人教版高中数学必修一《基本初等函数》小结与复习

合集下载

人教版高中数学必修一《基本初等函数》全章知识小结

人教版高中数学必修一《基本初等函数》全章知识小结

数学·必修1(人教版)基本初等函数一、目标解读函数是高中数学的主要内容之一,这是因为函数思想方法灵活多样,逻辑思维性强,许多数学问题都可以从函数的角度来认识、研究.函数知识与数学的其他各分支的巧妙结合容易形成综合性较强的新颖的试题,这样的试题往往成为高考中极具份量的一类解答题,综合考查考生应用函数知识分析问题、解决问题的能力.而在命题的具体设计上,总是具有从易到难、逐步设问的特点,以较隐蔽的方式给出解题思路,在考查函数内容的同时也考查应用函数的思想方法,观察问题、分析问题和解决问题的能力,同时考查学生数形结合的思想和分类讨论的思想的应用能力.函数是中学数学的重要组成部分.它所涉及的内容是升入大学继续学习的基础,因此,函数不仅是中学数学教学的重点,也是高考考查的重点.近年来,函数的分值占30%左右.函数是高中代数的主线.它体系完整,内容丰富,应用广泛.由于它描述的是自然界中量的依存关系,是对问题本身数量的制约关系的一种刻画,所以是对数量关系本质特征的一种揭示,为我们从运动、变化、联系、发展的角度认识问题打开了思路.本章主要研究的是基本初等函数:指数函数、对数函数和幂函数的概念、图象和性质.包括理解分数指数幂的概念,掌握有理指数幂的运算性质,理解对数的概念,掌握对数的运算性质,能运用函数的一般性质和指数函数、对数函数的特征性质解决某些简单的实际问题.指数函数与对数函数都是初等超越函数.在历年的高考题中出现的频率较大.出现在小题时是较基本的考查方式;出现在大题中时,往往与其他知识综合形成开放性问题,加大对开放性问题的考查力度.通过本章的学习达到以下基本目标:①了解指数函数模型的实际背景,体会指数函数是一类重要的函数模型.②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.③理解指数函数的概念和意义,能画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点.④了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型.⑤能画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点.⑥理解对数的概念及其运算性质,能用换底公式将一般对数转化成自然对数或常用对数.⑦了解指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数.⑧了解幂函数的概念,结合函数y =x α(α=1,2,3,12,-1)的图象,了解它们的变化情况.二、主干知识(一)指数与指数幂的运算 1.整数指数幂的概念. (1)正整数指数幂的意义:(2)零指数幂:a 0=1(a ≠0).(3)负整数指数幂:a -n =1an (a ≠0,n ∈N *).2.整数指数幂的运算性质: ①a m ·a n =a m +n ;②(a m )n =a mn ;③(ab )n =a n b n .3.如果x n =a ,那么x 叫做a 的n 次方根,其中n >0,且n ∈N *.(1)当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.此时a 的n 次方根用符号na 表示.(2)方根的性质:①当n 是奇数时,na n=a ; ②当n 是偶数时,nan=|a |=⎩⎪⎨⎪⎧aa ≥0,-a a <0.4.分数指数幂.(1)正数的分数指数幂的意义:设a >0,m ,n ∈N *,n >1,规定(2)0的正分数指数幂等于0,0的负分数指数幂没有意义.5.有理指数幂的运算性质: ①a r ·a s =a r +s(a >0,r ,s ∈Q);②(a r )s =a rs(a >0,r ,s ∈Q);③(ab )r =a r b r(a >0,b >0,r ∈Q).(二)指数函数及其性质1.函数y =a x(a >0,且a ≠1)叫做指数函数,其中x 是自变量.2.指数函数y =a x(a >0,且a ≠1)的图象和性质(见下表):(1.如果a x=N (a >0,a ≠1),那么数x 叫做以a 为底N 的对数.记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.对数式的书写格式:(1)以10为底的对数叫做常用对数,并把常用对数log 10N 简记为lg N ;(2)以无理数e =2.718 28……为底的对数,叫自然对数,并把自然对数log e N 简记为ln N .2.指数与对数的关系:设a >0,且a ≠1,则a x=N ⇔log a N =x .3.对数的性质.(1)在指数式中N >0,故0和负数没有对数,即式子log a N 中N 必须大于0;(2)设a >0,a ≠1,则有a 0=1,所以log a 1=0,即1的对数为0;(3)设a >0,a ≠1,则有a 1=a ,所以log a a =1,即底数的对数为1.4.对数恒等式.(1)如果把a b=N 中的b 写成log a N 形式,则有(2)如果把x =log a N 中的N 写成a x 形式,则有log a a x=x .5.对数的运算性质.设a >0,a ≠1,M >0,N >0,则有:(1)log a (MN )=log a M +log a N ,简记为:积的对数=对数的和;(2)log a M N =log a M -log a N ,简记为:商的对数=对数的差;(3)log a M n=n log a M (n ∈R).(四)对数函数及其性质1.函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).2.对数函数的图象、性质(见下表):函数y=log a x(a>1)y=log a x(0<a<1)图象定义域R+R+值域R R单调性增函数减函数过定点(1,0)(1,0)(1)当a>1时,若x>1,则log a x>0,若0<x<1,则log a x<0;(2)当0<a<1时,若0<x<1,则log a x>0,若x>1,则log a x<0.3.函数y=a x与y=log a x(a>0,且a≠1)互为反函数,互为反函数的两个函数的图象关于直线y=x对称.(五)幂函数1.形如y=xα(α∈R)的函数叫做幂函数,其中α为常数.只研究α为有理数的情形.3.幂函数的性质.(1)幂函数在(0,+∞)都有定义,并且图象都过点(1,1).(2)当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸.(3)当α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一象限内,当x从右边趋向原点时,图象在y轴右方无限地逼近y轴正半轴,当x趋于+∞时,图象在x轴上方无限地逼近x轴正半轴.4.图象形状:当α>0(α≠1)时,图象为抛物线型;当α<0时,图象为双曲线型;当α=0,1时,图象为直线型.1.正数的分数指数幂的意义:设a>0,m,n∈N*,n>1,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义.2.有理指数幂的运算性质:①a r·a s=a r+s(a>0,r,s∈Q);②(a r)s=a rs(a>0,r,s∈Q);③(ab)r=a r b r(a>0,b>0,r∈Q).答案:12 011►跟踪训练解析:由平方差公式化简即得答案.答案:-27答案:-6a指数幂的运算3.幂函数y =f (x )的图象经过点⎝⎛⎭⎪⎫-2,-18,则满足f (x )=27的x 的值是________.答案:131.设a >0,且a ≠1,则a x =N ⇔log a N =x ;a log a N =N; log a a x=x .2.设a >0,a ≠1, M >0,N >0 ,则有 (1)log a (MN )=log a M +log a N ,(2)log a M N=log a M -log a N ,(3)log a M n=n log a M (n ∈R).3.设a >0,a ≠1,b >0,b ≠1,则log a x =log b xlog b a.设2a =5b=m ,且1a +1b=2,则m =( )A.10 B .10 C .20 D .100解析:由2a =5b=m 得a =log 2m ,b =log 5m , ∴1a +1b=log m 2+log m 5=log m 10=2,∴m 2=10,又∵m >0,∴m =10.答案:A►跟踪训练4.已知函数f (x )=log 2(x +1),若f (α)=1,则α=( ) A .0 B .1C .2D .3解析:α+1=2,故α=1,选B. 答案:B指数与对数运算5.2log 510+log 50.25=( ) A .0 B .1C .2D .4解析:2log 510+log 50.25=log 5100+log 50.25=log 525=2. 答案:C6.已知函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,2x,x ≤0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫19=( ) A .4 B.14C .-4D .-147.设g (x )=⎩⎪⎨⎪⎧e x,x ≤0,ln x ,x >0,则g ⎝ ⎛⎭⎪⎫g ⎝ ⎛⎭⎪⎫12=________.