金老师教育培训苏教版数学讲义含同步练习七年级上册18整式的加减(二)—去括号与添括号(第一课时)知识

合集下载

18整式的加减(二)—去括号与添括号(基础)巩固练习

18整式的加减(二)—去括号与添括号(基础)巩固练习

【巩固练习】一、选择题1.(2015•江西模拟)计算:a ﹣2(1﹣3a )的结果为( )A.7a ﹣2B.﹣2﹣5aC.4a ﹣2D.2a ﹣22.(2016•黄陂区模拟)下列式子正确的是( ) A .x ﹣(y ﹣z )=x ﹣y ﹣z B .﹣(x ﹣y+z )=﹣x ﹣y ﹣zC .x+2y ﹣2z=x ﹣2(z+y )D .﹣a+c+d+b=﹣(a ﹣b )﹣(﹣c ﹣d )3.计算-(a-b)+(2a+b)的最后结果为( ).A .aB .a+bC .a+2bD .以上都不对4. (2010·山西)已知一个多项式与3x 2+9x 的和等于3x 2+4x-1,则这个多项式是( )A .-5x-1B .5x+1C .-13x-1D .13x+15.代数式2332333103(2)(672)x y x x y x y x y x --++--+的值( ).A .与x ,y 都无关B .只与x 有关C .只与y 有关D .与x 、y 都有关6.如图所示,阴影部分的面积是( ).A .112xy B .132xy C .6xy D .3xy 二、填空题7.添括号:(1).331(___________)3(_______)p q q -+-=+=-.(2).()()[(_______)][(_______)]a b c d a b c d a a -+-+-+=-+.8.(2015•镇江一模)化简:5(x ﹣2y )﹣4(x ﹣2y )=________.9.若221m m -=则2242008m m -+的值是________.10.(2016•河北)若mn=m+3,则2mn+3m ﹣5mn+10= .11.已知a =-(-2)2,b =-(-3)3,c =-(-42),则-[a-(b-c)]的值是________.12.如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n 是正整数)个图案中由________个基础图形组成.三、解答题13. 化简 (1).(2015•宝应县校级模拟)2(3x 2﹣2xy )﹣4(2x 2﹣xy ﹣1) (2). 22222323xy xy y x y x -++-(3). m n mn m n mn mn n m 222238.0563--+--(4). )45(2)2(32222ab b a ab b a ---(5).(6).14.化简求值: (1). 已知:2010=a ,求)443()842()33(232332-+++-++-+--a a a a a a a a a 的值.(2). 2222131343223a b a b abc a c a c abc ⎡⎤⎛⎫------ ⎪⎢⎥⎝⎭⎣⎦,其中a = -1, b = -3, c = 1. (3). 已知3532++y x 的值是6,求代数式 71494322-++--y x y x 的值.15. 有一道题目:当a=2,b=-2时,求多项式:3a 3b 3-2a 2b+b-(4a 3b 3-a 2b-b 2)+(a 3b 3+a 2b)-2b 2+3的值.甲同学做题时把a=2错抄成a=-2,乙同学没抄错题,但他们做出的结果恰好一样。

苏科版七年级数学上册整式的加减

苏科版七年级数学上册整式的加减

b a b ab
b
b
a
用如图所示的一张长方形纸片和两张
相同的直角三角形纸片拼成四边形,
你能拼出多少种不同的四边形?
拼出的图形面积都相等吗?
它们a的周长呢?2a+b4b b
4a+2b
a
1
a a
4b
b 4a+2b
a
b
a
b
a
b
b
a
2
2a+4b b
a
b
a
a
b
2a+4b b
3
b5
a
任选其中的两个图形,
你能计算它们周长的和与差吗?
整式的加减:“去括号”+ “合并同类项”
小结:进行整式加减运算时,如果有括号先 去括 号,再合并同类项。
例题讲授:
例1.求2a2-4a+1与-3a2+2a-5的差. 解: 2a2-4a+1- -3a2+2a-5
例题讲授:
例1.求2a2-4a+1与-3a2+2a-5的差. 解: 2a2-4a+1- (-3a2+2a-5)
3.6 整式的加减
a+(-b+c)=a-b+c 去
括号前面是“+”号,把括 括
号和它前面的“+”号去掉, 号
括号里各项的符号都不改变.
a-(-b+c)=a+b-c
法 则
括号前面是“-”号,把括号和它
前面的“-”号去掉,括号里各项的
符号都改简变.记:正不变负变
复习练习
(1)下列各组代数式中,属于同类项的是( ) A、2x2y与2xy2 B、xy与-xy C、2x与2xy D、2x2与2y2 (2)下列各式中,合并同类项正确的是( ) A、-a+3a=2 B、x2-2x2=-x C、2x+x=3x D、3a+2b=5ab (3)下列去括号,正确的是( ) A、-(a+b)=-a+b B、-(3x-2)=-3x-2 C、a2-(2a-1)=a2-2a+1 D、x-2(y-z)=x-2y+z

苏教版七年级上册数学[整式的加减(二)—去括号与添括号(提高)知识点整理及重点题型梳理]

苏教版七年级上册数学[整式的加减(二)—去括号与添括号(提高)知识点整理及重点题型梳理]

苏教版七年级上册数学重难点突破知识点梳理及重点题型巩固练习整式的加减(二)—去括号与添括号(提高)知识讲解【学习目标】1.掌握去括号与添括号法则,注意变号法则的应用;2. 熟练运用整式的加减运算法则,并进行整式的化简与求值.【要点梳理】【整式的加减(二)--去括号与添括号388394 去括号法则】要点一、去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.要点诠释:(1)去括号法则实际上是根据乘法分配律得到的结论:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.(2)去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号.(3)对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.(4)去括号只是改变式子形式,不改变式子的值,它属于多项式的恒等变形.要点二、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.要点诠释:(1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.(2)去括号和添括号的关系如下:如:()a b c a b c +-+-添括号去括号, ()a b c a b c -+--添括号去括号要点三、整式的加减运算法则一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.要点诠释:(1)整式加减的一般步骤是:①先去括号;②再合并同类项.(2)两个整式相减时,减数一定先要用括号括起来.(3)整式加减的最后结果的要求:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.【典型例题】类型一、去括号1.(2015•泰安模拟)化简m ﹣n ﹣(m+n )的结果是( )A . 0B . 2mC . ﹣2nD . 2m ﹣2n【答案】C【解析】解:原式=m ﹣n ﹣m ﹣n=﹣2n .故选C .【总结升华】解决此类题目的关键是熟记去括号法则,及熟练运用合并同类项的法则,其是各地中考的常考点.注意去括号法则为:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.类型二、添括号2.按要求把多项式321a b c -+-添上括号:(1)把含a 、b 的项放到前面带有“+”号的括号里,不含a 、b 的项放到前面带有“-”号的括号里;(2)把项的符号为正的放到前面带有“+”号的括号里,项的符号为负的放到前面带有“-”号的括号里.【答案与解析】解:(1)321(32)(1)a b c a b c -+-=---+;(2)321(3)(21)a b c a c b -+-=+-+.【总结升华】在括号里填上适当的项,要特别注意括号前面的符号,考虑是否要变号.举一反三:【变式】添括号:(1)22()101025()10()25x y x y x y +--+=+-+.(2)()()[(_______)][(_______)]a b c d a b c d a a -+-+-+=-+.【答案】(1)x y +; (2),b c d b c d -+-+ .类型三、整式的加减【整式的加减(二)--去括号与添括号 388394典型例题5】3. 3243245348x x x x x x -+--+-一个多项式加上得,求这个多项式.【答案与解析】解:在解答此题时应先根据题意列出代数式,注意把加式、和式看作一个整体,用括号括起来,然后再进行计算,在计算过程中找同类项,可以用不同的记号标出各同类项,减少运算的错误.43232(348)(45)x x x x x x --+---+ 4323243348453813.x x x x x x x x x =--+--+-=-+-答:所求多项式为433813x x x -+-.【总结升华】整式加减的一般步骤是:①先去括号;②再合并同类项.举一反三:【变式】化简:(1)15+3(1-x)-(1-x+x 2)+(1-x+x 2-x 3).(2)3x 2y-[2x 2z-(2xyz-x 2z+4x 2y)].(3)-3[(a 2+1)-16(2a 2+a)+13(a-5)]. (4)ab-{4a 2b-[3a 2b-(2ab-a 2b)+3ab]}.【答案】解: (1) 15+3(1-x)-(1-x+x 2)+(1-x+x 2-x 3)=15+3(1-x)-(1-x+x 2)+(1-x+x 2)-x 3=18-3x-x 3.. ……整体合并,巧去括号(2) 3x 2y-[2x 2z-(2xyz-x 2z+4x 2y)]=3x 2y-2x 2z+(2xy-x 2z+4x 2y) ……由外向里,巧去括号=3x 2y-2x 2z+2xyz-x 2z+4x 2y=7x 2y-3x 2z+2xyz. (3) 22113[(1)(2)(5)]63a a a a -+-++- 2213(1)(2)(5)2a a a a =-+++-- 2213352a a a a =--++-+ 21222a a =--+. (4)ab-{4a 2b-[3a 2b-(2ab-a 2b)+3ab]}=ab-4a 2b+3a 2b-2ab+a 2b+3ab ……一举多得,括号全脱=2ab.类型四、化简求值4.(2016春•盐城校级月考)先化简,再求值:3x 2y ﹣[2x 2﹣(xy 2﹣3x 2y )﹣4xy 2],其中|x|=2,y=,且xy <0.【思路点拨】原式去括号合并得到最简结果,利用绝对值的代数意义求出x 的值,代入原式计算即可得到结果.【答案与解析】解:原式=3x 2y ﹣2x 2+xy 2﹣3x 2y+4xy 2=5xy 2﹣2x 2,∵|x|=2,y=,且xy <0,∴x=﹣2,y=,则原式=﹣﹣8=﹣. 【总结升华】化简求值题一般采用“一化二代三计算”,此类题最后结果的书写格式一般为:当x=…时,原式=….举一反三:【变式】(2015春•万州区期末)先化简,再求值:﹣2x 2﹣[3y 2﹣2(x 2﹣y 2)+6],其中x=﹣1,y=﹣.【答案】解:原式=﹣2x 2﹣y 2+x 2﹣y 2﹣3=﹣x 2﹣y 2﹣3,当x=﹣1,y=﹣时,原式=﹣1﹣﹣3=﹣4.5. 已知3a 2-4b 2=5,2a 2+3b 2=10.求:(1)-15a 2+3b 2的值;(2)2a 2-14b 2的值.【答案与解析】显然,由条件不能求出a 、b 的值.此时,应采用技巧求值,先进行拆项变形.解:(1)-15a 2+3b 2=-3(5a 2-b 2)=-3[(3a 2+2a 2)+(-4b 2+3b 2)]=-3[(3a 2-4b 2)+(2a 2+3b 2)]=-3×(5+10)=-45;(2)2a 2-14b 2=2(a 2-7b 2)=2[(3a 2-2a 2)+(-4b 2-3b 2)]=2×[(3a 2-4b 2)-(2a 2+3b 2)]=2×(5-10)=-10.【总结升华】求整式的值,一般先化简后求值,但当题目中含未知数的部分可以看成一个整体时,要用整体代入法,即把“整体”当成一个新的字母,求关于这个新的字母的代数式的值,这样会使运算更简便. 举一反三:【变式】当2m π=时,多项式31am bm ++的值是0,则多项式3145_____2a b ππ++=. 【答案】∵ 3(2)210a b ππ++=, ∴ 338212(4)10a b a b ππππ++=++=,即3142a b ππ+=-. ∴31114555222a b ππ++=-+=.6. 已知多项式2x ax y b +-+与2363bx x y -+-的差的值与字母x 无关,求代数式:22223(2)(4)a ab b a ab b ---++的值.【答案与解析】解:222(363)(1)(3)7(3)x ax y b bx x y b x a x y b +-+--+-=-++-++.由于多项式2x ax y b +-+与2363bx x y -+-的差的值与字母x 无关,可知: 10b -=,30a +=,即有1,3b a ==-.又2222223(2)(4)74a ab b a ab b a ab b ---++=---,将1,3b a ==-代入可得:22(3)7(3)1418---⨯-⨯-⨯=.【总结升华】本例解题的关键是多项式的值与字母x 无关.“无关”意味着合并同类项后,其结果不含“x ”的项,所以合并同类项后,让含x 的项的系数为0即可.类型五、整式加减运算的应用7.有一种石棉瓦(如图所示),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n(n 为正整数)块石棉瓦覆盖的宽度为 ( ) .A .60n 厘米B .50n 厘米C .(50n+10)厘米D .(60n-10)厘米【答案】C.【解析】观察上图,可知n 块石棉瓦重叠的部分有(n-1)处,则n 块石棉瓦覆盖的宽度为:60n-10(n-1)=(50n+10)厘米.【总结升华】求解本题时一定要注意每相邻两块重叠部分的宽都为10厘米这一已知条件,一不小心就可能弄错.举一反三:【变式】如图所示,长方形内有两个相邻的正方形,面积分别为9和a 2(a >0).那么阴影部分的面积为________.【答案】3a-a 2提示:由图形可知阴影部分面积=长方形面积29a --,而长方形的长为3+a ,宽为3,从而使问题获解.。

