值范围,在数轴上可表示为( ).9. A.B.C.D.或若⼀个等腰三⻆形的两边⻓分别为和,则这个三⻆形的周⻓为( ).10.A.B.C.D.已知点在第⼆象限,则的取值范围是( ).2020/5/8教研云资源页已知右图中的两个三⻆形全等,则等于( ).11.A. B. C. D.12.不等式组⽆解,则的取值范围是( )A. B. C. D.⼆、填空题(本⼤题共11⼩题,每⼩题2分,共22分)13.若在实数范围内有意义,则实数的取值范围是 .14.⽤⼀组,的值说明命题“若,则”是错误的,这组值可以是(按顺序分别写出、的值) .15.点向下平移个单位,再向右平移个单位后的点的坐标为 .16.如图,是的边上的中线,是的边上的中线,若的⾯积是,则的⾯积是 .17.如图,等腰直⻆三⻆板的顶点,分别在直线,上.若,,则的度数为 .18.已知:、为两个连续的整数,且,则 .2020/5/8教研云资源页19.某宾馆在重新装修后,准备在⼤厅主楼梯上铺设某种红⾊地毯,主楼梯道宽⽶,其侧⾯如图所示,则购买地毯⾄少需要 平⽅⽶.20.关于,的⼆元⼀次⽅程组,的解满⾜,则的取值范围是 .21.如图≌,若,,,、交于点,则的度数为 .22.阅读下⾯材料:数学课上,⽼师提出如下问题:尺规作图:作⼀⻆等于已知⻆.已知:.求作:,使得.⼩明解答如右图所示,其中他所画的弧是以为圆⼼,以⻓为半径的弧.⽼师说:“⼩明作法正确.”请回答⼩明的作图依据是: .23.2020/5/8教研云资源页已知,为互质(即,除了没有别的公因数)的正整数,由个⼩正⽅形组成的矩形,如左下图示意,它的对⻆线穿过的⼩正⽅形的个数记为.⼩明同学在右下⽅的⽅格图中经过动⼿试验,在左下的表格中填⼊不同情形下的各个数值,于是猜想与,之间满⾜线性的数量关系.请你模仿⼩明的⽅法,填写上表中的空格,并写出与,的数量关系式为 .三、解答题(本⼤题共12分)24.(1)(2)(3)请回答下列各题:计算:.解⽅程组:.解不等式组,并求它的所有整数解.四、解答题(本⼤题共3⼩题,每⼩题6分,共18分)25.已知:如图,为上⼀点,点,分别在两侧.,,.求证:.26.(1)(2)如图,,,、分别平分与, 交对边于、,且,过作交于.在右下图中作出线段和(不要求尺规作图).求的⼤⼩.⼩亮同学请根据条件进⾏推理计算,得出结论,请你在括号内注明理由.证明:∵、分别平分与,(已知)∴,.( )∵,(已知)∴.(等式的性质)∵,(已知)∴.( )∴.( )∵,(已知)∴,(两直线平⾏,同旁内⻆互补)∵于,(已知)∴, (垂直的定义)∴在中,.( )27.在⼀次活动中,主办⽅共准备了盆甲种花和盆⼄种花,计划⽤甲、⼄两种花搭造出、两种园艺造型共个,搭造要求的花盆数如下表所示:造型甲⼄盆盆盆盆五、解答题(本⼤题共2⼩题。
北京清华大学附属中学人教版七年级下册数学期末综合测试题
北京清华大学附属中学人教版七年级下册数学期末综合测试题一、选择题1.a 5可以等于( )A .(﹣a )2•(﹣a )3B .(﹣a )•(﹣a )4C .(﹣a 2)•a 3D .(﹣a 3)•(﹣a 2) 2.下列从左到右的变形,是因式分解的是( ) A .()()23x 3x 9x -+=- B .()()()()y 1y 33y y 1+-=-+C .()24yz 2y z z 2y 2z zy z -+=-+ D .228x 8x 22(2x 1)-+-=-- 3.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )A .90°B .120°C .135°D .150°4.不等式3+2x>x+1的解集在数轴上表示正确的是( )A .B .C .D .5.一元一次不等式312x -->的解集在数轴上表示为( )A .B .C .D .6.若关于x 的不等式组2034x x a x-<⎧⎨+>-⎩恰好只有2个整数解,且关于x 的方程21236x a a x +++=+的解为非负整数解,则所有满足条件的整数a 的值之和是( ) A .1 B .3 C .4 D .67.下列图形中,能将其中一个三角形平移得到另一个三角形的是( )A .B .C .D .8.下列运算中,正确的是( )A .a 8÷a 2=a 4B .(﹣m)2•(﹣m 3)=﹣m 5C .x 3+x 3=x 6D .(a 3)3=a 69.若多项式224a kab b ++是完全平方式,则k 的值为( )A .4B .2±C .4±D .8±10..已知2x a y =⎧⎨=-⎩是关于x ,y 的方程3x ﹣ay =5的一个解,则a 的值为( ) A .1 B .2 C .3 D .4二、填空题11.已知5x m =,4y m =,则2x y m +=______________.12.若{14x y =-=是二元一次方程3x +ay =5的一组解,则a = ______ .13.如图,在△ABC 中,点D 为BC 边上一点,E 、F 分别为AD 、CE 的中点,且ABC S ∆=8cm 2,则BEF S ∆=____.14.已知m a =2,n a =3,则2m n a -=_______________.15.()()3a 3b 13a 3b 1899+++-=,则a b += ______ .16.