解析:答案:121.指数函数y =a x(a >0,且a ≠1)的定义域是R ,值域是()0,+∞,过定点(0,1).当a >1时,指数函数y =a x 是R 上的增函数;当0<a <1时,指数函数y =a x是R 上的减函数.2.对数函数y =log a x (a >0,且a ≠1)的定义域是()0,+∞,值域是R ,过定点(1,0). 当a >1时,对数函数y =log a x 是()0,+∞上的增函数;当0<a <1时,对数函数y =log a x 是()0,+∞上的减函数.函数y =1log 0.54x -3的定义域为( )指数函数与对数函数的性质A.⎝ ⎛⎭⎪⎫34,1B.⎝ ⎛⎭⎪⎫34,+∞ C .(1,+∞) D.⎝ ⎛⎭⎪⎫34,1∪(1,+∞) 解析:由log 0.5(4x -3)>0且4x -3>0可解得34<x <1,故A 正确.答案:A►跟踪训练8.函数y =2x 的图象大致是()答案:C9.函数f (x )=lg(x -1)的定义域是( ) A .(2,+∞) B .(1,+∞)C .[1,+∞)D .[2,+∞) 解析:x -1>0,得x >1,选B. 答案:B10.函数f (x )=log 2(3x+1)的值域为( ) A .(0,+∞) B .[0,+∞)C .(1,+∞)D .[1,+∞)答案:A研究由基本初等函数的和与差等运算构成的新函数的性质时,必须明确各基本初等函数的相关性质.设函数的集合P =f (x )=log 2(x +a )+研究基本初等函数及其组合的性质A .4个B .6个C .8个D .10个解析:当a =0,b =0;a =0,b =1;a =12,b =0; a =12,b =1;a =1,b =-1;a =1,b =1时满足题意,选B.答案:B►跟踪训练11.若函数f (x )=3x +3-x 与g (x )=3x -3-x的定义域均为R ,则( ) A .f (x )与g (x )均为偶函数B .f (x )为偶函数,g (x )为奇函数C .f (x )与g (x )均为奇函数D .f (x )为奇函数,g (x )为偶函数解析:f (-x )=3-x +3x =f (x ),g (-x )=3-x -3x=-g (x ). 答案:BA .①②B .②③C .③④D .①④答案:B13.设函数f (x )=x (e x +a e -x)(x ∈R)是偶函数,则实数a =________.解析:由条件知,g (x )=e x +a e -x为奇函数,故g (0)=0,得a =-1. 答案:-1数形结合的思想方法是根据数量与图形的对应关系,通过数与形的相互转化来解决问题的一种思想方法.转化与化归的思想方法则是将问题不断转化,直到转化为比较容易解决或已经解决的问题.而分类讨论的核心是通过增强条件来分情况逐一研究,使问题易于解决.一、数形结合思想数学思想方法的应用直线y =1与曲线y =x 2-||x +a 有四个交点,则a 的取值范围是 _______ .解析:曲线y =x 2-|x |+a 关于y 轴对称,当x ≥0时,y =x 2-x +a =⎝ ⎛⎭⎪⎫x -122+a -14,结合图象要使直线y =1与曲线y =x 2-|x |+a 有四个交点,需⎩⎪⎨⎪⎧a >1,a -14<1,解得1<a <54.故a 的取值范围是⎝ ⎛⎭⎪⎫1,54.答案:⎝ ⎛⎭⎪⎫1,54►跟踪训练14.已知c <0,下列不等式中成立的一个是( )A .c >2cB .c >⎝ ⎛⎭⎪⎫12cC .2c <⎝ ⎛⎭⎪⎫12cD .2c>⎝ ⎛⎭⎪⎫12c解析:在同一直角坐标系下作出y =x ,y =⎝ ⎛⎭⎪⎫12x ,y =2x 的图象,显然c <0时,x <2x <⎝ ⎛⎭⎪⎫12x ,即c <0时,c <2c<⎝ ⎛⎭⎪⎫12c .答案:C15.下列函数图象中,正确的是( )答案:C16.已知y =f (x )是偶函数,当x >0时,y =f (x )是减函数,并且f (1)>0>f (2),则方程f (x )=0的实根的个数是_________个.答案:2二、转化与化归的思想设a =333+1334+1,b =334+1335+1,试比较a 、b 的大小. 解析:如果比较a -b 与0或a b与1的大小,即用作差法、作商法来做,较繁杂、不易判断.由于a 、b 两数的结构特点可构造函数f (x )=3x +13x +1+1,则a =f (33),b =f (34),若能判断出此函数的单调性,那么就可简捷地比较出a 、b 的大小.f (x )=3x +13x +1+1=3x +1+333x +1+1=3x +1+1+233x +1+1=13+233x +1+1. ∵3x +1在R 上递增,∴233x +1+1在R 上递减. ∴ f (x )=13+233x +1+1在R 上递减. ∴ f (33)>f (34),即a >b .►跟踪训练17.解方程:(lg 2x )·(lg 3x )=lg 2·lg 3.解析:原方程可化为(lg 2+lg x )(lg 3+lg x )=lg 2·lg 3,即lg 2x +lg 6·lg x =0,解得lg x =0或lg x =-lg 6.∴x =1或x =16, 经检验x =1,x =16都是原方程的解. ∴原方程的解为x 1=1或 x 2=16.18.比较log 0.30.1和log 0.20.1的大小.解析:log 0.30.1=1log 0.10.3>0, log 0.20.1=1log 0.10.2>0. ∵log 0.10.3<log 0.10.2,∴log 0.30.1>log 0.20.1.19.某池塘中野生水葫芦的面积与时间的函数关系的图象如下图所示.假设其关系为指数函数,并给出下列说法:①此指数函数的底数为2;②在第5个月时,野生水葫芦的面积就会超过30 m 2;③野生水葫芦从4 m 2蔓延到12 m 2只需1.5个月;④设野生水葫芦蔓延到2 m 2,3 m 2,6 m 2所需的时间分别为t 1,t 2,t 3, 则有t 1+t 2=t 3;⑤野生水葫芦在第1到第3个月之间蔓延的平均速度等于在第2到第4个月之间蔓延的平均速度.其中正确的说法有 ______________ (填序号).答案:①②④三、分类讨论思想若a >0,且a ≠1,p =log a (a 3+a +1),q =log a (a 2+a +1),则p 、q 的大小关系为( )A .p =qB .p <qC .p >qD .a >1时,p >q ;0<a <1时,p <q解析:要比较p 、q 的大小,只需先比较a 3+a +1与a 2+a +1的大小,再利用对数函数的单调性.而决定a 3+a +1与a 2+a +1的大小的a 值的分界点为使(a 3+a +1)-(a 2+a +1)=a 2(a -1)=0的a 值:a =1,当a >1时,a 3+a +1>a 2+a +1,此时log a (a 3+a +1)>log a (a 2+a +1),即p >q .当0<a <1时,a 3+a +1<a 2+a +1,此时log a (a 3+a +1)>log a (a 2+a +1),即p >q .可见,不论a >1还是0<a <1,都有p >q .答案:C►跟踪训练20.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,2x ,x ≤0. 若f (a )=12,则a =( ) A .-1 B. 2C .-1或 2D .1或- 2解析:讨论a >0和a ≤0两种情况.答案:C21.已知函数f (x )=log a x 在[2,π]上的最大值比最小值大1,则a 等于( ) A.2π B.π2C.2π或π2D .不同于A 、B 、C 答案解析:研究函数的最值需考查函数的单调性,而题中对数函数的增减性与底数a 的取值有关,故应对a 进行分类讨论.(1)当a >1时,f (x )在[2,π]上是增函数,最大值是f (π),最小值是f (2),据题意,f (π)-f (2)=1,即log a π-log a 2=1,∴a =π2. (2)当0<a <1时,f (x )在[2,π]上是减函数,最大值是,最小值是f (π),故f (2)-f (π)=1,即log a 2-log a π=1,∴a =2π. 由(1)(2)知,选C.答案: C22.已知f (x )=1+log x 3,g (x )=2log x 2试比较f (x )和g (x )的大小.解析:f (x )-g (x )=log x 3x 4. (1)当⎩⎪⎨⎪⎧ x >1,3x 4>1⇒x >43,或⎩⎪⎨⎪⎧ 0<x <1,0<3x 4<1⇒0<x <1,即x >43或0<x <1时,f (x )>g (x ). (2)当3x 4=1即x =43时,f (x )=g (x ). (3)当⎩⎪⎨⎪⎧ x >1,0<3x 4<1⇒1<x <43,或⎩⎪⎨⎪⎧ 0<x <1,3x 4>1⇒x ∈∅,即1<x <43时,f (x )<g (x ). 综上所述:①当x ∈(0,1)∪⎝ ⎛⎭⎪⎫43,+∞时,f (x )>g (x ); ②当x =43时,f (x )=g (x ); ③当x ∈⎝ ⎛⎭⎪⎫1,43时,f (x )<g (x ).23.已知f (x )=log a (a x -1)(a >0且a ≠1).(1)求定义域;(2)讨论函数的单调区间.解析:(1)由a x -1>0⇒a x >1,当a >1时,函数定义域为(0,+∞),当0<a <1时,函数定义域为(-∞,0).点评:底数含字母a ,要进行分类讨论.。