七年级数学上册 第二章 整式的加减2.2 整式的加减第2课时 去括号作业课件上册数学课件

七年级数学上册 第二章 整式的加减2.2 整式的加减第2课时 去括号作业课件上册数学课件
第十三页,共十八页。
解:(1)原式=(2-4b)x2+(a+6)x-11y+8, 由多项式的值与字母 x 的取值无关,得到 2-4b=0,a+6=0, 解得 a=-6,b=12 (2)原式=3a2-3ab+3b2-12 a2-ab-4b2=52 a2-4ab-b2, 当 a=-6,b=12 时,原式=90+12-14 =10134
第九页,共十八页。
11.不改变多项式3b3-2ab2+4a2b-a3的值, 把后三项放在前面是“-”号的括号中, 则该式可写成________3_b_3_-__(_2_a_b_2_-__4_a_2_b_+__a_3.) 12.如果(rúguǒ)m,n互为倒数,则mn2-(n-1)的值为____.1 13.(易错题)如果x=1时,式子2ax3+3bx+4的值是5, 那么x=-1时,式子2ax3+3bx+4的值是____. 3
第十六页,共十八页。
解:(3)调运完毕后的总运费(yùn fèi)=200x+300x+400(18-2x)+800(10-x) +700(10-x)+500(2x-10)=-800x+17 200 (4)当x=5时,-800x+17 200=13 200(元),当x=8时, -800x+17 200=10 800(元),13 200-10 800=2 400(元), 所以当x=8时,总运费少,少2 400元
8.(8分)(教材P67例5变式)大客车上原有(3m-n)人,中途有一半(yībàn)人下车, 有若干人上车,此时车上共有乘客(8m-5n)人. (1)请问中途上车的乘客有多少人? (2)当m=10,n=8时,中途上车的乘客有多少人?
解:(1)(8m-5n)-12 (3m-n)=(123 m-92 n)(人) (2)当 m=10,n=8 时,123 m-92 n=123 ×10-92 ×8=29, 所以中途上车的乘客有 29 人

2024新人编版七年级数学上册《第四章4.2.2去括号》教学课件

2024新人编版七年级数学上册《第四章4.2.2去括号》教学课件

导入新课
问题1.计算:6
1
1
2 3
解法1:
6 1 1 6 3 2 6 1 1 2 3 6 6 6
解法2:
6 1 1 6 1 6 1 3 2 1 2 3 2 3
导入新课
问题2. 港珠澳大桥是集主桥、海底隧道和人工岛于一体的世 界上最长的跨海大桥,一辆汽车从香港口岸行驶到东人工岛 的平均速度为96 km/h,在海底隧道和主桥上行驶的平均速度 分别为72 km/h和92 km/h。如果汽车通过主桥需要bh,通过 海底隧道所需时间比通过主桥的时间少0.15h,你能用含b的 代数式表示主桥与海底隧道的长度的和吗?主桥与海底隧道 的长度的相差多少千米?
典型例题
解:(1)由题意得: 2(50+a)+2(50-a) =100+2a+100-2a =200(km). 可知,2小时后两船相距 200km。
(2)由题意得: 2(50+a)-2(50-a) =100+2a-100+2a =4a(km) 可知,2小时后甲船比 乙船多航行4akm。
当堂训练
1. 下列去括号的式子中,正确的是( C ) A. a2–(2a–1)= a2–2a–1 B. a2+(–2a–3)= a2–2a+3 C. 3a– [5b – (2c–1)]= 3a–5b +2c–1 D. –(a +b) + (c–d)= –a – b –c+d
探究新知
92b 72b 0.15 92b 72b 10.8 164b 10.8 92b 72b 0.15 92b 72b 10.8 20b 10.8
思考:请同学们根据以上探究过程总结一下去括号法则
探究新知

七年级数学上册第二章整式的加减整式的加减《去括号》

七年级数学上册第二章整式的加减整式的加减《去括号》

教学设计:2024秋季七年级数学上册第二章整式的加减整式的加减《去括号》教学目标(核心素养)1.知识与技能:理解括号在代数式中的作用,掌握去括号的基本法则,能够正确进行含括号的整式加减运算。

2.数学思维:培养学生的符号运算能力和逻辑推理能力,通过去括号的过程,加深对代数式运算规律的理解。

3.情感态度:激发学生对数学学习的兴趣,体验数学运算的严谨性和趣味性,培养耐心和细致的学习态度。

教学重点•去括号的基本法则及其应用。

•含括号的整式加减运算的正确性。

教学难点•理解括号前正负号对括号内各项符号的影响。

•在复杂整式中准确应用去括号法则进行运算。

教学资源•多媒体课件(包含去括号法则的示例、练习题)•黑板及粉笔(用于板书关键概念和例题)•学生笔记本(用于记录课堂笔记和练习)•实物教具(如可拆卸的括号模型,用于直观展示去括号过程)教学方法•直观演示法:利用多媒体课件和实物教具,直观展示去括号的过程和结果。

•讲授法:结合具体例子,详细讲解去括号的基本法则和注意事项。

•练习巩固法:通过分层练习,巩固学生对去括号法则的掌握和运算能力。

•讨论交流法:组织小组讨论,让学生分享去括号的心得和疑惑,促进相互学习。

教学过程要点导入新课•复习引入:回顾整式加减的基本运算,特别是涉及加减混合运算的式子,引出括号在代数式中的作用。

•情境导入:通过一个简单的实际问题(如购物结算时合并同类项并去除括号),引导学生思考如何去除括号进行运算。

新课教学•去括号法则:•正号情况:明确当括号前是正号时,去掉括号后,括号内各项的符号不变。

•负号情况:强调当括号前是负号时,去掉括号后,括号内各项的符号都要改变。

•实例演示:选取几个典型例题,逐步演示去括号的过程,强调法则的应用和注意事项。

•注意事项:提醒学生在去括号时,要特别注意括号前符号对括号内各项符号的影响,以及运算顺序的遵循。

课堂小结•知识回顾:总结去括号的基本法则和注意事项,强调其在整式加减运算中的重要性。

七年级数学上册《去括号》同步练习题(附答案)

七年级数学上册《去括号》同步练习题(附答案)

