回归分析实验案例数据1
线性回归分析实验报告
线性回归分析实验报告实验报告:线性回归分析一、引言线性回归是一种基本的统计分析方法,用于研究自变量与因变量之间的线性关系。
此实验旨在通过一个实际案例对线性回归进行分析,并解释如何使用该方法进行预测和解释。
二、实验方法1.数据收集:从电商网站收集了一份销售量与广告费用的数据集,其中包括了十个月的数据。
该数据集包括两个变量:广告费用(自变量)和销售量(因变量)。
2.数据处理:首先对数据进行清洗,包括处理缺失值和异常值等。
然后进行数据转换,对广告费用进行对数转换,以适应线性回归的假设。
3.构建模型:使用线性回归模型,将广告费用作为自变量,销售量作为因变量,构建一个简单的线性回归模型。
模型的公式为:销售量=β0+β1*广告费用+ε,其中β0和β1是回归系数,ε是误差项。
4.模型评估:通过计算回归系数的置信区间和检验假设以评估模型的拟合程度和相关性。
此外,还使用残差分析来检验模型的合理性和独立性。
5.模型预测:根据模型的回归系数和新的广告费用数据,预测销售量。
三、实验结果1.数据描述:首先对数据进行描述性统计。
数据集的平均广告费用为1000元,标准差为200元。
平均销售量为1000件,标准差为150件。
广告费用和销售量之间的相关系数为0.8,说明两者存在一定的正相关关系。
2. 模型拟合:通过拟合线性回归模型,得到回归系数的估计值。
估计值的标准误差很小,R-square值为0.64,说明模型可以解释63%的销售量变异。
3.置信区间和假设检验:通过计算回归系数的置信区间,发现β1的置信区间不包含零,说明广告费用对销售量有显著影响。
假设检验结果也支持这一结论。
4.残差分析:通过残差分析,发现残差的分布基本符合正态性假设,没有明显的模式或趋势。
这表明模型的合理性和独立性。
四、结论与讨论通过线性回归分析,我们得出以下结论:1.广告费用对销售量有显著影响,且为正相关关系。
随着广告费用的增加,销售量也呈现增加的趋势。
2.线性回归模型可以解释63%的销售量变异,说明模型的拟合程度较好。
多元回归分析案例
多元回归分析案例下面以一个实际案例来说明多元回归分析的应用。
假设我们是一家电商公司,希望了解哪些因素会影响网站用户购买商品的金额。
为了回答这个问题,我们收集了以下数据:每位用户购买的商品金额(因变量),用户的年龄、性别和收入水平(自变量)。
首先,我们需要构建一个多元回归模型。
由于因变量是连续型变量,我们可以选择使用线性回归模型。
模型的形式可以表示为:购买金额=β0+β1×年龄+β2×性别+β3×收入水平+ε其中,β0是截距,β1、β2和β3是自变量的系数,ε是误差项。
接下来,我们需要对数据进行预处理。
首先,将性别变量转换为虚拟变量,比如用0表示男性,1表示女性。
然后,我们可以使用逐步回归方法,逐步选择自变量,以确定哪些变量对因变量的解释最显著。
在实际操作中,我们可以使用统计软件,比如SPSS或R来进行多元回归分析。
下面是一个用R进行多元回归分析的示例代码:```R#导入数据data <- read.csv("data.csv")#转换性别变量为虚拟变量data$gender <- as.factor(data$gender)#构建多元回归模型model <- lm(购买金额 ~ 年龄 + 性别 + 收入水平, data=data)#执行逐步回归step_model <- step(model)#显示结果summary(step_model)```通过运行这段代码,我们可以得到每个自变量的系数估计值、显著性水平、拟合优度等统计结果。
这些结果可以帮助我们理解各个自变量对于购买金额的影响程度以及它们之间的相对重要性。
在实际应用中,多元回归分析可以帮助我们识别哪些因素对于一些特定的因变量具有显著影响。
通过控制其他自变量,我们可以解释每个自变量对因变量的独立贡献,并用于预测因变量的值。
总之,多元回归分析是一种强大的统计工具,可以应用于各个领域,帮助我们理解和预测自变量对因变量的影响。
回归分析数据案例
回归分析数据案例回归分析是一种用来研究变量之间关系的统计方法,在实际情况中有很多可以应用回归分析的案例。
下面以一个销售数据案例为例,详细介绍回归分析的应用。
某电商公司想要分析广告费用与销售额之间的关系,以便确定是否需要增加广告投入来提高销售额。
公司收集了一年的数据,包括每月的广告费用和销售额。
公司使用回归分析来研究广告费用和销售额之间的关系。
首先,需要确定自变量和因变量。
在这个案例中,广告费用是自变量,销售额是因变量。
然后,利用回归模型拟合数据,得到回归方程。
假设回归方程为:销售额= β0+ β1 * 广告费用其中,β0 是截距,表示在广告费用为 0 时的销售额;β1 是斜率,表示每单位广告费用对销售额的影响。
通过计算回归方程的参数,可以得到具体的值。
接下来,用实际数据计算回归方程的参数。
假设公司收集了一年的数据,总共 12 个月的广告费用和销售额。
通过回归分析软件,可以计算得到β0 和β1 的估计值。
假设计算结果为β0= 1000,表示当广告费用为 0 时,销售额约为 1000;β1 = 2,表示每多投入 1 单位的广告费用,销售额约增加 2。
通过计算回归方程的参数,可以预测未来的销售额。
假设公司计划增加下个月的广告费用为 5000,可以利用回归方程计算出销售额的预测值。
根据回归方程:销售额 = 1000 + 2 * 5000 = 11000预测出下个月的销售额为 11000。
公司还可以利用回归方程来评估广告费用对销售额的影响。
根据回归方程的斜率β1,可以计算出每单位广告费用对销售额的影响。
在这个案例中,β1=2,说明每多投入 1 单位的广告费用,销售额平均增加 2。
通过回归分析,公司可以了解广告费用和销售额之间的关系,判断是否需要增加广告投入来提高销售额。
如果回归方程的斜率显著大于 0,说明广告费用对销售额有显著的正向影响,公司可以考虑增加广告投入。
如果回归方程的斜率接近 0 或者小于 0,说明广告费用对销售额的影响较小或者负面,公司就需要重新评估广告策略。
财务回归分析案例
财务回归分析案例引言在财务领域中,回归分析是一种常用的统计方法,用于研究变量之间的关系。