(完整)高一必修一基本初等函数知识点总结归纳,推荐文档

(完整)高一必修一基本初等函数知识点总结归纳,推荐文档

na n a n ⎩(1)根式的概念 高一必修一函数知识点(12.1)〖1.1〗指数函数①叫做根式,这里 n 叫做根指数, a 叫做被开方数.②当 n 为奇数时, a 为任意实数;当 n 为偶数时, a ≥ 0 .⎧a (a ≥ 0)③根式的性质: ( n a )n = a ;当 n 为奇数时, = a ;当 n 为偶数时, =| a |= ⎨-a. (a < 0)(2) 分数指数幂的概念m①正数的正分数指数幂的意义是: an= (a > 0, m , n ∈ N +, 且 n > 1) .0 的正分数指数幂等于 0.a - m = ( )1 m( ) 1(a > 0, m , n ∈ N , n > 1)②正数的负分数指数幂的意义是: n n = n m + 且.0 的负分数指数幂没有意 a a义. 注意口诀:底数取倒数,指数取相反数.(3) 分数指数幂的运算性质① a r ⋅ a s = a r +s (a > 0, r , s ∈ R )② (a r )s = a rs (a > 0, r , s ∈ R ) ③ (ab )r = a r b r (a > 0, b > 0, r ∈ R )(4)指数函数 函数名称指数函数定义 函数 y = a (a > 0且 a ≠ 1)叫做指数函数a > 1 0 < a < 1图象y 1yOya x(0,1)xya xy 1Oy(0,1)x定义域 R值域 (0,+∞)过定点 图象过定点(0,1),即当 x=0 时,y=1.奇偶性 非奇非偶单调性在 R 上是增函数在 R 上是减函数函数值的变化情况y >1(x >0), y=1(x=0), 0<y <1(x <0)y >1(x <0), y=1(x=0), 0<y <1(x >0)a 变化对图象的影响 在第一象限内, a 越大图象越高,越靠近 y 轴;在第二象限内, a 越大图象越低,越靠近 x 轴.在第一象限内, a 越小图象越高,越靠近 y 轴; 在第二象限内, a 越小图象越低,越靠近 x 轴.例:比较n a n n a m(1) 对数的定义〖1.2〗对数函数①若 a x = N (a > 0,且a ≠ 1) ,则 x 叫做以 a 为底 N 的对数,记作 x = log a N ,其中 a 叫做底数, N 叫做真数.②对数式与指数式的互化: x = log a N ⇔ a x = N (a > 0, a ≠ 1, N > 0) .(2) 常用对数与自然对数:常用对数: lg N , 即log 10 N ;自然对数: ln N , 即log e N (其中 e = 2.71828 …).(3) 几个重要的对数恒等式:log a 1 = 0 , log a a = 1, log a a b = b .(4) 对数的运算性质如果 a > 0, a ≠ 1, M > 0, N > 0 ,那么①加法: log M + log N = log (MN )②减法: log M - log N = logMaa aaaaN③数乘: n log a M= log a M n (n ∈ R )log aN = NlogM n =nlog M (b ≠ 0, n ∈ R ) log N =log b N(b > 0,且b ≠ 1)⑤a bba(5) 对数函数⑥换底公式:alog ax 1(1, 0)y log a xxy Ox 1(1, 0)y log a xxa ④b(6) 反函数的求法y =f (x) 中反解出x =f -1( y) ;③将x =f -1( y) 改写成y =f -1(x) ,并注明反函数的定义域.(7)反函数的性质①原函数y =f (x) 与反函数y =f -1(x) 的图象关于直线y =x 对称.即,若P(a, b) 在原函数y =f (x) 的图象上,则P= f -1(x) 的图象上.②函数y =f (x) 的定义域、值域分别是其反函数y =f -1(x) 的值域、定义域.函数基本性质——奇偶性知识点及经典例题一、函数奇偶性的概念:①设函数y =f (x)的定义域为 D ,如果对 D 内的任意一个x ,都有-x ∈D ,且 f (-x)=-f (x),则这个函数叫奇函数。

人教A版高中数学必修1《第二章 基本初等函数(Ⅰ) 小结》_6

人教A版高中数学必修1《第二章 基本初等函数(Ⅰ) 小结》_6

第一章基本函数小结(一)教学目标1.知识与技能整合函数性质建构知识网络,以便于进一步理解和掌握函数的性质.提升综合运用函数性质的能力.2.过程与方法在整合函数性质、综合运用函数性质的过程中,培养学生分析、观察、思考的教学能力、提升学生的归纳、推理能力.3.情感、态度与价值观在学习过程中,通过知识整合,能力培养,激发学生的学习兴趣. 养成合作、交流的良好学习品质.(二)教学重点与难点重点:整合知识、构建单元知识系统.难点:提升综合应用能力.(三)教学方法动手练习与合作交流相结合. 在回顾、反思中整合知识,在综合问题探究、解答中提升能力. 加深对知识的准确、到位的理解与应用.(四)教学过程思络..求函数值域的基本方法总结(1)观察法:一些简单函数,通过观察法求值域.(2)配方法:“二次函数类”用配方法求值域.(3)换元法:形如y=ax+b±cx+d(a、b、c、d均为常数,且a≠0)的函数常用换元法求值域.(4)分离常数法:形如y=cx+dax+b(a≠0)的函数也可用此法求值域.(5)单调性法:函数单调性的变化是求最值和值域的依据,根据函数的单调区间判断其增减性进而求最值和值域.(6)数形结合法:画出函数的图像,找出坐标的范围或分析条件的几何意义,在图上找其变化范围.判断函数单调性的方法:①根据定义;②根据图像;③利用已知函数的增减性;⑤复合函数单调性判定方法:在复合函数y=f(g(x))中,“同增异减”。

1.函数单调性的证明根据函数的单调性的定义,证明(判定)函数f(x)在其区间上的单调性,其步骤是:(1)设x1、x2是该区间上的任意两个值,且x1<x2;(2)作差f(x1)-f(x2),然后变形;(3)判定f(x1)-f(x2)的符号;(4)根据定义作出结论.。

高一数学必修1第二章基本初等函数知识点总结归纳(印刷)

高一数学必修1第二章基本初等函数知识点总结归纳(印刷)