七年级数学上册《去括号》同步练习题(附答案)课前练习一、知识回顾1、所含字母相同,并且相同字母的指数也相同的项叫做__________.把多项式中的同类项合并成一项,叫做____________.合并同类项后,所得项的系数是合并前各同类项的系数的______,且字母连同它的指数_________.二、学习新知识例12. 学校图书馆内起初有a位同学,后来某年级组织阅读,第一批来了b位同学,第二批来了c位同学,则图书馆内共有______________位同学.我们还可以这样理解:后来两批一共来了________位同学,因而,图书馆内共有_____________位同学.由于________和________均表示同一个量,于是得到:a+(b+c)=a+b+c例23. 若学校图书馆内原有a位同学,后来有些同学因上课要离开,第一批走了b位同学,第二批又走了c位同学,那么可以得到:____________.4. 去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号________;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号________.三、课前小练习5. 下列去括号中,正确的是()A. a2-(2a-1)=a2-2a-1B. a2+(-2a-3)=a2-2a+3C. 3a-[5b-(2c-1)]=3a-5b+2c-1D. -(a+b)+(c-d)=-a-b-c+d6. 下列各式中,与a-b-c的值不相等的是()A. a-(b+c)B. a-(b-c)C. (a-b)+(-c)D. (-c)+(-b+a)7. 已知a−b=−3,c+d=2,那么(b+c)−(a−d)的值为()B. 5C. -1D. 1A. 58. 去括号:(1)-(2m-3);(2)n-3(4-2m);(3)16a-8(3b+4c);(4)(2x2+x)−[4x2−(3x2−x)]课前练习参考答案1. ①. 同类项②. 合并同类项③. 和④. 不变2. ①. a+b+c②. b+c③. a+(b+c)④. a+(b+c)⑤. a+b+c3.a-(b+c)=a-b-c4. ①. 相同②. 相反【解析】去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,故答案为相同,相反.5.C【解析】根据添括号的法则,即可作出判断.【详解】A. a2-(2a-1)=a2-2a+1,故错误;B. a2+(-2a-3)=a2-2a-3,故错误;C. 3a-[5b-(2c-1)]= 3a-[5b-2c+1]=3a-5b+2c-1 ,正确;D. -(a+b)+(c-d)=-a-b+c-d,故错误;故选:C.6.B7.B【解析】先将代数式(b+c)−(a−d)化成只含有(a-b)和(c+d)的形式,最后代入求值即可.【详解】解:∵a−b=−3,c+d=2∴(b+c)−(a−d)=b+c−a+d=−(a−b)+(c+d)=−(−3)+2=3+2=5.故答案为B.8.(1)-2m+3;(2)n-12+6m;(3)16a-24b-32c;(4)2x【详解】(1)原式=-2m+3;(2)原式=n-12+6m;(3)原式=16a-24b-32c;(4)原式=(2x2+x)−(4x2−3x2+x)=2x2+x−(x2+x)=2x2+x−x2−x=2x课堂练习知识点1 去括号1.下列去括号正确的是( )A .﹣(a +b ﹣c )=a +b ﹣cB .﹣2(a +b ﹣3c )=﹣2a ﹣2b +6cC .﹣(﹣a ﹣b ﹣c )=﹣a +b +cD .﹣(a ﹣b ﹣c )=﹣a +b ﹣c2.式子a −(b −c +d )去括号后得___________.3.计算(1﹣2a )﹣(2﹣2a )=___.知识点2 添括号4.不改变多项式3223324b ab a b a -+-的值,把后三项放在前面是“—”号的括号中,正确的是()A .3b 3−(2ab 2−4a 2b +a 3)B .3b 3−(2ab 2+4a 2b +a 3)C .3b 3−(−2ab 2+4a 2b −a 3)D .3b 3−(2ab 2+4a 2b −a 3)5.添括号:(1)−9a 2+16b 2=−(________);(2)b −a +3(a −b)2=−(________)+3(a −b)2.6.下列各式中,去括号或添括号正确的是( )A .a 2−(−b +c)=a 2−b +cB .−2x −t −a +1=−(2x −t)+(a −1)C .3[5(21)]3521x x x x x x ---=--+D .321(321)a x y a x y -+-=+-+-课堂练习7.下列去括号正确的是( )A .(2)2a b c a b c --=--B .(2m +n)−3(p −1)=2m +n +3p −1C .−(m +n)+(x −y)=−m −n +x −yD .a −(3x −y +z)=a −3x −y −z8.下列选项中,等式成立的是( )A .a −b −c −d =a −(b +c −d)B .2x +3y −4z =2x −(−3y +4z)C .3x −2y +4z =3x −2(y −4z)D .3m −n +2t =−(3m +n −2t)9.已知a 2+3a =1,则代数式2a 2+6a −3的值为( )A .−1B .0C .1D .210.化简:(1)3a 2+2a −4a 2−7a ;(2)13(9x −3)+2(x +1).11.已知|a +4|+(b ﹣2)2=0,数轴上A ,B 两点所对应的数分别是a 和b ,(1)填空:a = ,b = ;(2)化简求值2a 2b +3ab 2−2(−a 2b +3ab 2−2)+7ab 2.课堂练习参考答案1.B【分析】若括号前是“+”,去括号后,括号里的各项都不改变符号;若括号前是“﹣”,去括号后,括号里的各项符号发生改变,“﹣”遇“+”变“﹣”号,“﹣”遇“﹣”变“+”;据此判断.【详解】解:A、﹣(a+b﹣c)=﹣a﹣b+c,所以A不符合题意;B、﹣2(a+b﹣3c)=﹣2a﹣2b+6c,正确;C、﹣(﹣a﹣b﹣c)=a+b+c,所以C不符合题意;D、﹣(a﹣b﹣c)=﹣a+b+c,所以D不符合题意;故选:B.2.a−b+c−d【分析】先去括号,再合并同类项即可得出答.【详解】解:a−(b−c+d)=a-b+c-d,故答案为:a-b+c-d.3.﹣1.【解析】原式去括号合并即可得到结果.【详解】原式=1﹣2a﹣2+2a=﹣1,故答案为﹣1.4.A【分析】根据添括号法则来具体分析.【详解】解:3b3-2ab2+4a2b-a3=3b3-(2ab2-4a2b+a3);故选:A.5.9a2−16b2a−b【分析】(1)(2)利用添括号法则计算得出答案.【详解】解:(1)−9a2+16b2=−(9a2−16b2),(2)b−a+3(a−b)2=−(a−b)+3(a−b)2,故答案为:(1)9a2−16b2;(2)a−b.6.D【分析】利用去括号法则和添括号法则即可作出判断.【详解】解:A、a2−(−b+c)=a2+b−c,故错误;B、−2x−t−a+1=−(2x+t)−(a−1),故错误;C、3x−[5x−(2x−1)]=3x−5x+2x−1,故错误;D 、321(321)a x y a x y -+-=+-+-,故正确;故选:D .7.C【分析】利用去括号添括号法则计算.根据去括号时,前面是负号的括号里的每项符号都改变,前面是正号的符号不变.【详解】解:A 、a -(2b -c )=a -2b +c ,故选项错误;B 、(2m +n )-3(p -1)=2m +n -3p +3,故选项错误;C 、正确;D 、a -(3x -y +z )=a -3x +y -z ,故选项错误.故选:C .8.B【分析】利用添括号的法则求解即可.【详解】解:A 、a −b −c −d =a −(b +c +d),故错误;B 、2x +3y −4z =2x −(−3y +4z),故正确;C 、3x −2y +4z =3x −2(y −2z),故错误;D 、3m −n +2t =−(−3m +n −2t),故错误;故选:B .9.A【分析】先化简原式,再整体代入求值即可.【详解】原式=2(a 2+3a )−3,将 a 2+3a =1代入,得原式=2×1−3=−1,故选:A .10.(1)−a 2−5a ;(2)51x +【分析】(1)合并同类项即可求解;(2)先去括号,然后合并同类项即可求解.【详解】解:(1)3a 2+2a −4a 2−7a=−a 2−5a ;(2)13(9x −3)+2(x +1)=3x −1+2x +2=51x +.11.(1)-4,2;(2)4a 2b +4ab 2+4,68.【分析】(1)直接利用绝对值及完全平方式的非负性求解即可;(2)先化简整式,再代入(1)的结论即可.【详解】(1)根据绝对值及完全平方式的非负性得:a +4=0,b −2=0,∴a =−4,b =2;(2)原式=2a 2b +3ab 2+2a 2b −6ab 2+4+7ab 2=4a 2b +4ab 2+4,将a =−4,b =2代入得:原式=4×(−4)2×2+4×(−4)×22+4=128−64+4=68.课后练习1.下列等式恒成立的是( )A .7x −2 =5B .m +n −2=m −(−n −2)C .x −2(y −1)=x −2y +1D .2x −3(13x −1)=x +3 2.要使等式4a −2b −c +3d =4a −( )成立,括号内应填上的项为A .2a −c +3dB .2b −c −3dC .2b +c −3dD .2b +c +3d3.下列变形正确的是( )A .−(a +2)=a −2B .−12(2a −1)=−2a +1C .−a +1=−(a −1)D .1−a =−(a +1)4.三个连续的奇数,中间的一个是2n +1,则三个数的和为( )A .6n −6B .3n +6C .66n +D .63n + 5.已知实数a ,b ,c 在数箱正的位置如图所示,则代数式a a b c a b c -++-++=( )A .2c −aB .2a −2bC .a -D .a6.去括号:a -(-2b +c )=____.添括号:-x -1=-____.7.计算:2a 2−(a 2+2)=__________.8.小明在计算一个整式加上(xy ﹣2yz )时所得答案是2yz+2xy ,那么这个整式是______.9.已知下面5个式子:① x 2-x +1,② m 2n +mn -1,③x 4+1x +2, ④ 5-x 2, ⑤ -x 2. 回答下列问题:(1)上面5个式子中有 个多项式,次数最高的多项式为 (填序号);(2)选择2个二次多项式..运算......,并进行加法10.化简:(1)(4x2y﹣6xy2)﹣(3xy2﹣5x2y);(2)2(2x﹣7y)﹣3(3x﹣10y).11.(1)化简:−(x2−2xy−y2)−2(5x2−2xy−3y2).(2)若关于x的多项式(a−b)x4+(a−2)x3+(b−1)x2−3ax+3中不含x3和2x项,试求当x=−1时,这个多项式的值.12.已知A=2x2+xy+3y−1,B=x2−xy.(1)若A−2B的值与y的值无关,求x的值.(2)若A−mB−3x的值与x的值无关,求y的值.13.某水果批发市场苹果的价格如下表:千克(x超过20千克但不超过40千克)需要付费_______元(用含x的式子表示)(2)小强分两次共买100千克,第二次购买的数量多于第一次购买数量,且第一次购买的数量为a千克,请问两次购买水果共需要付费多少元?(用含a的式子表示)课后练习参考答案1.D【分析】根据合并同类项,添括号法则,去括号合并同类项的运算法则逐一进行计算,再判断.【详解】A:7x−2 =5x,原计算错误,故本选项不符合题意;B:m+n−2=m−(−n+2),原计算错误,故本选项不符合题意;C:x−2(y−1)=x−2y+2,原计算错误,故本选项不符合题意;x−1)=x+3,原计算正确,故本选项符合题意.D:2x−3(132.C【分析】根据添括号法则解答即可.【详解】解:根据添括号的法则可知,原式=4a-(2b+c-3d),故选:C.3.C【分析】根据去括号和添括号法则解答.【详解】A、原式=−a−2,故本选项变形错误.,故本选项变形错误.B、原式=−a+12C、原式=−(a−1),故本选项变形正确.D、原式=−(a−1),故本选项变形错误.故选:C.4.D【分析】三个连续的奇数,它们之间相隔的数为2,分别表示这三个奇数,列式化简即可.【详解】解:∵中间的一个是2n+1,∴第一个为2n-1,最后一个为2n+3,则三个数的和为(2n-1)+(2n+1)+(2n+3)=6n+3.故选:D.5.C【分析】首先利用数轴得出a+b<0,c-a>0,b+c<0,进而利用绝对值的性质化简求出即可.【详解】解:由数轴可得:b<a<0<c,∴a+b<0,c-a>0,b+c<0,∴|a|−|a+b|+|c−a|+|b+c|=−a+(a+b)+(c−a)−(b+c)=−a+a+b+c−a−b−c=a故选C.6.a+2b-c(x+1)【分析】根据去添括号法则:如果括号前为减号,去掉括号后,括号里面的所有项的符号改变;反之如果括号前为加号,去掉括号后,括号里面的所有项的符号不变;如果添括号,括号前为减号,添括号后里面的所有项的符号改变,反之括号前为加号,添括号里面的所有项的符号不变判断即可.【详解】a-(-2b+c)=a+2b-c-x-1=-(1+x)故答案为:a+2b-c;(x+1)7.a2−2【分析】先去括号,再合并同类项,即可求解.【详解】解:原式=2a2−a2−2=a2−2,故答案是:a2−2.8.4yz+xy【分析】利用和减去(xy﹣2yz),运用去括号,合并同类项即可得到正确的结果.【详解】解:由题意得:2yz+2xy-(xy﹣2yz)=2yz+2xy-xy+2yz=4yz+xy故答案为:4yz+xy9.(1)3,②;(2)−x+6【分析】(1)根据多项式的概念和次数定义进行解答即可;(2)根据整式的加减法运算法则进行计算即可.【详解】解:(1)①是二次多项式,②是三次多项式,④二次多项式,③是分式,⑤是单项式,故答案为:3,②;(2)选择多项式①和④相加,得(x2−x+1)+(5−x2)=x2−x+1+5−x2=−x+6.10.(1)9x2y﹣9xy2;(2)﹣5x+16y【分析】(1)直接去括号,再合并同类项得出答案;(2)按照去括号,合并同类项的法则计算即可.【详解】解:(1)(4x2y﹣6xy2)﹣(3xy2﹣5x2y)=4x2y﹣6xy2﹣3xy2+5x2y=9x2y﹣9xy2;(2)2(2x﹣7y)﹣3(3x﹣10y)=4x﹣14y﹣9x+30y=﹣5x+16y.11.(1)−11x2+6xy+7y2;(2)10【分析】(1)先去括号,再合并同类项,即可化简;(2)由题意可得a-2=0,b-1=0,求得a,b的值,进而确定多项式,再代入求值,即可求解.【详解】解:(1)原式=−x2+2xy+y2−10x2+4xy+6y2=−11x2+6xy+7y2;(2)∵关于x的多项式(a−b)x4+(a−2)x3+(b−1)x2−3ax+3中不含x3和2x项,∴a-2=0,b-1=0,即:a=2,b=1,∴原式=x4−6x+3,当x=−1时,原式=(−1)4−6×(−1)+3=10.12.(1)x的值为−1;(2)y的值为1.【分析】(1)将A,B代入A-2B,再去括号,再由题意可得x+1=0,求解即可;(2)将A,B代入A−mB−3x,再去括号,再由题意可得2−m=0,y+my−3=0,求解即可;【详解】解:(1)∵A=2x2+xy+3y−1,B=x2−xy,∴A-2B=(2x2+xy+3y−1)−2(x2−xy)=2x2+xy+3y−1−2x2+2xy=3xy+3y−1=3(x+1)y−1,∵A-2B的值与y的值无关,∴x+1=0,∴x=−1;∴x的值为−1;(2)∵A=2x2+xy+3y−1,B=x2−xy,∴A−mB−3x=(2x2+xy+3y−1)−m(x2−xy)−3x=2x2+xy+3y−1−mx2+mxy−3x=(2−m)x2+(y+my−3)x+3y−1∵A−mB−3x的值与x的值无关,∴2−m=0,y+my−3=0,∴m=2,y=1;∴y的值为1.13.(1)70,6x+20;(2)当a≤20时,2a+560(元);当20<a≤40时,a+580(元);当40<a<50时,620(元)【分析】(1)图中可以知道:10千克在“不超过20千克的总分”按7元/千克收费;x超过20千克但不超过40千克,前面的20千克按7元/千克来收费,后面多余的(x-20)千克按6元/千克来收费,最后再把2个费用相加.(2)“小强分两次共购买100千克,第二次购买的数量多于第一次购买的数量”可以知道第一次购买的数量要小于50千克;由于a的取值范围不确定,需要用分类讨论的思想进行解答,当a≤20时,分别算第一次和第二次的总费用;当20<a≤40时,注意第一次购买有2段费用,第二次购买有3段费用,然后再相加;当40<a<50时,注意第一次购买有3段费用,第二次购买也有3段费用,然后再相加;记得最后结果要化为最简的形式.【详解】解:(1)∵10千克在“不超过20千克的总分”按7元/千克收费,∴10×7=70元;∵过20千克但不超过40千克,前面的20千克按7元/千克来收费,后面多余的(x-20)千克按6元/千克来收费,∴20×7+6(x-20)=(6x+20)元故答案为:70,6x+20;(2)∵再次共购买100千克,第二次购买的数量多于第一次购买的数量,∴a<50,当a≤20时,需要付费为:7a+20×7+20×6+5×(100-a-40)=2a+560(元);当20<a≤40时,需要付费为:7×20+6×(a-20)+20×7+20×6+5×(100-a-40)=a+580(元);当40<a<50时,需要付费为:7×20+6×20+5×(a-40)+20×7+20×6+5×(100-a-40)=620(元).第11页共11页。

