回归分析实验案例数据1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验课程案例数据1
香烟消费数据:一个国家保险组织想要研究在美国所有50个州和哥伦比亚特区的香烟消费模式,表1给出了研究中所选的变量,表2给出了1970年的数据。讨论下列问题:
表1. 香烟消费数据的变量
表2. 香烟消费数据(1970年)
州年龄HS 收入黑人比例女性比例价格销量
AL2741.3294826.251.742.789.8
AK22.966.74644345.741.8121.3
AZ26.358.13665350.838.5115.2
AR29.139.9287818.351.538.8100.3
CA28.162.64493750.839.7123
CO26.263.93855350.731.1124.8
CT29.1564917651.545.5120
DE26.854.6452414.351.341.3155
DC28.455.2507971.153.532.6200.4
FL32.352.6373815.351.843.8123.6
GA25.940.6335425.951.435.8109.9
HI2561.9462314836.782.1
ID26.459.532900.350.133.6102.4
IL28.652.6450712.851.541.4124.8
IN27.252.93772 6.951.332.2134.6
IO28.8593751 1.251.438.5108.5
KA28.759.93853 4.85138.9114
KY27.538.531127.250.930.1155.8
LA24.842.2309029.851.439.3115.9
ME2854.733020.351.338.8128.5
MD27.152.3430917.851.134.2123.5
MA2958.54340 3.152.241124.3
MI26.352.8418011.25139.2128.6
MN26.857.638590.95140.1104.3
MS25.141262636.851.637.593.4
MO29.448.8378110.351.836.8121.3
MT27.159.235000.35034.7111.2
NB28.659.33789 2.751.234.7108.1
NV27.865.24563 5.749.344189.5
NH2857.637370.351.134.1265.7
NJ30.152.5470110.851.641.7120.7
NM23.955.23077 1.950.741.790
NY30.352.7471211.952.241.7119
NC26.538.5325222.25129.4172.4
ND26.450.330860.449.538.993.8
OH27.753.240209.151.538.1121.6
OK29.451.63387 6.751.339.8108.4
OR29603719 1.35129157
PA30.750.2397185244.7107.3
RI29.246.43959 2.750.940.2123.9
SC24.837.8299030.550.934.3103.6
SD27.453.331230.350.338.592.7
TN28.141.8311915.851.641.699.8
TX26.447.4360612.55142106.4
UT23.167.332270.650.636.665.5
VT26.857.134680.251.139.5122.6
V A26.847.8371218.550.630.2124.3
WA27.563.54053 2.150.340.396.7
WV3041.63061 3.951.641.6114.5
WI27.254.53812 2.950.940.2106.4
WY27.262.938150.85034.4132.2
(1)在销量关于6个自变量的回归模型中,检验假设“不需要女性比例这一变量”;
(2)在上面的模型中,检验假设“不需要女性比例和HS这两个变量”;
(3)计算收入变量回归系数的95%的置信区间;
(4)去掉收入这个变量后拟合回归方程,其他变量对于销量的解释比例是多少?
(5)用价格、年龄和收入作自变量拟合模型,它们对销量的解释比例是多少?
(6)仅用收入作自变量拟合模型,它们对销量的解释比例是多少?