必修1 基本初等函数知识点整理一、指数与指数幂的运算(1)根式的概念①如果,,,1nx a a R x R n=∈∈>,且n N+∈,那么x叫做a的n次方根.当n是奇数时,_______=x当n是偶数时,当_______,0=>xa;当=a0,_______=x;当0<a,_______=x._____,这里n叫做_____,a叫做_______.当n为奇数时,a为_____;当n为偶数时,__a③根式的性质:n a=;当n a=;当n为偶数时,(0)||(0)a aaa a≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,mna a m n N+=>∈且1)n>.0的正分数指数幂等于________.②正数的负分数指数幂的意义是:1()0,,,m mn na a m n Na-+==>∈.0的负分数指数幂__________.(3)分数指数幂的运算性质①__________=⋅sr aa②__________=sraa③__________)(=sra练习:1.下列根式与分数指数幂的互化,正确的是()(A)12()(0)x x=->13(0)y y=< (C)340)x x-=> (D)130)x x-=≠2.已知11223x x-+=,求22332223x xx x--+-+-的值;二、指数函数及其性质练习:1.设0x >,且1xxa b <<(0a >,0b >),则a 与b 的大小关系是 ( )(A )1b a << (B )1a b << (C )1b a << (D )1a b << 2.函数xex f -=11)(的定义域是3.如图为指数函数xx x x d y c y b y a y ====)4(,)3(,)2(,)1(,则d c b a ,,,与1的大小关系为 (A )d c b a <<<<1 (B )c d a b <<<<1(C )d c b a <<<<1 (D )c d b a <<<<1 4.若函数m y x +=+-12的图象不经过第一象限,则m 的取值范围是 ( ) (A )2-≤m (B )2-≥m (C )1-≤m (D )1-≥m5. 已知f (x)=2xxe e -+且x ∈[0, +∞ )(1) 判断f (x)的奇偶性; (2) 判断f (x)的单调性,并用定义证明三、对数与对数运算(1)对数的定义:若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作______=x ,其中a 叫做____,N 叫做____(2)几个重要的对数恒等式: log 10a = ,log 1a a = ,log ba ab =.(3)常用对数: (以_____为底),记作:_________; 自然对数:(以_____为底), 记作:_________. (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①________________)(log =MN a ②________________)(log =N Ma ③log log ()n aa n M M n R =∈ ④log a NaN =⑤log log (0,)b na a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b ab N N b b a =>≠且 练习:1.________,2log 6log 31log .2________,32log 63564==⋅⋅=x x 则若3.设,518,9log 18==b a ,求45log 36.4.已知35a bc ==,且112a b+=,求c 的值5.求方程22log (1)2log (1)x x -=-+的解6. 求函数22(log )(log )34x x y =在区间8]上的最值四、对数函数及其性质1.函数y =( )A [1,)+∞B 23(,)+∞ C 23[,1] D 23(,1]2.若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则 ( ) (A)a=2,b=2 (B)a= 2 ,b=2 (C)a=2,b=1 (D)a= 2 ,b= 23.已知7.01.17.01.1,8.0log ,8.0log ===c b a ,则c b a ,,的大小关系是( )(A )c b a <<(B )c a b << (C )b ac <<(D )a cb <<4.已知函数f (x )=2log (0)3(0)x x x x >≤⎧⎨⎩,则f [f (14)]的值是( )A .9B .19C .-9D .-195.函数y=|log 2x|的图象是( )6.如果log 5log 50a b >>,那么a 、b 间的关系是( )A 01a b <<<B 1a b <<C 01b a <<<D 1b a <<7.若0<a <1,f(x)=|log ax|,则下列各式中成立的是( ) A .f(2)>f(13)>f(14) B .f(14)>f(2)>f(13) C .f(13)>f(2)>f(14) D .f(14)>f(13)>f(2)8.已知a>b ,函数f(x)=(x -a)(x -b)的图象如图所示,则函数g(x)=log a (x +b)的图象可能为( )9.已知:()lg()xxf x a b =-(a >1>b >0).(1)求)(x f 的定义域(2)判断)(x f 的单调性(3)若)(x f 在(1,+∞)恒为正,比较a-b 与1的大小.五、幂函数(1)幂函数的定义:一般地,函数________________叫做幂函数,其中x 为_________,α是___________. (2)常见幂函数的图象(在同一坐标系中画出下列函数的图像)23232211--======x y xy x y x y xy xy(3)幂函数的性质①图象分布:在第______象限都有图像,在第 ____象限无图象. ②过定点:_____________.③单调性:如果0α>,在[0,)+∞上为___函数如果0α<,则在(0,)+∞上为____函数,并且无限接近_____ ④奇偶性:当α为奇数时,幂函数为__________函数,当α为偶数时,幂函数为_______函数.当qpα=(其中,p q 互质,p 和q Z ∈), 若p 为奇数q 为奇数时,则qp y x =是_______函数,若p 为奇数q 为偶数时,则q p y x =是_______函数,若p 为偶数q 为奇数时,则q py x =是_______函数. 练习:1.函数y =(1-2x )21-的定义域是_________ 2.幂函数的图象过点(2,14), 则它的单调递增区间是3.函数43-=xy 在区间上 是减函数4.下列命题中正确的是( )A .当0α=时,函数y x α=的图象是一条直线 B .幂函数的图象都经过(0,0),(1,1)两点 C .幂函数的y x α= 图象不可能在第四象限内 D .若幂函数y x α=为奇函数,则在定义域内是增函数 六、函数的零点:对于函数y=f(x),我们把使___________的实数x 叫做函数y=f(x)的零点,函数的零点是一个______ 零点的存在性定理:如果函数y=f(x)在区间[a ,b]上的图象是连续不断的一条曲线,并且有_____________,那么函数y=f(x)在区间(a,b )内有零点,即存在c ∈ (a ,b),使得f(c)=0,这个c 也就是方程f(x)=0的根.练习:1.已知函数f(x)=⎩⎪⎨⎪⎧2x -1,x ≤1,1+log 2x ,x>1,则函数f(x)的零点为( ) A.12,0 B.-2,0 C.12 D.02.在下列区间中,函数f(x)=e x +4x -3的零点所在的区间为( )A .(-14,0)B .(0,14)C .(14,12)D .(12,34)3.函数f(x)=(12)x -sinx 在区间[0,2π]上的零点个数为________.4.若函数f(x)=x 3+x 2-2x -2的一个正数零点附近的函数值用二分法计算,其参考数据如下表那么方程x 3+A.1.5 B.1.4 C.1.3 D.1.2七、一元二次方程的实根分布问题一元二次方程的根,其实质就是其相应二次函数的图象与x 轴交点的横坐标,因此,可以借助于二次函数及其图象,利用数形结合的方法来研究一元二次方程的实根分布问题,一元二次方程ax²+bx+c=0(a>0)的实根分布1.已知方程x ²+(m –3)x+m=0的两个根均小于1,求实数m 的取值范围。

人教版高中数学必修一《基本初等函数》全章小结复习及同步练习(含答案)

人教版高中数学必修一《基本初等函数》全章小结复习及同步练习(含答案)

.
( 2)培养学生数形结合的思想观念及抽象思维能力
.
二 .重点、难点
重点:指数函数与对数函数的性质。 难点:灵活运用函数性质解决有关问题。
三、学法与教具
1、学法:讲授法、讨论法。
2、教具:投影仪。 四、教学设想
1、回顾本章的知识结构
整数指数幂 有理数指数幂 无理数指数幂
定义 图象与性质
指数 指数函数
11. 光线每通过一块玻璃板其强度要损失 10%,设光线原来的强度为
的性质 .
作业: P90
A组
37
P91B组34必修 1 第二章《基本初等函数(Ⅰ) 》同步练习
(时间: 60 分钟,满分: 100 分)
班别
座号
姓名
成绩
一、选择题 (本大题共 10 小题,每小题 5 分,共 50 分) 1. 下列计算中正确的是
A. x3 x3 x6
B. (3a 2b 3) 2
9a4b 9
小结:底数相同的指数函数与对数函数关于
y x 对称,它们之间还有一个关系式子:
a log a N N (a 1,a 0, N 0)
1x
例 3:已知 f ( x)
log a 1
(a x
0且 a
1)
( 1)求 f (x) 的定义域
( 2)求使 f ( x) 0 的 x 的取值范围
1x
分析:( 1)要求 f (x)
7. 若 a、 b 是任意实数,且 a b ,则
2
2
A. a b
ab
B. 2
0
C. lg( a b) 0
()
a
b
1
1
D.
2
2
8. 函数 f ( x) log a x ( 2 ≤ x≤)的最大值比最小值大 1,则 a 的值

高中数学必修一基本初等函数知识点+练习题含答案解析(非常详细)

高中数学必修一基本初等函数知识点+练习题含答案解析(非常详细)

第一部分基本初等函数知识点整理第二章 基本初等函数一、指数函数 (一)指数1、 指数与指数幂的运算:复习初中整数指数幂的运算性质: a m *a n =a m+n(a m )n=a mn(a*b)n =a n b n2、根式的概念:一般地,若a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数。