通过回归分析,我们可以了解一个或多个自变量如何影响因变量,并得出模型的预测能力。
在本文中,我们将介绍一个财务回归分析的案例,以帮助读者更好地理解该方法在实际应用中的作用。
数据收集首先,我们需要收集相关的数据以进行财务回归分析。
在这个案例中,我们将使用一家零售公司的销售数据作为例子。
我们将收集以下数据:1.每个月的销售额(因变量)2.广告费用3.促销费用4.人力资源费用5.物流费用这些数据将帮助我们了解不同因素对销售额的影响,并建立一个回归模型来预测销售额。
数据处理在进行回归分析之前,我们需要对数据进行一些处理。
首先,我们需要将数据进行清洗,删除不完整或错误的数据。
然后,我们可以计算各个自变量之间的相关性,以确定是否存在多重共线性的问题。
如果存在多重共线性,我们需要考虑删除一些自变量或使用其他方法来解决该问题。
回归模型建立在确定了自变量和因变量之后,我们可以建立回归模型来分析它们之间的关系。
在本案例中,我们将使用多元线性回归模型来分析销售额与广告费用、促销费用、人力资源费用和物流费用之间的关系。
回归模型的基本形式如下:销售额= β0 + β1 * 广告费用+ β2 * 促销费用+ β3 * 人力资源费用+ β4 *物流费用+ ε其中,β0、β1、β2、β3、β4为回归系数,ε为误差项。
通过最小二乘法估计回归系数,我们可以得出模型的预测能力。
回归模型分析在得到回归模型后,我们可以进行一些分析以评估模型的有效性。
首先,我们需要评估模型的拟合程度,即模型对观察数据的解释能力。
常用的评价指标包括决定系数(R2)和调整决定系数(adj-R2)。
较高的决定系数表示模型能够较好地解释数据的变异性。
然后,我们可以通过t检验或F检验来判断自变量是否具有显著影响。
统计学上,显著性是指一个变量或模型与随机变量是显著不同的。
如果自变量的p值小于设定的显著性水平(通常为0.05),则可以得出该变量对因变量的影响是显著的。
回归分析实验案例数据
回归分析实验案例数据引言:回归分析是一种常用的统计方法,用于探索一个或多个自变量对一个因变量的影响程度。
在实际应用中,回归分析有很多种,例如简单线性回归、多元线性回归、逻辑回归等。
本文将介绍一个回归分析实验案例,并分析其中的数据。
案例背景:一家汽车制造公司对汽车的油耗进行研究。
他们收集了一些汽车的相关数据,并希望通过回归分析来探究这些数据之间的关系。
数据收集:为了进行回归分析,他们收集了以下数据:1. 汽车型号:不同汽车型号的标识符。
2. 汽车价格:每辆汽车的价格,单位为美元。
3. 汽车速度:以每小时英里的速度来衡量。
4. 引擎大小:汽车引擎的容量大小,以升为单位。
5. 油耗:每加仑汽油行驶的英里数。
数据分析:通过对收集的数据进行回归分析,可以得出以下结论:1. 汽车价格与汽车引擎大小之间存在正相关关系。
即引擎越大,汽车价格越高。
2. 汽车速度与油耗之间呈现负相关。
即速度越高,油耗越大。
3. 汽车引擎大小与油耗之间存在正相关关系。
即引擎越大,油耗越大。
结论:基于以上分析结果,可以得出以下结论:1. 汽车价格受到引擎大小的影响,即引擎越大,汽车价格越高。
这一结论可以帮助汽车制造公司在制定价格策略时做出合理的决策。
2. 汽车速度与油耗之间呈现负相关。
这一结论可以帮助消费者在购买汽车时考虑速度对油耗的影响,从而选择更经济的汽车。
3. 汽车引擎大小与油耗之间存在正相关关系。
这一结论可以帮助汽车制造公司在设计引擎时考虑油耗因素,从而提高汽车的燃油效率。
总结:回归分析是一种有效的统计方法,可以用于探索数据间的关系。
通过对汽车制造公司收集的数据进行回归分析,我们发现了汽车价格、速度和引擎大小与油耗之间的关系。
这些分析结果对汽车制造公司制定价格策略、消费者购车以及提高燃油效率都具有重要的指导意义。
多元线性回归分析案例
多元线性回归分析案例多元线性回归分析是统计学中常用的一种分析方法,它可以用来研究多个自变量对因变量的影响,并建立相应的数学模型。
在实际应用中,多元线性回归分析可以帮助我们理解变量之间的关系,预测未来的趋势,以及制定相应的决策。
本文将通过一个实际案例来介绍多元线性回归分析的基本原理和应用方法。
案例背景。
假设我们是一家电子产品制造公司的市场营销团队,我们想要了解产品销量与广告投入、产品定价和市场规模之间的关系。
我们收集了过去一年的数据,包括每个月的产品销量(千台)、广告投入(万元)、产品定价(元/台)和市场规模(亿人)。
数据分析。
首先,我们需要对数据进行描述性统计分析,以了解各变量的分布情况和相关性。
我们计算了产品销量、广告投入、产品定价和市场规模的均值、标准差、最大最小值等统计量,并绘制了相关性矩阵图。
通过分析发现,产品销量与广告投入、产品定价和市场规模之间存在一定的相关性,但具体的关系还需要通过多元线性回归分析来验证。
多元线性回归模型。
我们建立了如下的多元线性回归模型:\[Sales = \beta_0 + \beta_1 \times Advertising + \beta_2 \times Price + \beta_3 \times MarketSize + \varepsilon\]其中,Sales表示产品销量,Advertising表示广告投入,Price表示产品定价,MarketSize表示市场规模,\(\beta_0, \beta_1, \beta_2, \beta_3\)分别为回归系数,\(\varepsilon\)为误差项。
模型验证。
我们利用最小二乘法对模型进行参数估计,并进行了显著性检验和回归诊断。
结果表明,广告投入、产品定价和市场规模对产品销量的影响是显著的,模型的拟合效果较好。
同时,我们还对模型进行了预测能力的验证,结果表明模型对未来产品销量的预测具有一定的准确性。
决策建议。
数据分析中的回归分析方法及应用案例
数据分析中的回归分析方法及应用案例数据分析是当今社会中必不可少的一个行业,随着技术的迅速发展和互联网的普及,数据分析在各类行业中得到了越来越广泛的应用。
而回归分析则是数据分析中经常使用的一种方法,用来确定一个或多个变量与某个特定结果变量之间的关系。
一、回归分析的基本原理回归分析是一种统计学上的方法,主要用于探究因变量与自变量之间的关系,并预测因变量的值。
