2020年高考数学一轮复习知识点总结:复数
高考数学复习点拨 复数中的数形结合
复数中的数形结合因为复数i b a z +=与复平面上的点()b a Z ,是一一对应的,体现了数与形上的对应,所以在复数中利用数形结合解某些问题不仅巧妙,而且也体现出一种数学之美. 知识点:设动点Z 、定点1Z 、2Z 分别表示复数z 、1z 、2z 所对应的点,则 ⑴1z z -的几何含义:点Z 到点1Z 的距离; ⑵r z z =-1表示以r 为半径,点1Z 为圆心的圆; ⑶21z z z z -=-表示线段的垂直平分线,其中点1Z 、2Z 是线段的两个端点; ⑷a z z z z 221=-+-,当212Z Z a =时,表示线段1Z 2Z ; 当212Z Z a >时,表示以点1Z 、2Z 为焦点,a 2为长轴长的椭圆; 上述几种曲线都可以结合⑴当中的1z z -的几何含义来理解,比如,⑶中1z z -表示点Z 到点1Z 的距离,2z z -表示点Z 到点2Z 的距离,即点Z 到点1Z 的距离与到点2Z 的距离相等,所以,点Z 的轨迹是线段1Z 2Z 的垂直平分线.下面举例说明数形结合的用法:例1.若24i 3≤++z ,则z 的最大值为.解析:由24i 3≤++z 知,复数z 对应点的轨迹为以2为半径,点()431--,Z 为圆心的圆及其内部.所以,z 的最大值为7251=+=+r OZ .例2.如果复数z 满足2i i =-++z z ,那么1i ++z 的最小值为()A .1B .2C .2D .5 解析:由2i i =-++z z 知,复数z 对应的点的轨迹是线段AB ,其中()01,-A ,()01,B .又1i ++z 表示点()1,1--到线段AB 的距离,故当i -=z 时,11i i =++n m z .例3.复数z 满足条件4i 2-=+z z ,则z 的最小值为.解析:由4i 2-=+z z 知,复数z 对应点的轨迹为线段AB 的垂直平分线,其中()02,-A ,()40,B ,z 即原点到垂直平分线上点的距离.故553z =min .例4.复数z 满足2i 2=-z ,则2i +z 的取值X 围是() A .⎥⎦⎤⎢⎣⎡25,21 B .⎥⎦⎤⎢⎣⎡27,23 C .⎥⎦⎤⎢⎣⎡221,1 D .⎥⎦⎤⎢⎣⎡221,2 解析:由2i 2=-z 可得:12i =-z .因此复数z 对应点Z 的轨迹是以)21,0(为圆心,1为半径的圆周,而()2i 2i --=+z z 即点Z 到点()2,0-的距离,最小值为23,最大值为27.。
高考数学应试技巧之复数
高考数学应试技巧之复数数学作为高考的必考科目之一,对于许多学生来说是一个极大的挑战。
尤其是在复数的应用中,许多学生常常感到棘手。
复数是高考数学中的一个重要知识点,也是一个需要深入理解和掌握的知识点。
本文将介绍几个复数的应试技巧,并提供一些例题帮助读者更好地掌握复数的应用。
一、基本定义复数是指形如 a+bi 的数,其中 a 和 b 分别为实数,i 表示虚数单位,它满足 i²=-1。
实数和虚数是复数中的两个部分,实数 a 被称为复数的实部,虚数 b 被称为复数的虚部。
二、极坐标表示法复数在极坐标表示法中的表示方式是:z=r(cosθ+isinθ),其中 r 表示复数的模,θ 表示复数的幅角。
在使用极坐标表示法求解问题时,可以利用三角函数的相关知识进行计算。
例题:已知复数 z=1+2i,求其极坐标形式。
解:复数的模为r=√(1²+2²)=√5,复数的幅角为cosθ=1/√5,sinθ=2/√5,因此θ=arctan(2/1)。
所以,复数 z 的极坐标表示形式为z=√5(cosθ+isinθ)=√5(cos(arctan(2))+isin(arctan(2)))。
三、共轭复数共轭复数是指保持实部不变但虚部变号的复数,可以表示为z*=a-bi。
共轭复数的一个重要性质是,任何实数的平方都是非负的,因此,复数与其共轭复数的乘积的实部是一个非负实数。
例题:已知 z=1+2i,求其共轭复数 z*。
解:由定义可知,z*=1-2i。
四、四则运算(1)加减法复数的加减法与实数的加减法类似,只是加减的对象从实数变成了复数。
需要注意的是,复数的实部与虚部分别相加减。
例题:已知 z1=1+2i,z2=3-4i,求 z1+z2 和 z1-z2。
解:z1+z2=(1+2i)+(3-4i)=4-2iz1-z2=(1+2i)-(3-4i)=-2+6i(2)乘法复数的乘法需要特别注意的是,(a+bi)×(c+di)=ac+adi+bci+bdi²,其中 i²=-1。
高考数学大一轮复习 第五章 平面向量、复数 5.1 平面向量的概念及线性运算教案(含解析)
第五章平面向量、复数考试内容等级要求平面向量的概念 B平面向量的加法、减法及数乘运算 B平面向量的坐标表示 B平面向量的数量积 C平面向量的平行与垂直 B平面向量的应用 A复数的概念 B复数的四则运算 B复数的几何意义 A§5.1平面向量的概念及线性运算考情考向分析主要考查平面向量的线性运算(加法、减法、数乘向量)及其几何意义、共线向量定理,常与三角函数、解析几何交汇考查,有时也会有新定义问题;题型以填空题为主,属于中低档题目.偶尔会在解答题中作为工具出现.1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或称模).(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位长度的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量平行或共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算a-b=a+(-b)数乘求实数λ与向量a的积的运算|λa|=|λ||a|,当λ>0时,λa与a的方向相同;当λ<0时,λa与a的方向相反;当λ=0时,λa=0λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb口诀:(加法三角形)首尾连,连首尾;(加法平行四边形)起点相同连对角;(减法三角形)共起点,连终点,指向被减.3.向量共线定理向量b与非零向量a共线的充要条件是有且只有一个实数λ,使得b=λa.概念方法微思考1.若b与a共线,则存在实数λ使得b=λa,对吗?提示不对,因为当a=0,b≠0时,不存在λ满足b=λa.2.如何理解数乘向量?提示λa的大小为|λa|=|λ||a|,方向要分类讨论:当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0或a为零向量时,λa为零向量,方向不确定.3.如何理解共线向量定理?提示如果a=λb,则a∥b;反之,如果a∥b,且b≠0,则一定存在唯一一个实数λ,使得a=λb.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)向量不能比较大小,但向量的模可以比较大小.( √)(2)|a |与|b |是否相等与a ,b 的方向无关.( √ ) (3)若a ∥b ,b ∥c ,则a ∥c .( × )(4)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.( × ) (5)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.( √ ) (6)若两个向量共线,则其方向必定相同或相反.( × ) 题组二 教材改编2.[P72T8]已知▱ABCD 的对角线AC 和BD 相交于点O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________.(用a ,b 表示) 答案 b -a -a -b解析 如图,DC →=AB →=OB →-OA →=b -a , BC →=OC →-OB →=-OA →-OB →=-a -b .3.[P73T13]在平行四边形ABCD 中,若|AB →+AD →|=|AB →-AD →|,则四边形ABCD 的形状为________. 答案 矩形解析 如图,因为AB →+AD →=AC →, AB →-AD →=DB →, 所以|AC →|=|DB →|.由对角线长相等的平行四边形是矩形可知,平行四边形ABCD 是矩形. 题组三 易错自纠4.对于非零向量a ,b ,“a +b =0”是“a ∥b ”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分又不必要”) 答案 充分不必要解析 若a +b =0,则a =-b ,所以a ∥b .若a ∥b ,则a +b =0不一定成立,故前者是后者的充分不必要条件.5.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=____________. 答案 12解析 ∵向量a ,b 不平行,∴a +2b ≠0,又向量λa +b 与a +2b 平行,则存在唯一的实数μ,使λa +b =μ(a +2b )成立,即λa +b =μa +2μb ,则⎩⎪⎨⎪⎧λ=μ,1=2μ,解得λ=μ=12.6.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.答案 12解析 ∵DE →=DB →+BE →=12AB →+23BC →=12AB →+23(BA →+AC →)=-16AB →+23AC →, ∴λ1=-16,λ2=23,即λ1+λ2=12.题型一 平面向量的概念1.给出下列命题:①若两个向量相等,则它们的起点相同,终点相同; ②若a 与b 共线,b 与c 共线,则a 与c 也共线;③若A ,B ,C ,D 是不共线的四点,且AB →=DC →,则四边形ABCD 为平行四边形; ④a =b 的充要条件是|a |=|b |且a ∥b ;⑤已知λ,μ为实数,若λa =μb ,则a 与b 共线. 其中真命题的序号是________. 答案 ③解析 ①错误,两个向量起点相同,终点相同,则两个向量相等;但两个向量相等,不一定有相同的起点和终点;②错误,若b =0,则a 与c 不一定共线;③正确,因为AB →=DC →,所以|AB →|=|DC →|且AB →∥DC →;又A ,B ,C ,D 是不共线的四点,所以四边形ABCD 为平行四边形;④错误,当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,所以|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件;⑤错误,当λ=μ=0时,a 与b 可以为任意向量,满足λa =μb ,但a 与b 不一定共线. 2.给出下列四个命题:①若a ∥b ,则a =b ;②若|a |=|b |,则a =b ;③若|a |=|b |,则a ∥b ;④若a =b ,则|a |=|b |.其中正确命题的个数是________. 答案 1解析 只有④正确.思维升华向量有关概念的关键点 (1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制. (3)相等向量的关键是方向相同且长度相等. (4)单位向量的关键是长度都是一个单位长度.(5)零向量的关键是长度是0,规定零向量与任何向量共线. 题型二 平面向量的线性运算 命题点1 向量的线性运算例1(1)在平行四边形ABCD 中,点E 为CD 的中点,BE 与AC 的交点为F ,设AB →=a ,AD →=b ,则向量BF →=________.(用向量a ,b 表示) 答案 -13a +23b解析 BF →=23BE →=23(BC →+CE →)=23⎝ ⎛⎭⎪⎫b -12a =-13a +23b . (2)(2018·全国Ⅰ改编)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则用向量AB →,AC →表示EB →为________. 答案 EB →=34AB →-14AC →解析 作出示意图如图所示. EB →=ED →+DB →=12AD →+12CB →=12×12(AB →+AC →)+12(AB →-AC →) =34AB →-14AC →. 命题点2 根据向量线性运算求参数例2(1)如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE →=λBA→+μBD →(λ,μ∈R ),则λ+μ=________. 答案 34解析 ∵E 为线段AO 的中点, ∴BE →=12BA →+12BO →=12BA →+12⎝ ⎛⎭⎪⎫12BD →=12BA →+14BD →=λBA →+μBD →, ∴λ+μ=12+14=34.(2)在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23,BC =2,点E 在线段CD 上,若AE →=AD →+μAB →,则μ的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤0,12 解析 由题意可求得AD =1,CD =3, ∴AB →=2DC →.∵点E 在线段CD 上,∴DE →=λDC →(0≤λ≤1). ∵AE →=AD →+DE →=AD →+λDC →, 又AE →=AD →+μAB →=AD →+2μDC →, ∴2μ=λ,即μ=λ2.∵0≤λ≤1,∴0≤μ≤12.思维升华平面向量线性运算问题的常见类型及解题策略(1)向量加法和减法的几何意义.向量加法和减法均适合三角形法则.(2)求已知向量的和.共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.(3)求参数问题可以通过研究向量间的关系,通过向量的运算将向量表示出来,进行比较,求参数的值.跟踪训练1(1)在△ABC 中,点D ,E 分别在边BC ,AC 上,且BD →=2DC →,CE →=3EA →,若AB →=a ,AC →=b ,则DE →=________.(用向量a ,b 表示)答案 -13a -512b解析 DE →=DC →+CE →=13BC →+34CA → =13(AC →-AB →)-34AC → =-13AB →-512AC →=-13a -512b .(2)在平行四边形ABCD 中,E ,F 分别为边BC ,CD 的中点,若AB →=xAE →+yAF →(x ,y ∈R ),则x -y =________. 答案 2解析 由题意得AE →=AB →+BE →=AB →+12AD →,AF →=AD →+DF →=AD →+12AB →,因为AB →=xAE →+yAF →,所以AB →=⎝ ⎛⎭⎪⎫x +y 2AB →+⎝ ⎛⎭⎪⎫x 2+y AD →,所以⎩⎪⎨⎪⎧x +y2=1,x2+y =0,解得⎩⎪⎨⎪⎧x =43,y =-23,所以x -y =2.题型三 共线定理的应用例3(1)已知D 为△ABC 的边AB 的中点.点M 在DC 上且满足5AM →=AB →+3AC →,则△ABM 与△ABC 的面积比为________. 答案 3∶5解析 由5AM →=AB →+3AC →, 得2AM →=2AD →+3AC →-3AM →, 即2(AM →-AD →)=3(AC →-AM →),即2DM →=3MC →,故DM →=35DC →,故△ABM 与△ABC 同底且高的比为3∶5, 故S △ABM ∶S △ABC =3∶5.(2)(2018·盐城模拟)如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m的值为________.答案 3解析 设OA →=a ,OB →=b ,由题意知OG →=23×12(OA →+OB →)=13(a +b ),PQ →=OQ →-OP →=n b -m a , PG →=OG →-OP →=⎝ ⎛⎭⎪⎫13-m a +13b .由P ,G ,Q 三点共线,得存在实数λ使得PQ →=λPG →,即n b -m a =λ⎝ ⎛⎭⎪⎫13-m a +13λb ,从而⎩⎪⎨⎪⎧-m =λ⎝ ⎛⎭⎪⎫13-m ,n =13λ,消去λ,得1n +1m=3.思维升华 (1)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立;若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线.跟踪训练2如图,△ABC 中,在AC 上取一点N ,使AN =13AC ;在AB 上取一点M ,使AM =13AB ;在BN 的延长线上取点P ,使得NP =12BN ;在CM 的延长线上取点Q ,使得MQ →=λCM →时,AP →=QA →,试确定λ的值.解 ∵AP →=NP →-NA →=12(BN →-CN →)=12(BN →+NC →)=12BC →,QA →=MA →-MQ →=12BM →+λMC →,又AP →=QA →,∴12BM →+λMC →=12BC →,即λMC →=12MC →, ∴λ=12.1.设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,真命题的个数是________. 答案 0解析 向量是既有大小又有方向的量,a 与|a |a 0模相等,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.2.在四边形ABCD 中,若AC →=AB →+AD →,则四边形ABCD 的形状是________. 答案 平行四边形解析 依题意知AC 是以AB ,AD 为相邻两边的平行四边形的对角线,所以四边形ABCD 是平行四边形.3.在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,则AD →=________. 答案 23b +13c解析 如图,因为在△ABC 中, AB →=c ,AC →=b ,且点D 满足BD →=2DC →, 所以AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=23AC →+13AB →=23b +13c . 4.(2018·江苏省镇江一中月考)已知e 1,e 2是一对不共线的非零向量,若a =e 1+λe 2,b =-2λe 1-e 2,且a ,b 共线,则λ=________. 答案 ±22解析 ∵a ,b 共线,∴b =γa =γe 1+γλe 2=-2λe 1-e 2,故⎩⎪⎨⎪⎧γ=-2λ,γλ=-1,解得λ=±22. 5.如图,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=________.(用向量a ,b 表示) 答案 12a +b解析 连结OC ,OD ,CD ,由点C ,D 是半圆弧的三等分点,可得∠AOC =∠COD =∠BOD =60°,且△OAC 和△OCD 均为边长等于圆O 半径的等边三角形,所以四边形OACD 为菱形,所以AD →=AO →+AC →=12AB →+AC →=12a +b .6.在△ABC 中,点G 满足GA →+GB →+GC →=0.若存在点O ,使得OG →=16BC →,且OA →=mOB →+nOC →,则m -n =________.答案 -1解析 ∵GA →+GB →+GC →=0, ∴OA →-OG →+OB →-OG →+OC →-OG →=0,∴OG →=13()OA →+OB →+OC →=16BC →=16()OC →-OB →,可得OA →=-12OC →-32OB →,∴m =-32,n =-12,m -n =-1.7.如图,在△ABC 中,AN →=13AC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.