此时,a 的n 次方根用符号 表示。

当n 为偶数时,正数的n 次方根有两个,这两个数互为相反数。

此时正数a 的正的n 次方根用符号 表示,负的n 的次方根用符号 表示。

正的n 次方根与负的n 次方根可以合并成 (a>0)。

注意:负数没有偶次方根;0的任何次方根都是0,记作00=n。

当n 是奇数时,a a n n =,当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a nn 式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数。

3、 分数指数幂正数的分数指数幂的)1,,,0(*>∈>=n N n m a a an m nm ,)1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义4、 有理数指数米的运算性质(1)r a ·s r ra a+=),,0(R s r a ∈>; (2)rss r a a =)( ),,0(R s r a ∈>;(3)s r r a a ab =)(),,0(R s r a ∈>.5、无理数指数幂一般的,无理数指数幂a a(a>0,a 是无理数)是一个确定的实数。

有理数指数幂的运算性质同样使用于无理数指数幂。

(二)、指数函数的性质及其特点1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1.为什么?(1)在[a ,b]上,值域是)]b (f ),a (f [或)]a (f ),b (f [;(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; (4)当a>1时,若X 1<X 2 ,则有f(X 1)<f(X 2)。

【精编】高中新课程数学(新课标)必修一《第二章基本初等函数》本章小结-精心整理

【精编】高中新课程数学(新课标)必修一《第二章基本初等函数》本章小结-精心整理

解:(1)当 0≤t≤1 时,点 M(1,4)在线段 y=kt 上,则 k=4,这时 y=4t;
当 t≥1 时,点 M(1,4)在曲线 y=(12)t-a 上, 则(12)1-a=4, 得 a=3,这时 y=(12)t-3,
(2)由题意知,需 f(t)≥0.25, 当 0≤t≤1 时,由 4t≥0.25, 得 t≥116,所以116≤t≤1; 当 t>1 时,由(12)t-3≥0.25=(12)2, 得 t≤5,所以 1<t≤5. 所以满足 f(t)≥0.25 时,116≤t≤5. 由此知,服药一次治疗疾病有效的时间为 5-116= 41156小时.
的 x 的取值范围是
()
A.(-1,0)
B.(0,1)
C.(-∞,0)
D.(-1,0)∪(1,+∞)
解析:本题考查对数函数的性质.∵f(x)是奇函数, ∴f(-x)=-f(x),
∴lg1+2 x+a=-lg1-2 x+a, ∴1+2 x+a=1-2 1x+a, ∴(1-x2)a2+4a+x2+3=0, ∴a=-4±2(14-(xx22+) 1)2=-42±(12-(x2x+2) 1),
本章小结
一、指数、对数的运算 【例 1】 已知 f(x)=ex-e-x,g(x)=ex+e-x(e= 2.718…). (1)求[f(x)]2-[g(x)]2 的值; (2)设 f(x)·f(y)=4,g(x)·g(y)=8,求gg((xx+ -yy))的值.
解:(1)[f(x)]2-[g(x)]2 =[f(x)+g(x)][f(x)-g(x)] =2ex(-2e-x) =-4e0=-4. (2)f(x)·f(y)=(ex-e-x)(ey-e-y) =ex+y+e-(x+y)-ex-y-e-(x-y) =g(x+y)-g(x-y)=4,① 同理可得 g(x)·g(y)=g(x+y)+g(x-y)=8,② 由①②解方程组得 g(x+y)=6,g(x-y)=2. ∴gg((xx+ -yy))=3.

高中数学 第二章 基本初等函数(Ⅰ)本章回顾总结 新人教A版必修1

高中数学 第二章 基本初等函数(Ⅰ)本章回顾总结 新人教A版必修1

描点法 未知函数或较 复杂的函数
列表、描点、连线
2.使用数形结合的思想解题的常见类型. (1)求函数的定义域. (2)求函数的值域. (3)求函数的单调区间. (4)解方程、不等式等有关问题,确定参数范围.
(1)函数 ()
则 y=f(x+1)的图象大致是
(2)已知函数 f(x)=2x,x≥2,
(1)求函数 f(x)=log2x-1 3x-2的定义域.
(2)求函数 y=13x2-4x,x∈[0,5)的值域. 解:(1)由题意知 22xx- -11> ≠01, ,故
3x-2>0,
x>23,且 x≠1,即定义域为23,1∪(1,+∞). (2)令 u=x2-4x,x∈[0,5),则-4≤u<5,135<y≤13-4,2143 <y ≤81,即值域为2143,81.
画法
应用范围
基本函 数法
基本初等函数
与基本初等函 变换法 数有关联的函

画法技巧
利用一次函数、反比例函数、二次函数、指 数函数、对数函数、幂函数的有关知识,画 出特殊点(线),直接根据函数的图象特征作出 图象
弄清所给函数与基本函数的关系,恰当选择 平移、对称等变换方法,由基本函数图象变 换得到函数图象
1
1
1
1
(3) a=0.22 ,b=0.32 ,c=33 ,d=53 .
解:(1)因为 0<0.65.1<1,5.10.6>1,log0.65.1<0, 所以 5.10.6>0.65.1>log0.65.1.
(2)方法一:在同一坐标系中作出函数 y=log7x 与 y=log8x 的图象,由底数变化对图象位置的影响知:
若关于 x 的方程 f(x)=k
x-13,x<2.

高中新课程数学(新课标人教A版)必修一《第二章 基本初等函数》本章小结

高中新课程数学(新课标人教A版)必修一《第二章 基本初等函数》本章小结

A 版 必
g(x)=log2x 的图象的交点个数有
A.4 个
B.3 个
()

C.2 个
D.1 个

·
新 课 标
·
数 学
解析:本题考查函数的图象及数形结合思想的应
人 教
用.如下图所示,由图象可知有3个,故选B.





·
新 课 标
·
数 学
·
·
人 教 A 版 必 修 一 新 课 标 数 学
【例 7】
·
温馨提示:指数与指数幂的运算、对数与对数运算是
人 教
两个重要的知识点,它们既是学习和研究指数函数、对数
A 函数的基础,也是高考必考内容之一,教学中应给予足够
版 必 的重视。


·
新 课 标
·
数 学

【例 2】 设 f(x)=2-x
x∈(-∞,1]
教 A
log81x x∈(1,+∞),则满足 f(x)=14的 x 的值为
若-1<loga2 3<1,求 a 的取值范围.

解:-1<loga23<1⇒loga1a=-1<loga23<1=logaa,
教 A 版
①当 a>1 时,有 y=logax 为增函数,a1<32<a.
必 修
∴a>32,结合
a>1,故
3 a>2.
·
一 新
②当 0<a<1 时,有 y=logax 为减函数,a1>32>a.

(2)f(x)·f(y)=(ex-e-x)(ey-e-y)