在回归分析中,因变量通常被称为“响应变量”或“目标变量”,而自变量则被称为“预测变量”。
回归分析通过数据建立一个数学模型,以预测因变量的值。
该模型的形式取决于所用的回归类型,例如,线性回归模型是最常用的一种类型,它基于一系列自变量来预测因变量。
线性回归模型的基本形式如下:y = a + bx其中,y表示因变量的值,a和b分别是回归方程的截距和行斜率,x是自变量的值。
二、应用案例1.房价预测房价预测是回归分析的一个经典案例,通过分析房价与各种因素之间的关系,建立一个回归模型以预测房价。
这些因素包括房屋的面积、建造年份、地理位置等等。
在这种情况下,房价是因变量,而这些因素则是自变量。
2.市场销售预测回归分析也可以用于市场销售预测。
在这种情况下,预测变量可能是广告预算、营销策略等等。
通过回归分析进行预测,就可以在市场竞争中更加有效地规划营销策略。
3.贷款违约率预测在贷款业务中,银行经常使用回归分析预测贷款违约率。
在这种情况下,预测变量可能包括借款人的信用评级、负债率等等。
通过回归分析预测违约率,可以对借款者进行个性化评估,同时也可以确保银行的风险控制。
三、结论回归分析是数据分析中非常重要的一个方法,它可以用来探究各种因素与因变量之间的关系,并预测因变量的值。
而在实践中,回归分析的应用非常广泛,从房价预测到市场营销,再到贷款业务中的风险控制,都可以进行有效的预测与规划。
因此,回归分析在当今社会中的地位和重要性是不可替代的。
回归分析 实验报告
回归分析实验报告1. 引言回归分析是一种用于探索变量之间关系的统计方法。
它通过建立一个数学模型来预测一个变量(因变量)与一个或多个其他变量(自变量)之间的关系。
本实验报告旨在介绍回归分析的基本原理,并通过一个实际案例来展示其应用。
2. 回归分析的基本原理回归分析的基本原理是基于最小二乘法。
最小二乘法通过寻找一条最佳拟合直线(或曲线),使得所有数据点到该直线的距离之和最小。
这条拟合直线被称为回归线,可以用来预测因变量的值。
3. 实验设计本实验选择了一个实际数据集进行回归分析。
数据集包含了一个公司的广告投入和销售额的数据,共有200个观测值。
目标是通过广告投入来预测销售额。
4. 数据预处理在进行回归分析之前,首先需要对数据进行预处理。
这包括了缺失值处理、异常值处理和数据标准化等步骤。
4.1 缺失值处理查看数据集,发现没有缺失值,因此无需进行缺失值处理。
4.2 异常值处理通过绘制箱线图,发现了一个销售额的异常值。
根据业务经验,判断该异常值是由于数据采集错误造成的。
因此,将该观测值从数据集中删除。
4.3 数据标准化为了消除不同变量之间的量纲差异,将广告投入和销售额两个变量进行标准化处理。
标准化后的数据具有零均值和单位方差,方便进行回归分析。
5. 回归模型选择在本实验中,我们选择了线性回归模型来建立广告投入与销售额之间的关系。
线性回归模型假设因变量和自变量之间存在一个线性关系。
6. 回归模型拟合通过最小二乘法,拟合了线性回归模型。
回归方程为:销售额 = 0.7 * 广告投入 + 0.3回归方程表明,每增加1单位的广告投入,销售额平均增加0.7单位。
7. 回归模型评估为了评估回归模型的拟合效果,我们使用了均方差(Mean Squared Error,MSE)和决定系数(Coefficient of Determination,R^2)。
7.1 均方差均方差度量了观测值与回归线之间的平均差距。
在本实验中,均方差为10.5,说明模型的拟合效果相对较好。
SPSS回归分析案例
偏度偏度(skewness),是统计数据分布偏斜方向和程度的度量,是统计数据分布非对称程度的数字特征。
表征概率分布密度曲线相对于平均值不对称程度的特征数。
直观看来就是密度函数曲线尾部的相对长度。
正偏离(右偏态)、负偏离(左偏态):正态分布的偏度为为0,两侧尾部长度对称。
若以bs表示偏度。
bs<0称分布具有负偏离,也称左偏态,此时数据位于均值左边的比位于右边的少,直观表现为左边的尾部相对于与右边的尾部要长,因为有少数变量值很小,使曲线左侧尾部拖得很长;bs>0称分布具有正偏离,也称右偏态,此时数据位于均值右边的比位于左边的少,直观表现为右边的尾部相对于与左边的尾部要长,因为有少数变量值很大,使曲线右侧尾部拖得很长;而bs接近0则可认为分布是对称的。
若知道分布有可能在偏度上偏离正态分布时,可用偏离来检验分布的正态性。
右偏时一般算术平均数>中位数>众数,左偏时相反,即众数>中位数>平均数。
计算:1.2.其中:而,数学期望所以:举个栗子(见excel表中):Χ2分布,t分布,F分布Χ2分布:t分布:F分布:关于p分为点决定系数(coefficient of determination)有的教材上翻译为判定系数,也称为拟合优度,决定系数是指在x或y的总变异中,可以相互以直线关系说明的部分所占的比率。
即在Y的总平方和中,由X引起的平方和所占的比例,记为R^2(R的平方)。
当R^2越接近1时,表示相关的方程式参考价值越高,越符合回归线。
计算:RSS = (回归平方和)TSS = (总离差平方和)区别:SPSS-线性回归(举个栗子)例1. 某分公司连续6年记录了员工的平均工资,数据如下表,试建立线性回归模型。
操作步骤(1)定义变量:年份定义为x,工资定义为y,点击“变量试图”,定义x,y变量;(2)数据录入:点击“数据视图”,输入x,y对应的数据;(3)线性回归准备:“分析”->“回归”->“线性”,打开“线性回归”的对话框;(4)线性回归:选择因变量y进入“因变量”栏中,选择自变量x进入“自变量”栏中,单击右上角的“statics”统计对话框可以选择要计算的统计数据,最后单击左下角的“确定”按钮;(5)结果分析(α系数默认为0.05):图1图2图3图4图2中R^2是0.995,表明Y的总平方和中,由X引起的平方和所占的比例为99.5%。
一元线性回归分析案例
数学3——统计内容
再冷的石头,坐上三年也会暖 !
1. 画散点图
2. 了解最小二乘法的思想
3. 求回归直线方程
y=bx+a
4. 用回归直线方程解决应用问题
课题:选修2-3 8.5 回归分析案例
复习 变量之间的两种关系
再冷的石头,坐上三年也会暖 !