答案511解析 注意到N ,P ,B 三点共线, 因此AP →=mAB →+211AC →=mAB →+611AN →,从而m +611=1,所以m =511.8.已知e 1,e 2为平面内两个不共线的向量,MN →=2e 1-3e 2,NP →=λe 1+6e 2,若M ,N ,P 三点共线,则λ=________.答案 -4解析 因为M ,N ,P 三点共线,所以存在实数k 使得MN →=kNP →,所以2e 1-3e 2=k (λe 1+6e 2),又e 1,e 2为平面内两个不共线的向量,可得⎩⎪⎨⎪⎧ 2=kλ,-3=6k ,解得λ=-4.9.若M 是△ABC 的边BC 上的一点,且CM →=3MB →,设AM →=λAB →+μAC →,则λ的值为________.答案 34解析 由题设知CM MB=3,过M 作MN ∥AC 交AB 于N , 则MN AC =BN BA =BM BC =14, 从而AN AB =34, 又AM →=λAB →+μAC →=AN →+NM →=34AB →+14AC →, 所以λ=34. 10.已知A ,B ,C 是直线l 上不同的三个点,点O 不在直线l 上,则使等式x 2OA →+xOB →+BC →=0成立的实数x 的取值集合为________.答案 {-1}解析 ∵BC →=OC →-OB →,∴x 2OA →+xOB →+OC →-OB →=0,即OC →=-x 2OA →-(x -1)OB →,∵A ,B ,C 三点共线,∴-x 2-(x -1)=1,即x 2+x =0,解得x =0或x =-1.当x =0时,x 2OA →+xOB →+BC →=0,此时B ,C 两点重合,不合题意,舍去,故x =-1.11.如图所示,设O 是△ABC 内部一点,且OA →+OC →=-2OB →,求△ABC 与△AOC 的面积之比.解 取AC 的中点D ,连结OD ,则OA →+OC →=2OD →,∴OB →=-OD →,∴O 是AC 边上的中线BD 的中点,∴S △ABC =2S △OAC ,∴△ABC 与△AOC 的面积之比为2∶1.12.如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC →=b ,试用a ,b 表示向量AO →.解 方法一 由D ,O ,C 三点共线,可设DO →=k 1DC →=k 1(AC →-AD →)=k 1⎝ ⎛⎭⎪⎫b -12a =-12k 1a +k 1b (k 1为实数), 同理,可设BO →=k 2BF →=k 2(AF →-AB →)=k 2⎝ ⎛⎭⎪⎫12b -a =-k 2a +12k 2b (k 2为实数),① 又BO →=BD →+DO →=-12a +⎝ ⎛⎭⎪⎫-12k 1a +k 1b =-12(1+k 1)a +k 1b ,② 所以由①②,得-k 2a +12k 2b =-12(1+k 1)a +k 1b , 即12(1+k 1-2k 2)a +⎝ ⎛⎭⎪⎫12k 2-k 1b =0. 又a ,b 不共线,所以⎩⎪⎨⎪⎧ 12(1+k 1-2k 2)=0,12k 2-k 1=0, 解得⎩⎪⎨⎪⎧ k 1=13,k 2=23.所以BO →=-23a +13b . 所以AO →=AB →+BO →=a +⎝ ⎛⎭⎪⎫-23a +13b =13(a +b ). 方法二 延长AO 交BC 于点E (O 为△ABC 重心),则E 为BC 中点,∴AO →=23AE →=23×12(AB →+AC →)=13(a +b ). 13.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若DE →=λAB →+μAD →(λ,μ为实数),则λ2+μ2=________.答案 58解析 DE →=12DA →+12DO →=12DA →+14DB → =12DA →+14(DA →+AB →)=14AB →-34AD →, 所以λ=14,μ=-34,故λ2+μ2=58. 14.A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D (点O 与点D 不重合),若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的取值范围是________.答案 (1,+∞)解析 设OC →=mOD →,则m >1,因为OC →=λOA →+μOB →,所以mOD →=λOA →+μOB →,即OD →=λm OA →+μmOB →, 又知A ,B ,D 三点共线,所以λm +μm=1,即λ+μ=m , 所以λ+μ>1.15.已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足OP →=13⎝ ⎛⎭⎪⎫2OA →+12OB →+12OC →,则△ABC 的面积和△PBC 的面积之比为________. 答案 3∶2解析 设BC 的中点为M ,则12OC →+12OB →=OM →,∴OP →=13(OM →+2OA →)=13OM →+23OA →, 即3OP →=OM →+2OA →,OP →-OM →=2OA →-2OP →,也就是MP →=2PA →,∴P ,M ,A 三点共线,且P 是AM 上靠近A 点的一个三等分点,∴S △ABC ∶S △PBC =3∶2.16.设W 是由一平面内的n (n ≥3)个向量组成的集合.若a ∈W ,且a 的模不小于W 中除a 外的所有向量和的模.则称a 是W 的极大向量.有下列命题:①若W 中每个向量的方向都相同,则W 中必存在一个极大向量;②给定平面内两个不共线向量a ,b ,在该平面内总存在唯一的平面向量c =-a -b ,使得W ={a ,b ,c }中的每个元素都是极大向量;③若W 1={a 1,a 2,a 3},W 2={b 1,b 2,b 3}中的每个元素都是极大向量,且W 1,W 2中无公共元素,则W 1∪W 2中的每一个元素也都是极大向量.其中真命题的序号是________.答案 ②③解析 ①若有几个方向相同,模相等的向量,则无极大向量,故不正确;②由题意得a ,b ,c 围成闭合三角形,则任意向量的模等于除它本身外所有向量和的模,故正确;③3个向量都是极大向量,等价于3个向量之和为0,故W 1={a 1,a 2,a 3},W 2={b 1,b 2,b 3}中的每个元素都是极大向量时,W 1∪W 2中的每一个元素也都是极大向量,故正确.。
高考数学一轮复习 第五章 平面向量与复数5
高考数学一轮复习 第五章 平面向量与复数5.3 平面向量的数量积考试要求 1.理解平面向量数量积的含义及其物理意义.2.了解平面向量的数量积与向量投影的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量的方法解决某些简单的平面几何问题.知识梳理 1.向量的夹角已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角. 2.平面向量的数量积定义设两个非零向量a ,b 的夹角为θ,则数量|a ||b |cos θ叫做a 与b的数量积,记作a ·b投影|a |cos θ叫做向量a 在b 方向上的投影|b |cos θ叫做向量b 在a方向上的投影几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积3.向量数量积的运算律 (1)a ·b =b ·a .(2)(λa )·b =λ(a ·b )=a ·(λb ). (3)(a +b )·c =a ·c +b ·c .4.平面向量数量积的有关结论已知非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ.结论 符号表示 坐标表示模|a |=a ·a |a |=x 21+y 21夹角 cos θ=a ·b |a ||b |cos θ=x 1x 2+y 1y 2x 21+y 21x 22+y 22a ⊥b 的充要条件 a ·b =0 x 1x 2+y 1y 2=0|a ·b |与|a ||b |的关系 |a ·b |≤|a ||b ||x 1x 2+y 1y 2|≤x 21+y 21x 22+y 22常用结论1.平面向量数量积运算的常用公式 (1)(a +b )·(a -b )=a 2-b 2; (2)(a±b )2=a 2±2a ·b +b 2. 2.有关向量夹角的两个结论 已知向量a ,b .(1)若a 与b 的夹角为锐角,则a·b >0;若a·b >0,则a 与b 的夹角为锐角或0. (2)若a 与b 的夹角为钝角,则a·b <0;若a·b <0,则a 与b 的夹角为钝角或π. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)两个向量的夹角的范围是⎣⎡⎦⎤0,π2.( × ) (2)若a ·b >0,则a 和b 的夹角为锐角.( × )(3)两个向量的数量积是一个实数,向量的加、减、数乘运算的结果是向量.( √ ) (4)(a·b )·c =a·(b·c ).( × ) 教材改编题1.(2022·海南省临高二中模拟)设a ,b ,c 是任意的非零向量,则下列结论正确的是( )B .a·b =b·c ,则a =cC .a·b =0⇒a =0或b =0D .(a +b )·(a -b )=|a |2-|b |2 答案 D2.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. 答案 2 33.已知向量a ,b 满足3|a |=2|b |=6,且(a -2b )⊥(2a +b ),则a ,b 夹角的余弦值为________. 答案 -59解析 设a ,b 的夹角为θ, 依题意,(a -2b )·(2a +b )=0, 则2a 2-3a ·b -2b 2=0, 故2×4-3×2×3·cos θ-2×32=0, 则cos θ=-59.题型一 平面向量数量积的基本运算例1 (1)(2021·北京)a =(2,1),b =(2,-1),c =(0,1),则(a +b )·c =______;a ·b =______. 答案 0 3解析 ∵a =(2,1),b =(2,-1),c =(0,1), ∴a +b =(4,0),∴(a +b )·c =4×0+0×1=0, a ·b =2×2+1×(-1)=3.(2)(2022·邹城模拟)在平面四边形ABCD 中,已知AB →=DC →,P 为CD 上一点,CP →=3PD →,|AB →|=4,|AD →|=3,AB →与AD →的夹角为θ,且cos θ=23,则AP →·PB →=________.解析 如图所示,∵AB →=DC →,∴四边形ABCD 为平行四边形, ∵CP →=3PD →,∴AP →=AD →+DP →=14AB →+AD →,PB →=AB →-AP →=34AB →-AD →,又∵|AB →|=4,|AD →|=3,cos θ=23,则AB →·AD →=4×3×23=8,∴AP →·PB →=⎝⎛⎭⎫AD →+14AB →·⎝⎛⎭⎫34AB →-AD → =12AB →·AD →-AD →2+316 AB →2 =12×8-9+316×42=-2. 教师备选1.(2019·全国Ⅱ)已知AB →=(2,3),AC →=(3,t ),|BC →|=1,则AB →·BC →等于( ) A .-3 B .-2 C .2 D .3 答案 C解析 因为BC →=AC →-AB →=(1,t -3), 所以|BC →|=12+t -32=1,解得t =3,所以BC →=(1,0),所以AB →·BC →=2×1+3×0=2.2.在边长为2的正三角形ABC 中,M 是BC 的中点,D 是线段AM 的中点.①若BD →=xBA →+yBC →,则x +y =________;②BD →·BM →=________. 答案 341解析 ①∵M 是BC 的中点, ∴BM →=12BC →,∵D 是AM 的中点,∴BD →=12BA →+12BM →=12BA →+14BC →,∴x =12,y =14,∴x +y =34.②∵△ABC 是边长为2的正三角形,M 是BC 的中点, ∴AM ⊥BC ,且BM =1,∴BD →·BM →=|BD →||BM →|cos ∠DBM =|BM →|2=1. 思维升华 计算平面向量数量积的主要方法 (1)利用定义:a·b =|a ||b |cos 〈a ,b 〉.(2)利用坐标运算,若a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2. (3)灵活运用平面向量数量积的几何意义.跟踪训练1 (1)(2021·新高考全国Ⅱ)已知向量a +b +c =0,|a |=1,|b |=|c |=2,a ·b +b ·c +c ·a =________. 答案 -92解析 由已知可得(a +b +c )2 =a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=9+2(a ·b +b ·c +c ·a )=0, 因此a ·b +b ·c +c ·a =-92.(2)(2020·北京)已知正方形ABCD 的边长为2,点P 满足AP →=12(AB →+AC →),则|PD →|=________;PB →·PD →=________. 答案5 -1解析 建立如图所示的平面直角坐标系,∵AP →=12(AB →+AC →),∴P 为BC 的中点.∴点P 的坐标为(2,1),点D 的坐标为(0,2),点B 的坐标为(2,0), ∴|PD →|=5,PB →=(0,-1),PD →=(-2,1), ∴PB →·PD →=-1.题型二 平面向量数量积的应用 命题点1 向量的模例2 已知向量a ,b 满足|a |=6,|b |=4,且a 与b 的夹角为60°,则|a +b |=__________,|a -3b |=________. 答案 219 6 3解析 因为|a |=6,|b |=4,a 与b 的夹角为60°, 所以a ·b =|a ||b |cos 〈a ,b 〉=6×4×12=12,(a +b )2=a 2+2a ·b +b 2=36+24+16=76, (a -3b )2=a 2-6a·b +9b 2=36-72+144=108,所以|a +b |=219,|a -3b |=6 3. 命题点2 向量的夹角例3 (2020·全国Ⅲ)已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos 〈a ,a +b 〉等于( ) A .-3135B .-1935C.1735D.1935答案 D解析 ∵|a +b |2=(a +b )2=a 2+2a ·b +b 2 =25-12+36=49, ∴|a +b |=7,∴cos 〈a ,a +b 〉=a ·a +b |a ||a +b |=a 2+a ·b |a ||a +b |=25-65×7=1935. 命题点3 向量的垂直例4 (2021·全国乙卷)已知向量a =(1,3),b =(3,4),若(a -λb )⊥b ,则λ=________. 答案 35解析 方法一 a -λb =(1-3λ,3-4λ), ∵(a -λb )⊥b ,∴(a -λb )·b =0, 即(1-3λ,3-4λ)·(3,4)=0, ∴3-9λ+12-16λ=0,解得λ=35.方法二 由(a -λb )⊥b 可知,(a -λb )·b =0,即a ·b -λb 2=0, 从而λ=a ·b b 2=1,3·3,432+42=1525=35. 教师备选1.已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为( ) A.π6 B.π3 C.2π3 D.5π6 答案 B解析 设a 与b 的夹角为α, ∵(a -b )⊥b , ∴(a -b )·b =0, ∴a ·b =b 2,∴|a |·|b |cos α=|b |2,又|a |=2|b |, ∴cos α=12,∵α∈[0,π],∴α=π3.2.已知e 1,e 2是两个单位向量,且|e 1+e 2|=3,则|e 1-e 2|=________. 答案 1解析 由|e 1+e 2|=3,两边平方, 得e 21+2e 1·e 2+e 22=3.又e 1,e 2是单位向量, 所以2e 1·e 2=1,所以|e 1-e 2|2=e 21-2e 1·e 2+e 22=1, 所以|e 1-e 2|=1.思维升华 (1)求平面向量的模的方法①公式法:利用|a |=a ·a 及(a ±b )2=|a |2±2a ·b +|b |2,把向量的模的运算转化为数量积运算; ②几何法:利用向量的几何意义,即利用向量线性运算的平行四边形法则或三角形法则作出所求向量,再利用余弦定理等方法求解. (2)求平面向量的夹角的方法①定义法:cos θ=a·b |a ||b |,求解时应求出a ·b ,|a |,|b |的值或找出这三个量之间的关系;②坐标法.(3)两个向量垂直的充要条件a ⊥b ⇔a ·b =0⇔|a -b|=|a +b|(其中a ≠0,b ≠0).跟踪训练2 (1)已知单位向量a ,b 满足a ·b =0,若向量c =7a +2b ,则sin 〈a ,c 〉等于( ) A.73 B.23 C.79 D.29答案 B解析 方法一 设a =(1,0),b =(0,1), 则c =(7,2), ∴cos 〈a ,c 〉=a ·c |a ||c |=73, ∴sin 〈a ,c 〉=23. 方法二 a ·c =a ·(7a +2b ) =7a 2+2a ·b =7, |c |=7a +2b2=7a 2+2b 2+214a ·b =7+2=3,∴cos 〈a ,c 〉=a ·c |a ||c |=71×3=73, ∴sin 〈a ,c 〉=23. (2)(2021·新高考全国Ⅰ改编)已知O 为坐标原点,点P 1(cos α,sin α),P 2(cos β,-sin β),P 3(cos(α+β),sin(α+β)),A (1,0),则 ①|OP 1—→|=|OP 2—→|; ②|AP 1—→|=|AP 2—→|; ③OA →·OP 3—→=OP 1—→·OP 2—→; ④OA →·OP 1—→=OP 2—→·OP 3—→.以上结论正确的有________.(填序号) 答案 ①③解析 由题意可知, |OP 1—→|=cos 2α+sin 2α=1, |OP 2—→|=cos 2β+-sin β2=1,所以|OP 1—→|=|OP 2—→|,故①正确; 取α=π4,则P 1⎝⎛⎭⎫22,22,取β=5π4,则P 2⎝⎛⎭⎫-22,22, 则|AP 1—→|≠|AP 2—→|,故②错误; 因为OA →·OP 3—→=cos(α+β),OP 1—→·OP 2—→=cos αcos β-sin αsin β=cos(α+β), 所以OA →·OP 3—→=OP 1—→·OP 2—→,故③正确; 因为OA →·OP 1—→=cos α,OP 2—→·OP 3—→=cos βcos(α+β)-sin βsin(α+β) =cos(α+2β), 取α=π4,β=π4,则OA →·OP 1—→=22,OP 2—→·OP 3—→=cos 3π4=-22,所以OA →·OP 1—→≠OP 2—→·OP 3—→,故④错误.题型三 平面向量的实际应用例5 (2022·东莞模拟)在日常生活中,我们会看到两个人共提一个行李包的情况(如图所示).假设行李包所受的重力为G ,所受的两个拉力分别为F 1,F 2,若|F 1|=|F 2|,且F 1与F 2的夹角为θ,则以下结论不正确的是( )A .|F 1|的最小值为12|G |B .θ的范围为[0,π]C .当θ=π2时,|F 1|=22|G |D .