人教版高中数学必修一《基本初等函数》全章知识小结

人教版高中数学必修一《基本初等函数》全章知识小结

数学·必修1(人教版)基本初等函数一、目标解读函数是高中数学的主要内容之一,这是因为函数思想方法灵活多样,逻辑思维性强,许多数学问题都可以从函数的角度来认识、研究.函数知识与数学的其他各分支的巧妙结合容易形成综合性较强的新颖的试题,这样的试题往往成为高考中极具份量的一类解答题,综合考查考生应用函数知识分析问题、解决问题的能力.而在命题的具体设计上,总是具有从易到难、逐步设问的特点,以较隐蔽的方式给出解题思路,在考查函数内容的同时也考查应用函数的思想方法,观察问题、分析问题和解决问题的能力,同时考查学生数形结合的思想和分类讨论的思想的应用能力.函数是中学数学的重要组成部分.它所涉及的内容是升入大学继续学习的基础,因此,函数不仅是中学数学教学的重点,也是高考考查的重点.近年来,函数的分值占30%左右.函数是高中代数的主线.它体系完整,内容丰富,应用广泛.由于它描述的是自然界中量的依存关系,是对问题本身数量的制约关系的一种刻画,所以是对数量关系本质特征的一种揭示,为我们从运动、变化、联系、发展的角度认识问题打开了思路.本章主要研究的是基本初等函数:指数函数、对数函数和幂函数的概念、图象和性质.包括理解分数指数幂的概念,掌握有理指数幂的运算性质,理解对数的概念,掌握对数的运算性质,能运用函数的一般性质和指数函数、对数函数的特征性质解决某些简单的实际问题.指数函数与对数函数都是初等超越函数.在历年的高考题中出现的频率较大.出现在小题时是较基本的考查方式;出现在大题中时,往往与其他知识综合形成开放性问题,加大对开放性问题的考查力度.通过本章的学习达到以下基本目标:①了解指数函数模型的实际背景,体会指数函数是一类重要的函数模型.②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.③理解指数函数的概念和意义,能画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点.④了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型.⑤能画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点.⑥理解对数的概念及其运算性质,能用换底公式将一般对数转化成自然对数或常用对数.⑦了解指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数.⑧了解幂函数的概念,结合函数y =x α(α=1,2,3,12,-1)的图象,了解它们的变化情况.二、主干知识(一)指数与指数幂的运算 1.整数指数幂的概念. (1)正整数指数幂的意义:(2)零指数幂:a 0=1(a ≠0).(3)负整数指数幂:a -n =1an (a ≠0,n ∈N *).2.整数指数幂的运算性质: ①a m ·a n =a m +n ;②(a m )n =a mn ;③(ab )n =a n b n .3.如果x n =a ,那么x 叫做a 的n 次方根,其中n >0,且n ∈N *.(1)当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.此时a 的n 次方根用符号na 表示.(2)方根的性质:①当n 是奇数时,na n=a ; ②当n 是偶数时,nan=|a |=⎩⎪⎨⎪⎧aa ≥0,-a a <0.4.分数指数幂.(1)正数的分数指数幂的意义:设a >0,m ,n ∈N *,n >1,规定(2)0的正分数指数幂等于0,0的负分数指数幂没有意义.5.有理指数幂的运算性质: ①a r ·a s =a r +s(a >0,r ,s ∈Q);②(a r )s =a rs(a >0,r ,s ∈Q);③(ab )r =a r b r(a >0,b >0,r ∈Q).(二)指数函数及其性质1.函数y =a x(a >0,且a ≠1)叫做指数函数,其中x 是自变量.2.指数函数y =a x(a >0,且a ≠1)的图象和性质(见下表):(1.如果a x=N (a >0,a ≠1),那么数x 叫做以a 为底N 的对数.记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.对数式的书写格式:(1)以10为底的对数叫做常用对数,并把常用对数log 10N 简记为lg N ;(2)以无理数e =2.718 28……为底的对数,叫自然对数,并把自然对数log e N 简记为ln N .2.指数与对数的关系:设a >0,且a ≠1,则a x=N ⇔log a N =x .3.对数的性质.(1)在指数式中N >0,故0和负数没有对数,即式子log a N 中N 必须大于0;(2)设a >0,a ≠1,则有a 0=1,所以log a 1=0,即1的对数为0;(3)设a >0,a ≠1,则有a 1=a ,所以log a a =1,即底数的对数为1.4.对数恒等式.(1)如果把a b=N 中的b 写成log a N 形式,则有(2)如果把x =log a N 中的N 写成a x 形式,则有log a a x=x .5.对数的运算性质.设a >0,a ≠1,M >0,N >0,则有:(1)log a (MN )=log a M +log a N ,简记为:积的对数=对数的和;(2)log a M N =log a M -log a N ,简记为:商的对数=对数的差;(3)log a M n=n log a M (n ∈R).(四)对数函数及其性质1.函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).2.对数函数的图象、性质(见下表):函数y=log a x(a>1)y=log a x(0<a<1)图象定义域R+R+值域R R单调性增函数减函数过定点(1,0)(1,0)(1)当a>1时,若x>1,则log a x>0,若0<x<1,则log a x<0;(2)当0<a<1时,若0<x<1,则log a x>0,若x>1,则log a x<0.3.函数y=a x与y=log a x(a>0,且a≠1)互为反函数,互为反函数的两个函数的图象关于直线y=x对称.(五)幂函数1.形如y=xα(α∈R)的函数叫做幂函数,其中α为常数.只研究α为有理数的情形.3.幂函数的性质.(1)幂函数在(0,+∞)都有定义,并且图象都过点(1,1).(2)当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸.(3)当α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一象限内,当x从右边趋向原点时,图象在y轴右方无限地逼近y轴正半轴,当x趋于+∞时,图象在x轴上方无限地逼近x轴正半轴.4.图象形状:当α>0(α≠1)时,图象为抛物线型;当α<0时,图象为双曲线型;当α=0,1时,图象为直线型.1.正数的分数指数幂的意义:设a>0,m,n∈N*,n>1,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义.2.有理指数幂的运算性质:①a r·a s=a r+s(a>0,r,s∈Q);②(a r)s=a rs(a>0,r,s∈Q);③(ab)r=a r b r(a>0,b>0,r∈Q).答案:12 011►跟踪训练解析:由平方差公式化简即得答案.答案:-27答案:-6a指数幂的运算3.幂函数y =f (x )的图象经过点⎝⎛⎭⎪⎫-2,-18,则满足f (x )=27的x 的值是________.答案:131.设a >0,且a ≠1,则a x =N ⇔log a N =x ;a log a N =N; log a a x=x .2.设a >0,a ≠1, M >0,N >0 ,则有 (1)log a (MN )=log a M +log a N ,(2)log a M N=log a M -log a N ,(3)log a M n=n log a M (n ∈R).3.设a >0,a ≠1,b >0,b ≠1,则log a x =log b xlog b a.设2a =5b=m ,且1a +1b=2,则m =( )A.10 B .10 C .20 D .100解析:由2a =5b=m 得a =log 2m ,b =log 5m , ∴1a +1b=log m 2+log m 5=log m 10=2,∴m 2=10,又∵m >0,∴m =10.答案:A►跟踪训练4.已知函数f (x )=log 2(x +1),若f (α)=1,则α=( ) A .0 B .1C .2D .3解析:α+1=2,故α=1,选B. 答案:B指数与对数运算5.2log 510+log 50.25=( ) A .0 B .1C .2D .4解析:2log 510+log 50.25=log 5100+log 50.25=log 525=2. 答案:C6.已知函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,2x,x ≤0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫19=( ) A .4 B.14C .-4D .-147.设g (x )=⎩⎪⎨⎪⎧e x,x ≤0,ln x ,x >0,则g ⎝ ⎛⎭⎪⎫g ⎝ ⎛⎭⎪⎫12=________.解析:答案:121.指数函数y =a x(a >0,且a ≠1)的定义域是R ,值域是()0,+∞,过定点(0,1).当a >1时,指数函数y =a x 是R 上的增函数;当0<a <1时,指数函数y =a x是R 上的减函数.2.对数函数y =log a x (a >0,且a ≠1)的定义域是()0,+∞,值域是R ,过定点(1,0). 当a >1时,对数函数y =log a x 是()0,+∞上的增函数;当0<a <1时,对数函数y =log a x 是()0,+∞上的减函数.函数y =1log 0.54x -3的定义域为( )指数函数与对数函数的性质A.⎝ ⎛⎭⎪⎫34,1B.⎝ ⎛⎭⎪⎫34,+∞ C .(1,+∞) D.⎝ ⎛⎭⎪⎫34,1∪(1,+∞) 解析:由log 0.5(4x -3)>0且4x -3>0可解得34<x <1,故A 正确.答案:A►跟踪训练8.函数y =2x 的图象大致是()答案:C9.函数f (x )=lg(x -1)的定义域是( ) A .(2,+∞) B .(1,+∞)C .[1,+∞)D .[2,+∞) 解析:x -1>0,得x >1,选B. 答案:B10.函数f (x )=log 2(3x+1)的值域为( ) A .(0,+∞) B .[0,+∞)C .(1,+∞)D .[1,+∞)答案:A研究由基本初等函数的和与差等运算构成的新函数的性质时,必须明确各基本初等函数的相关性质.设函数的集合P =f (x )=log 2(x +a )+研究基本初等函数及其组合的性质A .4个B .6个C .8个D .10个解析:当a =0,b =0;a =0,b =1;a =12,b =0; a =12,b =1;a =1,b =-1;a =1,b =1时满足题意,选B.答案:B►跟踪训练11.若函数f (x )=3x +3-x 与g (x )=3x -3-x的定义域均为R ,则( ) A .f (x )与g (x )均为偶函数B .f (x )为偶函数,g (x )为奇函数C .f (x )与g (x )均为奇函数D .f (x )为奇函数,g (x )为偶函数解析:f (-x )=3-x +3x =f (x ),g (-x )=3-x -3x=-g (x ). 答案:BA .①②B .②③C .③④D .①④答案:B13.设函数f (x )=x (e x +a e -x)(x ∈R)是偶函数,则实数a =________.解析:由条件知,g (x )=e x +a e -x为奇函数,故g (0)=0,得a =-1. 答案:-1数形结合的思想方法是根据数量与图形的对应关系,通过数与形的相互转化来解决问题的一种思想方法.转化与化归的思想方法则是将问题不断转化,直到转化为比较容易解决或已经解决的问题.而分类讨论的核心是通过增强条件来分情况逐一研究,使问题易于解决.一、数形结合思想数学思想方法的应用直线y =1与曲线y =x 2-||x +a 有四个交点,则a 的取值范围是 _______ .解析:曲线y =x 2-|x |+a 关于y 轴对称,当x ≥0时,y =x 2-x +a =⎝ ⎛⎭⎪⎫x -122+a -14,结合图象要使直线y =1与曲线y =x 2-|x |+a 有四个交点,需⎩⎪⎨⎪⎧a >1,a -14<1,解得1<a <54.故a 的取值范围是⎝ ⎛⎭⎪⎫1,54.答案:⎝ ⎛⎭⎪⎫1,54►跟踪训练14.已知c <0,下列不等式中成立的一个是( )A .c >2cB .c >⎝ ⎛⎭⎪⎫12cC .2c <⎝ ⎛⎭⎪⎫12cD .2c>⎝ ⎛⎭⎪⎫12c解析:在同一直角坐标系下作出y =x ,y =⎝ ⎛⎭⎪⎫12x ,y =2x 的图象,显然c <0时,x <2x <⎝ ⎛⎭⎪⎫12x ,即c <0时,c <2c<⎝ ⎛⎭⎪⎫12c .答案:C15.下列函数图象中,正确的是( )答案:C16.已知y =f (x )是偶函数,当x >0时,y =f (x )是减函数,并且f (1)>0>f (2),则方程f (x )=0的实根的个数是_________个.答案:2二、转化与化归的思想设a =333+1334+1,b =334+1335+1,试比较a 、b 的大小. 解析:如果比较a -b 与0或a b与1的大小,即用作差法、作商法来做,较繁杂、不易判断.由于a 、b 两数的结构特点可构造函数f (x )=3x +13x +1+1,则a =f (33),b =f (34),若能判断出此函数的单调性,那么就可简捷地比较出a 、b 的大小.f (x )=3x +13x +1+1=3x +1+333x +1+1=3x +1+1+233x +1+1=13+233x +1+1. ∵3x +1在R 上递增,∴233x +1+1在R 上递减. ∴ f (x )=13+233x +1+1在R 上递减. ∴ f (33)>f (34),即a >b .►跟踪训练17.解方程:(lg 2x )·(lg 3x )=lg 2·lg 3.解析:原方程可化为(lg 2+lg x )(lg 3+lg x )=lg 2·lg 3,即lg 2x +lg 6·lg x =0,解得lg x =0或lg x =-lg 6.∴x =1或x =16, 经检验x =1,x =16都是原方程的解. ∴原方程的解为x 1=1或 x 2=16.18.比较log 0.30.1和log 0.20.1的大小.解析:log 0.30.1=1log 0.10.3>0, log 0.20.1=1log 0.10.2>0. ∵log 0.10.3<log 0.10.2,∴log 0.30.1>log 0.20.1.19.某池塘中野生水葫芦的面积与时间的函数关系的图象如下图所示.假设其关系为指数函数,并给出下列说法:①此指数函数的底数为2;②在第5个月时,野生水葫芦的面积就会超过30 m 2;③野生水葫芦从4 m 2蔓延到12 m 2只需1.5个月;④设野生水葫芦蔓延到2 m 2,3 m 2,6 m 2所需的时间分别为t 1,t 2,t 3, 则有t 1+t 2=t 3;⑤野生水葫芦在第1到第3个月之间蔓延的平均速度等于在第2到第4个月之间蔓延的平均速度.其中正确的说法有 ______________ (填序号).答案:①②④三、分类讨论思想若a >0,且a ≠1,p =log a (a 3+a +1),q =log a (a 2+a +1),则p 、q 的大小关系为( )A .p =qB .p <qC .p >qD .a >1时,p >q ;0<a <1时,p <q解析:要比较p 、q 的大小,只需先比较a 3+a +1与a 2+a +1的大小,再利用对数函数的单调性.而决定a 3+a +1与a 2+a +1的大小的a 值的分界点为使(a 3+a +1)-(a 2+a +1)=a 2(a -1)=0的a 值:a =1,当a >1时,a 3+a +1>a 2+a +1,此时log a (a 3+a +1)>log a (a 2+a +1),即p >q .当0<a <1时,a 3+a +1<a 2+a +1,此时log a (a 3+a +1)>log a (a 2+a +1),即p >q .可见,不论a >1还是0<a <1,都有p >q .答案:C►跟踪训练20.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,2x ,x ≤0. 若f (a )=12,则a =( ) A .-1 B. 2C .-1或 2D .1或- 2解析:讨论a >0和a ≤0两种情况.答案:C21.已知函数f (x )=log a x 在[2,π]上的最大值比最小值大1,则a 等于( ) A.2π B.π2C.2π或π2D .不同于A 、B 、C 答案解析:研究函数的最值需考查函数的单调性,而题中对数函数的增减性与底数a 的取值有关,故应对a 进行分类讨论.(1)当a >1时,f (x )在[2,π]上是增函数,最大值是f (π),最小值是f (2),据题意,f (π)-f (2)=1,即log a π-log a 2=1,∴a =π2. (2)当0<a <1时,f (x )在[2,π]上是减函数,最大值是,最小值是f (π),故f (2)-f (π)=1,即log a 2-log a π=1,∴a =2π. 由(1)(2)知,选C.答案: C22.已知f (x )=1+log x 3,g (x )=2log x 2试比较f (x )和g (x )的大小.解析:f (x )-g (x )=log x 3x 4. (1)当⎩⎪⎨⎪⎧ x >1,3x 4>1⇒x >43,或⎩⎪⎨⎪⎧ 0<x <1,0<3x 4<1⇒0<x <1,即x >43或0<x <1时,f (x )>g (x ). (2)当3x 4=1即x =43时,f (x )=g (x ). (3)当⎩⎪⎨⎪⎧ x >1,0<3x 4<1⇒1<x <43,或⎩⎪⎨⎪⎧ 0<x <1,3x 4>1⇒x ∈∅,即1<x <43时,f (x )<g (x ). 综上所述:①当x ∈(0,1)∪⎝ ⎛⎭⎪⎫43,+∞时,f (x )>g (x ); ②当x =43时,f (x )=g (x ); ③当x ∈⎝ ⎛⎭⎪⎫1,43时,f (x )<g (x ).23.已知f (x )=log a (a x -1)(a >0且a ≠1).(1)求定义域;(2)讨论函数的单调区间.解析:(1)由a x -1>0⇒a x >1,当a >1时,函数定义域为(0,+∞),当0<a <1时,函数定义域为(-∞,0).点评:底数含字母a ,要进行分类讨论.。