问题1:正方形的面积y与正方形的边长x之间
选修2-3——统计案例
5. 引入线性回归模型
y=bx+a+e
6. 了解模型中随机误差项e产 生的原因
7. 了解相关指数 R2 和模型拟 合的效果之间的关系
8. 了解残差图的作用 9. 利用线性回归模型解决一类
非线性回归问题 10. 正确理解分析方法与结果
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
课题:选修2-3 8.5 回归分析案例
解:(1)列出下表,并计算
再冷的石头,坐上三年也会暖 !
i
1
2
3
4
5
6
7
8
9
10
xi 104 180 190 177 147 134 150 191 204 121 yi 100 200 210 185 155 135 170 205 235 125 xiyi 10400 36000 39900 32745 22785 18090 25500 39155 47940 15125
现实生活中存在着大量的相关关系。 如:人的身高与年龄; 产品的成本与生产数量; 商品的销售额与广告费; 家庭的支出与收入。等等
探索:水稻产量y与施肥量x之间大致有何规 律?
课题:选修2-3 8.5 回归分析案例
多元回归分析SPSS案例
多元回归分析在大多数的实际问题中,影响因变量的因素不是一个而是多个,我们称这类回问题为多元回归分析;可以建立因变量y与各自变量x j j=1,2,3,…,n之间的多元线性回归模型:其中:b0是回归常数;b k k=1,2,3,…,n是回归参数;e是随机误差;多元回归在病虫预报中的应用实例:某地区病虫测报站用相关系数法选取了以下4个预报因子;x1为最多连续10天诱蛾量头;x2为4月上、中旬百束小谷草把累计落卵量块;x3为4月中旬降水量毫米,x4为4月中旬雨日天;预报一代粘虫幼虫发生量y头/m2;分级别数值列成表2-1;预报量y:每平方米幼虫0~10头为1级,11~20头为2级,21~40头为3级,40头以上为4级;预报因子:x1诱蛾量0~300头为l级,301~600头为2级,601~1000头为3级,1000头以上为4级;x2卵量0~150块为1级,15l~300块为2级,301~550块为3级,550块以上为4级;x3降水量0~毫米为1级,~毫米为2级,~毫米为3级,毫米以上为4级;x4雨日0~2天为1级,3~4天为2级,5天为3级,6天或6天以上为4级;表2-1x1 x2 x3 x4 y年蛾量级别卵量级别降水量级别雨日级别幼虫密度级别1960 1022 4 112 1 1 2 1 10 1 1961 300 1 440 3 1 1 1 4 1 1962 699 3 67 1 1 1 1 9 1 1963 1876 4 675 4 4 7 4 55 4 1965 43 1 80 1 1 2 1 1 1 1966 422 2 20 1 0 1 0 1 3 1 1967 806 3 510 3 2 3 2 28 3 1976 115 1 240 2 1 2 1 7 1 1971 718 3 1460 4 4 4 2 45 4 1972 803 3 630 4 3 3 2 26 3 1973 572 2 280 2 2 4 2 16 2 1974 264 1 330 3 4 3 2 19 2数据保存在“”文件中;1准备分析数据在SPSS数据编辑窗口中,创建“年份”、“蛾量”、“卵量”、“降水量”、“雨日”和“幼虫密度”变量,并输入数据;再创建蛾量、卵量、降水量、雨日和幼虫密度的分级变量“x1”、“x2”、“x3”、“x4”和“y”,它们对应的分级数值可以在SPSS数据编辑窗口中通过计算产生;编辑后的数据显示如图2-1;图2-1或者打开已存在的数据文件“”;2启动线性回归过程单击SPSS主菜单的“Analyze”下的“Regression”中“Linear”项,将打开如图2-2所示的线性回归过程窗口;图2-2 线性回归对话窗口3 设置分析变量设置因变量:用鼠标选中左边变量列表中的“幼虫密度y”变量,然后点击“Dependent”栏左边的向右拉按钮,该变量就移到“Dependent”因变量显示栏里;设置自变量:将左边变量列表中的“蛾量x1”、“卵量x2”、“降水量x3”、“雨日x4”变量,选移到“IndependentS”自变量显示栏里;设置控制变量: 本例子中不使用控制变量,所以不选择任何变量;选择标签变量: 选择“年份”为标签变量;选择加权变量: 本例子没有加权变量,因此不作任何设置;4回归方式本例子中的4个预报因子变量是经过相关系数法选取出来的,在回归分析时不做筛选;因此在“Method”框中选中“Enter”选项,建立全回归模型;5设置输出统计量单击“Statistics”按钮,将打开如图2-3所示的对话框;该对话框用于设置相关参数;其中各项的意义分别为:图2-3 “Statistics”对话框①“Regression Coefficients”回归系数选项:“Estimates”输出回归系数和相关统计量;“Confidence interval”回归系数的95%置信区间;“Covariance matrix”回归系数的方差-协方差矩阵;本例子选择“Estimates”输出回归系数和相关统计量;②“Residuals”残差选项:“Durbin-Watson”Durbin-Watson检验;“Casewise diagnostic”输出满足选择条件的观测量的相关信息;选择该项,下面两项处于可选状态:“Outliers outside standard deviations”选择标准化残差的绝对值大于输入值的观测量;“All cases”选择所有观测量;本例子都不选;③其它输入选项“Model fit”输出相关系数、相关系数平方、调整系数、估计标准误、ANOVA表;“R squared change”输出由于加入和剔除变量而引起的复相关系数平方的变化;“Descriptives”输出变量矩阵、标准差和相关系数单侧显著性水平矩阵;“Part and partial correlation”相关系数和偏相关系数;“Collinearity diagnostics”显示单个变量和共线性分析的公差;本例子选择“Model fit”项;6绘图选项在主对话框单击“Plots”按钮,将打开如图2-4所示的对话框窗口;该对话框用于设置要绘制的图形的参数;图中的“X”和“Y”框用于选择X轴和Y轴相应的变量;图2-4“Plots”绘图对话框窗口左上框中各项的意义分别为:•“DEPENDNT”因变量;•“ZPRED”标准化预测值;•“ZRESID”标准化残差;•“DRESID”删除残差;•“ADJPRED”调节预测值;•“SRESID”学生氏化残差;•“SDRESID”学生氏化删除残差;“Standardized Residual Plots”设置各变量的标准化残差图形输出;其中共包含两个选项:“Histogram”用直方图显示标准化残差;“Normal probability plots”比较标准化残差与正态残差的分布示意图;“Produce all partial plot”偏残差图;对每一个自变量生成其残差对因变量残差的散点图;本例子不作绘图,不选择;7 保存分析数据的选项在主对话框里单击“Save”按钮,将打开如图2-5所示的对话框;图2-5 “Save”对话框①“Predicted Values”预测值栏选项:Unstandardized 非标准化预测值;就会在当前数据文件中新添加一个以字符“PRE_”开头命名的变量,存放根据回归模型拟合的预测值;Standardized 标准化预测值;Adjusted 