当θ=2π3时,|F 1|=|G |答案 B解析 由题意知,F 1+F 2+G =0, 可得F 1+F 2=-G ,两边同时平方得 |G |2=|F 1|2+|F 2|2+2|F 1||F 2|cos θ =2|F 1|2+2|F 1|2cos θ, 所以|F 1|2=|G |221+cos θ.当θ=0时,|F 1|min =12|G |;当θ=π2时,|F 1|=22|G |;当θ=2π3时,|F 1|=|G |,故A ,C ,D 正确;当θ=π时,竖直方向上没有分力与重力平衡,不成立,所以θ∈[0,π),故B 错误. 教师备选若平面上的三个力F 1,F 2,F 3作用于一点,且处于平衡状态,已知|F 1|=1 N ,|F 2|=6+22N ,F 1与F 2的夹角为45°,求: (1)F 3的大小;(2)F 3与F 1夹角的大小. 解 (1)∵三个力平衡, ∴F 1+F 2+F 3=0,∴|F 3|=|F 1+F 2|=|F 1|2+2F 1·F 2+|F 2|2=12+2×1×6+22cos 45°+⎝ ⎛⎭⎪⎫6+222=4+23=1+ 3.(2)方法一 设F 3与F 1的夹角为θ, 则|F 2|=|F 1|2+|F 3|2+2|F 1||F 3|cos θ, 即6+22=12+1+32+2×1×1+3cos θ,解得cos θ=-32, ∵θ∈[0,π], ∴θ=5π6.方法二 设F 3与F 1的夹角为θ, 由余弦定理得cos(π-θ)=12+1+32-⎝⎛⎭⎪⎫6+2222×1×1+3=32, ∵θ∈[0,π],∴θ=5π6.思维升华 用向量方法解决实际问题的步骤跟踪训练3 (2022·沈阳二中模拟)渭河某处南北两岸平行,如图所示,某艘游船从南岸码头A出发航行到北岸,假设游船在静水中航行速度的大小为|ν1|=10 km/h ,水流速度的大小为|ν2|=6 km/h.设ν1与ν2的夹角为120°,北岸的点A ′在码头A 的正北方向,那么该游船航行到北岸的位置应( )A .在A ′东侧B .在A ′西侧C .恰好与A ′重合D .无法确定答案 A解析 建立如图所示的平面直角坐标系,由题意可得ν1=(-5,53),ν2=(6,0), 所以ν1+ν2=(1,53),说明游船有x 轴正方向的速度,即向东的速度,所以该游船航行到北岸的位置应在A ′东侧.极化恒等式:设a ,b 为两个平面向量,则有恒等式a ·b =14[]a +b2-a -b2.如图所示.(1)在平行四边形ABDC 中,AB →=a ,AC →=b , 则a·b =14(|AD →|2-|BC →|2).(2)在△ABC 中,AB →=a ,AC →=b ,AM 为中线, 则a·b =|AM →|2-14|BC →|2.例1 在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB →·AC →=________. 答案 -16解析 如图所示,由极化恒等式,易得AB →·AC →=AM →2-MB →2=32-52=-16.例2 已知AB 为圆x 2+y 2=1的一条直径,点P 为直线x -y +2=0上任意一点,则P A →·PB →的最小值是________. 答案 1解析 如图所示,由极化恒等式易知,当OP 垂直于直线x -y +2=0时,P A →·PB →有最小值,即P A →·PB →=PO →2-OB →2=(2)2-12=1.例3 已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( ) A .1 B .2 C. 2 D.22答案 C解析 如图所示,设OA →⊥OB →,记OA →=a ,OB →=b ,OC →=c , M 为AB 的中点, 由极化恒等式有 (a -c )·(b -c )=CA →·CB →=|CM →|2-|AB →|24=0,∴|CM →|2=|AB →|24=12,可知MC →是有固定起点,固定模长的动向量.点C 的轨迹是以AB 为直径的圆,且点O 也在此圆上, 所以|c |的最大值为圆的直径长,即为 2.课时精练1.(2020·全国Ⅱ)已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是( ) A .a +2b B .2a +b C .a -2b D .2a -b 答案 D解析 由题意得|a |=|b |=1, 设a ,b 的夹角为θ=60°,故a ·b =|a ||b |cos θ=12.对A 项,(a +2b )·b =a ·b +2b 2 =12+2=52≠0; 对B 项,(2a +b )·b =2a ·b +b 2 =2×12+1=2≠0;对C 项,(a -2b )·b =a ·b -2b 2 =12-2=-32≠0; 对D 项,(2a -b )·b =2a ·b -b 2=2×12-1=0.2.(2022·四川乐山第一中学模拟)已知向量a =(2,-2),b =(2,1),b ∥c ,a ·c =4,则|c |等于( ) A .2 5 B .4 C .5 2 D .4 2答案 A解析 因为b ∥c ,所以c =λb =(2λ,λ)(λ∈R ), 又a ·c =4λ-2λ=2λ=4,所以λ=2,c =(4,2),|c |=42+22=2 5.3.(2022·宜昌模拟)若两个非零向量a ,b 满足|a +b |=|a -b |=2|a |,则a -b 与b 的夹角为( ) A.π6 B.π3 C.2π3 D.5π6 答案 D解析 |a +b |=|a -b |=2|a |,等号左右同时平方,得|a +b |2=|a -b |2=4|a |2,即|a |2+|b |2+2a ·b =|a |2+|b |2-2a ·b =4|a |2, 所以a ·b =0且|b |2=3|a |2, 所以|a -b |=|a -b |2=|a |2+|b |2-2a ·b =233|b |,所以cos 〈a -b ,b 〉=a -b ·b|a -b ||b |=-|b |2233|b |·|b |=-32,因为〈a -b ,b 〉∈[0,π],所以〈a -b ,b 〉=5π6.4.已知a =(-2,1),b =(k ,-3),c =(1,2),若(a -2b )⊥c ,则与b 共线的单位向量为( ) A.⎝⎛⎭⎫255,-55或⎝⎛⎭⎫-255,55 B.⎝⎛⎭⎫-255,-55或⎝⎛⎭⎫255,55 C.⎝⎛⎭⎫255,55 D.⎝⎛⎭⎫-255,55 答案 A解析 由题意得a -2b =(-2-2k ,7), ∵(a -2b )⊥c , ∴(a -2b )·c =0,即(-2-2k ,7)·(1,2)=0,-2-2k +14=0, 解得k =6, ∴b =(6,-3), ∴e =±b 62+-32=±⎝⎛⎭⎫255,-55. 5.(2022·盐城模拟)下列关于向量a ,b ,c 的运算,不一定成立的是( ) A .(a +b )·c =a ·c +b ·c B .(a ·b )·c =a ·(b ·c )C.a·b≤|a||b|D.|a-b|≤|a|+|b|答案 B解析根据数量积的分配律可知A正确;选项B中,左边为c的共线向量,右边为a的共线向量,故B不正确;根据数量积的定义,可知a·b=|a||b|cos〈a,b〉≤|a||b|,故C正确;|a-b|2=|a|2+|b|2-2a·b=|a|2+|b|2-2|a||b|cos〈a,b〉≤|a|2+|b|2+2|a||b|=(|a|+|b|)2,故|a-b|≤|a|+|b|,故D正确.6.已知向量a=(2,1),b=(1,-1),c=(m-2,-n),其中m,n均为正数,且(a-b)∥c,则下列说法正确的是()A.a与b的夹角为钝角B.向量a在b上的投影为-2 2C.2m+n=4D.mn的最小值为2答案 C解析对于A,向量a=(2,1),b=(1,-1),则a·b=2-1=1>0,又a,b不共线,所以a,b的夹角为锐角,故A错误;对于B,设向量a,b的夹角为θ,则cos θ=a·b|a||b|=15×2=1010,所以向量a在b上的投影为|a |cos θ=5×1010=22,故B 错误; 对于C ,a -b =(1,2),若(a -b )∥c ,则-n =2(m -2),变形可得2m +n =4,故C 正确; 对于D ,由2m +n =4,且m ,n 均为正数,得mn =12(2m ·n )≤12⎝⎛⎭⎫2m +n 22=2,当且仅当m =1,n =2时,等号成立,即mn 的最大值为2,故D 错误.7.(2021·全国甲卷)已知向量a =(3,1),b =(1,0),c =a +k b .若a ⊥c ,则k =________. 答案 -103解析 c =(3,1)+(k ,0)=(3+k ,1),a ·c =3(3+k )+1×1=10+3k =0,得k =-103.8.(2020·全国Ⅰ)设a ,b 为单位向量,且|a +b |=1,则|a -b |=________. 答案3解析 将|a +b |=1两边平方, 得a 2+2a ·b +b 2=1. ∵a 2=b 2=1,∴1+2a ·b +1=1,即2a ·b =-1. ∴|a -b |=a -b2=a 2-2a ·b +b 2=1--1+1= 3.9.(2022·长沙模拟)在△ABC 中,BC 的中点为D ,设向量AB →=a ,AC →=b . (1)用a ,b 表示向量AD →;(2)若向量a ,b 满足|a |=3,|b |=2,〈a ,b 〉=60°,求AB →·AD →的值. 解 (1)AD →=12(AB →+AC →)=12a +12b ,所以AD →=12a +12b .(2)AB →·AD →=a ·⎝⎛⎭⎫12a +12b =12a 2+12a·b =12×32+12×3×2×cos 60°=6, 所以AB →·AD →=6.10.(2022·南昌模拟)已知向量m =(3sin x ,cos x -1),n =(cos x ,cos x +1),若f (x )=m·n . (1)求函数f (x )的单调递增区间;(2)在Rt △ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若∠A =90°,f (C )=0,c =3,CD 为∠BCA 的角平分线,E 为CD 的中点,求BE 的长. 解 (1)f (x )=m ·n =3sin x ·cos x +cos 2x -1 =32sin 2x +12cos 2x -12=sin ⎝⎛⎭⎫2x +π6-12. 令2x +π6∈⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z ), 则x ∈⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ). 所以函数f (x )的单调递增区间为⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ). (2)f (C )=sin ⎝⎛⎭⎫2C +π6-12=0, sin ⎝⎛⎭⎫2C +π6=12,又C ∈⎝⎛⎭⎫0,π2, 所以C =π3.在△ACD 中,CD =233, 在△BCE 中,BE =22+⎝⎛⎭⎫332-2×2×33×32=213.11.(2022·恩施质检)圆内接四边形ABCD 中,AD =2,CD =4,BD 是圆的直径,则AC →·BD →等于( )A .12B .-12C .20D .-20答案 B解析 如图所示,由题知∠BAD =∠BCD =90°,AD =2,CD =4,∴AC →·BD →=(AD →+DC →)·BD →=AD →·BD →+DC →·BD →=|AD →||BD →|cos ∠BDA -|DC →||BD →|cos ∠BDC=|AD →|2-|DC →|2=4-16=-12.12.在△ABC 中,已知⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为( ) A .等边三角形B .直角三角形C .等腰三角形D .三边均不相等的三角形答案 A解析 AB →|AB →|,AC →|AC →|分别为与AB →,AC →方向相同的单位向量,由平行四边形法则可知向量AB →|AB →|+AC →|AC →|所在的直线为∠BAC 的角平分线.因为⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0, 所以∠BAC 的角平分线垂直于BC ,所以AB =AC .又AB →|AB →|·AC →|AC →|=⎪⎪⎪⎪⎪⎪AB →|AB →|⎪⎪⎪⎪⎪⎪AC →|AC →|·cos ∠BAC =12, 所以cos ∠BAC =12,∠BAC =60°. 所以△ABC 为等边三角形.13.(2022·潍坊模拟)如图所示,一个物体被两根轻质细绳拉住,且处于平衡状态,已知两条绳上的拉力分别是F 1,F 2,且F 1,F 2与水平夹角均为45°,|F 1|=|F 2|=10 2 N ,则物体的重力大小为________ N.答案 20解析 如图所示,∵|F 1|=|F 2|=10 2 N ,∴|F 1+F 2|=102×2=20 N ,∴物体的重力大小为20 N.14.(2021·天津)在边长为1的等边三角形ABC 中,D 为线段BC 上的动点,DE ⊥AB 且交AB于点E ,DF ∥AB 且交AC 于点F ,则|2BE →+DF →|的值为________;(DE →+DF →)·DA →的最小值为________.答案 1 1120 解析 设BE =x ,x ∈⎝⎛⎭⎫0,12, ∵△ABC 为边长为1的等边三角形,DE ⊥AB ,∴∠BDE =30°,BD =2x ,DE =3x ,DC =1-2x ,∵DF ∥AB ,∴△DFC 为边长为1-2x 的等边三角形,DE ⊥DF ,∴(2BE →+DF →)2=4BE →2+4BE →·DF →+DF →2=4x 2+4x (1-2x )×cos 0°+(1-2x )2=1,∴|2BE →+DF →|=1,∵(DE →+DF →)·DA →=(DE →+DF →)·(DE →+EA →)=DE →2+DF →·EA →=(3x )2+(1-2x )×(1-x )=5x 2-3x +1=5⎝⎛⎭⎫x -3102+1120, ∴当x =310时,(DE →+DF →)·DA →的最小值为1120.15.定义一种向量运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ·b ,当a ,b 不共线时,|a -b |,当a ,b 共线时(a ,b 是任意的两个向量).对于同一平面内的向量a ,b ,c ,e ,给出下列结论,正确的是( )A .a ⊗b =b ⊗aB .λ(a ⊗b )=(λa )⊗b (λ∈R )C .(a +b )⊗c =a ⊗c +b ⊗cD .若e 是单位向量,则|a ⊗e |≥|a |+1答案 A解析 当a ,b 共线时,a ⊗b =|a -b |=|b -a |=b ⊗a ,当a ,b 不共线时,a ⊗b =a ·b =b ·a =b ⊗a ,故A 正确;当λ=0,b ≠0时,λ(a ⊗b )=0,(λa )⊗b =|0-b |≠0,故B 错误;当a +b 与c 共线时,则存在a ,b 与c 不共线,(a +b )⊗c =|a +b -c |,a ⊗c +b ⊗c =a ·c +b ·c ,显然|a +b -c |≠a ·c +b ·c ,故C 错误;当e 与a 不共线时,|a ⊗e |=|a ·e |<|a |·|e |<|a |+1,当e 与a 共线时,设a =u e ,u ∈R ,|a ⊗e |=|a -e |=|u e -e |=|u -1|≤|u |+1,故D 错误.16.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(sin A ,sin B ),n =(cos B ,cos A ),m·n =sin 2C .(1)求角C 的大小;(2)若sin A ,sin C ,sin B 成等差数列,且CA →·(AB →-AC →)=18,求c .解 (1)m·n =sin A cos B +sin B cos A=sin(A +B ),在△ABC 中,A +B =π-C ,0<C <π,所以sin(A +B )=sin C ,所以m·n =sin C ,又m·n =sin 2C ,所以sin 2C =sin C ,cos C =12, 又因为C ∈(0,π),故C =π3. (2)由sin A ,sin C ,sin B 成等差数列,可得2sin C =sin A +sin B ,由正弦定理得2c =a +b .因为CA →·(AB →-AC →)=18,所以CA →·CB →=18,即ab cos C =18,ab =36.由余弦定理得c 2=a 2+b 2-2ab cos C =(a +b )2-3ab , 所以c 2=4c 2-3×36,c 2=36, 所以c =6.。
2020年高中数学知识点口诀
高考数学必考知识点口诀一、《集合与函数》内容子交并补集,还有幂指对函数。
性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。
底数非1的正数,1两边增减变故。
函数定义域好求。
分母不能等于0,偶次方根须非负,零和负数无对数; 正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
二、《三角函数》三角函数是函数,象限符号坐标注。
函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。
正六边形顶点处,从上到下弦切割; 中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任庖缓扔诤竺媪礁S盏脊骄褪呛茫夯蟠蠡。
?nbsp;变成税角好查表,化简证明少不了。
二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。
两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。
和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。
条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。
公式顺用和逆用,变形运用加巧用; 1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围; 利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;三、《不等式》解不等式的途径,利用函数的性质。
对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。
数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。
高考数学一轮总复习教学课件第五章 平面向量、复数第1节 平面向量的概念及线性运算
→
→
②利用结论“若=λ+μ(λ,μ为实数),则 A,B,C 三点共线的
充要条件是λ+μ=1”来证明三点共线,但应注意此结论成立的前提条
→
→
件是“,不共线”.
[针对训练]
→
→
→
(1)已知向量 a,b 且=a+2b,=-5a+6b,=7a-2b,则一定共线的三
点是(
A.A,B,D
相等,与起点(终点)无关.
(3)两向量可以相等,也可以不相等,但两向量不能比较大小.向量
的模长均为实数,所以模长可以比较大小.
(4)非零向量a与 || 的关系: ||是与a同方向的单位向量.
[针对训练] 给出下列命题:
→
→
①若A,B,C,D是不共线的四点,且 = ,则四边形ABCD为平行
(1)|a|与|b|是否相等和a,b的方向无关.( √
(2)若a∥b,b∥c,则a∥c.(
→
×
)
)
→
(3)向量与向量是共线向量,则 A,B,C,D 四点在一条直线上.