高一数学第二章基本初等函数(I)小结复习课

高一数学第二章基本初等函数(I)小结复习课

14.几个常用结论: ⑴负数与零没有对数 ⑶ loga a 1 ⑵ loga 1 0 , ⑷a
loga N
N
15.对数的运算性质: 如果 a > 0,a 1,M > 0, N > 0
loga (MN) loga M loga N (1) M loga loga M loga N (2) 有: N loga M n nloga M(n R) (3)
高中数学必修1同步辅导课程——基本初等函数本章小结
10 2,10 3, 求100 变式:(1)已知:
a b
1 2 3
的值。
1 1 2 (2)已知: 9 2 , 求 的值。 36 a b
高中数学必修1同步辅导课程——基本初等函数本章小结
例2:设偶函数 f ( x) loga x b 在(0,+∞)上单调 递减,则 f (b 2)与 f (a 1)的大小关系是________.
9.指数函数:
函数 y a x (a>0 且 a≠1)叫做指数函数, 其中 x 是自变量,函数的定义域为 R.
10.指数函数的图象和性质:
a>1
6
0<a<1
6 5 5
图 象
1
4
4
3
3
2
2
1
1
1
-4
-2
0
-1
2
4
6
-4
-2
0
-1
2
4
6
(1)定义域:R,值域: (0,+∞) 性 (2)过点(0,1) ,即 x=0 时,y=1,即 a0=1 质 (3)a>1 时,a 越大越靠近 y 轴,0<a<1 时,a 越小越靠近 y 轴, (4)在 R 上是增函数 (4)在 R 上是减函数