调整后预测值;. of mean predictions 预测值的标准误;本例选中“Unstandardized”非标准化预测值;②“Distances”距离栏选项:Mahalanobis: 距离;Cook’s”: Cook距离;Leverage values: 杠杆值;③“Prediction Intervals”预测区间选项:Mean: 区间的中心位置;Individual: 观测量上限和下限的预测区间;在当前数据文件中新添加一个以字符“LICI_”开头命名的变量,存放预测区间下限值;以字符“UICI_”开头命名的变量,存放预测区间上限值;Confidence Interval:置信度;本例不选;④“Save to New File”保存为新文件:选中“Coefficient statistics”项将回归系数保存到指定的文件中;本例不选;⑤“Export model information to XML file”导出统计过程中的回归模型信息到指定文件;本例不选;⑥“Residuals” 保存残差选项:“Unstandardized”非标准化残差;“Standardized”标准化残差;“Studentized”学生氏化残差;“Deleted”删除残差;“Studentized deleted”学生氏化删除残差;本例不选;⑦“Influence Statistics” 统计量的影响;“DfBetas”删除一个特定的观测值所引起的回归系数的变化;“Standardized DfBetas”标准化的DfBeta值;“DiFit” 删除一个特定的观测值所引起的预测值的变化;“Standardized DiFit”标准化的DiFit值;“Covariance ratio”删除一个观测值后的协方差矩隈的行列式和带有全部观测值的协方差矩阵的行列式的比率;本例子不保存任何分析变量,不选择;8其它选项在主对话框里单击“Options”按钮,将打开如图2-6所示的对话框;图2-6 “Options”设置对话框①“Stepping Method Criteria”框用于进行逐步回归时内部数值的设定;其中各项为:“Use probability of F”如果一个变量的F值的概率小于所设置的进入值Entry,那么这个变量将被选入回归方程中;当变量的F值的概率大于设置的剔除值Removal,则该变量将从回归方程中被剔除;由此可见,设置“Use probability of F”时,应使进入值小于剔除值;“Ues F value”如果一个变量的F值大于所设置的进入值Entry,那么这个变量将被选入回归方程中;当变量的F值小于设置的剔除值Removal,则该变量将从回归方程中被剔除;同时,设置“Use F value”时,应使进入值大于剔除值;本例是全回归不设置;②“Include constant in equation”选择此项表示在回归方程中有常数项;本例选中“Include constant in equation”选项在回归方程中保留常数项;③“Missing Values”框用于设置对缺失值的处理方法;其中各项为:“Exclude cases listwise”剔除所有含有缺失值的观测值;“Exchude cases pairwise”仅剔除参与统计分析计算的变量中含有缺失值的观测量;“Replace with mean”用变量的均值取代缺失值;本例选中“Exclude cases listwise”;9提交执行在主对话框里单击“OK”,提交执行,结果将显示在输出窗口中;主要结果见表2-2至表2-4;10 结果分析主要结果:表2-2表2-2 是回归模型统计量:R 是相关系数;R Square 相关系数的平方,又称判定系数,判定线性回归的拟合程度:用来说明用自变量解释因变量变异的程度所占比例;Adjusted R Square 调整后的判定系数;Std. Error of the Estimate 估计标准误差;表2-3表2-3 回归模型的方差分析表,F值为,显著性概率是,表明回归极显著;表2-4分析:建立回归模型:根据多元回归模型:把表6-9中“非标准化回归系数”栏目中的“B”列系数代入上式得预报方程:预测值的标准差可用剩余均方估计:回归方程的显著性检验:从表6-8方差分析表中得知:F统计量为,系统自动检验的显著性水平为;F,4,11值为,F,4,11 值为,F,4,11 值为;因此回归方程相关非常显著;F值可在Excel中用FINV 函数获得;回代检验需要作预报效果的验证时,在主对话框图6-8里单击“Save”按钮,在打开如图3-6所示对话框里,选中“Predicted Values”预测值选项栏中的“Unstandardized”非标准化预测值选项;这样在过程运算时,就会在当前文件中新添加一个“PRE_1”命名的变量,该变量存放根据回归模型拟合的预测值;然后,在SPSS数据窗口计算“y”与“PRE_1”变量的差值图2-7,本例子把绝对差值大于视为不符合,反之则符合;结果符合的年数为15年,1年不符合,历史符合率为%;图2-7多元回归分析法可综合多个预报因子的作用,作出预报,在统计预报中是一种应用较为普遍的方法;在实际运用中,采取将预报因子和预报量按一定标准分为多级,用分级尺度代换较大的数字,更能揭示预报因子与预报量的关系,预报效果比采用数量值统计方法有明显的提高,在实际应用中具有一定的现实意义;。
回归分析数据案例
回归分析数据案例回归分析是一种常用的统计方法,用于探究变量之间的关系。
在实际应用中,回归分析可以帮助我们理解和预测变量之间的相互影响,为决策提供依据。
下面,我们通过一个实际的数据案例来介绍回归分析的应用。
案例背景:某公司想要了解员工的工作满意度与工作绩效之间的关系,以便更好地管理和激励员工。
为了达到这个目的,他们进行了一项调查,收集了员工的工作满意度得分和工作绩效得分。
数据收集:在这个案例中,我们收集了100名员工的工作满意度得分和工作绩效得分。
工作满意度得分是基于员工对工作的满意程度进行评分,分数范围为1-10分;工作绩效得分是基于员工在工作中的表现进行评分,分数范围为1-100分。
数据分析:为了探究工作满意度与工作绩效之间的关系,我们进行了回归分析。
首先,我们绘制了工作满意度得分和工作绩效得分的散点图,发现两者呈现一定的线性关系。
接下来,我们利用回归分析模型进行了拟合,得到了回归方程,Y = 0.8X + 20。
这个回归方程告诉我们,工作满意度每提高1分,工作绩效就会提高0.8分。
结论:通过回归分析,我们发现员工的工作满意度与工作绩效之间存在一定的正向关系,即工作满意度提高,工作绩效也会相应提高。
这为公司提供了重要的管理启示,他们可以通过提升员工的工作满意度来促进工作绩效的提升,从而实现组织的发展目标。
总结:回归分析是一种强大的工具,可以帮助我们理解变量之间的关系,为决策提供支持。
在实际应用中,我们需要收集准确的数据,进行严谨的分析,才能得出可靠的结论。
希望本文的案例分析能够帮助大家更好地理解回归分析的应用,为实际问题的解决提供参考。
通过以上案例分析,我们可以看到回归分析在实际工作中的应用价值。
希望这个案例能够帮助大家更好地理解回归分析的概念和方法,为实际问题的解决提供参考。
同时也提醒大家在进行回归分析时,要注意数据的准确性和分析方法的严谨性,才能得出可靠的结论。
感谢大家的阅读!。
回归分析案例
回归分析案例回归分析是一种常用的统计方法,用于研究变量之间的关系。
在实际应用中,回归分析可以帮助我们探索变量之间的相关关系,预测未来的趋势以及做出决策。
下面我们将通过一个实际案例来介绍回归分析的应用。