(
)
×
(4)当两个非零向量a,b共线时,一定有b=λa,反之成立.( √
)
2.在平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点
k(2a-b),则有(1-2k)a+(k+λ)b=0,因为a,b是两个不共线向量,故a
- = ,
与b均不为零向量,所以
+ = ,
解得 k=,λ=-.
提升·关键能力
类分考点,落实四翼
考点一
平面向量的基本概念
[例1] (1)下列命题正确的是(
《高考数学常考知识点之复数》
复数考试内容:复数的概念.复数的加法和减法.复数的乘法和除法.数系的扩充.考试要求:(1)了解复数的有关概念及复数的代数表示和几何意义.(2)掌握复数代数形式的运算法则,能进行复数代数形式的加法、减法、乘法、除法运算.(3)了解从自然数系到复数系的关系及扩充的基本思想.§15. 复数知识要点1. ⑴复数的单位为i,它的平方等于-1,即.⑵复数及其相关概念:复数—形如a + bi的数(其中);实数—当b = 0时的复数a + bi,即a;虚数—当时的复数a + bi;纯虚数—当a = 0且时的复数a + bi,即bi.复数a + bi的实部与虚部—a叫做复数的实部,b叫做虚部(注意a,b都是实数)复数集C—全体复数的集合,一般用字母C表示.⑶两个复数相等的定义:.⑷两个复数,如果不全是实数,就不能比较大小.注:①若为复数,则若,则.(×)[为复数,而不是实数]若,则.(√)②若,则是的必要不充分条件.(当,时,上式成立)2. ⑴复平面内的两点间距离公式:.其中是复平面内的两点所对应的复数,间的距离.由上可得:复平面内以为圆心,为半径的圆的复数方程:.⑵曲线方程的复数形式:①为圆心,r为半径的圆的方程.②表示线段的垂直平分线的方程.③为焦点,长半轴长为a的椭圆的方程(若,此方程表示线段).④表示以为焦点,实半轴长为a的双曲线方程(若,此方程表示两条射线).⑶绝对值不等式:设是不等于零的复数,则①.左边取等号的条件是,右边取等号的条件是.②.左边取等号的条件是,右边取等号的条件是.注:.3. 共轭复数的性质:,(a + bi)()注:两个共轭复数之差是纯虚数. (×)[之差可能为零,此时两个复数是相等的]4 ⑴①复数的乘方:②对任何,及有③注:①以上结论不能拓展到分数指数幂的形式,否则会得到荒谬的结果,如若由就会得到的错误结论.②在实数集成立的. 当为虚数时,,所以复数集内解方程不能采用两边平方法.⑵常用的结论:若是1的立方虚数根,即,则.5. ⑴复数是实数及纯虚数的充要条件:①.②若,是纯虚数.⑵模相等且方向相同的向量,不管它的起点在哪里,都认为是相等的,而相等的向量表示同一复数. 特例:零向量的方向是任意的,其模为零.注:.6. ⑴复数的三角形式:.辐角主值:适合于0≤<的值,记作.注:①为零时,可取内任意值.②辐角是多值的,都相差2的整数倍.③设则.⑵复数的代数形式与三角形式的互化:,,.⑶几类三角式的标准形式:7. 复数集中解一元二次方程:在复数集内解关于的一元二次方程时,应注意下述问题:①当时,若>0,则有二不等实数根;若=0,则有二相等实数根;若<0,则有二相等复数根(为共轭复数).②当不全为实数时,不能用方程根的情况.③不论为何复数,都可用求根公式求根,并且韦达定理也成立.8. 复数的三角形式运算:棣莫弗定理:。
2020版高考数学一轮复习 第11章 算法复数推理与证明 第2讲 课后作业 理(含解析)
第11章 算法复数推理与证明 第2讲A 组 基础关1.(2018·榆林模拟)已知复数z 1=6-8i ,z 2=-i ,则z 1z 2=( ) A .8-6i B .8+6i C .-8+6i D .-8-6i 答案 B解析 z 1z 2=6-8i -i=(6-8i)·i=8+6i.2.(2019·青岛模拟)在复平面内,复数z =4-7i2+3i (i 是虚数单位),则z 的共轭复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案 B 解析 z =4-7i2+3i=4-7i2-3i13=-13-26i 13=-1-2i ,其共轭复数z =-1+2i对应的点(-1,2)在第二象限.3.(2018·河南省天一大联考)已知复数z =2-3i ,若z 是复数z 的共轭复数,则z ·(z +1)=( )A .15-3iB .15+3iC .-15+3iD .-15-3i答案 A解析 依题意,z ·(z +1)=(2-3i)(3+3i)=6+6i -9i +9=15-3i.4.(2019·广东测试)若z =(a -2)+a i 为纯虚数,其中a ∈R ,则a +i 71+a i=( )A .iB .1C .-iD .-1 答案 C解析 ∵z 为纯虚数,∴⎩⎨⎧a -2=0,a ≠0,∴a =2,∴a +i 71+a i =2-i 1+2i =2-i 1-2i 1+2i1-2i=-3i3=-i.故选C.5.已知m 为实数,i 为虚数单位,若m +(m 2-4)i>0,则m +2i2-2i=( )A .iB .1C .-iD .-1 答案 A解析 因为m +(m 2-4)i>0,所以m +(m 2-4)i 是实数,所以⎩⎨⎧m >0,m 2-4=0,故m =2.所以m +2i 2-2i=2+2i 2-2i =1+i1-i=i. 6.(2018·成都市第二次诊断性检测)若虚数(x -2)+y i(x ,y ∈R )的模为3,则yx的最大值是( )A.32B.33C.12 D.3 答案 D解析 因为(x -2)+y i 是虚数, 所以y ≠0,又因为|(x -2)+y i|=3, 所以(x -2)2+y 2=3.因为y x是复数x +y i 对应点的斜率,所以⎝ ⎛⎭⎪⎫y x max =tan ∠AOB =3,所以y x 的最大值为 3.7.(2017·全国卷Ⅰ)设有下面四个命题:p 1:若复数z 满足1z ∈R ,则z ∈R ;p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2; p 4:若复数z ∈R ,则z ∈R .其中的真命题为( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4 答案 B解析 设z =a +b i(a ,b ∈R ),z 1=a 1+b 1i(a 1,b 1∈R ),z 2=a 2+b 2i(a 2,b 2∈R ). 对于p 1,若1z ∈R ,即1a +b i =a -b ia 2+b 2∈R ,则b =0且a ≠0⇒z =a +b i =a ∈R ,所以p 1为真命题.对于p 2,若z 2∈R ,即(a +b i)2=a 2+2ab i -b 2∈R ,则ab =0.当a =0,b ≠0时,z =a +b i =b i ∈/ R ,所以p 2为假命题.对于p 3,若z 1z 2∈R ,即(a 1+b 1i)(a 2+b 2i)=(a 1a 2-b 1b 2)+(a 1b 2+a 2b 1)i ∈R ,则a 1b 2+a 2b 1=0.而z 1=z 2,即a 1+b 1i =a 2-b 2i ⇔a 1=a 2,b 1=-b 2.因为a 1b 2+a 2b 1=0⇒/a 1=a 2,b 1=-b 2,所以p 3为假命题.对于p 4,若z ∈R ,即a +b i ∈R ,则b =0⇒z =a -b i =a ∈R ,所以p 4为真命题.故选B.8.(2017·天津高考)已知a ∈R ,i 为虚数单位,若a -i2+i为实数,则a 的值为________.答案 -2解析 ∵a ∈R ,a -i2+i=a -i2-i 2+i 2-i =2a -1-a +2i 5=2a -15-a +25i 为实数,∴-a +25=0,∴a =-2.9.(2018·合肥模拟)设z 2=z 1-i z 1(其中z 1表示z 1的共轭复数),已知z 2的实部是-1,则z 2的虚部为________.答案 1解析 设z 1=a +b i ,z 2=-1+c i , 因为z 2=z 1-i z 1,所以-1+c i =(a +b i)-i(a -b i)=(a -b )+(b -a )i ,所以⎩⎨⎧a -b =-1,b -a =c ,所以c =1,所以z 2的虚部为1.10.已知复数z =i +i 2+i 3+…+i 20221+i ,则复数z 在复平面内对应点的坐标为________.答案 (0,1)解析 因为i 4n +1+i 4n +2+i 4n +3+i 4n +4=i +i 2+i 3+i 4=0, 而2022=4×505+2,所以z =i +i 2+i 3+…+i 20221+i =i +i 21+i =-1+i1+i=-1+i1-i 1+i1-i =2i2=i ,对应的点为(0,1).B 组 能力关1.(2018·华南师大附中模拟)欧拉公式e i x =cos x +isin x (i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,已知e a i 为纯虚数,则复数sin2a +i1+i在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案 A解析 由题意得e a i=cos a +isin a 是纯虚数,所以⎩⎨⎧cos a =0,sin a ≠0,所以sin2a =2sin a cos a =0,sin2a +i 1+i =i 1+i =i 1-i 2=1+i 2,其在复平面内对应的点⎝ ⎛⎭⎪⎫12,12在第一象限. 2.对于复数z 1,z 2,若(z 1-i)z 2=1,则称z 1是z 2的“错位共轭”复数,则复数32-12i的“错位共轭”复数为( )A .-36-12iB .-32+32iC.36+12i D.32+32i 答案 D解析 由(z -i)⎝ ⎛⎭⎪⎫32-12i =1,可得z -i =132-12i =32+12i ,所以z =32+32i.故选D.3.(2019·西安模拟)已知方程x 2+(4+i)x +4+a i =0(a ∈R )有实根b ,且z =a +b i ,则复数z 等于( )A .2-2iB .2+2iC .-2+2iD .-2-2i答案 A解析 由题意得b 2+(4+i)b +4+a i =0, 整理得(b 2+4b +4)+(a +b )i =0,所以⎩⎨⎧ b +22=0,a +b =0,所以⎩⎨⎧a =2,b =-2,所以z =2-2i.4.已知复数z 在复平面内对应的点在第三象限,则z 1=z +|z |在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限答案 A解析 令z =a +b i(a <0,b <0),则|z |=a 2+b 2>|a |,z 1=z +|z |=(a 2+b 2+a )-b i ,又a 2+b 2+a >0,-b >0,所以z 1在复平面内对应的点在第一象限.5.已知复数z =(a -2)+(a +1)i(a ∈R )的对应点在复平面的第二象限,则|1+a i|的取值范围是________.答案 [1,5)解析 复数z =(a -2)+(a +1)i 对应的点的坐标为(a -2,a +1),因为该点位于第二象限,所以⎩⎨⎧a -2<0,a +1>0,解得-1<a <2.所以|1+a i|=1+a 2∈[1,5).6.复数z 1,z 2满足z 1=m +(4-m 2)i ,z 2=2cos θ+(λ+3sin θ)i(m ,λ,θ∈R ),并且z 1=z 2,则λ的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤-916,7解析 由复数相等的充要条件,可得⎩⎨⎧m =2cos θ,4-m 2=λ+3sin θ,化简得4-4cos 2θ=λ+3sin θ,由此可得λ=-4cos 2θ-3sin θ+4=-4(1-sin 2θ)-3sin θ+4=4sin 2θ-3sin θ=4⎝ ⎛⎭⎪⎫sin θ-382-916,因为sin θ∈[-1,1],所以λ∈⎣⎢⎡⎦⎥⎤-916,7.。
高考数学一轮总复习 第五章 5.5 复 数
∴ -x+y=3,
x=1,
解得
故 x+y=5.
2x-y=-2,
y=4,
3 课时作业
PART THREE
基础保分练
1.已知复数z1=6-8i,z2=-i,则
z1 z2
等于
A.-8-6i
B.-8+6i
√C.8+6i
D.8-6i
解析 ∵z1=6-8i,z2=-i,
∴zz12=6--8i i=6--i82ii=8+6i.
②对角线C→A所表示的复数; 解 ∵C→A=O→A-O→C,∴C→A所表示的复数为(3+2i)-(-2+4i ③B点对应的复数. 解 O→B=O→A+A→B=O→A+O→C, ∴O→B所表示的复数为(3+2i)+(-2+4i)=1+6i,
即B点对应的复数为1+6i.
思维升华
复平面内的点、向量及向量对应的复数是一一对应的,要求 的复数时,只要找出所求向量的始点和终点,或者用向量相 论即可.
A.20
B.12
√C.2 5
D.2
解析 设z=+bi,a,b∈R,
则由z2=12+16i,得a2-b2+2abi=12+16i,
a2-b2=12,
a=4, a=-4,
则
解得
或
2ab=16,
b=2
b=-2,
即|z|= a2+b2= 16+4=2 5.故选 C.
8.已知集合M={1,m,3+(m2-5m-6)i},N={-1,3},若M 数m的值为_3_或__6___.
基础自测
JICHUZICE
题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)方程x2+x+1=0没有解.( × ) (2)复数z=a+bi(a,b∈R)中,虚部为bi.( × ) (3)复数中有相等复数的概念,因此复数可以比较大小.( × ) (4)原点是实轴与虚轴的交点.( √ ) (5)复数的模实质上就是复平面内复数对应的点到原点的距离
高考数学复数公式
高考数学复数公式高三第一轮备考已如期而至,紧张而又忙碌的复习阶段你是否已经掌握了相关的知识点呢?以下是小编为大家整理的高考数学复数公式,希望能对大家的复习有所帮助,相信认真复习的你一定能够在不就的考试中取得优异的成绩。
复数公式a+bi=c+di,a=c,b=d(a+bi)+(c+di)=(a+c)+(b+d)i(a+bi)-(c+di)=(a-c)+(b-d)i(a+bi)(c+di)=(ac-bd)+(bc+ad)ia+bi=r(cosθ+isinθ)r1=(cosθ1+isinθ1)r2(cosθ2+isinθ2)=r1r2〔cos(θ1+θ2)+isin(θ1+θ2)〕〔r(cosθ+sinθ)〕n=rn(cosnθ+isinnθ)k=0,1,……,n-1数学知识点虚数单位i一出,数集扩大到复数。
一个复数一对数,横纵坐标实虚部。
对应复平面上点,原点与它连成箭。
箭杆与X轴正向,所成便是辐角度。
箭杆的长即是模,常将数形来结合。
代数几何三角式,相互转化试一试。
代数运算的实质,有i多项式运算。
i的正整数次幂,四个数值周期现。
一些重要的结论,熟记巧用得结果。
虚实互化本领大,复数相等来转化。
利用方程思想解,注意整体代换术。
几何运算图上看,加法平行四边形。
减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。
三角形式的运算,须将辐角和模辨。
利用棣莫弗公式,乘方开方极方便。
辐角运算很奇特,和差是由积商得。
四条性质离不得,相等和模与共轭。
两个不会为实数,比较大小要不得。
复数实数很密切,须注意本质区别。
注:①哪些相应的实变初等函数的性质被保留下来。
②哪些相应的实变初等函数的性质不再成立。
③出现了哪些相应的实变初等函数所没有的新的性质。
高考数学一轮总复习第五章平面向量与复数 1平面向量的概念及线性运算课件
√
√
【拓广探索】
13.设点在的内部,且,则的面积与 的面积之比为 ( )
A.3 B. C.2 D.
解:如图,取的中点D,在上取点,使 ,连接, .
第五章 平面向量与复数
5.1 平面向量的概念及线性运算
1.通过对力、速度、位移等的分析,了解平面向量的实际背景,理解平面向量的意义和两个向量相等的含义. 2.理解平面向量的几何表示和基本要素. 3.借助实例和平面向量的几何表示,掌握平面向量加、减运算及运算规则,理解其几何意义. 4.通过实例分析,掌握平面向量的数乘运算及运算规则,理解其几何意义.理解两个平面向量共线的含义. 5.了解平面向量的线性运算性质及其几何意义.
解:存在实数 ,使得,说明向量,共线,则, 同向或反向;,则,同向.故“存在实数 ,使得”是“ ”的必要不充分条件.故选B.
√
10.在中,为边上的动点(不含两端),且满足,则 ( )
A.有最小值4 B.有最大值4 C.有最大值2 D.有最小值2
解:由题意,知,, .所以 ,当且仅当 时取等号.故选A.
三角形法则
平行四边形法则
方向相同
运算
定义
法则(或几何意义)
运算律(性质)
数乘
3.向量共线定理 向量与共线的充要条件是:存在唯一一个实数 ,使________.
相同
相反
续表
常用结论
1.加法运算的推广 (1)加法运算的推广: . (2)向量三角不等式: .两向量不共线时,可由“三角形中任意两边之和大于第三边,任意两边之差小于第三边”知“ ”成立;两向量共线时,可得出“ ”成立(分同向、反向两种不同情形).