金老师教育培训苏教版数学讲义含同步练习七年级上册07有理数的加减法(第二课时)知识讲解

金老师教育培训苏教版数学讲义含同步练习七年级上册07有理数的加减法(第二课时)知识讲解

有理数的加减法(提高)【典型例题】类型一、有理数的加法运算1.阅读下题的计算方法. 计算.解:原式===0+(﹣) =﹣上面这种解题方法叫做拆项法,按此方法计算:.【思路点拨】根据拆项法,可把整数结合在一起,分数结合在一起,再根据有理数的加法,可得答案. 【答案与解析】解:原式=[(﹣2011)+(﹣)]+[(﹣2010)+(﹣)]+[4022+]+[(﹣1)+(﹣)] =[(﹣2011)+(﹣2010)+4022+(﹣1)]+[(﹣)+(﹣)++(﹣)] =0+(﹣) =﹣.【总结升华】本题考查了有理数的加法,拆项法是解题关键. 举一反三:【高清课堂:有理数的加减法 382681 有理数的加法例2】 【变式1】计算:(1) -721+1061;(2) (-21)+(-7.3);(3) 141+(-231);(4)751+(-3.8)+(-7.2) 【答案】(1)原式=11112(107)(97)(1)262623+-=-+-=; (2)原式=(0.57.3)7.8-+=-;(3)原式=111(21)13412--=-;(4)原式=7.27.2 3.80 3.8 3.8--=-=-【变式2】计算:11511236⎛⎫-++-⎪⎝⎭【答案】1151151151111(11)1236236236⎡⎤⎛⎫⎛⎫⎛⎫-++-=--++-=-++-++-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦【变式3】计算:11(6)( 3.3)(3)(6)(0.3)(8)(6)(16)644⎛⎫⎛⎫++++-+++-+++++++-+- ⎪ ⎪⎝⎭⎝⎭.【答案】解法一:11(6)( 3.3)(3)(6)(0.3)(8)(6)(16)644⎛⎫⎛⎫++++-+++-+++++++-+- ⎪ ⎪⎝⎭⎝⎭11(6)(3)(0.3)(8)(6)( 3.3)(6)(16)644⎡⎤⎡⎤⎛⎫⎛⎫=++++++++++++-+-+-+- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦→同号的数一起先加(23.55)(31.55)8=++-=-.解法二:11(6)( 3.3)(3)(6)(0.3)(8)(6)(16)644⎛⎫⎛⎫++++-+++-+++++++-+- ⎪ ⎪⎝⎭⎝⎭11(6)6[( 3.3)(3)(0.3)][(6)(6)][(16)(8)]44⎡⎤⎛⎫⎛⎫=++++-+-+++++-+++-++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦→同分母,互为相反数的数,或几个数可以凑整的数分别结合相加000(8)8=+++-=-. 类型二、有理数的减法运算2. (1)2-(-3); (2)0-(-3.72)-(+2.72)-(-4); (3)41373⎛⎫+- ⎪⎝⎭.【思路点拨】此题是有理数的减法运算,先按照减法法则将减法转化为加法,再按照有理数的加法进行计算.【答案与解析】本题可直接利用有理数的减法法则进行计算.(1)2-(-3)=2+3=5 (2)原式=0+3.72+(-2.72)+4=(0+4)+(3.72-2.72)=4+1=5 (3)原式=411416(3)(3)2733721+-=--=- 【总结升华】算式中的“+”或“-”既可以看作运算符号按法则进行计算,也可以看作是性质符号按多重符号化简进行计算.类型三、有理数的加减混合运算3.计算:(1)-3.72-1.23+4.18-2.93-1.25+3.72;(2)11-12+13-15+16-18+17; (3)1113.7639568 4.7621362--+--+ (4)51133.4643.872 1.54 3.376344+---+++ (5)1355354624618-++-; (6)132.2532 1.87584+-+【答案与解析】(1)观察各个加数,可以发现-3.72与3.72互为相反数,把它们分为一组;4.18、-2.93与-1.25的和为0,把它们分为一组可使计算简便. 解:-3.72-1.23+4.18-2.93-1.25+3.72 =(-3.72+3.72)+(4.18-2.93-1.25)-1.23 =0+0-1.23=-1.23(2)把正数和负数分别分为一组.解:11-12+13-15+16-18+17 =(11+13+16+17)+(-12-15-18) =57+(-45)=12(3)仔细观察各个加数,可以发现两个小数的和是-1,两个整数的和是29,三个分数通分后也不难算.故把整数、分数、小数分别分为一组.解:1113.7639568 4.7621362--+--+ 111(3.76 4.76)(521)(3968)362=-+--++-+1(6)2922=-+-+=(4)3.46和1.54的和为整数,把它们分为一组;-3.87与3.37的和为-0.5,把它们分为一组;546与13- 易于通分,把它们分为一组;124-与34同分母,把它们分为一组. 解:51133.464 3.872 1.54 3.376344+---+++5113(3.46 1.54)( 3.87 3.37)(4)(2)6344=++-++-+-+115(0.5)4(1) 4.537.522=+-++-=+=(5)先把整数分离后再分组.解:1355354624618-++- 1355354624618=--++++--1355(3546)()24618=-++-+-++-182********-++-=+2936= 注:带分数中的整数与分数分离时,如果这个数是负数,那么分离得到的整数与分数都是负数,例如11 3322 -=--.(6)如果按小数、整数分组,效果似乎不是很好.可先将小数和分数统一后再考虑分组.解:132.2532 1.87584+-+(2.25 2.75)(3.125 1.875)=-++0.55 4.5=-+=【总结升华】计算多个有理数相加时,必须先审题,分析特点,寻找规律,然后再去计算.注意在交换加数的位置时,要连同符号一起交换.举一反三:【变式】5.6+[0.9+4.4﹣(﹣8.1)].【答案】解:原式=5.6+0.9+4.4+8.1=19.类型四、有理数的加减混合运算在实际中的应用【高清课堂:有理数的加减法 382681有理数加减的应用】4.“九宫图”传说是远古时代洛河中的一个神龟背上的图案,故又称“龟背图”,中国古代数学史上经常研究这一神话.(1)现有1,2,3,4,5,6,7,8,9共九个数字,请将它们分别填入图1的九个方格中,使得第行的三个数、每列的三个数、斜对角的三个数之和都等于15;(2)通过研究问题(1),利用你发现的规律,将3,5,﹣7,1,7,﹣3,9,﹣5,﹣1这九个数字分别填入图2的九个方格中,使得横、竖、斜对角的所有三个数的和都相等.【答案与解析】解:(1)15÷3=5,∴最中间的数是5,其它空格填写如图1;(2)如图2所示.【总结升华】本题考查了有理数加法,熟知“九宫图”的填法是解题的关键.举一反三:【变式】某产粮专业户出售粮食8袋,每袋重量(单位:千克)如下:197,202,197,203,200,196,201,198. 计算出售的粮食总共多少千克?【答案】法一:以200(千克)为基准,超过的千克数记作正数,不足的千克数记作负数,则这8个数的差的累计是:(-3)+(+2)+(-3)+(+3)+0+(-4)+(+1)+(-2)=-6200×8+(-6)=1594(千克) 答:出售的粮食共1594千克.法二:197+202+197+203+200+196+201+198=1594(千克) 答:出售的粮食共1594千克.【巩固练习】一、选择题1.某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是( ) A . ﹣10℃ B . 10℃ C . 14℃ D . ﹣14℃2.比﹣1小2015的数是( )A .﹣2014B .2016C .﹣2016D .2014 3.如果三个数的和为零,那么这三个数一定是( ).A .两个正数,一个负数B .两个负数,一个正数C .三个都是零D .其中两个数之和等于第三个数的相反数 4. 若0,0a b ><,a b <, 则a 与b 的和是 ( ) A.B.C.D..5.下列判断正确的是( ) A .两数之差一定小于被减数.B .若两数的差为正数,则两数都为正数.C .零减去一个数仍得这个数.D .一个数减去一个负数,差一定大于被减数.6.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg ,(25±0.2)kg ,(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差 ( )A .0.8kgB .0.6kgC .0.5kgD .0.4kg 二、填空题7.有理数,,a b c 在数轴上对应点位置如图所示,用“>”或“<”填空:(1)|a |______|b |;(2)a +b +c ______0:(3)a-b+c______0;(4)a+c______b;(5)c-b______a.8.小明存折中原有450元,取出260元,又存入150元,现在存折中还有______元.9. 若a ,b 为整数,且|a-2|+| a -b|=1,则a+b=________.10.某地的冬天,半夜的温度是-5︒C,早晨的温度是-1︒C,中午的温度是4︒C.则(1)早晨的温度比半夜的温度高________度;(2)早晨的温度比中午的温度低________度.11.北京与纽约的时差为-13(负号表示同一时刻纽约时间比北京时间晚).如果现在是北京时间15:00,那么纽约时间是______________12. 数学活动课上,王老师给同学们出了一道题:规定一种新运算“☆”对于任意两个有理数a和b,有a☆b=a-b+1,请你根据新运算,计算(2☆3)☆2的值是 .三、解答题13.计算题(1)3401(1)(5)|4|77⎡⎤⎛⎫⎛⎫+-----+--+-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦;(2)2121 02133434⎛⎫⎛⎫⎛⎫-++---+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)44444 999999999999999 55555 ++++(4)1+(-2)+(-3)+4+5+(-6)+(-7)+8+…+97+(-98)+(-99)+100的值.(5)11111 8244880120 ++++;(6)2312()() 3255 ---+--+-14.数轴上到原点的距离小于3的整数的个数为x,不大于3的正整数的个数为y,绝对值等于3的整数的个数为z,求:x+y+z的值.15.股民李星星在上周星期五以每股11.2元买了一批股票,下表为本周星期一到星期五该股票的涨跌情况求:(1)本周星期三收盘时,每股的钱数.(2)李星星本周内哪一天把股票抛出比较合算,为什么?星期一二三四五每股涨跌/元+0.4 +0.45 ﹣0.2 +0.25 ﹣0.4【答案与解析】一、选择题 1. 【答案】B . 2. 【答案】C【解析】解:根据题意得:﹣1﹣2015=﹣2016,故选C.3. 【答案】D【解析】若0a b c ++=,则a b c +=-或b c a +=-或a c c +=-,所以D 正确. 4.【答案】D 【解析】(a b +)的符号与绝对值较大的b 一致为负的,并用较大的绝对值减去较小的绝对值,即有()b a --.5. 【答案】D【解析】A 错误,反例:2-(-3)=5,而5>2;B 不对,反例:2-(-3)=5,而-3为负数;C 错误,0-2=-2,0-(-2)=2,所以零减去一个数得这个数的相反数. 6.【答案】B【解析】因为最低重量为24.7kg ,最大重量为25.3kg ,故质量最多相差25.3-24.7=0.6kg . 二、填空题7. 【答案】<,<,>,>,>【解析】由图可知:b a c >>,且0,0b a c <<>,再根据有理数的加法法则可得答案.8.【答案】340【解析】450﹣260+150=290+150=340(元). 9.【答案】2,6,3或5【解析】当|a-2|=1,| a -b|=0时,得:a+b =6或2;当|a-2|=0,| a -b|=1时,得:a+b =3或5;10.【答案】(1)4 (2) 5【解析】 (1)-1-(-5)=4 (2) -1-(+4)= -5 11.【答案】2:00【解析】15:00+(-13)=2:00. 12. 【答案】 -1【解析】(2☆3)☆2=(2☆3)-2+1=2-3+1-2+1=-1 三、解答题13. 【解析】(1)原式341[15]45(5)1077=--+-++=--= (2)原式212102133434⎛⎫⎛⎫⎛⎫=-+++++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭21212133434=-++-2211213213183344⎛⎫⎛⎫=-++-=-+=- ⎪ ⎪⎝⎭⎝⎭(3)原式=1111101001000100005555⎡⎤⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+-++-++-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦⎣⎦11000005⎡⎤⎛⎫++- ⎪⎢⎥⎝⎭⎣⎦11111(10100100010000100000)55555⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++++-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111110(1)111109=+-=.(4)1+(-2)+(-3)+4+5+(-6)+(-7)+8+…+97+(-98)+(-99)+100=[1+(-2) + (-3)+4]+[5+(-6) + (-7)+8]+…+[97+(-98) + (-99)+100] =0+0++…+0=0. (5)111111111182448801202446688101012++++=++++⨯⨯⨯⨯⨯ 111111*********()()22446688101012221224=-+-+-+-+-=-=(6)原式23122312231283[()][()]32553255325530=------=--------=----=- 14.【解析】解:根据数轴,到原点的距离小于3的整数为0,±1,±2,即x=5, 不大于3的正整数为1,2,3,即y=3, 绝对值等于3的整数为3,﹣3,即z=2, 所以x+y+z=10.15.【解析】解:(1)根据题意得:11.2+0.4+0.45+(﹣0.2)=11.85(元),则本周星期三收盘时,该只股票每股为11.85元;(2)根据题意得:11.2+0.4+0.45+(﹣0.2)+0.25=12.1(元),则本周该只股票最高价12.1元出现在周四,李星星本周四把股票抛出比较好.。