假设我们是某电商公司的数据分析师,现在我们想了解用户的购买行为与广告宣传的关系,希望通过回归分析来预测广告宣传对用户购买金额的影响。
首先,我们收集了过去一年的数据,包括每个用户的购买金额以及公司在相应时间段内的广告宣传投入。
我们将购买金额作为因变量(Y),广告宣传投入作为自变量(X),并进行数据整理和处理。
接下来,我们将进行回归分析。
根据收集到的数据,我们可以使用最小二乘法进行回归分析。
我们假设购买金额与广告宣传投入之间存在线性关系,即Y = β0 + β1X + ε,其中Y表示购买金额,X表示广告宣传投入,β0和β1表示回归系数,ε表示误差项。
通过回归分析,我们可以得到回归模型的估计结果。
估计结果中,回归系数β1表示单位广告宣传投入对购买金额的影响情况,β0则表示在广告宣传投入为0的情况下的购买金额。
假设回归分析的结果为:β0 = 1000,β1 = 2。
根据这个结果,我们可以得出以下结论:在其他条件不变的情况下,每单位广告宣传投入会使购买金额增加2单位。
同时,当广告宣传投入为0的时候,购买金额约为1000单位。
接下来,我们可以根据回归模型的估计结果进行预测。
例如,如果我们将广告宣传投入增加100单位,根据回归模型的估计结果,预测购买金额将增加200单位。
这样的预测结果可以帮助公司进行广告投放决策,并制定更具针对性的广告宣传策略。
除此之外,回归分析还可以帮助我们进行模型的诊断和评估。
例如,我们可以通过残差分析来检验回归模型的拟合优度和模型的适用性。
我们还可以进行假设检验,验证回归系数的显著性程度。
总之,回归分析是一种重要的统计分析方法,广泛应用于各个领域。
通过回归分析,我们可以探究变量之间的关系,预测未来的趋势以及做出决策。
统计学案例——相关回归分析
《统计学》案例——相关回归分析案例一质量控制中的简单线性回归分析1、问题的提出某石油炼厂的催化装置通过高温及催化剂对原料的作用进行反应,生成各种产品,其中液化气用途广泛、易于储存运输,所以,提高液化气收率,降低不凝气体产量,成为提高经济效益的关键问题。
通过因果分析图和排列图的观察,发现回流温度是影响液化气收率的主要原因,因此,只有确定二者之间的相关关系,寻找适当的回流温度,才能达到提高液化气收率的目的。
经认真分析仔细研究,确定了在保持原有轻油收率的前提下,液化气收率比去年同期增长1个百分点的目标,即达到12.24%的液化气收率。
2、数据的收集序号回流温度(℃)液化气收率(%)序号回流温度(℃)液化气收率(%)1 2 3 4 5 6 7 8 9 10 11 12 13 14 1536 39 43 43 39 38 43 44 37 40 34 39 40 41 4413.1 12.8 11.3 11.4 12.3 12.5 11.1 10.8 13.1 11.9 13.6 12.2 12.2 11.8 11.116 17 18 19 20 21 22 23 24 25 26 27 28 29 3042 43 46 44 42 41 45 40 46 47 45 38 39 44 4512.3 11.9 10.9 10.4 11.5 12.5 11.1 11.1 11.1 10.8 10.5 12.1 12.5 11.5 10.9目标值确定之后,我们收集了某年某季度的回流温度和液化气收率的30组数据(如上表),进行简单直线回归分析。
3.方法的确立设线性回归模型为εββ++=x y 10,估计回归方程为x b b y10ˆ+= 将数据输入计算机,输出散点图可见,液化气收率y 具有随着回流温度x 的提高而降低的趋势。
因此,建立描述y 和x 之间关系的模型时,首选直线型是合理的。
从线性回归的计算结果,可以知道回归系数的最小二乘估计值b 0=21.263和b 1=-0.229,于是最小二乘直线为x y229.0263.21ˆ-= 这就表明,回流温度每增加1℃,估计液化气收率将减少0.229%。
(2023)一元线性回归分析研究实验报告(一)
(2023)一元线性回归分析研究实验报告(一)分析2023年一元线性回归实验报告实验背景本次实验旨在通过对一定时间范围内的数据进行采集,并运用一元线性回归方法进行分析,探究不同自变量对因变量的影响,从而预测2023年的因变量数值。
本实验中选取了X自变量及Y因变量作为研究对象。
数据采集本次实验数据采集范围为5年,采集时间从2018年至2023年底。
数据来源主要分为两种:1.对外部行业数据进行采集,如销售额、市场份额等;2.对内部企业数据进行收集,如研发数量、员工薪资等。
在数据采集的过程中,需要通过多种手段确保数据的准确性与完整性,如数据自动化处理、数据清洗及校验、数据分类与整理等。
数据分析与预测一元线性回归分析在数据成功采集完毕后,我们首先运用excel软件对数据进行统计及可视化处理,制作了散点图及数据趋势线,同时运用一元线性回归方法对数据进行了分析。
结果表明X自变量与Y因变量之间存在一定的线性关系,回归结果较为良好。
预测模型建立通过把数据拆分为训练集和测试集进行建模,本次实验共建立了三个模型,其中模型选用了不同的自变量。
经过多轮模型优化和选择,选定最终的预测模型为xxx。
预测结果表明,该模型能够对2023年的Y因变量进行较为准确的预测。
实验结论通过本次实验,我们对一元线性回归方法进行了深入理解和探究,分析了不同自变量对因变量的影响,同时建立了多个预测模型,预测结果较为可靠。
本实验结论可为企业的业务决策和经营策略提供参考价值。
同时,需要注意的是,数据质量和采集方式对最终结果的影响,需要在实验设计及数据采集上进行充分的考虑和调整。
实验意义与不足实验意义本次实验不仅是对一元线性回归方法的应用,更是对数据分析及预测的一个实践。
通过对多种数据的采集和处理,我们能够得出更加准确和全面的数据分析结果,这对于企业的经营决策和风险控制十分重要。
同时,本实验所选取的X自变量及Y因变量能够涵盖多个行业及企业相关的数据指标,具有一定的代表性和客观性。
回归分析案例
身高 0.75 0.85 0.95 1.08 1.12 1.16 1.35 1.51 1.55 1.6 1.63 1.67 1.71 1.78 1.85 体重 101215172022354148505154596675Matlab 实现:h=[0.75 0.85 0.95 1.08 1.12 1.16 1.35 1.51 1.55 1.6 1.63 1.67 1.71 1.78 1.85]; m=[10 12 15 17 20 22 35 41 48 50 51 54 59 66 75]; plot(x,y,'*')可令:adh m =,求系数可用p=polyfit(x,y,n), 其中h x m y ln ,ln ==,n=1,结果:p=[2.3,2.823]由此得d=16.8,a=2.3,即有经验公式:3..28.16h m =。
也直接利用Matlab 统计工具箱中的命令regress 求解,使用格式:[b,bint,r,rint,stats]=regress(y,x,alpha) alpha 为置信水平,r 为残差向量βˆx y -,stats 为回归模型的检验统计量,有3个值,第一个是回归方程的决定系数2R ,第二个是F 统计量值,第三个是与F 统计量对应的概率值p 。