A.单位向量都相等 B.若,则 C.若,则 D.若,则
高考数学一轮复习 第五章 平面向量与复数5
高考数学一轮复习 第五章 平面向量与复数5.5 复 数考试要求 1.通过方程的解,认识复数.2.理解复数的代数表示及其几何意义,理解两个复数相等的含义.3.掌握复数的四则运算,了解复数加、减运算的几何意义.知识梳理1.复数的有关概念(1)复数的定义:形如a +b i(a ,b ∈R )的数叫做复数,其中a 是实部,b 是虚部,i 为虚数单位. (2)复数的分类: 复数z =a +b i(a ,b ∈R )⎩⎪⎨⎪⎧实数b =0,虚数b ≠0其中,当a =0时为纯虚数.(3)复数相等:a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ). (4)共轭复数:a +b i 与c +d i 互为共轭复数⇔a =c ,b =-d (a ,b ,c ,d ∈R ). (5)复数的模:向量OZ →的模叫做复数z =a +b i 的模或绝对值,记作|a +b i|或|z |,即|z |=|a +b i|=a 2+b 2(a ,b ∈R ).2.复数的几何意义 (1)复数z =a +b i(a ,b ∈R )一一对应复平面内的点Z (a ,b ). (2)复数z =a +b i(a ,b ∈R )一一对应平面向量OZ →.3.复数的四则运算(1)复数的加、减、乘、除运算法则: 设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则 ①加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ; ②减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ; ③乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ; ④除法:z 1z 2=a +b i c +d i =a +b ic -d i c +d ic -d i =ac +bd c 2+d 2+bc -adc 2+d2i(c +d i≠0).(2)几何意义:复数加、减法可按向量的平行四边形或三角形法则进行.如图给出的平行四边形OZ 1ZZ 2可以直观地反映出复数加、减法的几何意义,即OZ →=OZ 1→+OZ 2→,Z 1Z 2→=OZ 2→-OZ 1→.常用结论1.(1±i)2=±2i ;1+i 1-i =i ;1-i1+i =-i.2.-b +a i =i(a +b i)(a ,b ∈R ).3.i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i(n ∈N ). 4.i 4n +i 4n +1+i 4n +2+i 4n +3=0(n ∈N ). 5.复数z 的方程在复平面上表示的图形(1)a ≤|z |≤b 表示以原点O 为圆心,以a 和b 为半径的两圆所夹的圆环; (2)|z -(a +b i)|=r (r >0)表示以(a ,b )为圆心,r 为半径的圆. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)复数z =a -b i(a ,b ∈R )中,虚部为b .( × ) (2)复数可以比较大小.( × )(3)已知z =a +b i(a ,b ∈R ),当a =0时,复数z 为纯虚数.( × )(4)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.( √ ) 教材改编题1.已知复数z 满足(2+i)z =1-i ,其中i 是虚数单位,则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案 D2.复数z =(3+i)(1-4i),则复数z 的实部与虚部之和是________. 答案 -4解析 z =(3+i)(1-4i)=3-12i +i +4=7-11i ,故实部和虚部之和为7-11=-4. 3.若z =(m 2+m -6)+(m -2)i 为纯虚数,则实数m 的值为________. 答案 -3题型一 复数的概念例1 (1)(2021·浙江)已知a ∈R ,(1+a i)i =3+i(i 为虚数单位),则a 等于( ) A .-1 B .1 C .-3 D .3 答案 C解析 方法一 因为(1+a i)i =-a +i =3+i ,所以-a =3,解得a =-3. 方法二 因为(1+a i)i =3+i ,所以1+a i =3+i i =1-3i ,所以a =-3.(2)(2022·新余模拟)若复数z 满足z 1+i i 32-i =1-i ,则复数z 的虚部为( )A .iB .-iC .1D .-1 答案 C解析 ∵z 1+i i 32-i=1-i ,∴z (1+i)(-i)=(2-i)(1-i), ∴z (1-i)=(2-i)(1-i),∴z =2-i , ∴z =2+i ,∴z 的虚部为1. 教师备选1.(2020·全国Ⅲ)若z (1+i)=1-i ,则z 等于( ) A .1-i B .1+i C .-i D .i 答案 D解析 因为z =1-i 1+i =1-i 21+i 1-i=-i ,所以z =i.2.(2020·全国Ⅰ)若z =1+i ,则|z 2-2z |等于( ) A .0 B .1 C. 2 D .2 答案 D解析 方法一 z 2-2z =(1+i)2-2(1+i)=-2, |z 2-2z |=|-2|=2.方法二 |z 2-2z |=|(1+i)2-2(1+i)| =|(1+i)(-1+i)|=|1+i|·|-1+i|=2.思维升华 解决复数概念问题的方法及注意事项(1)复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可. (2)解题时一定要先看复数是否为a +b i(a ,b ∈R )的形式,以确定实部和虚部.跟踪训练1 (1)(2022·衡水中学模拟)已知x 1+i =1-y i ,其中x ,y 是实数,i 是虚数单位,则x +y i 的共轭复数为( ) A .2+i B .2-i C .1+2iD .1-2i答案 B解析 由x1+i =1-y i ,得x 1-i 1+i 1-i =1-y i ,即x 2-x2i =1-y i , ∴⎩⎨⎧x2=1,x2=y ,解得x =2,y =1,∴x +y i =2+i , ∴其共轭复数为2-i.(2)已知z =1-3i ,则|z -i|=________. 答案5解析 ∵z =1-3i ,∴z =1+3i , ∴z -i =1+3i -i =1+2i , ∴|z -i|=12+22= 5. 题型二 复数的四则运算例2 (1)(2021·新高考全国Ⅰ)已知z =2-i ,则z (z +i)等于( ) A .6-2i B .4-2i C .6+2i D .4+2i答案 C解析 因为z =2-i ,所以z (z +i)=(2-i)(2+2i)=6+2i.(2)设z 1,z 2,z 3为复数,z 1≠0.给出下列命题: ①若|z 2|=|z 3|,则z 2=±z 3; ②若z 1z 2=z 1z 3,则z 2=z 3;③若z 2=z 3,则|z 1z 2|=|z 1z 3|; ④若z 1z 2=|z 1|2,则z 1=z 2. 其中所有正确命题的序号是( ) A .①③ B .②③ C .②④ D .③④ 答案 B解析 由|i|=|1|,知①错误;z 1z 2=z 1z 3,则z 1(z 2-z 3)=0,又z 1≠0,所以z 2=z 3,故②正确; |z 1z 2|=|z 1||z 2|,|z 1z 3|=|z 1||z 3|,又z 2=z 3,所以|z 2|=|z 2|=|z 3|,故③正确,令z 1=i ,z 2=-i ,满足z 1z 2=|z 1|2,不满足z 1=z 2,故④错误. 教师备选1.(2020·新高考全国Ⅰ)2-i1+2i 等于( )A .1B .-1C .iD .-i 答案 D 解析2-i 1+2i =2-i1-2i 1+2i1-2i=-5i5=-i.2.在数学中,记表达式ad -bc 为由⎪⎪⎪⎪⎪⎪a b cd 所确定的二阶行列式.若在复数域内,z 1=1+i ,z 2=2+i 1-i ,z 3=z 2,则当⎪⎪⎪⎪⎪⎪z 1 z 2z 3 z 4=12-i 时,z 4的虚部为________. 答案 -2 解析 依题意知,⎪⎪⎪⎪⎪⎪z 1 z 2z 3 z 4=z 1z 4-z 2z 3,因为z 3=z 2, 且z 2=2+i 1-i=2+i1+i2=1+3i 2,所以z 2z 3=|z 2|2=52,因此有(1+i)z 4-52=12-i ,即(1+i)z 4=3-i , 故z 4=3-i 1+i=3-i1-i2=1-2i.所以z 4的虚部是-2.思维升华 (1)复数的乘法:复数乘法类似于多项式的乘法运算. (2)复数的除法:除法的关键是分子分母同乘以分母的共轭复数. 跟踪训练2 (1)(2021·全国乙卷)设i z =4+3i ,则z 等于( ) A .-3-4i B .-3+4i C .3-4i D .3+4i答案 C解析 方法一 (转化为复数除法运算) 因为i z =4+3i , 所以z =4+3i i =4+3i -i i -i =-4i -3i 2-i 2=3-4i.方法二 (利用复数的代数形式) 设z =a +b i(a ,b ∈R ),则由i z =4+3i ,可得i(a +b i)=4+3i ,即-b +a i =4+3i ,所以⎩⎪⎨⎪⎧-b =4,a =3,即⎩⎪⎨⎪⎧a =3,b =-4,所以z =3-4i. 方法三 (巧用同乘技巧)因为i z =4+3i ,所以i z ·i =(4+3i)·i ,所以-z =4i -3, 所以z =3-4i.(2)若z =i 2 0231-i ,则|z |=________;z +z =________.答案221 解析 z =i2 0231-i =-i 1-i =1-i2,|z |=⎝⎛⎭⎫122+⎝⎛⎭⎫-122=22,z +z =12-12i +12+12i =1.题型三 复数的几何意义例3 (1)(2021·新高考全国Ⅱ)复数2-i1-3i 在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限答案 A 解析2-i 1-3i=2-i 1+3i 10=5+5i 10=1+i 2,所以该复数在复平面内对应的点为⎝⎛⎭⎫12,12,该点在第一象限.(2)(2020·全国Ⅱ)设复数z 1,z 2满足|z 1|=|z 2|=2,z 1+z 2=3+i ,则|z 1-z 2|=________. 答案 2 3解析 方法一 设z 1-z 2=a +b i ,a ,b ∈R , 因为z 1+z 2=3+i , 所以2z 1=(3+a )+(1+b )i , 2z 2=(3-a )+(1-b )i.因为|z 1|=|z 2|=2,所以|2z 1|=|2z 2|=4, 所以3+a 2+1+b 2=4, ①3-a2+1-b 2=4,②①2+②2,得a 2+b 2=12.所以|z 1-z 2|=a 2+b 2=2 3.方法二 设复数z 1,z 2在复平面内分别对应向量OA →,OB →, 则z 1+z 2对应向量OA →+OB →.由题意知|OA →|=|OB →|=|OA →+OB →|=2,如图所示,以OA ,OB 为邻边作平行四边形OACB ,则z 1-z 2对应向量BA →, 且|OA →|=|AC →|=|OC →|=2, 可得|BA →|=2|OA →|sin 60°=2 3. 故|z 1-z 2|=|BA →|=2 3. 教师备选1.(2020·北京)在复平面内,复数z 对应的点的坐标是(1,2),则i·z 等于( ) A .1+2i B .-2+i C .1-2i D .-2-i答案 B解析 由题意知,z =1+2i , ∴i·z =i(1+2i)=-2+i.2.(2019·全国Ⅰ)设复数z 满足|z -i|=1,z 在复平面内对应的点为(x ,y ),则( ) A .(x +1)2+y 2=1 B .(x -1)2+y 2=1 C .x 2+(y -1)2=1 D .x 2+(y +1)2=1 答案 C解析 ∵z 在复平面内对应的点为(x ,y ), ∴z =x +y i(x ,y ∈R ).∵|z -i|=1,∴|x +(y -1)i|=1, ∴x 2+(y -1)2=1.思维升华 由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观. 跟踪训练3 (1)如图,若向量OZ →对应的复数为z ,则z +4z表示的复数为( )A .1+3iB .-3-iC .3-iD .3+i答案 D解析 由题图可得Z (1,-1),即z =1-i ,所以z +4z =1-i +41-i =1-i +41+i 1-i 1+i =1-i +4+4i2=1-i +2+2i =3+i.(2)设复数z 满足条件|z |=1,那么|z +22+i|的最大值是( ) A .3 B .2 3 C .1+2 2 D .4 答案 D解析 |z |=1表示单位圆上的点,那么|z +22+i|表示单位圆上的点到点(-22,-1)的距离,求最大值转化为点(-22,-1)到原点的距离加上圆的半径.因为点(-22,-1)到原点的距离为3,所以所求最大值为4.在如图的复平面中,r =a 2+b 2,cos θ=a r ,sin θ=b r ,tan θ=ba(a ≠0).任何一个复数z =a +b i 都可以表示成z =r (cos θ+isin θ)的形式.其中,r 是复数z 的模;θ是以x 轴的非负半轴为始边,向量OZ →所在射线(射线OZ )为终边的角,叫做复数z =a +b i 的辐角.我们把r (cos θ+isin θ)叫做复数的三角形式.对应于复数的三角形式,把z =a +b i 叫做复数的代数形式.复数乘、除运算的三角表示:已知复数z 1=r 1(cos θ1+isin θ1),z 2=r 2(cos θ2+isin θ2),则z 1·z 2=r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)].z 1z 2=r 1r 2[cos(θ1-θ2)+isin(θ1-θ2)]. 例1 (1)⎝⎛⎭⎫cos π2+isin π2×3⎝⎛⎭⎫cos π6+isin π6 等于( )A.32+332iB.32-332i C .-32+332i D .-32-332i 答案 C解析 ⎝⎛⎭⎫cos π2+isin π2×3⎝⎛⎭⎫cos π6+isin π6 =3⎣⎡⎦⎤cos ⎝⎛⎭⎫π2+π6+isin ⎝⎛⎭⎫π2+π6 =3⎝⎛⎭⎫cos 2π3+isin 2π3=-32+332i. (2)复数cos π3+isin π3经过n 次乘方后,所得的幂等于它的共轭复数,则n 的值等于( ) A .3B .12C .6k -1(k ∈Z )D .6k +1(k ∈Z )答案 C解析 由题意,得⎝⎛⎭⎫cos π3+isin π3n =cos n π3+isin n π3=cos π3-isin π3, 由复数相等的定义,得 ⎩⎨⎧ cos n π3=cos π3=12,sin n π3=-sin π3=-32.解得n π3=2k π-π3(k ∈Z ), ∴n =6k -1(k ∈Z ).(3)复数z =cosπ15+isin π15是方程x 5-α=0的一个根,那么α的值等于( ) A.32+12i B.12+32i C.32-12i D .-12-32i 答案 B解析 由题意得,α=⎝⎛⎭⎫cos π15+isin π155 =cos π3+isin π3=12+32i. 例2 已知i 为虚数单位,z 1=2(cos 60°+isin 60°),z 2=22(sin 30°-icos 30°),则z 1·z 2的三角形式是( )A .4(cos 90°+isin 90°)B .4(cos 30°+isin 30°)C.4(cos 30°-isin 30°)D.4(cos 0°+isin 0°)答案 D解析∵z2=22(sin 30°-icos 30°)=22(cos 300°+isin 300°),∴z1·z2=2(cos 60°+isin 60°)·22(cos 300°+isin 300°)=4(cos 360°+isin 360°)=4(cos 0°+isin 0°).课时精练1.(2022·福州模拟)已知i是虚数单位,则“a=i”是“a2=-1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析i是虚数单位,则i2=-1,“a=i”是“a2=-1”的充分条件;由a2=-1,得a=±i,故“a=i”是“a2=-1”的不必要条件;故“a=i”是“a2=-1”的充分不必要条件.2.设复数z1,z2在复平面内的对应点关于虚轴对称,z1=3-i,则z1z2等于() A.-10 B.10 C.-8 D.8答案 A解析∵z1=3-i,z1,z2在复平面内所对应的点关于虚轴对称,∴z2=-3-i,∴z 1z 2=-9-1=-10.3.(2022·长春实验中学模拟)若复数z 的共轭复数为z 且满足z ·(1+2i)=1-i ,则复数z 的虚部为( )A.35B .-35i C.35i D .-35 答案 A解析 z ·(1+2i)=1-i ,∴z =1-i 1+2i =1-i 1-2i 1+2i 1-2i =-1-3i 5=-15-35i , ∴z =-15+35i , ∴复数z 的虚部为35. 4.