[初中数+学]+整式的加减(4)+去括号+课件+苏科版数学七年级上册

[初中数+学]+整式的加减(4)+去括号+课件+苏科版数学七年级上册
解:原式= − + − − −
=− + −
当x=1,y=-2时,
原式=-2+2+2=-2
课堂小结
法则
去括号
是“+”号,不变号;
是“-”号,全变号。
(1)去括号时要将括号前的符号和括号一起去掉;
注意事项 (2)去括号时首先弄清括号前是“+”还是“-”;
新知探究
[8n-2(n-1)]
[8+6(n-1)]
(6n-2)
这三个代数式都表示搭n条“小鱼”需要的火柴
棒数量,它们是相等的,可以通过运算来验证.
整式的运算本质上是数的运算,利用运算律可以得到:
8+6(n-1)
8n-2(n-1)
=8+6n-6
=8n+(-2)(n-1)
=6n+2
=8n+(-2)n+(-2)×(-1)
括号里的各项不改变.
括号前面是 “-” 号,把括号和它前面的 “-” 号去掉,
括号里的各项都变号.
法则的依据:乘法分配律
例题讲解
例6 化简:
(1) + ( − )
解:原式= + −
= − +
(2) − ( − + )
解:原式 = − + −
原式= × ( − ) × − ( − ) × = + =
归纳总结
去括号的“四点注意”:
(1)去括号时,首先要弄清括号前是“+”号还是“-”号.
(2)注意法则中的“都”字,变号时,各项都变号;不变号时,各项都不变号.
(3)当括号前有数字因数时,应运用乘法对加法的分配律进行运算,切勿漏乘.

七年级数学上册第2章整式加减2.2整式加减第2课时去括号添括号习题课件3

七年级数学上册第2章整式加减2.2整式加减第2课时去括号添括号习题课件3

8.下列各式中,去括号或添括号正确的是( B ) A.a2-(2a-b+c)=a2-2a-b+c B.a-3x+2y-1=a-(3x-2y+1) C.3x-[5x-(2x-1)]=3x-5x-2x+1 D.-2x-y-a+1=-(2x-y)+(a-1)
9.已知x-( 是( C ) A.y-z C.y+z
*12.一个长方形的一边长为3m+2n,与它相
邻的一边比它长m-n,则这个长方形的
周长是( C )
A.4m+n
B.8m+2n
C.14m+6n D.7m+3n
【点拨】相邻一边的长为(3m+2n)+(m-
n)=4m+n,则周长为2[(3m+2n)+(4m
+n)]=2(7m+3n)=14m+6n.
13.化简:(8x2-5y2)-3(2x2-y2). 错解一:原式=8x2-5y2-6x2+y2=2x2-4y2. 错解二:原式=8x2-5y2-6x2-3y2=2x2-8y2. 诊断:去括号时,若括号前的因数不是1,则要运 用分配律来计算,即要用括号外的因数乘括号内
)=x-y-z,则括号里的式子
B.z-y D.-y-z
10.下列各组整式:
①a-b与-a-b;
②a+b与-a-b;
③a+1与1-a;
④-a+b与a-b.
其中互为相反数的有( B )
A.①②④ B.②④
C.①③
D.③④
11.已知一个多项式与3x2+9x的和等于3x2+4x -1,则这个多项式是( A ) A.-5x-1 B.5x+1 C.-13x-1 D.13x+1
(2)若a⊙(-2b)=4,请计算(2a-b)⊙(-4a+ 2b)的值.
解:由题意得(2a-b)⊙(-4a+2b)=4(2a-b) +(-4a+2b)=4a-2b. 因为a⊙(-2b)=4,所以4a-2b=4.所以(2a -b)⊙(-4a+2b)=4.

018整式的加减(二)—去括号与添括号(基础)巩固练习--苏教版苏科版初一数学七年级数学上册

018整式的加减(二)—去括号与添括号(基础)巩固练习--苏教版苏科版初一数学七年级数学上册

18整式的加减(二)——去括号与添括号(基础篇)-巩固练习【巩固练习】一、选择题1.(2015•江西模拟)计算:a ﹣2(1﹣3a )的结果为( )A.7a ﹣2B.﹣2﹣5aC.4a ﹣2D.2a ﹣22.(2016•黄陂区模拟)下列式子正确的是( )A .x ﹣(y ﹣z )=x ﹣y ﹣zB .﹣(x ﹣y+z )=﹣x ﹣y ﹣zC .x+2y ﹣2z=x ﹣2(z+y )D .﹣a+c+d+b=﹣(a ﹣b )﹣(﹣c ﹣d )3.计算-(a-b)+(2a+b)的最后结果为( ).A .aB .a+bC .a+2bD .以上都不对4. (2010·山西)已知一个多项式与3x 2+9x 的和等于3x 2+4x-1,则这个多项式是( )A .-5x-1B .5x+1C .-13x-1D .13x+15.代数式2332333103(2)(672)x y x x y x y x y x --++--+的值( ).A .与x ,y 都无关B .只与x 有关C .只与y 有关D .与x 、y 都有关6.如图所示,阴影部分的面积是( ).A .112xyB .132xyC .6xyD .3xy 二、填空题7.添括号:(1).331(___________)3(_______)p q q -+-=+=-.(2).()()[(_______)][(_______)]a b c d a b c d a a -+-+-+=-+.8.(2015•镇江一模)化简:5(x ﹣2y )﹣4(x ﹣2y )=________.9.若221m m -=则2242008m m -+的值是________.10.(2016•河北)若mn=m+3,则2mn+3m ﹣5mn+10= .11.已知a =-(-2)2,b =-(-3)3,c =-(-42),则-[a-(b-c)]的值是________.12.如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n 是正整数)个图案中由________个基础图形组成.三、解答题13. 化简 (1).(2015•宝应县校级模拟)2(3x 2﹣2xy )﹣4(2x 2﹣xy ﹣1)(2). 22222323xy xy y x y x -++- (3). m n mn m n mn mn n m 222238.0563--+--(4). )45(2)2(32222ab b a ab b a ---(5).(6).14.化简求值: (1). 已知:2010=a ,求)443()842()33(232332-+++-++-+--a a a a a a a a a 的值.(2). 2222131343223a b a b abc a c a c abc ⎡⎤⎛⎫------ ⎪⎢⎥⎝⎭⎣⎦,其中a = -1, b = -3, c = 1. (3). 已知3532++y x 的值是6,求代数式 71494322-++--y x y x 的值.15. 有一道题目:当a=2,b=-2时,求多项式:3a 3b 3-2a 2b+b-(4a 3b 3-a 2b-b 2)+(a 3b 3+a 2b)-2b 2+3的值.甲同学做题时把a=2错抄成a=-2,乙同学没抄错题,但他们做出的结果恰好一样。