甲、乙两种车辆运土,已知5辆甲车和四辆乙车一次可运土140立方米,3辆甲车和2辆乙车一次可运土76立方米,若每辆甲车每次运土x 立方米,每辆乙车每次运土y 立方米,则可列方程组_________.17.分解因式:x 2﹣4x=__.18.将一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G 、D 、C 分别在M 、N 的位置上,若52EFG ∠=︒,则21∠-∠=_____________︒.19.我国开展的月球探测工程(即“嫦娥工程”)为人类和平使用月球作出了新的贡献.地球与月球之间的平均距离大约为384000km ,384000用科学记数法可表示为_______.20.小马在解关于x 的一元一次方程3232a x x -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____. 三、解答题21.如图1是一个长为 4a ,宽为 b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).(1)图2中的阴影部分的面积为 ;(2)观察图2请你写出 ()2a b +,()2a b -,ab 之间的等量关系是 ; (3)根据(2)中的结论,若 6x y +=,114x y ⋅=,则 x y -= ; (4)实际上我们可以用图形的面积表示许多恒等式,下面请你设计一个几何图形来表示恒等式()()2222252a b a b a ab b ++=++.在图形上把每一部分的面积标写清楚. 22.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.(探究1):如图1,在ΔABC 中,O 是∠ABC 与∠ACB 的平分线BO 和CO 的交点,通过分析发现∠BOC=90º+12∠A ,(请补齐空白处......) 理由如下:∵BO 和CO 分别是∠ABC 和∠ACB 的角平分线,∴∠1=12∠ABC ,_________________, 在ΔABC 中,∠A+∠ABC+∠ACB=180º. ∴∠1+∠2=12(∠ABC+∠ACB )=12(180º-∠A )=90º-12∠A , ∴∠BOC=180º-(∠1+∠2)=180º-(________)=90º+12∠A . (探究2):如图2,已知O 是外角∠DBC 与外角∠ECB 的平分线BO 和CO 的交点,则∠BOC 与∠A 有怎样的关系?请说明理由.(应用):如图3,在RtΔAOB 中,∠AOB=90º,已知AB 不平行与CD ,AC 、BD 分别是∠BAO 和∠ABO 的角平分线,又CE 、DE 分别是∠ACD 和∠BDC 的角平分线,则∠E=_______;(拓展):如图4,直线MN 与直线PQ 相交于O ,∠MOQ=60º,点A 在射线OP 上运动,点B 在射线OM 上运动,延长BA 至G ,已知∠BAO 、∠OAG 的角平分线与∠BOQ 的角平分线及其延长线交于E 、F ,在ΔAEF 中,如果有一个角是另一个角的4倍,则∠ABO=______.23.如图,在△ABC 中,∠ACB =90°,∠ABC 与∠BAC 的角平分线相交于点P ,连接CP ,过点P 作DE ⊥CP 分别交AC 、BC 于点D 、E ,(1)若∠BAC =40°,求∠APB 与∠ADP 度数;(2)探究:通过(1)的计算,小明猜测∠APB =∠ADP ,请你说明小明猜测的正确性(要求写出过程).24.(1)已知2(1)()2x x x y ---=,求222x y xy +-的值. (2)已知等腰△ABC 的三边长为,,a b c ,其中,a b 满足:a 2+b 2=6a+12b-45,求△ABC 的周长.25.因式分解:(1)m 2﹣16;(2)x 2(2a ﹣b )﹣y 2(2a ﹣b );(3)y 2﹣6y +9;(4)x 4﹣8x 2y 2+16y 4.26.南山植物园中现有A ,B 两个园区.已知A 园区为长方形,长为(x +y)米,宽为(x -y)米;B 园区为正方形,边长为(x +3y)米.(1)请用代数式表示A ,B 两园区的面积之和并化简.(2)现根据实际需要对A 园区进行整改,长增加(11x -y)米,宽减少(x -2y)米,整改后A 园区的长比宽多350米,且整改后两园区的周长之和为980米.①求x ,y 的值;②若A 园区全部种植C 种花,B 园区全部种植D 种花,且C ,D 两种花投入的费用与吸引游客的收益如下表:求整改后A ,B 两园区旅游的净收益之和.(净收益=收益-投入)27.定义:若实数x ,y 满足22x y t =+,22y x t =+,且x ≠y ,则称点M (x ,y )为“好点”.例如,点(0,-2)和 (-2,0)是“好点”.已知:在直角坐标系xOy 中,点P (m ,n ).(1)P 1(3,1)和P 2(-3,1)两点中,点________________是“好点”.(2)若点P (m ,n )是“好点”,求m +n 的值.(3)若点P 是“好点”,用含t 的代数式表示mn ,并求t 的取值范围. 28.已知关于x 的方程3m x +=的解满足325x y a x y a-=-⎧⎨+=⎩,若15y -<<,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据同底数幂的乘法底数不变指数相加,可得答案.