已知i 是虚数单位,则复数z =i 2 023+i(i -1)在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案 C解析 因为z =i 2 023+i(i -1)=-i -1-i =-1-2i ,所以复数z 在复平面内对应的点是(-1,-2),位于第三象限.5.(2022·潍坊模拟)在复数范围内,已知p ,q 为实数,1-i 是关于x 的方程x 2+px +q =0的一个根,则p +q 等于( )A .2B .1C .0D .-1答案 C解析 因为1-i 是关于x 的方程x 2+px +q =0的一个根,则1+i 是方程x 2+px +q =0的另一根,由根与系数的关系可得⎩⎪⎨⎪⎧ 1+i +1-i =-p ,1+i 1-i =q ,解得p =-2,q =2,所以p +q =0.6.(2022·苏州模拟)若复数z 满足(1+i)·z =5+3i(其中i 是虚数单位),则下列结论正确的是( )A .z 的虚部为-iB .z 的模为17C .z 的共轭复数为4-iD .z 在复平面内对应的点位于第二象限 答案 B解析 由(1+i)·z =5+3i 得z =5+3i 1+i =5+3i 1-i 1+i 1-i=8-2i 2=4-i , 所以z 的虚部为-1,A 错误;z 的模为42+-12=17,B 正确;z 的共轭复数为4+i ,C 错误;z 在复平面内对应的点为(4,-1),位于第四象限,D 错误.7.若z =(a -2)+a i 为纯虚数,其中a ∈R ,则a +i 71+a i=________. 答案 -i解析 ∵z 为纯虚数,∴⎩⎨⎧a -2=0,a ≠0,∴a =2,∴a +i 71+a i =2-i 1+2i =2-i 1-2i 1+2i1-2i =-3i 3=-i.8.(2022·温州模拟)已知复数z =a +b i(a ,b ∈R ,i 为虚数单位),且z 1-i =3+2i ,则a =________,b =________.答案 5 1解析 由z =a +b i(a ,b ∈R ,i 为虚数单位),则z =a -b i ,所以z 1-i=1+i 2(a -b i) =a +b 2+a -b 2i =3+2i , 故a +b 2=3,a -b 2=2,所以a =5,b =1. 9.当实数m 为何值时,复数z =m 2+m -6m+(m 2-2m )i 为①实数;②虚数;③纯虚数. 解 ①当⎩⎪⎨⎪⎧m 2-2m =0,m ≠0, 即m =2时,复数z 是实数.②当m 2-2m ≠0,且m ≠0,即m ≠0且m ≠2时,复数z 是虚数.③当⎩⎪⎨⎪⎧ m 2+m -6m =0,m ≠0,m 2-2m ≠0,即m =-3时,复数z 是纯虚数.10. 如图所示,在平行四边形OABC 中,顶点O ,A ,C 分别表示0,3+2i ,-2+4i ,试求:(1)AO →,BC →所表示的复数;(2)对角线CA →所表示的复数;(3)B 点对应的复数.解 (1)∵AO →=-OA →,∴AO →所表示的复数为-3-2i ,∵BC →=AO →,∴BC →所表示的复数为-3-2i.(2)∵CA →=OA →-OC →,∴CA →所表示的复数为(3+2i)-(-2+4i)=5-2i.(3)OB →=OA →+OC →,∴OB →所表示的复数为(3+2i)+(-2+4i)=1+6i ,∴B 所对应的复数为1+6i.11.欧拉公式e x i =cos x +isin x 是由瑞士著名数学家欧拉创立,该公式将指数函数的定义域扩大到复数,建立了三角函数与指数函数的关联,在复变函数论里面占有非常重要的地位,被誉为数学中的天桥,依据欧拉公式,下列选项不正确的是( )A .复数e 2i 对应的点位于第二象限B .i 2e π为纯虚数C .复数e x i 3+i的模长等于12 D .i 6e π的共轭复数为12-32i 答案 D解析 对于A ,e 2i =cos 2+isin 2, 因为π2<2<π, 即cos 2<0,sin 2>0,复数e 2i 对应的点位于第二象限,A 正确;对于B ,i 2e π=cos π2+isin π2=i ,i 2e π为纯虚数, B 正确;对于C ,e x i3+i =cos x +isin x 3+i=cos x +isin x 3-i 3+i 3-i =3cos x +sin x 4+3sin x -cos x 4i , 于是得⎪⎪⎪⎪⎪⎪e x i 3+i =⎝ ⎛⎭⎪⎫3cos x +sin x 42+⎝ ⎛⎭⎪⎫3sin x -cos x 42 =12, C 正确; 对于D ,i 6e π=cos π6+isin π6=32+12i , 其共轭复数为32-12i ,D 不正确. 12.(2022·武汉模拟)下列说法中,正确的个数有( )①若|z |=2,则z ·z =4;②若复数z 1,z 2满足|z 1+z 2|=|z 1-z 2|,则z 1z 2=0;③若复数z 的平方是纯虚数,则复数z 的实部和虚部相等;④“a ≠1”是“复数z =(a -1)+(a 2-1)i(a ∈R )是虚数”的必要不充分条件.A .1个B .2个C .3个D .4个答案 B解析 若|z |=2,则z ·z =|z |2=4,故①正确;设z 1=a 1+b 1i(a 1,b 1∈R ),z 2=a 2+b 2i(a 2,b 2∈R ),由|z 1+z 2|=|z 1-z 2|,可得|z 1+z 2|2=(a 1+a 2)2+(b 1+b 2)2=|z 1-z 2|2=(a 1-a 2)2+(b 1-b 2)2则a 1a 2+b 1b 2=0,而z 1z 2=(a 1+b 1i)(a 2+b 2i)=a 1a 2-b 1b 2+a 1b 2i +b 1a 2i=2a 1a 2+a 1b 2i +b 1a 2i 不一定为0,故②错误;当z =1-i 时,z 2=-2i 为纯虚数,其实部和虚部不相等,故③错误;若复数z =(a -1)+(a 2-1)i(a ∈R )是虚数,则a 2-1≠0,即a ≠±1,所以“a ≠1”是“复数z =(a -1)+(a 2-1)i(a ∈R )是虚数”的必要不充分条件,故④正确.13.(2022·上外浦东附中模拟)若⎪⎪⎪⎪a -i 1 b -2i 1+i =0(a ,b ∈R ),则a 2+b 2=________. 答案 1解析 ∵⎪⎪⎪⎪a -i 1 b -2i 1+i =(a -i)(1+i)-(b -2i) =a +a i -i +1-b +2i=(a +1-b )+(a +1)i ,由已知可得⎩⎪⎨⎪⎧ a +1-b =0,a +1=0,解得⎩⎪⎨⎪⎧b =0,a =-1, ∴a 2+b 2=1.14.(2022·上海市静安区模拟)投掷两颗六个面上分别刻有1到6的点数的均匀的骰子,得到其向上的点数分别为m 和n ,则复数m +n i n +m i为虚数的概率为________.答案 56 解析 ∵复数m +n i n +m i =m +n i n -m i n +m in -m i =2mn +n 2-m 2i m 2+n 2, 故复数m +n i n +m i为虚数需满足n 2-m 2≠0, 即m ≠n ,故有6×6-6=30(种)情况,∴复数m +n i n +m i 为虚数的概率为306×6=56.15.(2022·青岛模拟)已知复数z 满足|z -1-i|≤1,则|z |的最小值为( )A .1 B.2-1 C. 2 D.2+1答案 B解析 令z =x +y i(x ,y ∈R ),则由题意有(x -1)2+(y -1)2≤1,∴|z |的最小值即为圆(x -1)2+(y -1)2=1上的动点到原点的最小距离,∴|z |的最小值为2-1.16.(2022·张家口调研)已知复数z 满足z 2=3+4i ,且z 在复平面内对应的点位于第三象限.(1)求复数z ;(2)设a ∈R ,且⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫1+z 1+z 2 023+a =2,求实数a 的值. 解 (1)设z =c +d i(c <0,d <0),则z 2=(c +d i)2=c 2-d 2+2cd i =3+4i ,∴⎩⎪⎨⎪⎧ c 2-d 2=3,2cd =4,解得⎩⎪⎨⎪⎧ c =-2,d =-1或⎩⎪⎨⎪⎧ c =2,d =1(舍去). ∴z =-2-i.(2)∵z =-2+i , ∴1+z 1+z =-1-i -1+i =1+i 1-i =1+i 22=i , ∴⎝ ⎛⎭⎪⎫1+z 1+z 2 023=i 2 023=i 2 020+3=i 505×4+3=-i , ∴|a -i|=a 2+1=2, ∴a =±3.。
专题2.1复数的概念(七个重难点突破)高考数学
故答案为:④.
1
2
3
4
5
6
7
16
8
17
9
18
10
11
12
13
14
15
试卷讲评课件
2 + 2i/2i + 2
6.以2 + i的实部为虚部,2i + 1的虚部为实部的复数为_____________.
【分析】依题意分别确定实部与虚部,即可得解.
【详解】因为 + 的实部为2, + 的虚部为2,故所求复数为 + .
及正切型函数的值域,即可求得参数的范围.
1
2
3
4
5
6
7
16
8
17
9
18
10
11
12
13
14
15
试卷讲评课件
【详解】∵ 是实数, ∈ , ,�� ≠ ,∴ + − = ,
即 =
−
恒成立.
−
又
∴
=
【详解】由
,解得 = −,故 = −.
+≠
故答案为: = −
1
2
3
4
5
6
7
16
8
17
9
18
10
11
12
13
14
15
试卷讲评课件
8.已知x是实数,则“复数x x − 1 + i是纯虚数”的充分不必要条件是“
x = 0(或x = 1)
_______________”.
【分析】根据复数的概念、复数的代数形式以及复数的分类即可求解.
高考数学一轮总复习第五章平面向量与复数 4复数课件
所以ቊ + 2
= 1,
所以 =
2
02
+ 2
+ 12
4
= 2,解得ቊ = 0,或൝ = − 3 ,
= 1,
= 1.
= 1或 =
4 2
−
3
+ 12
=
5
5
.故填1或 .
3
3
(3)已知1 ,2 是方程 2 − 2 + 2 = 0的两个复根,则 12 − 22 =(
结果,这对提高运算的速度和准确度都有很大的帮助,详见本节【常用结论】.②计算
除法的关键是“分母实数化”.③灵活应用待定系数法解题.
变式2(1) (2023年全国乙卷)设 =
B.1 + 2i
√
A.1 − 2i
解: =
2+i
1−1+i
=
i 2+i
i2
2+i
,则
1+i2 +i5
C.2 − i
= 1 − 2i,则 = 1 + 2i.故选B.
3,4
则实数的取值范围为______.
解:因为 = 2 − 4 + 2 − − 6 i,且所对应的点在第二象限,所以
2 − 4 < 0,
ቊ 2
解得3 < < 4.故填 3,4 .
− − 6 > 0,
(2)(2020年全国Ⅱ卷)设复数1 ,2 满足 1 = 2 = 2,1 + 2 = 3 + i,则
2 3
1 − 2 =_____.
解:(方法一)如图所示,设复数1 ,2 所对应的点为1 ,2 ,
2025届高考数学一轮复习——复数讲义
2025届高考数学一轮复习——复数讲义【高考考情分析】复数是高考的必考内容,多出现在选择题中,近几年多选题、填空题形式也有考查,试题较为简单,属于送分题,主要考查复数的概念和复数的四则运算.【基础知识复习】1.复数的有关概念(1)复数相等:i i a b c d a c +=+⇔=且b d =(,,,)a b c d ∈R .(2)共轭复数:i a b +与i c d +共轭a c ⇔=且b d =-(,,,)a b c d ∈R .(3)复数的模:复数i(,)z a b a b =+∈R 对应的向量OZ 的模叫做z 的模,记作||z 或|i |a b +,即|||i |z a b =+=2.复数的几何意义(1)复数i(,)z a b a b −−−−→=+∈←−−−−R 一一对应复平面内的点(,)Z a b . (2)复数i(,)z a b a b −−−−→=+∈←−−−−R 一一对应平面向量((0,0),(,))OZ O Z a b . 3.复数的加、减、乘、除运算法则设12i,i(,,,)z a b z c d a b c d =+=+∈R ,则(1)加法:12(i)(i)()()i z z a b c d a c b d +=+++=+++;(2)减法:12(i)(i)()()i z z a b c d a c b d -=+-+=-+-;(3)乘法:12(i)(i)()()i z z a b c d ac bd bc ad ⋅=+⋅+=-++;(4)除法:122222i (i)(i)i(i 0)i (i)(i)z a b a b c d ac bd bc ad c d z c d c d c d c d c d++-+-===++≠++-++. 4.复数加法的运算律复数的加法满足交换律、结合律,即对任何123,,z z z ∈C ,有1221z z z z +=+,123123()()z z z z z z ++=++.5.复数加、减法的几何意义(1)复数加法的几何意义若复数12,z z 对应的向量12,OZ OZ 不共线,则复数12z z +是以12,OZ OZ 为两邻边的平行四边形的对角线OZ 所对应的复数.(2)复数减法的几何意义复数12z z -是1221OZ OZ Z Z -=所对应的复数.6.复数乘法的运算律:对于任意123z z z ∈C ,,,有交换律:1221z z z z =;结合律:123123()()z z z z z z =;乘法对加法的分配律:1231213()z z z z z z z +=+.【重点难点复习】1.复数的模的运算性质(1)1212z z z z ⋅=⋅;(2)()112220z z z z z =≠; (3)()11n n z z n *=∈N .2.共轭复数的相关运算(1)z z z =⇔为实数,0z z +=且0z z ≠⇔为纯虚数;(2)2222||||zz z z a b ===+;(3)2z z a +=,2i z z b -=;(4)1212z z z z ±=±,1212z z z z ⋅=⋅,()112220z z z z z ⎛⎫=≠ ⎪⎝⎭. 【基本方法与技能复习】求解复数相关问题的技巧(1)复数的分类、复数相等、复数的模、共轭复数的概念都与复数的实部和虚部有关,所以解答与复数概念有关的问题时,需先把所给复数化为i()a b a b +∈,R 的形式,再根据题意列方程(组)求解.(2)求复数的模时,直接根据复数的模的公式和性质进行计算.(3)复数问题实数化是解决复数问题最基本也是最重要的方法.(4)在复数的四则运算中,加、减、乘运算按多项式运算法则进行,把含有虚数单位i 的项看作一类同类项,不含i 的项看作另一类同类项;除法运算则需要分母实数化,解题中注意要把i 的幂化成最简形式.(5)由于复数、点、向量之间存在一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观.【典型例题复习】1i =+,则z =( ) A.1i -- B.1i -+C.1i -D.1i + 2.【2024年新课标Ⅰ卷】已知1i z =--,则||z =( )3.【2023年新课标Ⅰ卷】已知1i 22i z -=+,则z z -=( ) A.i - B.i C.0 D.14.【2023年新课标Ⅰ卷】在复平面内,(13i)(3i)+-对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限5.【2022年新高考Ⅰ卷】若()i 11z -=,则z z +=( )A.-2B.-1C.1D.26.【2022年新高考Ⅰ卷】(22i)(12i)+-=( )A.24i -+B.24i --C.62i +D.62i - 答案以及解析1.答案:C1i =+,所以(1)(1i)z z =-+,即1i i z z z =-+-,即i 1i z =+,所以1i (1i)(i)1i i i(i)z ++-===--,故选C.1=+=11i 11i (1i)(1i)22z --==-+-11i 22=+=所以z =21i 1i=-+,故选C. 2.答案:C解析:|||1i |z =--==3.答案:A解析:因为1i(1i)(1i)2i1i22i2(1i)(1i)42z----====-++-,所以1i2z=,即iz z-=-.故选A.4.答案:A解析:(13i)(3i)3i9i368i+-=-++=+,在复平面内对应的点的坐标为(6,8),位于第一象限,故选A.5.答案:D解析:因为i(1)1z-=,所以111iiz=-=+,所以1iz=-,所以(1i)(1i)2z z+=++-=.故选D.6.答案:D解析:(22i)(12i)24i2i462i+-=-++=-,故选D.。
新高考数学A版讲义:复数第1节 复数与复平面