苏教版七年级上册数学[整式的加减(二)—去括号与添括号(基础)知识点整理及重点题型梳理]

苏教版七年级上册数学[整式的加减(二)—去括号与添括号(基础)知识点整理及重点题型梳理]

苏教版七年级上册数学重难点突破知识点梳理及重点题型巩固练习整式的加减(二)—去括号与添括号(基础)【学习目标】1.掌握去括号与添括号法则,充分注意变号法则的应用;2. 会用整式的加减运算法则,熟练进行整式的化简及求值.【要点梳理】【整式的加减(二)--去括号与添括号388394 去括号法则】要点一、去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.要点诠释:(1)去括号法则实际上是根据乘法分配律推出的:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.(2)去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号.(3)对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.(4)去括号只是改变式子形式,但不改变式子的值,它属于多项式的恒等变形.要点二、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.要点诠释:(1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.(2)去括号和添括号是两种相反的变形,因此可以相互检验正误:如:()a b c a b c +-+-添括号去括号, ()a b c a b c -+--添括号去括号要点三、整式的加减运算法则一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.要点诠释:(1)整式加减的一般步骤是:①先去括号;②再合并同类项.(2)两个整式相加减时,减数一定先要用括号括起来.(3)整式加减的最后结果中:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.【典型例题】类型一、去括号1.去括号:(1)d-2(3a-2b+3c);(2)-(-xy-1)+(-x+y).【答案与解析】(1)d-2(3a-2b+3c)=d-(6a-4b+6c)=d-6a+4b-6c ;(2)-(-xy-1)+(-x+y)=xy+1-x+y .【总结升华】去括号时.若括号前有数字因数,应先把它与括号内各项相乘,再去括号.举一反三【变式1】去掉下列各式中的括号:(1). 8m-(3n+5); (2). n-4(3-2m);(3). 2(a-2b)-3(2m-n).【答案】(1). 8m-(3n+5)=8m-3n-5.(2). n-4(3-2m)=n-(12-8m)=n-12+8m.(3). 2(a-2b)-3(2m-n)=2a-4b-(6m-3n)=2a-4b-6m+3n.【变式2】(2015•济宁)化简﹣16(x ﹣0.5)的结果是( )A . ﹣16x ﹣0.5B . ﹣16x+0.5C . 16x ﹣8D . ﹣16x+8【答案】D类型二、添括号2.在各式的括号中填上适当的项,使等式成立.(1). 2345()()x y z t +-+=-=+2()x =-23()x y =+-; (2). 23452()2()x y z t x x -+-=+=-23()45()x y z t =--=--.【答案】(1)2345x y z t --+-,2345x y z t +-+,345y z t -+-,45z t -.(2)345y z t -+-,345y z t -+,45z t -+,23x y -+.【解析】(1)2345x y z t +-+ (2345)x y z t =---+-(2345)x y z t =++-+2(345)x y z t =--+-23(45)x y z t =+--;(2)2345x y z t -+-2(345)x y z t =+-+-2(345)x y z t =--+23(45)x y z t =---+45(23)z t x y =---+.【总结升华】在括号里填上适当的项,要特别注意括号前面的符号,考虑是否要变号.【整式的加减(二)--去括号与添括号 388394添括号练习】举一反三【变式】()()1 a b c d a -+-=-;()()22 ;x y z +-=-()()()()()22222223 ;4 a b a b a b a b a b a a -+-=-+---=--.【答案】b c d -+;2x y z --+;a b -;2b b +. 类型三、整式的加减3.(2016•邢台二模)设A ,B ,C 均为多项式,小方同学在计算“A﹣B”时,误将符号抄错而计算成了“A +B”,得到结果是C ,其中A=x 2+x ﹣1,C=x 2+2x ,那么A ﹣B=( )A .x 2﹣2xB .x 2+2xC .﹣2D .﹣2x【思路点拨】根据题意得到B=C ﹣A ,代入A ﹣B 中,去括号合并即可得到结果.【答案】C .【解析】解:根据题意得:A ﹣B=A ﹣(C ﹣A )=A ﹣C+A=2A ﹣C=2(x 2+x ﹣1)﹣(x 2+2x )=x 2+2x ﹣2﹣x 2﹣2x=﹣2, 故选C.【总结升华】整式加减的一般步骤是:①先去括号;②再合并同类项.类型四、化简求值4. 先化简,再求各式的值:22131222,2,;22333x x y x y x y ⎛⎫⎛⎫+-+--=-= ⎪ ⎪⎝⎭⎝⎭其中 【答案与解析】原式=2221312232233x x y x y x y -+-+=-+, 当22,3x y =-=时,原式=22443(2)()66399-⨯-+=+=. 【总结升华】化简求值题一般采用“一化二代三计算”,此类题的书写格式一般为:当……时,原式=? 举一反三【变式1】先化简再求值:(-x 2+5x+4)+(5x-4+2x 2),其中x =-2.【答案】 (-x 2+5x+4)+(5x-4+2x 2)=-x 2+5x+4+5x-4+2x 2=x 2+10x.当x =-2,原式=(-2)2+10×(-2)=-16.【变式2】先化简,再求值:3(2)[3()]2y x x x y x +----,其中,x y 化为相反数.【答案】3(2)[3()]236322()y x x x y x y x x x y x x y +----=+-+--=+因为,x y 互为相反数,所以0x y +=所以3(2)[3()]22()200y x x x y x x y +----=+=⨯=5. 已知2xy =-,3x y +=,求整式(310)[5(223)]xy y x xy y x ++-+-的值.【答案与解析】由2xy =-,3x y +=很难求出x ,y 的值,可以先把整式化简,然后把xy ,x y +分别作为一个整体代入求出整式的值.原式310(5223)xy y x xy y x =++--+3105223xy y x xy y x =++--+5310232x x y y xy xy =++-+-88x y xy =++8()x y xy =++.把2xy =-,3x y +=代入得,原式83(2)24222=⨯+-=-=.【总结升华】求整式的值,一般先化简后求值,但当题目中含未知数的部分可以看成一个整体时,要用整体代入法,即把“整体”当成一个新的字母,求关于这个新的字母的代数式的值,这样会使运算更简便. 举一反三【变式】已知代数式2326y y -+的值为8,求2312y y -+的值. 【答案】∵ 23268y y -+=,∴ 2322y y -=.当2322y y -=时,原式=211(32)121222y y -+=⨯+=.6. 如果关于x 的多项式22(8614)(865)x ax x x ++-++的值与x 无关.你知道a 应该取什么值吗?试试看.【答案与解析】所谓多项式的值与字母x 无关,就是合并同类项,结果不含有“x ”的项,所以合并同类项后,让含x 的项的系数为0即可.注意这里的a 是一个确定的数.(8x 2+6ax+14)-(8x 2+6x+5)=8x 2+6ax+14-8x 2-6x-5=6ax-6x+9=(6a-6)x+9由于多项式(8x 2+6ax+14)-(8x 2+6x+5)的值与x 无关,可知x 的系数6a-6=0.解得a =1.【总结升华】本例解题的题眼是多项式的值与字母x 无关.“无关”意味着合并同类项后,其结果不含“x ”的项.。

3.3.3整式的加减——去括号(课件)七年级数学上册(苏科版2024)

3.3.3整式的加减——去括号(课件)七年级数学上册(苏科版2024)
添加括号和“+”号,括号里各项的符号都不改变;
添加括号和“-”号,括号里各项的符号都要改变。
eg:a-3=+(a-3);-a+3=-(a-3)。
03
典例精析
例1、填空:
(1)x+y-z=x+( y-z );
别忘了再从右往左看,
(2)x-y-z=x-( y+z );
检验结果的正确性哦!
(3)3a-2b+7c=3a-( 2b-7c );
添括号
01
课堂引入
已知a+(b+c)=a+b+c,a-(b-c)=a-b+c,这两个等式从左到右看是去
括号,原理是乘法分配律,那么从右往左看呢?
从右往左看是添括号,原理是乘法分配律的逆用。
将两个式子左右颠倒:
a+b+c=a+(b+c);a-b+c=a-(b-c)。
02
添括号
知识精讲
添括号法则:

先化简
解:(3x2+xy+2y)-2(5xy-4x2+y)
=3x2+xy+2y-10xy+8x2-2y
=(3x2+8x2)+(xy-10xy)+(2y-2y)
=11x2-9xy,
后求值


2
当x=-1,y=- 时,原式=11×(-1) -9×(-1)×(- )=11-3=8。


03
典例精析
探究——化简:(a+b)-(a-b)。
添括号法则:
添加括号和“+”号,括号里各项的符号都不改变;
添加括号和“-”号,括号里各项的符号都要改变。

【配套K12】[学习]2018年秋七年级数学上册 第2章 整式加减 2.2 整式加减 2.2.2 去

【配套K12】[学习]2018年秋七年级数学上册 第2章 整式加减 2.2 整式加减 2.2.2 去
=(-1)×ab-(-1)×πr2
=- ab+πr2
去括号运算的依据是分配律。
计算
回答
同桌讨论
指名回答
同桌讨论
找语言表达能力强的学生叙述
9、巩固法则:
例1:去括号
1)a+(-b+c-d) 2)a-(-b+c-d)
3)-(p+q)+(m-n) 4)(r+s)-(p-q)
5)a-2(b+c) 6)a+3(2b+c)
5、共同归纳:要去掉括号,板书课题。
思考
回答
练习
板演
讨论
思考
回答
二、探索新知
讲授新课
1、提出问题:如何去括号呢?
2、小黑板出示:请大家计算下列各题, 并观察所得结果。
13+(7-5)13- (7-5)
13+7-513-7+5
9a+(6a-a)9a-(6a-a)
9a+6a-a9a-6a+a
3、提出问题:通过上面的计算,你发现了什 么?两种运算有何区别?
2)括号前面是“-”号,把括号连同它前面的“-”号去掉,括号里各项都变号。
7、强调:
1)各项不 变符号、改变符号的含义。
2)括号连同前面的符号一起去掉。
8、算理说明:
(2ab-πr2)=(+1)×(2ab-πr2)
=(+1)×2ab-(+1)×πr2
=2ab-πr2
-(ab-πr2)=(-1)×(ab-πr2)
2、用小黑板出示:
下列各题中的两项是不是同类项?
1)x与y 2)a2b与ab23)-3pq与3pq