【详解】A 、(﹣a )2(﹣a )3=(﹣a )5,故A 错误;B 、(﹣a )(﹣a )4=(﹣a )5,故B 错误;C 、(﹣a 2)a 3=﹣a 5,故C 错误;D 、(﹣a 3)(﹣a 2)=a 5,故D 正确;故选:D .【点睛】本题考查了同底数幂的乘法,利用了同底数幂的乘法法则.2.D解析:D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【详解】根据因式分解的定义得:从左边到右边的变形,是因式分解的是22-+-=--.其他不是因式分解:A,C右边不是积的形式,B左边不是多项8x8x22(2x1)式.故选D.【点睛】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.3.B解析:B【详解】解:根据题意得:∠1=180°-60°=120°.故选:B【点睛】本题考查直角三角板中的角度的计算,难度不大.4.A解析:A【分析】先解不等式求出不等式的解集,然后根据不等式的解集在数轴上的表示方法判断即可.【详解】解:移项,得2x-x>1-3,合并同类项,得x>﹣2,不等式的解集在数轴上表示为:.故选:A.【点睛】本题考查了一元一次不等式的解法和不等式的解集在数轴上的表示,属于基础题型,熟练掌握一元一次不等式的解法是关键.5.B解析:B【解析】【分析】先求出不等式的解集,再在数轴上表示出不等式的解集即可.【详解】-3x-1>2,-3x >2+1,-3x >3,x <-1, 在数轴上表示为:,故选B .【点睛】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键. 6.C解析:C【分析】先解不等式组,根据只有2个整数解得到a 的范围,再解方程,得到a 的范围,再根据a 是整数,综合得出a 的值之和.【详解】解:解不等式2034x x a x-<⎧⎨+>-⎩得: 44a -<x <2, ∵不等式组恰好只有2个整数解,∴-1≤44a -<0, ∴0≤a <4; 解方程21236x a a x +++=+得: x=52a -, ∵方程的解为非负整数, ∴52a -≥0, ∴a ≤5,又∵0≤a <4,∴a=1, 3,∴1+3=4,∴所有满足条件的整数a 的值之和为4.故选:C .本题考查一元一次不等式组及一元一次方程的特殊解,熟练掌握一元一次不等式组及一元一次方程的解法是解题的关键.7.A解析:A【解析】【分析】利用平移的性质,结合轴对称、旋转变换和位似图形的定义判断得出即可.【详解】A 、可以通过平移得到,故此选项正确;B 、可以通过旋转得到,故此选项错误;C 、是位似图形,故此选项错误;D 、可以通过轴对称得到,故此选项错误;故选A .【点睛】本题考查了平移的性质以及轴对称、旋转变换和位似图形,正确把握定义是解题的关键.8.B解析:B【分析】根据同类项的定义及合并同类相法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,积的乘方,分析判断后利用排除法求解.【详解】解:A 、a 8÷a 2=a 4不正确;B 、(-m )2·(-m 3)=-m 5 正确;C 、x 3+x 3=x 6合并得2x 3,故本选项错误;D 、(a 3)3=a 9,不正确.故选B .【点睛】本题主要考查了合并同类项及同底数幂的乘法、除法,熟练掌握运算性质和法则是解题的关键.9.C解析:C【分析】根据完全平方式的特征解答即可.【详解】∵224a kab b ++是一个完全平方式,∴224a kab b ++=(a ±2b )2,而(a ±2b )2=a 2±4ab+24b ,故选C .【点睛】本题考查了完全平方式,根据完全平方式的特点得到k=±4是解决问题的关键.10.A解析:A【解析】【分析】将x 和y 的值代入方程计算即可.【详解】将2x a y =⎧⎨=-⎩代入方程得:3(2)5a a -⋅-= 解得:1a =故选:A.【点睛】本题考查了已知二元一次方程的解求方程中未知数的值,理解题意是解题关键.二、填空题11.100【分析】根据同底数幂的乘法法则、幂的乘方与积的乘方法则把所求代数式进行化简,再把,代入进行计算即可.【详解】解:,故答案为100.【点睛】本题考查同底数幂的乘法法则、幂的乘方与积解析:100【分析】根据同底数幂的乘法法则、幂的乘方与积的乘方法则把所求代数式进行化简,再把5x m =,4y m =代入进行计算即可.【详解】解:2x y m +=()()2254100xy m m ⨯=⨯=,故答案为100.【点睛】本题考查同底数幂的乘法法则、幂的乘方与积的乘方法则,先根据同底数幂的乘法法则把所求代数式进行化简是解答此题的关键.12.2【解析】【分析】把方程的解代入二元一次方程,即可得到一个关于a的方程,即可求解.【详解】解:把代入方程得:-3+4a=5,解得:a=2.故答案是:2.【点睛】本题主要考查了二解析:2【解析】【分析】把方程的解代入二元一次方程,即可得到一个关于a的方程,即可求解.【详解】解:把14xy=-⎧⎨=⎩代入方程得:-3+4a=5,解得:a=2.故答案是:2.【点睛】本题主要考查了二元一次方程的解的定义:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.