第1节 复数与复平面要点一:复数知识点一 复数的有关概念 1.复数(1)定义:我们把形如a +b i(a ,b ∈R )的数叫做复数,其中i 叫做虚数单位,满足i 2=-1. (2)表示方法:复数通常用字母z 表示,即z =a +b i(a ,b ∈R ),其中a 叫做复数z 的实部,b 叫做复数z 的虚部.2.复数集(1)定义:全体复数所构成的集合叫做复数集.(2)表示:通常用大写字母C 表示. 知识点二 复数的分类1.复数z =a +b i(a ,b ∈R )⎩⎨⎧实数(b =0),虚数(b ≠0)⎩⎪⎨⎪⎧纯虚数a =0,非纯虚数a ≠0.2.复数集、实数集、虚数集、纯虚数集之间的关系知识点三 复数相等的充要条件设a ,b ,c ,d 都是实数,则a +b i =c +d i ⇔a =c 且b =d ,a +b i =0⇔a =b =0.一、复数的概念 例1 下列命题:①若a ∈R ,则(a +1)i 是纯虚数; ②若a ,b ∈R ,且a >b ,则a +i>b +i ;③若(x 2-4)+(x 2+3x +2)i 是纯虚数,则实数x =±2; ④实数集是复数集的真子集. 其中正确的是( ) A.① B.② C.③ D.④解析 对于复数a +b i(a ,b ∈R ),当a =0且b ≠0时,为纯虚数.对于①,若a =-1,则(a +1)i 不是纯虚数,即①错误.两个虚数不能比较大小,则②错误.对于③,若x =-2,则x 2-4=0,x 2+3x +2=0,此时(x 2-4)+(x 2+3x +2)i =0,不是纯虚数,则③错误.显然,④正反思感悟 复数a +b i(a ,b ∈R )中,实数a 和b 分别叫做复数的实部和虚部.特别注意,b 为复数的虚部而不是虚部的系数,b 连同它的符号叫做复数的虚部. 跟踪训练1 (多选)对于复数a +b i(a ,b ∈R ),下列说法不正确的是( ) A.若a =0,则a +b i 为纯虚数B.若a +(b -1)i =3-2i ,则a =3,b =-2C.若b =0,则a +b i 为实数D.i 的平方等于1 答案 ABD解析 对于A ,当a =0时,a +b i 也可能为实数;对于B ,若a +(b -1)i =3-2i ,则a =3,b =-1;对于D ,i 的平方为-1.所以ABD 均错误. 二、复数的分类例2 当m 为何实数时,复数z =m 2-m -6m +3+(m 2-2m -15)i.(1)是虚数;(2)是纯虚数.解 (1)当⎩⎪⎨⎪⎧m +3≠0,m 2-2m -15≠0,即m ≠5且m ≠-3时,z 是虚数.(2)当⎩⎪⎨⎪⎧m 2-m -6m +3=0,m 2-2m -15≠0,即m =3或m =-2时,z 是纯虚数.延伸探究1.本例中条件不变,当m 为何值时,z 为实数?解 当⎩⎪⎨⎪⎧m +3≠0,m 2-2m -15=0,即m =5时,z 是实数.2.已知z =log 2(1+m )+i 12log (3-m )(m ∈R ),若z 是虚数,求m 的取值范围.解 ∵z 是虚数,∴12log (3-m )≠0,且1+m >0,即⎩⎪⎨⎪⎧3-m >0,3-m ≠1,1+m >0,∴-1<m <2或2<m <3.∴m 的取值范围为(-1,2)∪(2,3).反思感悟 解决复数分类问题的方法与步骤(1)化标准式:解题时一定要先看复数是否为a +b i(a ,b ∈R )的形式,以确定实部和虚部. (2)定条件:复数的分类问题可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)即可. (3)下结论:设所给复数为z =a +b i(a ,b ∈R ),①z 为实数⇔b =0.②z 为虚数⇔b ≠0.③z 为纯虚数⇔a =0且b ≠0.跟踪训练2 若复数(a 2-3a +2)+(a -1)i 是纯虚数,则实数a 的值为( ) A.1 B.2 C.1或2 D.-1 解析 根据复数的分类知,需满足⎩⎪⎨⎪⎧ a 2-3a +2=0,a -1≠0,解得⎩⎪⎨⎪⎧a =1或a =2,a ≠1,即a =2. 三、复数相等的充要条件例3 若(x +y )+y i =(x +1)i ,求实数x ,y 的值.解 由复数相等的充要条件,得⎩⎪⎨⎪⎧x +y =0,y =x +1,解得⎩⎨⎧x =-12,y =12.延伸探究若关于x 的方程3x 2-a2x -1=(10-x -2x 2)i 有实根,求实数a 的值.解 设方程的实根为x =m ,则原方程可变为3m 2-a2m -1=(10-m -2m 2)i ,所以⎩⎪⎨⎪⎧3m 2-a 2m -1=0,10-m -2m 2=0,解得a =11或a =-715.反思感悟 复数相等问题的解题技巧(1)必须是复数的代数形式才可以根据实部与实部相等,虚部与虚部相等列方程组求解. (2)根据复数相等的条件,将复数问题转化为实数问题,为应用方程思想提供了条件,同时这也是复数问题实数化思想的体现.(3)如果两个复数都是实数,可以比较大小,否则是不能比较大小的.跟踪训练3 复数z 1=(2m +7)+(m 2-2)i ,z 2=(m 2-8)+(4m +3)i ,m ∈R ,若z 1=z 2,则m =________.解析 因为m ∈R ,z 1=z 2,所以(2m +7)+(m 2-2)i =(m 2-8)+(4m +3)i.由复数相等的充要条件得⎩⎪⎨⎪⎧2m +7=m 2-8,m 2-2=4m +3,解得m =5.要点二:复平面知识点一 复平面思考 有些同学说:实轴上的点表示实数,虚轴上的点表示虚数,这句话对吗?答案 不正确.实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,原点对应的有序实数对为(0,0),它所确定的复数是z =0+0i =0,表示的是实数. 知识点二 复数的几何意义 1.复数z =a +b i(a ,b ∈R )复平面内的点Z (a ,b ). 2.复数z =a +b i(a ,b ∈R )平面向量OZ →.知识点三 复数的模1.定义:向量OZ →的模叫做复数z =a +b i(a ,b ∈R )的模或绝对值. 2.记法:复数z =a +b i 的模记为|z |或|a +b i|. 3.公式:|z |=|a +b i|=a 2+b 2. 知识点四 共轭复数1.定义:当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数.虚部不等于0的两个共轭复数也叫共轭虚数.2.表示:z 的共轭复数用z 表示,即若z =a +b i(a ,b ∈R ),则z =a -b i.一、复数与复平面内的点的关系例1 已知复数z =(a 2-1)+(2a -1)i ,其中a ∈R .当复数z 在复平面内对应的点Z 满足下列条件时,求a 的值(或取值范围).(1)在实轴上;(2)在第三象限. 解 (1)若z 对应的点Z 在实轴上,则有2a -1=0,解得a =12.(2)若z 对应的点Z 在第三象限,则有⎩⎪⎨⎪⎧a 2-1<0,2a -1<0,解得-1<a <12.故a 的取值范围是⎝⎛⎭⎫-1,12. 反思感悟 利用复数与点的对应关系解题的步骤(1)找对应关系:复数的几何表示法即复数z =a +b i(a ,b ∈R )可以用复平面内的点Z (a ,b )来表示,是解决此类问题的根据.(2)列出方程:此类问题可建立复数的实部与虚部应满足的条件,通过解方程(组)或不等式(组)求解.跟踪训练1 在复平面内,若复数z =(m 2-m -2)+(m 2-3m +2)i(m ∈R )的对应点在虚轴上和实轴负半轴上,分别求复数z .解 若复数z 的对应点在虚轴上,则m 2-m -2=0,所以m =-1或m =2,所以z =6i 或z=0.若复数z 的对应点在实轴负半轴上,则⎩⎪⎨⎪⎧m 2-m -2<0,m 2-3m +2=0,所以m =1,所以z =-2.二、复数与复平面内的向量的关系 例2(1)已知M (1,3),N (4,-1),P (0,2),Q (-4,0),O 为复平面的原点,试写出OM →,ON →,OP →,OQ →所表示的复数;(2)已知复数1,-1+2i ,-3i,6-7i ,在复平面内画出这些复数对应的向量;(3)在复平面内的长方形ABCD 的四个顶点中,点A ,B ,C 对应的复数分别是2+3i,3+2i ,-2-3i ,求点D 对应的复数.解 (1)OM →表示的复数为1+3i ;ON →表示的复数为4-i ;OP →表示的复数为2i ;OQ →表示的复数为-4.(2)设复数1对应的向量为OA →,其中A (1,0); 复数-1+2i 对应的向量为OB →,其中B (-1,2); 复数-3i 对应的向量为OC →,其中C (0,-3); 复数6-7i 对应的向量为OD →,其中D (6,-7). 如图所示.(3)记O 为复平面的原点,由题意得OA →=(2,3),OB →=(3,2),OC →=(-2,-3). 设OD →=(x ,y ),则AD →=(x -2,y -3),BC →=(-5,-5).由题意知,AD →=BC →,所以⎩⎪⎨⎪⎧ x -2=-5,y -3=-5,即⎩⎪⎨⎪⎧x =-3,y =-2,故点D 对应的复数为-3-2i.反思感悟 复数与平面向量的对应关系(1)根据复数与平面向量的对应关系,可知当平面向量的起点在原点时,向量的终点对应的复数即为向量对应的复数.反之复数对应的点确定后,从原点引出的指向该点的有向线段,即为复数对应的向量.(2)解决复数与平面向量一一对应的问题时,一般以复数与复平面内的点一一对应为工具,实现复数、复平面内的点、向量之间的转化.跟踪训练2 已知平面直角坐标系中O 是原点,向量OA →,OB →对应的复数分别为2-3i ,-3+2i ,那么向量BA →对应的复数是( ) A.-5+5i B.5-5i C.5+5iD.-5-5i解析 向量OA →,OB →对应的复数分别记作z 1=2-3i ,z 2=-3+2i ,根据复数与复平面内的点一一对应,可得向量OA →=(2,-3),OB →=(-3,2).由向量减法的坐标运算可得向量BA →=OA →-OB →=(2+3,-3-2)=(5,-5), 根据复数与复平面内的点一一对应,可得向量BA →对应的复数是5-5i. 三、复数的模及其应用例3 (1)设(1+i)x =1+y i ,其中x ,y 是实数,则|x +y i|等于( ) A.1 B. 2 C. 3 D.2解析 因为(1+i)x =x +x i =1+y i ,所以x =y =1,|x +y i|=|1+i|=12+12= 2. (2)已知复数z 满足z +|z |=2+8i ,求复数z . 解 设z =a +b i(a ,b ∈R ),则|z |=a 2+b 2, 代入方程得a +b i +a 2+b 2=2+8i ,∴⎩⎨⎧a +a 2+b 2=2,b =8,解得⎩⎪⎨⎪⎧a =-15,b =8. ∴z =-15+8i.反思感悟 复数模的计算(1)计算复数的模时,应先确定复数的实部和虚部,再利用模长公式计算.虽然两个虚数不能比较大小,但它们的模可以比较大小.(2)设出复数的代数形式,利用模的定义转化为实数问题求解.跟踪训练3 (1)已知z 1=5+3i ,z 2=5+4i ,下列选项中正确的是( ) A.z 1>z 2 B.z 1<z 2 C.|z 1|>|z 2|D.|z 1|<|z 2|解析 |z 1|=|5+3i|=52+32=34,|z 2|=|5+4i|=52+42=41.因为34<41,所以|z 1|<|z 2|. (2)已知0<a <3,复数z =a +i(i 是虚数单位),则|z |的取值范围是( ) A.(1,10) B.(1,3) C.(1,3)D.(1,10)解析 0<a <3,复数z =a +i(i 是虚数单位),则|z |=a 2+1∈(1,10).复数模的几何意义典例设z∈C,且满足下列条件,在复平面内,复数z对应的点Z的集合是什么图形?(1)|z|<3;(2)|z|=2.解(1)设z=x+y i(x,y∈R),则|z|=x2+y2.由题意知x2+y2<3,x2+y2<9.所以复数z对应的点Z的集合是以原点O为圆心,3为半径的圆面,不包括边界.(2)根据模的几何意义,|z|=2表示复数z对应的点到原点的距离为2.所以满足|z|=2的点Z的集合为以原点为圆心,2为半径的圆.[素养提升]复数模的几何意义可以延伸为|z|表示复数z对应的点Z与原点之间的距离,从而可以用数形结合解决有关的问题,考查直观想象素养.复数1.设a,b∈R,“a=0”是“复数a+b i是纯虚数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B解析因为a,b∈R,当“a=0”时,“复数a+b i是纯虚数”不一定成立,也可能b=0,即a+b i=0∈R.而当“复数a+b i是纯虚数”时,“a=0”一定成立.所以a,b∈R,“a=0”是“复数a+b i是纯虚数”的必要不充分条件.2.给出下列三个命题:①若z∈C,则z2≥0;②2i-1的虚部是2i;③2i的实部是0.其中正确命题的个数为()A.0B.1C.2D.3答案B解析①错误,例如z=i,则z2=-1;②错误,因为2i-1虚部是2;③正确,因为2i=0+2i.3.在复平面内,复数z=(a2-2a)+(a2-a-2)i(a∈R)是纯虚数,则()A.a=0或a=2B.a=0C.a ≠1且a ≠2D.a ≠1或a ≠2答案 B解析 因为复数z =(a 2-2a )+(a 2-a -2)i 是纯虚数, 所以a 2-2a =0且a 2-a -2≠0,所以a =0.4.若a ,b ∈R ,i 是虚数单位,a +2 019i =2-b i ,则a 2+b i 等于( ) A.2 019+2i B.2 019+4i C.2+2 019i D.4-2 019i答案 D解析 因为a +2 019i =2-b i ,所以a =2,-b =2 019,即a =2,b =-2 019, 所以a 2+b i =4-2 019i.5.(多选)下列命题中错误的有( )A.若x ,y ∈C ,则x +y i =1+i 的充要条件是x =y =1B.纯虚数集相对于复数集的补集是虚数集C.若(z 1-z 2)2+(z 2-z 3)2=0,则z 1=z 2=z 3D.若实数a 与a i 对应,则实数集与复数集一一对应 答案 ABCD解析 取x =i ,y =-i ,则x +y i =1+i ,但不满足x =y =1,故A 错;BC 错;对于D ,a =0时,a i =0,D 错.6.设m ∈R ,m 2+m -2+(m 2-1)i 是纯虚数,其中i 是虚数单位,则m =________. 答案 -2解析 由⎩⎪⎨⎪⎧m 2+m -2=0,m 2-1≠0,得m =-2.7.如果x -1+y i 与i -3x 为相等复数,x ,y 为实数,则x =________,y =________. 答案 141解析 由复数相等可知⎩⎪⎨⎪⎧x -1=-3x ,y =1,所以⎩⎪⎨⎪⎧x =14,y =1.8.如果(m 2-1)+(m 2-2m )i>1则实数m 的值为________. 答案 2解析 由题意得⎩⎪⎨⎪⎧m 2-2m =0,m 2-1>1,解得m =2.9.实数m 分别取什么数值时,复数z =(m 2+5m +6)+(m 2-2m -15)i (1)是实数;(2)是虚数;(3)是纯虚数;(4)是0. 解 由m 2+5m +6=0得,m =-2或m =-3, 由m 2-2m -15=0得m =5或m =-3. (1)当m 2-2m -15=0时,复数z 为实数, ∴m =5或-3.(2)当m 2-2m -15≠0时,复数z 为虚数, ∴m ≠5且m ≠-3.(3)当⎩⎪⎨⎪⎧ m 2-2m -15≠0,m 2+5m +6=0时,复数z 是纯虚数,∴m =-2.(4)当⎩⎪⎨⎪⎧m 2-2m -15=0,m 2+5m +6=0时,复数z 是0,∴m =-3.10.分别求满足下列条件的实数x ,y 的值. (1)2x -1+(y +1)i =x -y +(-x -y )i ; (2)x 2-x -6x +1+(x 2-2x -3)i =0.解 (1)∵x ,y ∈R ,∴由复数相等的定义,得⎩⎪⎨⎪⎧2x -1=x -y ,y +1=-x -y ,解得⎩⎪⎨⎪⎧x =3,y =-2.(2)∵x ∈R ,∴由复数相等的定义,得⎩⎪⎨⎪⎧x 2-x -6x +1=0,x 2-2x -3=0,即⎩⎪⎨⎪⎧x =3或x =-2,且x ≠-1,x =3或x =-1,∴x =3.11.若sin 2θ-1+i(2cos θ+1)是纯虚数,则θ的值为( ) A.2k π-π4(k ∈Z )B.2k π+π4(k ∈Z )C.2k π±π4(k ∈Z )D.k 2π+π4(k ∈Z ) 答案 B解析 由题意,得⎩⎨⎧sin 2θ-1=0,2cos θ+1≠0,解得⎩⎨⎧θ=k π+π4,θ≠2k π±3π4,k ∈Z ,∴θ=2k π+π4,k ∈Z .12.已知关于x 的方程(x 2+mx )+2x i =-2-2i(m ∈R )有实数根n ,且z =m +n i ,则复数z 等于( ) A.3+i B.3-i C.-3-i D.-3+i答案 B解析 由题意知(n 2+mn )+2n i =-2-2i ,即⎩⎪⎨⎪⎧n 2+mn +2=0,2n +2=0,解得⎩⎪⎨⎪⎧m =3,n =-1.∴z =3-i. 13.已知z 1=(m 2+m +1)+(m 2+m -4)i ,m ∈R ,z 2=3-2i.则m =1是z 1=z 2的______________条件.答案 充分不必要解析 当z 1=z 2时,必有m 2+m +1=3且m 2+m -4=-2,解得m =-2或m =1,显然m =1是z 1=z 2的充分不必要条件.14.使不等式m 2-(m 2-3m )i<(m 2-4m +3)i +10成立的实数m 的取值集合是________. 答案 {3}解析 由已知,得⎩⎪⎨⎪⎧m 2-3m =0,m 2-4m +3=0,m 2<10,解得m =3,所以所求的实数m 的取值集合是{3}.15.若复数z =⎝⎛⎭⎫cos θ-45+⎝⎛⎭⎫sin θ-35i 是纯虚数(i 为虚数单位),则tan ⎝⎛⎭⎫θ-π4的值为( ) A.7 B.-17C.-7D.