七年级数学上册 整式的加减(第2课时)讲学稿 苏科版

七年级数学上册 整式的加减(第2课时)讲学稿 苏科版

整式的加减(第2课时)学习目标:1.进一步理解同类项的概念,并能合并同类项.2.掌握去括号和添括号的法则.3.能运用去括号和合并同类项,熟练的进行整式的加减运算.学习重点:同类项概念的理解和整式的加减.学习难点:整式的加减.学习过程:一.、基本练习整式的加减步骤:__________________________________________.1.若2x m-6y 4与-3x 3y n+3是同类项,则①-n m =_____;②它们的和是________.2.去括号:6x 3-[3x 2-(x -1)]= ________________3.①3x 2-7y 2+3xy -12=-( )②(a -b +c)(-a +b +c)=[c -( )][c +( )]4.化简:①2ab +b 2+_________=3ab -b 2;②(x 2+y 2)+(2y 2-x 2)=__________;③3a 2-5ab -2(2a 2+14ab)=______________; ④3(m 2-4mn +4n 2)-4(m 2-n 2)=______________.5.当a<0时,9a -│3a │=_________.6.3x 2+2x -6与13x -5x 2+7的和是________,差是_________. 7.已知A=x 3+2x 2y -y 2,且A +B=x 3+x 2y ,则B=_________.8.(a +3)2+2-b =0,则ab -[2ab -3(ab -1)]的值是 9.一个多项式加上-5+3x -x 2得到x 2-6,则这个多项式是 _______ ;当x=-1时,这个多项式的值是10.一个三角形的第一边长是2a +3b,,第二边比第一边短a ,第三边比第一边大2b ,那么这个三角形的周长是_______.二、例题评析例1、(1)求单项式ab b a b a ab 4,3,6,322---,的和.(2)已知被减数是272--x x ,差是1422-+-x x ,求减数.(3)一个多项式加上多项式2a-1的2倍的和为1582+-a a ,求这个多项式.例2、已知A=-5a 2bc+2ab ,B=-3ab+4a 2bc .求:(1)A -B ;(2)2B -A .(3)若A+B+C=0,求多项式C例3、(1)已知x-2y=-3,求代数式3)2(5)2(22--+-y x x y 的值.(2)已知0822=--x x ,求代数式x x 42102+-的值(3)已知32=-ab a ,52-=+b ab ,求代数式22222b ab a b a --+与的值.三、当堂检测(一)选择题1. 多项式x 2-3kxy -3y 2+xy -8化简后不含xy 项,则k 为:( )A. 0B. -13C. 13D. 3 2.下列各式中去括号正确的是 ( )A.x 2-(2x -y +2)=x 2+2x +y +2B.-(m +n)-mn=-m +n -mnC.x -(5x -3y)+(2x -y)=-2x +2yD.ab -(-ab +3)=33.(5a -3b)-3(a 2-2b)等于 ( ) A.-3a 2+5a +3b B.2a 2+3b C.2a 3-b 2 D.-3a2 4.当m=-1时,-2m 2-[-4m 2+(-m 2)]等于 ( )A.-7B.3C.1D.25.一个长方形的一边长是2a +3b ,另一边长是a +b ,则这个长方形的周长是 ( )aBA b 0A.12a +16b B.6a +8b C.3a +8b D.6a +4b(二)计算题1. 化简下列各题①3x +2x 2-2-15x 2+1-5x ②(5a -3a 2+1)-(4a 3-3a 2)③5(x 2y -2xy 2+z)-4(2z +3x 2y -xy 2) ④ax -[b -(ax -b)]⑤ 2(3m +2n)+2[2(3m +2n)-(m -n)]2.先化简,再求值①-32 x -2(x -13 y 2)-(-12 x )+13 y 2,其中x=-2,y= 23.②3x 3-[x 3-(6x 2-7x)-2(x 3-3x 2+4x)],其中x=-13.已知A=a 3 – b 3 – a 2 b ,B = a b 2 – a 3 – a 2 b ,C = b 3 – a3 + a b 2,求A – (B + C)5.已知有理数a 、b 、c 在数轴上的位置如图所示:化简()()a b b c a c c a ---+---- • c5. .已知:|a -2|+(b +2)2=0,求代数式ab 2-2{a 2b -12[3ab 2-2(2a 2b -ab 2)]}的值6.已知A=2x2+3xy-2x-1,B=-x2+xy-1.求:(1)3A+6B的值;(2)A+2B+C=0,求C的值.教学后记:___________________________________________________________________ ___________________________________________________________________________。

2020七年级数学上册 第2章 整式的加减 2.2 整式的加减 第2课时 去括号备课素材

2020七年级数学上册 第2章 整式的加减 2.2 整式的加减 第2课时 去括号备课素材

2.2 整式的加减第2课时去括号置疑导入归纳导入复习导入类比导入同学们还记得用火柴棒搭正方形时,怎样计算所需要的火柴棒的根数吗?拿出准备好的火柴,自己搭一下,然后再按如下做法搭.小明的做法:小颖的做法:小刚的做法:他们的做法都正确吗?你能证明吗?[说明与建议] 说明:让学生经历动手实践,将实际问题抽象为数学问题的过程,感受数学知识与生活的联系,激发学生的学习兴趣,也为新课的学习做好铺垫.建议:先让学生自己搭一下,然后再根据示意图方法分别搭,最后让学生根据搭的方法列出式子.央视2套节目《是真的吗》曾经有这样一道有趣的题目:“当a=0.25,b=-0.37时,请算出式子a2+a(a+b)-(2a2+ab)的值”.主持人信心满满,扬言道:“我不用条件就可得出结果!”那么,请问大家,主持人的说法是真的吗?图2-2-6[说明与建议] 说明:创设实际悬念引入新课,激起了学生探究的热情,让学生体验解决这类数学问题的一般方法,充分培养他们的兴趣,使之全面参与到学习中来.建议:仿照央视2套节目《是真的吗》引出探索的问题.针对这种情况,学生只知道可以运用先化简,再代入求值的方法来解决,可要面临去括号的问题,学生却感到困惑,怎样去括号呢?带着问题走入本课吧.教材母题——教材第66页例4 化简下列各式:1.(1)8a +2b +()5a -b ;(2)()5a -3b -3(a 2-2b). 【模型建立】去括号应注意的问题:(1)去括号的依据是分配律;(2)注意法则中的“都”字,即若改变正负号,则各项都改变,若不改变,则各项都不改变.法则可以简单地概括为:去正不变,去负全变.(3)去括号时应将括号前的符号连同括号一起去掉.【变式变形】1.去括号:8a +2b +(5a -b)=__13a +b__. 2.计算:2(a -b)+3b =__2a +b__. 3.计算2a -(-1+2a)=__1__. 4.化简x -2(x -y)的结果是( C )A .-x +yB .-x -yC .-x +2yD .-x -2y5.化简p -[q -2p -(p -q)]的结果为( B ) A .2p B .4p -2q C .-2p D .2p -2q6.如图2-2-7,长方形的长是3a ,宽是2a -b ,则长方形的周长是( A )图2-2-7A .10a -2bB .10a +2bC .6a -2bD .10a -b7.已知a ,b 两数在数轴上对应点的位置如图2-2-8所示,则化简式子|a +b|-|a -1|+|b +2|的结果是( B )图2-2-8A .1B .2b +3C .2a -3D .-1 8.先去括号,再合并同类项.(1)(x +y -z)+(x -y +z)-(x -y -z);(2)3(2x 2-y 2)-2(3y 2-2x 2).解:(1)原式=x +y -z +x -y +z -x +y +z =x +y +z.(2)原式=6x 2-3y 2-6y 2+4x 2=10x 2-9y 2.[命题角度1] 利用去括号法则进行化简去括号应注意的问题:(1)去括号的依据是分配律;(2)注意法则中的“都”字,即若改变符号,则各项都改变;若不改变符号,则各项都不改变.例 [乐山中考] 化简:3(2x 2-y 2)-2(3y 2-2x 2).[答案:10x 2-9y 2][命题角度2] 去绝对值的应用(1)正数的绝对值等于它本身,负数的绝对值等于它的相反数;(2)数形结合思想是解决这类问题的重要思想方法.例 [济宁模拟] 数a ,b 在数轴上的位置如图2-2-9所示,则化简式子||a +b -a 的结果是(D )图2-2-9A .2a +bB .2aC .aD .b [命题角度3] 整体代入法求多项式的值对于多项式的求值问题,一般是先化简再代入求值,要注意整体代入法的应用;或者先对待求式子进行适当变形,使之与已知式子建立某种联系,然后再考虑运用整体法代入求值.例 已知2x +3y -1=0,求3-6x -9y 的值. 解:∵2x+3y -1=0,∴2x +3y =1.∴3-6x -9y =3-(6x +9y)=3-3(2x +3y)=3-3×1=0.P67练习 1.化简:(1)12(x -0.5); (2)-5⎝ ⎛⎭⎪⎫1-15x ; (3)-5a +(3a -2)-(3a -7); (4)13(9y -3)+2(y +1). [答案] (1)12x -6;(2)x -5;(3)5-5a ;(4)5y +1.2.飞机的无风航速为a km/h ,风速为20 km/h.飞机顺风飞行4 h 的行程是多少?飞机逆风飞行3 h 的行程是多少?两个行程相差多少?[答案] 顺风4 h 行程是4(a +20)=(4a +80)(千米),逆风3小时行程是3(a -20)=(3a -60)(千米).两个行程差为4a +80-3a +60=(a +140)千米.[当堂检测]1. 下列运算正确的是( )A .-2(3x-1)=-6x-1B .-2(3x-1)=-6x+1C .-2(3x-1)=-6x-2D .-2(3x-1)=-6x+2 2.下列各式中,去括号正确的是( )A .a+(b-c )=a+b+cB .a-(b-c )=a-b-cC .a-(-b-c )=a+b+cD .a-(b+c )=a-b+c 3.下列各项化简错误的是( ) A .a+(a-b+c )=2a-b+c B .a-(a-b+c )=b-c C .a-(-a+b-c )=-b+c D .a-(a-b-c )=b+c4. 已知a ²–3a+4=0,则:4a ²–12a –2=_______ .5. 化简:(1)3(a+5b )-2(b-a );(2)(5a 2+2a-1)-4(3-8a+2a 2).参考答案:1. D2. C3. C4. -185.(1)5a+13b(2)- 3a² +34a - 13实际背景下的整式加减学了整式的加减,我们不仅要会进行整式的加减运算,而且还要能从实际问题中列出运算式子,再进行加减运算。