正确解一元一次方程是解题的关键.13.2【分析】根据点F是CE的中点,推出S△BEF=S△BEC,同理得S△EBC=S△ABC,由此可得出答案.【详解】∵点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=EC解析:2【分析】根据点F是CE的中点,推出S△BEF=12S△BEC,同理得S△EBC=12S△ABC,由此可得出答案.【详解】∵点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=12EC,高相等;∴S△BEF=12S△BEC,同理得S△EBC=12S△ABC,∴S△BEF=14S△ABC,且S△ABC=8,∴S△BEF=2,故答案为:2.【点睛】本题考查了三角形的性质,充分运用三角形的面积公式以及三角形的中线的性质是解本题的关键.14.【分析】根据同底数幂的除法和幂的乘方与积的乘方的运算法则求解即可.【详解】解:am-2n=am÷a2n=am÷(an)2=2÷9=故答案为【点睛】本题考查了同底数幂的除法和幂的解析:2 9【分析】根据同底数幂的除法和幂的乘方与积的乘方的运算法则求解即可.【详解】解:a m-2n=a m÷a2n=a m÷(a n)2=2÷9=2 9故答案为2 9【点睛】本题考查了同底数幂的除法和幂的乘方与积的乘方,解答本题的关键在于熟练掌握各知识点的运算法则.15.【解析】【分析】原式利用平方差公式化简,整理即可求出a+b的值.【详解】已知等式整理得:9(a+b)2-1=899,即(a+b)2=100,开方得:a+b=±10,故答案为:±10【解析:10±【解析】【分析】原式利用平方差公式化简,整理即可求出a+b的值.【详解】已知等式整理得:9(a+b)2-1=899,即(a+b)2=100,开方得:a+b=±10,故答案为:±10【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.16.【分析】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组.【详解】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,由题意得,,故答案为:.【解析:54140 3276 x yx y+=⎧⎨+=⎩【分析】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组.【详解】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,由题意得,54140 3276x yx y+=⎧⎨+=⎩,故答案为:54140 3276 x yx y+=⎧⎨+=⎩.【点睛】此题考查了二元一次方程组的应用,属于基础题,仔细审题,根据题意的等量关系得出方程是解答本题的关键.17.x(x﹣4)【详解】解:x2﹣4x=x(x﹣4).故答案为:x(x﹣4).解析:x(x﹣4)【详解】解:x2﹣4x=x(x﹣4).故答案为:x(x﹣4).18.28°【分析】根据平行线的性质求出∠DEF的度数,然后根据折叠的性质算出∠GED的度数,根据补角的定义算出∠1的度数,然后求解计算即可.【详解】解:∵AD∥BC,∴∠DEF=∠EFG=52解析:28°【分析】根据平行线的性质求出∠DEF的度数,然后根据折叠的性质算出∠GED的度数,根据补角的定义算出∠1的度数,然后求解计算即可.【详解】解:∵AD∥BC,∴∠DEF=∠EFG=52°,∵EFNM是由EFCD折叠而来∴∠GEF=∠DEF=52°,即∠GED=104°,∴∠1=180°-104°=76°,∵∠2=∠GED=104°,∴∠2-∠1=104°-76°=28°.故答案为28°.【点睛】本题考查了平行线的性质和折叠的性质,解决本题的关键是正确理解题意,熟练掌握平行线的性质和折叠的性质,能够根据折叠的性质找到相等的角.19.【分析】根据科学记数法,把一个大于10的数表示成的形式,使用的是科学记数法,即可表示出来.【详解】解:∵,故答案为.【点睛】本题目考查的是科学记数法,难度不大,是中考的常考题型,熟练掌 解析:53.8410⨯【分析】根据科学记数法,把一个大于10的数表示成10n a ⨯的形式()110a ≤<,使用的是科学记数法,即可表示出来.【详解】解:∵5384000=3.8410⨯,故答案为53.8410⨯.【点睛】本题目考查的是科学记数法,难度不大,是中考的常考题型,熟练掌握其转化方法是顺利解题的关键.20.3【解析】【分析】先根据题意得出a 的值,再代入原方程求出x 的值即可.【详解】∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x ,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a 的值,再代入原方程求出x 的值即可.【详解】∵方程3232a x x +=的解为x=6, ∴3a+12=36,解得a=8, ∴原方程可化为24-2x=6x ,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.三、解答题21.