-7或-17答案 C解析 ∵复数z =⎝⎛⎭⎫cos θ-45+⎝⎛⎭⎫sin θ-35i 是纯虚数, ∴cos θ-45=0,sin θ-35≠0, ∴sin θ=-35,∴tan θ=-34, 则tan ⎝⎛⎭⎫θ-π4=tan θ-11+tan θ=-34-11-34=-7. 16.已知复数z 1=4-m 2+(m -2)i ,z 2=λ+2sin θ+(cos θ-2)i(其中i 是虚数单位,m ,λ,θ∈R ).(1)若z 1为纯虚数,求实数m 的值;(2)若z 1=z 2,求实数λ的取值范围.解 (1)∵z 1为纯虚数,则⎩⎪⎨⎪⎧ 4-m 2=0,m -2≠0,解得m =-2. (2)由z 1=z 2,得⎩⎪⎨⎪⎧4-m 2=λ+2sin θ,m -2=cos θ-2, ∴λ=4-cos 2θ-2sin θ=sin 2θ-2sin θ+3=(sin θ-1)2+2.∵-1≤sin θ≤1,∴当sin θ=1时,λmin =2,当sin θ=-1时,λmax =6,∴实数λ的取值范围是[2,6].复平面1.已知复数z 1=2+i ,z 2=-i ,则|z 1||z 2|等于( ) A.55 B.15C. 5D.5 答案 C解析 依题意|z 1|=22+12=5,|z 2|=(-1)2=1,所以|z 1||z 2|= 5. 2.向量OZ 1→对应的复数是5-4i ,向量OZ 2→对应的复数是-5+4i ,则OZ 1→+OZ 2→对应的复数是( )A.-10+8iB.10-8iC.0D.10+8i答案 C解析 由复数的几何意义,可得OZ 1→=(5,-4),OZ 2→=(-5,4), 所以OZ 1→+OZ 2→=(5,-4)+(-5,4)=(0,0),所以OZ 1→+OZ 2→对应的复数为0.3.在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B ,若C 为线段AB 的中点,则点C 对应的复数是( )A.4+8iB.8+2iC.2+4iD.4+i答案 C解析 因为复数6+5i ,-2+3i 对应的点分别为A ,B ,所以A (6,5),B (-2,3),又C 为线段AB 的中点,所以C (2,4),所以点C 对应的复数是2+4i.4.已知复数z =a +3i(a ∈R )在复平面内对应的点位于第二象限,且|z |=2,则复数z 等于( )A.-1+3iB.1+3iC.-1+3i 或1+3iD.-2+3i 答案 A解析 因为z 在复平面内对应的点位于第二象限,所以a <0,由|z |=2知, a 2+(3)2=2,解得a =±1, 故a =-1,所以z =-1+3i.5.(多选)设z =(2m 2+2m -1)+(m 2-2m +2)i(m ∈R ),则下列结论中错误的是( )A.z 在复平面内对应的点在第一象限B.z 一定不是纯虚数C.z 在复平面内对应的点在实轴上方D.z 一定是实数答案 ABD解析 2m 2+2m -1=2⎝⎛⎭⎫m +122-32,m 2-2m +2=(m -1)2+1>0,则z 在复平面内对应的点一定在实轴上方.6.复数z =x -2+(3-x )i 在复平面内对应的点在第四象限,则实数x 的取值范围是________.答案 (3,+∞)解析 ∵复数z 在复平面内对应的点在第四象限,∴⎩⎪⎨⎪⎧x -2>0,3-x <0,解得x >3. 7.若复数z =(m -2)+(m +1)i 为纯虚数(i 为虚数单位),其中m ∈R ,则|z |=________. 答案 3解析 复数z =(m -2)+(m +1)i 为纯虚数(i 为虚数单位),所以m -2=0且m +1≠0,解得m =2,所以z =3i ,所以|z |=3.8.复数4+3i 与-2-5i 分别表示向量OA →与OB →,则向量AB →表示的复数是________.答案 -6-8i解析 因为复数4+3i 与-2-5i 分别表示向量OA →与OB →,所以OA →=(4,3),OB →=(-2,-5),又AB →=OB →-OA →=(-2,-5)-(4,3)=(-6,-8),所以向量AB →表示的复数是-6-8i.9.在复平面内,O 是原点,向量OA →对应的复数为2+i.(1)如果点A 关于实轴的对称点为点B ,求向量OB →对应的复数;(2)如果(1)中的点B 关于虚轴的对称点为点C ,求点C 对应的复数.解 (1)设向量OB →对应的复数为z 1=x 1+y 1i(x 1,y 1∈R ),则点B 的坐标为(x 1,y 1),由题意可知,点A 的坐标为(2,1).根据对称性可知,x 1=2,y 1=-1,故z 1=2-i.(2)设点C 对应的复数为z 2=x 2+y 2i(x 2,y 2∈R ),则点C 的坐标为(x 2,y 2),由对称性可知,x 2=-2,y 2=-1,故z 2=-2-i.10.设z =x +y i(x ,y ∈R ),若1≤|z |≤2,判断复数w =x +y +(x -y )i 的对应点的集合表示什么图形,并求其面积.解 |w |=(x +y )2+(x -y )2=2(x 2+y 2)=2|z |,而1≤|z |≤2,故2≤|w |≤2.所以w 对应点的集合是以原点为圆心,半径为2和2的圆所夹圆环内点的集合(含内外圆周),其面积S=π[22-(2)2]=2π.11.已知a 为实数,若复数z =(a 2-3a -4)+(a -4)i 为纯虚数,则复数a -a i 在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限 答案 B解析 若复数z =(a 2-3a -4)+(a -4)i 是纯虚数,则⎩⎪⎨⎪⎧ a 2-3a -4=0,a -4≠0,得⎩⎪⎨⎪⎧a =4或a =-1,a ≠4,即a =-1, 则复数a -a i =-1+i 对应的点为(-1,1),位于第二象限.12.在复平面内,把复数3-3i 对应的向量按顺时针方向旋转π3,所得向量对应的复数是( ) A.2 3B.-23iC.3-3iD.3+3i答案 B解析 复数对应的点为(3,-3),对应的向量按顺时针方向旋转π3,则对应的点为(0,-23),所得向量对应的复数为-23i.13.设A ,B 为锐角三角形的两个内角,则复数z =(cos B -tan A )+itan B 对应的点位于复平面的( )A.第一象限B.第二象限C.第三象限D.第四象限 答案 B解析 因为A ,B 为锐角三角形的两个内角,所以A +B >π2,即A >π2-B ,sin A >cos B ,cos B -tan A =cos B -sin A cos A<cos B -sin A <0,又tan B >0,所以点(cos B -tan A ,tan B )在第二象限,故选B.14.若复数3-5i,1-i 和-2+a i 在复平面上对应的点在同一条直线上,则实数a 的值为________.答案 5解析 由点(3,-5),(1,-1),(-2,a )共线可知a =5.15.已知复数z 满足|z |2-3|z |+2=0,则复数z 对应点的轨迹是( )A.一个圆B.两个圆C.两点D.线段 答案 B解析 由|z |2-3|z |+2=0,得(|z |-1)·(|z |-2)=0,所以|z |=1或|z |=2.由复数模的几何意义知,z 对应点的轨迹是两个圆.16.已知O 为坐标原点,OZ 1→对应的复数为-3+4i ,OZ 2→对应的复数为2a +i(a ∈R ).若OZ 1→与OZ 2→共线,求a 的值.解 因为OZ 1→对应的复数为-3+4i ,OZ 2→对应的复数为2a +i ,所以OZ 1→=(-3,4),OZ 2→=(2a,1).因为OZ 1→与OZ 2→共线,所以存在实数k 使OZ 2→=kOZ 1→,即(2a,1)=k (-3,4)=(-3k,4k ),所以⎩⎪⎨⎪⎧ 2a =-3k ,1=4k ,所以⎩⎨⎧ k =14,a =-38.即a 的值为-38.。
高考数学一轮总复习重点知识点梳理
高考数学一轮总复习重点知识点梳理高考是人生的一次重要考验,对于学生来说,备考高考数学是一项重要任务。
为了帮助大家更好地备考数学,下面将对高考数学一轮总复习的重点知识点进行梳理。
本文将分为四个部分,分别是代数与函数、几何与向量、概率与统计以及解题方法与技巧。
一、代数与函数1. 四则运算与整式的基本操作2. 二次函数与一次函数的性质及其图像3. 幂函数与反比例函数的性质及其图像4. 复数的运算及其性质5. 等差数列与等比数列的性质及其应用6. 二项式与多项式的展开及其应用7. 三角函数的性质与应用二、几何与向量1. 平面几何基本概念与性质2. 相似三角形与勾股定理的应用3. 圆的基本性质与圆的应用4. 向量的定义、运算与性质5. 空间几何基本概念与性质6. 空间中直线与平面的位置关系及其应用7. 空间向量的定义及其应用三、概率与统计1. 随机事件与概率的基本概念2. 随机事件的运算及其概率性质3. 事件的独立性与计算4. 排列与组合的基本概念及其计算5. 随机变量与概率分布的基本概念6. 正态分布与二项分布的概念及其应用7. 抽样与统计的基本概念及其应用四、解题方法与技巧1. 解方程与解不等式的基本方法及应用2. 解析几何的基本方法及应用3. 函数的性质与应用4. 统计图的分析与应用5. 考点梳理与答题技巧通过对以上知识点的梳理,可以发现高考数学的重点主要集中在代数与函数、几何与向量、概率与统计以及解题方法与技巧等方面。
在备考过程中,同学们应该加强对这些知识点的理解与掌握,注重解题方法与技巧的培养,提高解题效率。
总的来说,高考数学一轮总复习的重点知识点梳理旨在帮助同学们合理安排学习时间,重点攻克难点知识,提高数学成绩。
希望同学们能够认真备考,保持良好的心态,相信自己的实力,顺利迎接高考的到来。
祝愿大家取得优异的成绩!。
2020年高考数学一轮复习知识点总结 复数
2020年高考数学一轮复习知识点总结复 数1. ⑴复数的单位为i ,它的平方等于-1,即1i 2-=.⑵复数及其相关概念:① 复数—形如a + b i 的数(其中R b a ∈,);② 实数—当b = 0时的复数a + b i ,即a ;③ 虚数—当0≠b 时的复数a + b i ;④ 纯虚数—当a = 0且0≠b 时的复数a + b i ,即b i.⑤ 复数a + b i 的实部与虚部—a 叫做复数的实部,b 叫做虚部(注意a ,b 都是实数)⑥ 复数集C —全体复数的集合,一般用字母C 表示.⑶两个复数相等的定义:00==⇔=+∈==⇔+=+b a bi a R d c b a d b c a di c bi a )特别地,,,,(其中,且.⑷两个复数,如果不全是实数,就不能比较大小.注:①若21,z z 为复数,则 1若021 z z +,则21z z - .(×)[21,z z 为复数,而不是实数] 2若21z z ,则021 z z -.(√)②若C c b a ∈,,,则0)()()(222=-+-+-a c c b b a 是c b a ==的必要不充分条件.(当22)(i b a =-, 0)(,1)(22=-=-a c c b 时,上式成立)2. ⑴复平面内的两点间距离公式:21z z d -=.其中21z z ,是复平面内的两点21z z 和所对应的复数,21z z d 和表示间的距离.由上可得:复平面内以0z 为圆心,r 为半径的圆的复数方程:)(00 r r z z =-.⑵曲线方程的复数形式: ①00z r z z 表示以=-为圆心,r 为半径的圆的方程. ②21z z z z -=-表示线段21z z 的垂直平分线的方程. ③212121202Z Z z z a a a z z z z ,)表示以且( =-+-为焦点,长半轴长为a 的椭圆的方程(若212z z a =,此方程表示线段21Z Z ,). ④),(2121202z z a a z z z z =---表示以21Z Z ,为焦点,实半轴长为a 的双曲线方程(若212z z a =,此方程表示两条射线).⑶绝对值不等式:设21z z ,是不等于零的复数,则 ①212121z z z z z z +≤+≤-.左边取等号的条件是),且(012 λλλR z z ∈=,右边取等号的条件是),(012 λλλR z z ∈=. ②212121z z z z z z +≤-≤-.左边取等号的条件是),(012 λλλR z z ∈=,右边取等号的条件是),(012 λλλR z z ∈=. 注:n n n A A A A A A A A A A 11433221=++++- .3. 共轭复数的性质:z z = 2121z z z z +=+ a z z 2=+,i 2b z z =-(=z a + b i ) 22||||z z z z ==⋅2121z z z z -=- 2121z z z z ⋅=⋅2121z z z z =⎪⎪⎭⎫ ⎝⎛(02≠z ) n n z z )(= 注:两个共轭复数之差是纯虚数. (×)[之差可能为零,此时两个复数是相等的]4 ⑴①复数的乘方:)(...+∈⋅⋅=N n z z z z z nn②对任何z ,21,z z C ∈及+∈N n m ,有③n n n n m n m n m n m z z z z z z z z z 2121)(,)(,⋅=⋅==⋅⋅+注:①以上结论不能拓展到分数指数幂的形式,否则会得到荒谬的结果,如1,142=-=i i 若由11)(212142===i i 就会得到11=-的错误结论.②在实数集成立的2||x x =. 当x 为虚数时,2||x x ≠,所以复数集内解方程不能采用两边平方法. ⑵常用的结论:1,,1,,143424142=-=-==-=+++n n n n i i i i i i i)(,0321Z n i i i i n n n n ∈=++++++i i i i i i i i -=+-=-+±=±11,11,2)1(2 若ω是1的立方虚数根,即i 2321±-=ω,则 . 5. ⑴复数z 是实数及纯虚数的充要条件: ①z z R z =⇔∈.)(0,01,1,,121223Z n n n n ∈=++=++===++ωωωωωωωωωω②若0≠z ,z 是纯虚数0=+⇔z z .⑵模相等且方向相同的向量,不管它的起点在哪里,都认为是相等的,而相等的向量表示同一复数. 特例:零向量的方向是任意的,其模为零. 注:||||z z =.6. ⑴复数的三角形式:)sin (cos θθi r z +=.辐角主值:θ适合于0≤θ<π2的值,记作z arg .注:①z 为零时,z arg 可取)2,0[π内任意值.②辐角是多值的,都相差2π的整数倍.③设,+∈R a 则πππ23)arg(,2arg ,)arg(,0arg =-==-=ai ai a a . ⑵复数的代数形式与三角形式的互化:)sin (cos θθi r bi a +=+,22b a r +=,r b r a ==θθsin ,cos . ⑶几类三角式的标准形式:)]sin()[cos()sin (cos θθθϑ-+-=-i r i r)]sin()[cos()sin (cos θπθπθθ+++=+-i r i r)]sin()[cos()sin cos (θπθπθθ-+-=+-i r i r)]2sin()2[cos()cos (sin θπθπθθ-+-=+i r i r7. 复数集中解一元二次方程:在复数集内解关于x 的一元二次方程)0(02≠=++a c bx ax 时,应注意下述问题:①当R c b a ∈,,时,若∆>0,则有二不等实数根a b x 22,1∆±-=;若∆=0,则有二相等实数根a b x 22,1-=;若∆<0,则有二相等复数根a ib x 2||2,1∆±-=(2,1x 为共轭复数).②当c b a ,,不全为实数时,不能用∆方程根的情况.③不论c b a ,,为何复数,都可用求根公式求根,并且韦达定理也成立.8. 复数的三角形式运算:)]sin()[cos()sin (cos )sin (cos 212121222211θθθθθθθθ+++=+⋅+i r r i r i r)]sin()[cos()sin (cos )sin (cos 212121222211θθθθθθθθ-+-=++i r r i r i r 棣莫弗定理:)sin (cos )]sin (cos [θθθθn i n r i r n n +=+。
高考数学一轮总复习第五章平面向量与复数 3平面向量的数量积及平面向量的应用课件
=
D.6
3+
,解得
= 5.故选C.
命题角度3 两个向量的垂直
3
−
例4(1) (2022年全国甲卷)已知向量 = , 3 , = 1, + 1 .若 ⊥ ,则 =____.
4
解:由题意,知 ⋅ = + 3 + 1 = 0,解得 =
3
3
− .故填− .
4
4
(2)设非零向量,满足 + = − ,则 (
)
D.8
0
3
4.若 = 2,1 , = 2, −1 , = 0,1 ,则 + ⋅ =___;
⋅ =___.
解: + = 4,0 ,所以 + ⋅ = 0, ⋅ = 3.故填0;3.
考点一 平面向量数量积的运算
1
3
例1(1) (2022年全国甲卷)设向量,的夹角的余弦值为 ,且 = 1, = 3,
又因为 − = 3,所以 −
2
= 3.
即2 − 2 ⋅ + 2 = 2 = 3,所以 = 3.故填 3.
命题角度2 求平面向量的夹角
例3 (2023年全国甲卷)已知向量 = 3,1 , = 2,2 ,则cos⟨ + , − ⟩ =
(
)
B.
√
1
A.
17
17
.故选B.
17
【点拨】 求两向量,的夹角 ,通常采用公式cos =
⋅
进行求解.
变式3 (2022年新课标Ⅱ卷)已知向量 = 3,4 , = 1,0 , = + ,若⟨,⟩ = ⟨,