七年级数学上册 第二章 整式的加减2.2 整式的加减 第2课时 去括号作业课件上册数学课件

七年级数学上册 第二章 整式的加减2.2 整式的加减 第2课时 去括号作业课件上册数学课件

第八页,共二十一页。
第九页,共二十一页。
11.化简[x-(y-z)]-[(x-y)-z]得( ) B A.2y B.2z C.-2y D.-2z
12.下列(xiàliè)各式与x3-5x2-4x+9相等的是( C ) A.(x3-5x2)-(-4x+9) B.x3-5x2-(4x+9) C.-(-x3+5x2)-(4x-9) D.x3+9-(5x2-4x)
知识点3:去括号的简单(jiǎndān)应用
9.一个长方形的周长为4m,一边长为m-n,则另一边长为( )
C
A.3m+n B.2m+2nC.m+n D.m+3n
10.某校三个班开展了为灾区献爱心捐款活动,一班捐了 x 元,二班
比一班捐的 2 倍少 15 元,三班捐的比一班捐的一半多 32 元,则这三 个班一共捐款_(_72__x_+__1_7_)____元.
第十六页,共二十一页。
解:(1)(3x2+6x+8)-(6x+5x2+2)=3x2+6x+8-6x-5x2-2 =-2x2+6 (2)设“ ”是 a,则原式=(ax2+6x+8)-(6x+5x2 +2)=ax2+6x+8-6x-5x2-2=(a-5)x2+6,∵标准答案的 结果是常数,∴a-5=0,解得 a=5,∴原题中“ ”是 5
第二十页,共二十一页。
内容(nèiróng)总结
No 第2章 整式(zhěnɡ shì)的加减。B.4a-(3b+c)=4a-3b+c。C.4a-(3b+c)=4a+3b+c。5.化简-2a+
(2a-1)的结果是( )。(3)(4ab-b2)-2(a2+2ab-b2)。(4)-3(2x2-xy)+4(x2+xy-6).。A.(x3-5x2)-(-4x+9)。 C.-(-x3+5x2)-(4x-9)。A.b-3a B.-2a-b。C.2a+b D.-a-b
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的加减(二)—去括号与添括号(基础)【学习目标】1.掌握去括号与添括号法则,充分注意变号法则的应用;2. 会用整式的加减运算法则,熟练进行整式的化简及求值.【要点梳理】【高清课堂:整式的加减(二)--去括号与添括号388394 去括号法则】要点一、去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.要点诠释:(1)去括号法则实际上是根据乘法分配律推出的:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.(2)去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号.(3)对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.(4)去括号只是改变式子形式,但不改变式子的值,它属于多项式的恒等变形.要点二、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.要点诠释:(1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.(2)去括号和添括号是两种相反的变形,因此可以相互检验正误:如:()a b c a b c +-+-添括号去括号, ()a b c a b c -+--添括号去括号要点三、整式的加减运算法则一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.要点诠释:(1)整式加减的一般步骤是:①先去括号;②再合并同类项.(2)两个整式相加减时,减数一定先要用括号括起来.(3)整式加减的最后结果中:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.【典型例题】类型一、去括号1.去括号:(1)d-2(3a-2b+3c);(2)-(-xy-1)+(-x+y).【答案与解析】(1)d-2(3a-2b+3c)=d-(6a-4b+6c)=d-6a+4b-6c ;(2)-(-xy-1)+(-x+y)=xy+1-x+y .【总结升华】去括号时.若括号前有数字因数,应先把它与括号内各项相乘,再去括号.举一反三【变式1】去掉下列各式中的括号:(1). 8m-(3n+5); (2). n-4(3-2m);(3). 2(a-2b)-3(2m-n).【答案】(1). 8m-(3n+5)=8m-3n-5.(2). n-4(3-2m)=n-(12-8m)=n-12+8m.(3). 2(a-2b)-3(2m-n)=2a-4b-(6m-3n)=2a-4b-6m+3n.【变式2】化简﹣16(x ﹣0.5)的结果是( )A . ﹣16x ﹣0.5B . ﹣16x+0.5C . 16x ﹣8D . ﹣16x+8【答案】D类型二、添括号2.在各式的括号中填上适当的项,使等式成立.(1). 2345()()x y z t +-+=-=+2()x =-23()x y =+-; (2). 23452()2()x y z t x x -+-=+=-23()45()x y z t =--=--.【答案】(1)2345x y z t --+-,2345x y z t +-+,345y z t -+-,45z t -.(2)345y z t -+-,345y z t -+,45z t -+,23x y -+.【解析】(1)2345x y z t +-+ (2345)x y z t =---+-(2345)x y z t =++-+2(345)x y z t =--+-23(45)x y z t =+--;(2)2345x y z t -+-2(345)x y z t =+-+-2(345)x y z t =--+23(45)x y z t =---+45(23)z t x y =---+.【总结升华】在括号里填上适当的项,要特别注意括号前面的符号,考虑是否要变号.【高清课堂:整式的加减(二)--去括号与添括号 388394添括号练习】举一反三【变式】()()1 a b c d a -+-=-;()()22 ;x y z +-=-()()()()()22222223 ;4 a b a b a b a b a b a a -+-=-+---=--.【答案】b c d -+;2x y z --+;a b -;2b b +. 类型三、整式的加减3.设A ,B ,C 均为多项式,小方同学在计算“A﹣B”时,误将符号抄错而计算成了“A +B”,得到结果是C ,其中A=x 2+x ﹣1,C=x 2+2x ,那么A ﹣B=( )A .x 2﹣2xB .x 2+2xC .﹣2D .﹣2x【思路点拨】根据题意得到B=C ﹣A ,代入A ﹣B 中,去括号合并即可得到结果.【答案】C .【解析】解:根据题意得:A ﹣B=A ﹣(C ﹣A )=A ﹣C+A=2A ﹣C=2(x 2+x ﹣1)﹣(x 2+2x )=x 2+2x ﹣2﹣x 2﹣2x=﹣2, 故选C.【总结升华】整式加减的一般步骤是:①先去括号;②再合并同类项.类型四、化简求值4. 先化简,再求各式的值:22131222,2,;22333x x y x y x y ⎛⎫⎛⎫+-+--=-= ⎪ ⎪⎝⎭⎝⎭其中 【答案与解析】原式=2221312232233x x y x y x y -+-+=-+, 当22,3x y =-=时,原式=22443(2)()66399-⨯-+=+=. 【总结升华】化简求值题一般采用“一化二代三计算”,此类题的书写格式一般为:当……时,原式=? 举一反三【变式1】先化简再求值:(-x 2+5x+4)+(5x-4+2x 2),其中x =-2.【答案】 (-x 2+5x+4)+(5x-4+2x 2)=-x 2+5x+4+5x-4+2x 2=x 2+10x.当x =-2,原式=(-2)2+10×(-2)=-16.【变式2】先化简,再求值:3(2)[3()]2y x x x y x +----,其中,x y 化为相反数.【答案】3(2)[3()]236322()y x x x y x y x x x y x x y +----=+-+--=+因为,x y 互为相反数,所以0x y +=所以3(2)[3()]22()200y x x x y x x y +----=+=⨯= 5. 已知2xy =-,3x y +=,求整式(310)[5(223)]xy y x xy y x ++-+-的值.【答案与解析】由2xy =-,3x y +=很难求出x ,y 的值,可以先把整式化简,然后把xy ,x y +分别作为一个整体代入求出整式的值.原式310(5223)xy y x xy y x =++--+3105223xy y x xy y x =++--+5310232x x y y xy xy =++-+-88x y xy =++8()x y xy =++.把2xy =-,3x y +=代入得,原式83(2)24222=⨯+-=-=.【总结升华】求整式的值,一般先化简后求值,但当题目中含未知数的部分可以看成一个整体时,要用整体代入法,即把“整体”当成一个新的字母,求关于这个新的字母的代数式的值,这样会使运算更简便.举一反三【变式】已知代数式2326y y -+的值为8,求2312y y -+的值. 【答案】∵ 23268y y -+=,∴ 2322y y -=.当2322y y -=时,原式=211(32)121222y y -+=⨯+=. 6. 如果关于x 的多项式22(8614)(865)x ax x x ++-++的值与x 无关.你知道a 应该取什么值吗?试试看.【答案与解析】所谓多项式的值与字母x 无关,就是合并同类项,结果不含有“x ”的项,所以合并同类项后,让含x 的项的系数为0即可.注意这里的a 是一个确定的数.(8x 2+6ax+14)-(8x 2+6x+5)=8x 2+6ax+14-8x 2-6x-5=6ax-6x+9=(6a-6)x+9由于多项式(8x 2+6ax+14)-(8x 2+6x+5)的值与x 无关,可知x 的系数6a-6=0.解得a =1.【总结升华】本例解题的题眼是多项式的值与字母x 无关.“无关”意味着合并同类项后,其结果不含“x ”的项.[巩固练习]一、选择题1. 计算:a ﹣2(1﹣3a )的结果为( )A.7a ﹣2B.﹣2﹣5aC.4a ﹣2D.2a ﹣22. 下列式子正确的是( )A .x ﹣(y ﹣z )=x ﹣y ﹣zB .﹣(x ﹣y+z )=﹣x ﹣y ﹣zC .x+2y ﹣2z=x ﹣2(z+y )D .﹣a+c+d+b=﹣(a ﹣b )﹣(﹣c ﹣d )3.计算-(a-b)+(2a+b)的最后结果为( ).A .aB .a+bC .a+2bD .以上都不对4. 已知一个多项式与3x 2+9x 的和等于3x 2+4x-1,则这个多项式是( )A .-5x-1B .5x+1C .-13x-1D .13x+15.代数式2332333103(2)(672)x y x x y x y x y x --++--+的值( ).A .与x ,y 都无关B .只与x 有关C .只与y 有关D .与x 、y 都有关6.如图所示,阴影部分的面积是( ).A .112xyB .132xyC .6xyD .3xy 二、填空题7.添括号:(1).331(___________)3(_______)p q q -+-=+=-.(2).()()[(_______)][(_______)]a b c d a b c d a a -+-+-+=-+.8. 化简:5(x ﹣2y )﹣4(x ﹣2y )=________.9.若221m m -=则2242008m m -+的值是________.10. 若mn=m+3,则2mn+3m ﹣5mn+10= .11.已知a =-(-2)2,b =-(-3)3,c =-(-42),则-[a-(b-c)]的值是________.12.如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n 是正整数)个图案中由________个基础图形组成.三、解答题13. 化简 (1).(2015•宝应县校级模拟)2(3x 2﹣2xy )﹣4(2x 2﹣xy ﹣1) (2). 22222323xy xy y x y x -++-(3). m n mn m n mn mn n m 222238.0563--+--(4). )45(2)2(32222ab b a ab b a ---(5).(6).14.化简求值: (1). 已知:2010=a ,求)443()842()33(232332-+++-++-+--a a a a a a a a a 的值.(2). 2222131343223a b a b abc a c a c abc ⎡⎤⎛⎫------ ⎪⎢⎥⎝⎭⎣⎦,其中a = -1, b = -3, c = 1. (3). 已知3532++y x 的值是6,求代数式 71494322-++--y x y x 的值.15. 有一道题目:当a=2,b=-2时,求多项式:3a 3b 3-2a 2b+b-(4a 3b 3-a 2b-b 2)+(a 3b 3+a 2b)-2b 2+3的值.甲同学做题时把a=2错抄成a=-2,乙同学没抄错题,但他们做出的结果恰好一样。

相关文档
最新文档