(1)2()b a -;(2)22()()4a b a b ab +=-+;(3)±5;(4)详见解析【分析】(1)表示出阴影部分正方形的边长,然后根据正方形的面积公式列式即可;(2)根据大正方形的面积减去小正方形的面积等于四个小长方形的面积列式即可; (3)将(x -y )2变形为(x +y )2—4xy ,再代入求值即可;(4)由已知的恒等式,画出相应的图形,如图所示.【详解】解:(1)阴影部分为一个正方形,其边长为b -a ,∴其面积为:2()b a -,故答案为:2()b a -;(2)大正方形面积为:()2a b +小正方形面积为:2()b a -=2()a b -, 四周四个长方形的面积为:4ab ,∴22()()4a b a b ab +=-+,故答案为:22()()4a b a b ab +=-+;(3)由(2)知,22()()4x y x y xy +=-+, ∴22()()4x y x y xy -=+-,∴2()4x y x y xy -=±+-=2116454±-⨯=±, 故答案为:±5;(4)符合等式()()2222252a b a b a ab b ++=++的图形如图所示,【点睛】本题考查了完全平方公式的几何背景,此类题目关键在于同一个图形的面积用两种不同的方法表示.22.【探究1】∠2=12∠ACB,90º-12∠A;【探究2】∠BOC=90°﹣12∠A,理由见解析;【应用】22.5°;【拓展】45°或36°.【分析】【探究1】根据角平分线的定义可得∠1=12∠ABC,∠2=12∠ACB,根据三角形的内角和定理可得∠1+∠2=90º-12∠A,再根据三角形的内角和定理即可得出结论;【探究2】如图2,由三角形的外角性质和角平分线的定义可得∠OBC=1 2(∠A+∠ACB),∠OCB=12(∠A+∠ABC),然后再根据三角形的内角和定理即可得出结论;【应用】延长AC与BD,设交点为G,如图5,由【探究1】的结论可得∠G的度数,于是可得∠GCD+∠GDC的度数,然后根据角平分线的定义和角的和差可得∠1+∠2的度数,再根据三角形的内角和定理即可求出结果;【拓展】根据角平分线的定义和平角的定义可得∠EAF=90°,然后分三种情况讨论:若∠EAF=4∠E,则∠E=22.5°,根据角平分线的定义和三角形的外角性质可得∠ABO=2∠E,于是可得结果;若∠EAF=4∠F,则∠F=22.5°,由【探究2】的结论可求出∠ABO=135°,然后由三角形的外角性质即可判断此种情况不存在;若∠F=4∠E,则∠E=18°,然后再由第一种情况的结论∠ABO=2∠E即可求出结果,进而可得答案.【详解】解:【探究1】理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,∴∠1=12∠ABC,∠2=12∠ACB,在ΔABC中,∠A+∠ABC+∠ACB=180º.∴∠1+∠2=12(∠ABC+∠ACB)=12(180º-∠A)=90º-12∠A,∴∠BOC=180º-(∠1+∠2)=180º-(90º-12∠A)=90º+12∠A;故答案为:∠2=12∠ACB,90º-12∠A;【探究2】∠BOC =90°﹣12∠A ;理由如下: 如图2,由三角形的外角性质和角平分线的定义,∠OBC =12(∠A +∠ACB ),∠OCB =12(∠A +∠ABC ), 在△BOC 中,∠BOC =180°﹣∠OBC ﹣∠OCB=180°﹣12(∠A +∠ACB )﹣12(∠A +∠ABC ), =180°﹣12(∠A +∠ACB +∠A +∠ABC ), =180°﹣12(180°+∠A ), =90°﹣12∠A ;【应用】延长AC 与BD ,设交点为G ,如图5,由【探究1】的结论可得:∠G=1901352O ︒+∠=︒, ∴∠GCD+∠GDC=45°, ∵CE 、DE 分别是∠ACD 和∠BDC 的角平分线,∴∠1=12∠ACD=()11802GCD ︒-∠,∠2=12∠BDC=()11802GDC ︒-∠, ∴∠1+∠2=()11802GCD ︒-∠+()11802GDC ︒-∠=()136045157.52︒-︒=︒, ∴()1801222.5E ∠=︒-∠+∠=︒;故答案为:22.5°;【拓展】如图4,∵AE 、AF 是∠BAO 和∠OAG 的角平分线,∴∠EAQ+∠FAQ=()111809022BAO GAO ∠+∠=⨯︒=︒, 即∠EAF=90°,在Rt △AEF 中,若∠EAF=4∠E ,则∠E=22.5°,∵∠EOQ=∠E+∠EAQ ,∠BOQ=2∠EOQ ,∠BAO=2∠EAQ ,∴∠BOQ=2∠E+∠BAO ,又∠BOQ=∠BAO+∠ABO ,∴∠ABO=2∠E=45°;若∠EAF=4∠F ,则∠F=22.5°,则由【探究2】知:19022.52F ABO ∠=︒-∠=︒,∴ ∠ABO=135°, ∵∠ABO <∠BOQ=60°,∴此种情况不存在;若∠F=4∠E ,则∠E=18°,由第一种情况可知:∠ABO=2∠E ,∴∠ABO=36°;综上,∠ABO=45°或36°;故答案为:45°或36°.【点睛】 本题主要考查了角平分线的定义、三角形的内角和定理、平角的定义和三角形的外角性质等知识,具有一定的综合性,熟练掌握上述知识、灵活应用整体思想是解题的关键.23.(1)135APB ∠=︒,135PDA ∠=︒;(2)正确,理由见解析.