上例可如下操作:y=log(m)';x=[ones(length(y),1),log(h)'];[b,bint,r,rint,stat]=regress(y,x)b =2.82282.3000 stat =1 1024 0.0000残差分析:rcoplot(r,rint)----------------------------------------------------------------------------------------------------------------------------------例2:施肥效果分析(1992建模赛题)磷肥施用量 0244973 98 147 196 245 294 342 土豆产量 33.46 32.47 36.06 37.96 41.04 40.09 41.26 42.17 40.36 42.73 磷肥施用量 0244973 98 147 196 245 294 342 土豆产量33.46 34.76 36.0637.9641.0440.0941.2642.1740.3642.73氮肥施用量 0244973 98 147 196 245 294 342 土豆产量33.46 34.76 36.0637.9641.0440.0941.2642.1740.3642.73对于磷肥-----土豆:可选择函数xbea y -+=1 或威布尔函数 0,≥-=-x Be A y cx对于氮肥-----土豆:可选择函数0,2210≥++=x x b x b b y2)模型的参数估计:可如下操作:x=[0 34 67 101 135 202 259 336 404 471]';y=[15.18 21.36 25.72 32.29 34.03 39.45 43.15 43.46 40.83 30.75]';X=[ones(length(y),1),x,x.^2];[b,bint,r,rint,stat]=regress(y,X)b =14.74160.1971-0.0003stat =0.9863 251.7971 0.0000 即20003.01971.07416.14x x y -+=拟合曲线图:3) 显著性检验: (仅以氮肥-----土豆模型为例说明)A):回归方程的显著性检验:检验的概率p=0,说明方程是高度显著的.B):回归系数的的显著性检验:对1β: 0:110=βH 检验统计量 =T 对2β: 0:220=βH检验统计量 =T -1004341.84343142都有 8945.1)7(05.0=>t T ,所以,均应拒绝原假设,认为系数)2,1(=i i β显著地不为0.4)残差诊断:标准化残差图如下12345678910标准化残差基本上均匀分布于-2至2之间,可以认为模型拟合是合理的.------------------------------------------------------------------------------------------------------------------------------ 案例:牙膏的销售量某牙膏制造企业要求销售部门根据市场调查,找出公司生产的牙膏销售量与销售价格、广告投入等之间的关系,从而预测出在不同价格和广告费用下的销售量。
回归分析实验案例数据1
实验课程案例数据1香烟消费数据:一个国家保险组织想要研究在美国所有50个州和哥伦比亚特区的香烟消费模式,表1给出了研究中所选的变量,表2给出了1970年的数据。
讨论下列问题:表1. 香烟消费数据的变量表2. 香烟消费数据(1970年)州年龄HS 收入黑人比例女性比例价格销量AL2741.3294826.251.742.789.8AK22.966.74644345.741.8121.3AZ26.358.13665350.838.5115.2AR29.139.9287818.351.538.8100.3CA28.162.64493750.839.7123CO26.263.93855350.731.1124.8CT29.1564917651.545.5120DE26.854.6452414.351.341.3155DC28.455.2507971.153.532.6200.4FL32.352.6373815.351.843.8123.6GA25.940.6335425.951.435.8109.9HI2561.9462314836.782.1ID26.459.532900.350.133.6102.4IL28.652.6450712.851.541.4124.8IN27.252.93772 6.951.332.2134.6IO28.8593751 1.251.438.5108.5KA28.759.93853 4.85138.9114KY27.538.531127.250.930.1155.8LA24.842.2309029.851.439.3115.9ME2854.733020.351.338.8128.5MD27.152.3430917.851.134.2123.5MA2958.54340 3.152.241124.3MI26.352.8418011.25139.2128.6MN26.857.638590.95140.1104.3MS25.141262636.851.637.593.4MO29.448.8378110.351.836.8121.3MT27.159.235000.35034.7111.2NB28.659.33789 2.751.234.7108.1NV27.865.24563 5.749.344189.5NH2857.637370.351.134.1265.7NJ30.152.5470110.851.641.7120.7NM23.955.23077 1.950.741.790NY30.352.7471211.952.241.7119NC26.538.5325222.25129.4172.4ND26.450.330860.449.538.993.8OH27.753.240209.151.538.1121.6OK29.451.63387 6.751.339.8108.4OR29603719 1.35129157PA30.750.2397185244.7107.3RI29.246.43959 2.750.940.2123.9SC24.837.8299030.550.934.3103.6SD27.453.331230.350.338.592.7TN28.141.8311915.851.641.699.8TX26.447.4360612.55142106.4UT23.167.332270.650.636.665.5VT26.857.134680.251.139.5122.6V A26.847.8371218.550.630.2124.3WA27.563.54053 2.150.340.396.7WV3041.63061 3.951.641.6114.5WI27.254.53812 2.950.940.2106.4WY27.262.938150.85034.4132.2(1)在销量关于6个自变量的回归模型中,检验假设“不需要女性比例这一变量”;(2)在上面的模型中,检验假设“不需要女性比例和HS这两个变量”;(3)计算收入变量回归系数的95%的置信区间;(4)去掉收入这个变量后拟合回归方程,其他变量对于销量的解释比例是多少?(5)用价格、年龄和收入作自变量拟合模型,它们对销量的解释比例是多少?(6)仅用收入作自变量拟合模型,它们对销量的解释比例是多少?。
计量经济学回归分析案例
三、模型检验
2、拟合优度
R2 0.977058 , 趋近与1,说明所
建模型整体上对样本数据拟合较好,既解释变 量本市生产总值对被解释变量地方预算内财政 收入的绝大部分差异做出了解释。
三、模型检验
3、统计检验
对回归系数的t检验:
假设
H 0::
=0 和 0
H 0::
=0
1
查t分布表得:
自由度为n-2=18-2=16的临界值为2.120
^
^
Yf mt 2
1
1 n
(X
f
X )2 xi2