【分析】(1)根据三角形的三条角平分线交于一点可知CP 平分∠BCA ,可得∠PCD =45°,从而由三角形外角性质可求∠ADP =135°,再∠BAC =40°,可求∠BAC 度数,根据角平分线的定义求出PBA PAB ∠+∠,然后利用三角形的内角和定理列式计算即可得解.(2)同理(1)直接可得135PDA ∠=︒.由角平分线可求()1452PBA PAB ABC BAC ∴∠+∠=∠+∠=︒,进而可得135APB ∠=︒,由此得出结论. 【详解】解:(1)180ABC ACB BAC ∠+∠+∠=︒,90ACB ∠=︒,∠BAC =40°,50ABC =∴∠︒.ABC ∠与ACB ∠的角平分线相交于点P ,1252PBA ABC ∴∠=∠=︒,1202PAB BAC ∠=∠=︒. 114522PBA PAB ABC BAC ∴∠+∠=∠+∠=︒ 180PBA PAB APB ∠+∠+∠=︒,18045135APB ∴∠=︒-︒=︒.ABC ∠与ACB ∠的角平分线相交于点P ,∴CP 是∠ACB 的角平分线,∴∠PCD =1452∠=︒ACB , ∵DE ⊥CP ,∴45PDC ∠=︒,∴135PDA ∠=︒.终上所述:135APB ∠=︒,135PDA ∠=︒.∴PCD+ADP ∠=∠∠ ∠ADP =(2)小明猜测是正确的,理由如下:ABC ∠与ACB ∠的角平分线相交于点P ,∴CP 是∠ACB 的角平分线,∴∠PCD =1452∠=︒ACB , ∵DE ⊥CP ,∴45PDC ∠=︒,∴135PDA ∠=︒.ABC ∠与ACB ∠的角平分线相交于点P ,12PBA ABC ∴∠=∠,12PAB BAC ∠=∠. ∵90ACB ∠=︒,∴90ABC BAC ∠+∠=︒()1452PBA PAB ABC BAC ∴∠+∠=∠+∠=︒ 180PBA PAB APB ∠+∠+∠=︒,18045135APB ∴∠=︒-︒=︒.故∠APB =∠ADP .【点睛】本题考查三角形的内角和定理,三角形的角平分线的定义,整体思想的利用和有效的进行角的等量代换是正确解答本题的关键.24.(1)2;(2)15.【分析】(1)先化简条件,再把求值的代数式变形,整体代入即可,(2)利用两个非负数之和为0的性质得到等腰三角形的两边长,后分类讨论即可得到答案.【详解】解:(1) 2(1)()2x x x y ---=,222,x x x y ∴--+=2,y x ∴-=2222222()2 2.2222x y x xy y y x xy +-+-∴-==== (2) a 2+b 2=6a+12b-45,226912360,a a b b ∴-++-+=22(3)(6)0,a b ∴-+-=3,6,a b ∴==当3a =为腰时,三角形不存在,当6b =为腰时,三角形三边分别为:6,6,3,∴ △ABC 的周长为:15.【点睛】本题考查的是代数式的求值,熟练整体代入的方法,同时考查非负数之和为零的性质,三角形三边的关系,等腰三角形的性质,掌握以上知识是解题的关键.25.(1)(m +4)(m ﹣4);(2)(2a ﹣b )(x +y )(x ﹣y );(3)(y ﹣3)2;(4)(x +2y )2(x ﹣2y )2【分析】(1)原式利用平方差公式因式分解即可;(2)原式提取公因式,再利用平方差公式因式分解即可;(3)原式利用完全平方公式因式分解即可;(4)原式利用完全平方公式,以及平方差公式因式分解即可.【详解】解:(1)原式=(m +4)(m ﹣4);(2)原式=(2a ﹣b )(x 2﹣y 2)=(2a ﹣b )(x +y )(x ﹣y );(3)原式=(y ﹣3)2;(4)原式=(x 2﹣4y 2)2=(x +2y )2(x ﹣2y )2.此题考查的是因式分解,掌握利用提公因式法和公式法因式分解是解决此题的关键.26.(1)2x 2+6xy+8y 2;(2)①3010x y =⎧⎨=⎩②57600元; 【分析】 (1)根据长方形的面积公式和正方形的面积公式分别计算A 、B 两园区的面积,再相加即可求解;(2)①根据等量关系:整改后A 区的长比宽多350米;整改后两园区的周长之和为980米;列出方程组求出x ,y 的值;②代入数值得到整改后A 、B 两园区的面积之和,再根据净收益=收益﹣投入,列式计算即可求解.【详解】解:(1)(x+y )(x ﹣y )+(x+3y )(x+3y )=x 2﹣y 2+x 2+6xy+9y 2=2x 2+6xy+8y 2(平方米)答:A 、B 两园区的面积之和为(2x 2+6xy )平方米;(2)(x+y )+(11x ﹣y )=x+y+11x ﹣y=12x (米),(x ﹣y )﹣(x ﹣2y )=x ﹣y ﹣x+2y=y (米),依题意有:123502(12)4(3)980x y x y x y -=⎧⎨+++=⎩, 解得3010x y =⎧⎨=⎩9. 12xy=12×30×10=3600(平方米),(x+3y )(x+3y )=x 2+6xy+9y 2=900+1800+900=3600(平方米),(18﹣12)×3600+(26﹣16)×3600=6×3600+10×3600=57600(元).答:整改后A 、B 两园区旅游的净收益之和为57600元.考点:整式的混合运算.27.(1)2P ;(2)2-;(3)3t >(1)将P 1(3,1)和P 2(-3,1)分别代入等式即可得出结果;(2)将点P (m ,n )代入等式即可得出m+n 的值;(3)根据“好点”的定义,将P 点代入即可得到关于m 和n 的等式,将两个等式结合即可得出结果.【详解】解:(1)对于1(3,1)P ,2321,7t t =⨯+=,2123,5t t =⨯+=-对于2(3,1)P -,2(3)21,7t t -=⨯+=,212(3),7t t =⨯-+=,所以2P 是“好点” (2)∵点(,)P m n 是好点,∴222,2m n t n m t =+=+, 222()m n n m -=-,∴2m n +=-(3)∵222,2m n t n m t =+=+,2222m n n t m t -=+--①,2222m n m t n t +=+++②,得()()2()0m n m n m n -++-=,即()(2)0m n m n -++=,由题知,,2m n m n ≠∴+=-,由②得2()22()2m n mn m n t +-=++,∴4242,4mn t mn t -=-+=-,∵m n ≠,∴2()0m n ->,∴2()40m n mn +->,∴44(4)0t -->,所以3t >,【点睛】本题主要考查的是新定义“好点”,正确的掌握整式的乘法解题的关键. 28.21m -<<【分析】先解方程组325x y a x y a -=-⎧⎨+=⎩,消去a 用含x 的式子表示y,再将x=3-m 代入y 中,从而得到用含m 的式子表示y,在根据15y -<<,解关于m 的不等式组,求出m 的取值范围.【详解】解:325x y a x y a -=-⎧⎨+=⎩①②,①5⨯+②得6315x y -=即25y x =-③ 由3m x +=得3x m =-,代入③得,12y m =-又因为15y -<<,则1125m -<-<,解得21m -<<【点睛】本题主要考查了分式方程的解以及二元一次方程组的解,解题时需要掌握解二元一次方程和一元一次不等式的方法.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年北京市海淀区清华附中普通班七年级(下)期末
数学试卷
一.选择题(每小题3分,共24分)
1.(3分)用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是()A.B.
C.D.
2.(3分)下列各项调查中合理的是()
A.对“您觉得该不该在公共场所禁烟”作民意调查,将要调查的问题放到访问量很大的网站上,这样大部分上网的人就可以看到调查问题并及时反馈
B.为了了解全校同学喜欢课程情况,对某班男同学进行抽样调查
C.“长征﹣3B火箭”发射前,采用抽样调查的方式检查其各零部件的合格情况
D.采用抽样调查的方式了解国内外观众对电影《流浪地球》的观影感受
3.(3分)如图,x的值是()
A.80B.90C.100D.110
4.(3分)方程x﹣y=﹣2与下面方程中的一个组成的二元一次方程组的解为,那么这个方程可以是()
A.3x﹣4y=16B.2(x+y)=6x C.x+y=0D.﹣y=0
5.(3分)图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的()
A.点A B.点B C.点C D.点D
6.(3分)把一些书分给几名同学,若每人分11本,则有剩余,若(),依题意,设有x名同学,可列不等式7(x+4)>11x.
A.每人分7本,则剩余4本
B.每人分7本,则剩余的书可多分给4个人
C.每人分4本,则剩余7本
D.其中一个人分7本,则其他同学每人可分4本
7.(3分)关于x,y的二元一次方程组有正整数解,则满足条件的整数m的值有()个.
A.1B.2C.3D.4
8.(3分)为了了解2019年北京市乘坐地铁的每个人的月均花费情况,相关部门随机调查了1000人乘坐地铁的月均花费(单位:元),绘制了如下频数分布直方图,根据图中信息,下面三个推断中,合理的是()
①小明乘坐地铁的月均花费是75元,那么在所调查的1000人中一定有超过一半的人月
均花费超过小明;
②估计平均每人乘坐地铁的月均花费的不低于60元;
③如果规定消费达到一定数额可以享受折扣优惠,并且享受折扣优惠的人数控制在20%
左右,那么乘坐地铁的月均花费达到120元的人可享受折扣.
A.①②B.①③C.②③D.①②③
二.填空题(每小题3分,共24分)
9.(3分)已知a>b,则﹣4a+5﹣4b+5.(填>、=或<)
10.(3分)两根木棒的长度分别为7cm和10cm,要选择第三根木棒,把它们钉成一个三角形框架,则第三根木棒的长度可以是cm(写出一个答案即可).
11.(3分)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文.甲、乙两人原来各有多少钱?设甲原有x文钱,乙原有y 文钱,可列方程组是.
12.(3分)若一个多边形的内角和是它的外角和的2倍,则经过这个多边形的一个顶点最多可以画条对角线.
13.(3分)如图所示,要测量池塘AB宽度,在池塘外选取一点P,连接AP,BP并分别延长,使PC=P A,PD=PB,连接CD.测得CD长为10m,则池塘宽AB为m.理由是.
14.(3分)已知方程组的解满足不等式x﹣y>0,则实数m的取值范围是.