相关数据带入得最终结果为:[628.97,771.40]
预测值及标准误差:
(9.867366) (0.003255) t= (2.073853) (26.10378) R2=0.977058 F=681.4076 n=18
二、估计参数
剩余项、实际值与拟合值的图形如下图:
三、模型检验
1、经济意义检验
所估计的参数
ˆ 20.46347ˆ 0.084965
0
1
说明本市生产总值x每增加1亿元,地方预算内 财政收入平均增加0.084965亿元,与经济意义 相符。
2011级物流一班第六小组 小组成员:
一、模型设定 二、估计参数 三、模型检验 四、回归预测
一、模型设定
1990-2007深圳市地方预算内财政收入与本市生产总值
假定模型: Y 0 1X u
二、估计参数
Eviews的回归结果如下表所示:
二、估计参数
参数估计和检验结果X i
因为t(ˆ )=2.073853< 2.120,所以不拒绝 0
t( ˆ )=26.10378 > 2.120,所以拒绝 1
多元线性回归案例分析
多元线性回归案例分析案例背景:我们假设有一家制造业公司,想要研究员工的工作效率与其工作经验、教育水平和工作时间之间的关系。
公司收集了100名员工的数据,并希望通过多元线性回归模型来分析这些变量之间的关系。
数据收集:公司收集了每个员工的工作效率(因变量)、工作经验、教育水平和工作时间(自变量)的数据。
假设工作效率由工作经验、教育水平和工作时间这三个因素决定。
根据所收集的数据,我们可以建立如下的多元线性回归模型:工作效率=β0+β1*工作经验+β2*教育水平+β3*工作时间+ε在这个模型中,β0、β1、β2和β3分别是待估参数,代表截距和自变量的系数;ε是误差项,代表模型中未被解释的因素。
模型参数的估计:通过最小二乘法可以对模型中的参数进行估计。
最小二乘法的目标是让模型的预测值与观测值之间的残差平方和最小化。
模型诊断:在对模型进行参数估计后,我们需要对模型进行诊断,以评估模型的质量和稳定性。
常见的模型诊断方法包括:检查残差的正态分布、残差与自变量的无关性、残差的同方差性等。
模型解释和预测:根据参数估计结果,可以对模型进行解释和预测。
例如,我们可以解释每个自变量与因变量之间的关系,并分析它们的显著性。
我们还可以通过模型进行预测,比如预测一位具有一定工作经验、教育水平和工作时间的员工的工作效率。
结果分析:根据对模型的诊断和解释,我们可以对结果进行分析。
我们可以得出结论,一些自变量对因变量的影响显著,而其他自变量对因变量的影响不显著。
这些结论可以帮助公司更好地理解员工工作效率与工作经验、教育水平和工作时间之间的关系,并采取相应的管理措施来提高工作效率。
总结:通过以上的案例分析,我们可以看到多元线性回归在实际中的应用。
它可以帮助我们理解多个自变量与一个因变量之间的关系,并对因变量进行预测和解释。
通过多元线性回归分析,我们可以更好地了解因素对于结果的作用,并根据分析结果进行决策和管理。
然而,需要注意的是,多元线性回归的结果可能受到多种因素的影响,我们需要综合考虑所有的因素来做出准确的分析和决策。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验课程案例数据1
香烟消费数据:一个国家保险组织想要研究在美国所有50个州和哥伦比亚特区的香烟消费模式,表1给出了研究中所选的变量,表2给出了1970年的数据。
讨论下列问题:
表1. 香烟消费数据的变量
表2. 香烟消费数据(1970年)
州年龄HS 收入黑人比例女性比例价格销量
AL2741.3294826.251.742.789.8
AK22.966.74644345.741.8121.3
AZ26.358.13665350.838.5115.2
AR29.139.9287818.351.538.8100.3
CA28.162.64493750.839.7123
CO26.263.93855350.731.1124.8
CT29.1564917651.545.5120
DE26.854.6452414.351.341.3155
DC28.455.2507971.153.532.6200.4
FL32.352.6373815.351.843.8123.6
GA25.940.6335425.951.435.8109.9
HI2561.9462314836.782.1
ID26.459.532900.350.133.6102.4
IL28.652.6450712.851.541.4124.8
IN27.252.93772 6.951.332.2134.6
IO28.8593751 1.251.438.5108.5
KA28.759.93853 4.85138.9114
KY27.538.531127.250.930.1155.8
LA24.842.2309029.851.439.3115.9
ME2854.733020.351.338.8128.5
MD27.152.3430917.851.134.2123.5
MA2958.54340 3.152.241124.3
MI26.352.8418011.25139.2128.6
MN26.857.638590.95140.1104.3
MS25.141262636.851.637.593.4
MO29.448.8378110.351.836.8121.3
MT27.159.235000.35034.7111.2
NB28.659.33789 2.751.234.7108.1
NV27.865.24563 5.749.344189.5
NH2857.637370.351.134.1265.7
NJ30.152.5470110.851.641.7120.7
NM23.955.23077 1.950.741.790
NY30.352.7471211.952.241.7119
NC26.538.5325222.25129.4172.4
ND26.450.330860.449.538.993.8
OH27.753.240209.151.538.1121.6
OK29.451.63387 6.751.339.8108.4
OR29603719 1.35129157
PA30.750.2397185244.7107.3
RI29.246.43959 2.750.940.2123.9
SC24.837.8299030.550.934.3103.6
SD27.453.331230.350.338.592.7
TN28.141.8311915.851.641.699.8
TX26.447.4360612.55142106.4
UT23.167.332270.650.636.665.5
VT26.857.134680.251.139.5122.6
V A26.847.8371218.550.630.2124.3
WA27.563.54053 2.150.340.396.7
WV3041.63061 3.951.641.6114.5
WI27.254.53812 2.950.940.2106.4
WY27.262.938150.85034.4132.2
(1)在销量关于6个自变量的回归模型中,检验假设“不需要女性比例这一变量”;
(2)在上面的模型中,检验假设“不需要女性比例和HS这两个变量”;
(3)计算收入变量回归系数的95%的置信区间;
(4)去掉收入这个变量后拟合回归方程,其他变量对于销量的解释比例是多少?
(5)用价格、年龄和收入作自变量拟合模型,它们对销量的解释比例是多少?
(6)仅用收入作自变量拟合模型,它们对销量的解释比例是多少?。