15.(3分)如图,CE是△ABC的外角∠ACD的平分线,且CE交BC的延长线于点E;则用等式表示∠BAC与∠B、∠E的关系为.
16.(3分)某次的测试均为判断题,如果认为该题的说法正确,就在答案框的题号下填“√”,
否则填“×”.测试共10道题,每题10分,满分100分.图中的小明,小红,小刚三张测试卷.小明和小红两张已判了分数,则该判小刚分.
小明:
12345678910得分××√×√××√√×90小红:
12345678910得分×√√√×√×√√√40小刚:
12345678910得分×√√√×××√√√
三.解答题(本题共52分,第17,18则每题10分,第19~22题每题6分,第23题8分)17.(10分)解方程组:
(1);
(2);
18.(10分)(1)解不等式:x+4>3(x﹣2)并把解集在数轴上表示出来.
(2)x取哪些整数时,不等式5x﹣1<3(x+1)与﹣1≥﹣2都成立.
19.(6分)如图,AD∥BC,∠BAD=90°,以点B为圆心,BC长为半径画弧,与射线AD 相交于点E,连接BE,过C点作CF⊥BE.垂足为F.
(1)线段BF=(填写图中现有的一条线段);
(2)证明你的结论.
20.(6分)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=
50°,∠C=60°,求∠DAE和∠BOA的度数.
21.(6分)某校七(1)班学生为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,请解答以下问题;
级别A B C D E F 月均用水量x(t)0<x≤55<x≤1010<x≤1515<x≤2020<x≤2525<x≤30频数(户)612m1042(1)本次调查采用的方式是(填“全面调查”或“抽样调查);
(2)若将月均用水量的频数绘成形统计图,月均用水量“15<x≤20”组对应的圆心角度数是72°,则本次调查的样本容量是,表格中m的值是,补全频数分布直方图.
(3)该小区有500户家庭,求该小区月均用水量超过15t的家庭大约有多少户?
22.(6分)(1)对数轴上的点P进行如下操作:先把点P表示的数乘以,再把所得数对应的点向右平移1个单位,得到点P的对应点P′.点A,B在数轴t,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′.如图1,若点A表示的数是﹣3,则点A′表示的数是,若点B′表示的数是2,则点B表示的数是;已知线段AB上的点E经过上述操作后得到的对应点E'点E重合,则点E表示的数是.
(2)在平面直角坐标系xOy中,已知△ABC的顶点A(﹣2,0),B(2,0),C(2,4),对△ABC及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同个实数a,将得到的点先向右平移m单位,冉向上平移n个单位(m>0,n>0),得到△ABC及其内部的点,其中点A,B的对应点分别为A′(1,2),B′(3,2).△ABC内部是否存在点F,使得点F经过上述操作后得到的对应点F′与点F重合,若存在,求出点F的坐标;若不存在请说明理由.
23.(8分)已知CA=CB,CD是经过∠BCA顶点C的一条直线.E,F是直线CD上的两点,且∠BEC=∠CF A=α.
(1)若直线CD在∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:
①如图1,若∠BCA=90°,α=90°,则BE CF;EF|BE﹣AF|(填“>”,
“<”或“=”);
②如图2,若0°<∠BCA<180°,请添加一个关于α与∠BCA数量关系的条件,
使①中的两个结论仍然成立,补全图形并证明.
(2)如图3,若直线CD在∠BCA的外部,∠BCA=α,请用等式直接写出EF,BE,AF 三条线段的数量关系.(不要求证明)
附加题(本题共20分,第24,25题每题3分,第26,27题每题4分,第28题6分)
24.(3分)小明和小亮做加法游戏,小明在一个加数后面多写了一个0,得到的和为242;
而小亮在另一个加数后面多写了一个0,得到的和为341,原来两个加数分别是多少?25.(3分)已知AD是△ABC的中线,若△ABD与△ACD的周长分别是14和12.△ABC 的周长是20,则AD的长为.
26.(4分)油电混动汽车是一种节油、环保的新技术汽车.它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动汽车,节约燃油.某品牌油电混动汽车与普通汽车的相关成本数据估算如下:
油电混动汽车普通汽车购买价格(万元)17.4815.98每百公里燃油成本(元)3146
某人计划购入一辆上述品牌的汽车.他估算了用车成本,在只考虑车价和燃油成本的情况下,发现选择油电混动汽车的成本不高于选择普通汽车的成本.则他在估算时,预计行驶的公里数至少为多少公里?
27.(4分)已知锐角三角形ABC的三个内角满足∠A>∠B>∠C,α是∠A﹣∠B,∠B﹣∠C以及90°﹣∠A中的最小者,则当∠B=度时,α的最大值为.28.(6分)如图,在平面直角坐标系中,B点坐标为(﹣2,0),A点坐标为(a,b),且b ≠0.
(1)若b>0,且∠ABO:∠BAO:∠AOB=10:5:21,在AB上取一点C,使得y轴平分∠COA.在x轴上取点D,使得CD平分∠BCO,过C作CD的垂线CE,交x轴于E.
①依题意补全图形;
②求∠CEO的度数;
(2)若b是定值,过O作直线AB的垂线OH,垂足为H,则OH的最大值是.(直
接写出答案)。