人教版高中数学必修一基本初等函数小结与复习ppt课件

人教版高中数学必修一基本初等函数小结与复习ppt课件
m
1 (a≠0 an ,n∈N)
aa>0,n>1,m、n∈N) √(
n
m m
④正分数指数幂:a =
n
⑤负分数指数幂:a- 2、幂的运算法则:
=
n

1 >0,n>1,m、n∈N) n (am a
①am.an=am+n
③(am)n=amn
② am÷an=am-n
④(ab)m=ambm
(a≠0)
3、对数:如果ab=N,那么b叫做以a为底N的对数,记为b=logaN。 ab=N b=logaN。(a>0且a≠1) 4、对数恒等式:a = N(a>0且a≠1,N>0)
logbN logba
log m ab
n m
指数函数与对数函数
1、指数函数y=ax(a>0且a≠1)的图象和性质:
a>1
y
0<a<1
y
图 象
o ①x∈R; x o ③过定点(0,1) x ②y∈(0,+∞);
性 质
④当x>0时,y>1, x<0时,0<y<1
⑤在R上是增函数.
④当x>0时, 0<y<1, x<0时, y>1
3、熟记以下几个结论(比较大小 单调性) logab>0 (a-1)(b-1)>0; logab<0
(a-1)(b-1)<0
当a>1时,m>n>0 当0<a<1时,m>n>0
logam>logan logam<logan
〖方法小结〗 1、解决指数、对数问题的常用技巧: ①化为同底 (计算题 p32,42,43) ②指、对数式互化 (p40,41) ③ af(x)=bg(x),两边取常用对数,化为f(x)lga=g(x)lgb (p45 第7题) ④图象法:含有指数、对数的混合型方程,常用图象法求近似解或求解 的个数。(p47 第5题) ⑤换元法:y= af(x) 和y=m(ax)2+nax+p (p38 第4题 p39 第6题 p47第4题)

高一数学必修1知识点总结:第二章基本初等函数

高一数学必修1知识点总结:第二章基本初等函数

精品文档高中数学必修1知识点总结第二章基本初等函数〖2.1〗指数函数N ,那么x 叫做a 的n 次方根•当n 是奇数时,a 的n 次方根用符号 V aa 叫做被开方数•当n 为奇数时,a 为任意实数;当n 为偶数时,③根式的性质: (n,a)na ;当n 为奇数时,a ;当n 为偶数时, n? |a|(2)分数指数幂的概念①正数的正分数指数幂的意义是:ma n (a 0, m, nN ,且n 1). 0的正分数指数幂等于0.②正数的负分数m指数幂的意义是:a71 m(2)nJ(1)m (a 0,m, n N ,且n 1). 0的负分数指数幂没有意义 .注意口诀:底a '■ a数取倒数,指数取相反数.(3)分数指数幂的运算性质rsr s① a a a (a0, r, s R)②(a r )s a rs (a0, r,s R)③(ab)r a r b r (a0,b 0,r R)2.1.2指数函数及其性质(4)指数函数2.1.1指数与指数幕的运算(1)根式的概念表示;当n 是偶数时,正数 a 的正的n 次方根用符号7a 表示,负的n 次方根用符号 na 表示;o 的n 次方根是o ;负数a 没有n 次方根.①如果 x n a, a R, x R, n 1,且 n②式子n a 叫做根式,这里n 叫做根指数,a (a 0)a (a 0)12.2〗对数函数【221】对数与对数运算(1) 对数的定义①若a x N(a 0,且a 1),则x 叫做以a 为底N 的对数,记作x log a N ,其中a 叫做底数,N 叫做真数.【222】对数函数及其性质(5② 负数和零没有对数.③对数式与指数式的互化:x log a Na xN (a 0, a 1,N 0).(2) 几个重要的对数恒等式loga 1 0,lOg a a 1,lOgb aa(3) 常用对数与自然对数:常用对数:lg N ,即 loge 自然对数:In N ,lOg e N(其中 e 2.71828 …).(4) 对数的运算性质如果a 0, a1,M0, N那么①加法:lOg a M lOg a N log a (MN)②减法:lOg a MlOg a N③数乘:nlog a M log a M n(n R)④alOga N⑤loga bM n n log a M(b 0,n R) a b⑥换底公式:lOg aNlog b N(b 0,且 b 1) log b a设函数y f (x)的定义域为A,值域为C,从式子y f (x)中解出x,得式子x (y).如果对于y在C中的任何一个值,通过式子x (y) , x在A中都有唯一确定的值和它对应,那么式子x (y)表示x是y的函数,函数x ( y)叫做函数y f(x)的反函数,记作x f 1(y),习惯上改写成y f 1(x).(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式y f(x)中反解出x f 1(y);1 1③将x f (y)改写成y f (x),并注明反函数的定义域.(8)反函数的性质①原函数y f(x)与反函数y f (x)的图象关于直线y x对称.②函数y f (x)的定义域、值域分别是其反函数y f 1(x)的值域、定义域.③若P(a,b)在原函数y f (x)的图象上,贝U p'(b,a)在反函数y f 1(x)的图象上.④一般地,函数y f (x)要有反函数则它必须为单调函数.(1)幂函数的定义(2)幂函数的图象(3)幂函数的性质① 图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象•幂函数是偶函数时,图象分布在第一、二象限 (图象关于y 轴对称);是奇函数时,图象分布在第一、三象限 (图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限 • ② 过定点:所有的幂函数在 (0,)都有定义,并且图象都通过点 (1,1) •③ 单调性:如果0,则幂函数的图象过原点,并且在 [0, )上为增函数•如果0,则幂函数的图象在(0, )上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当 为奇数时,幂函数为奇函数,当 为偶数时,幂函数为偶函数.当 —(其中p,q 互质,p 和q Z ), P,q q若p 为奇数q 为奇数时,则yx p 是奇函数,若 p 为奇数q 为偶数时,则y x p 是偶函数,若p 为偶数q 为奇数时, q则y x p 是非奇非偶函数.⑤图象特征:幂函数 y x,x(0,),当 1时,若0 x 1,其图象在直线 y x 下方,若x 1,其图象12.3〗幕函数一般地,函数yx 叫做幂函数,其中x 为自变量,是常数.在直线y x上方,当1时,若0 x 1,其图象在直线y x上方,若x 1,其图象在直线y x下方.(1)二次函数解析式的三种形式①一般式:f (x ) ax 2 bx c(a 0)②顶点式:f(x) a(x h)2 k(a 0) ③两根式:f (x) a(x xj(x x 2)(a 0) (2) 求二次函数解析式的方法 ① 已知三个点坐标时,宜用一般式.② 已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③ 若已知抛物线与 x 轴有两个交点,且横线坐标已知时,选用两根式求 f(x)更方便.(3) 二次函数图象的性质① 二次函数f(x) ax 2 bx c(a 0)的图象是一条抛物线,对称轴方程为x —,顶点坐标是( ——, ---------------- )2a 2a 4a② 当a 0时,抛物线开口向上,函数在 (,-—]上递减,在[ ——,)上递增,当x时,2a 2a 2af min (x) 4" —;当a 0时,抛物线开口向下,函数在 (, —]上递增,在[卫,)上递减,当4a 2a 2a x P 时,f max (X ) 2a4a2 2③二次函数f (x) ax bx c(a 0)当 — 4ac 0时,图象与x 轴有两个交点M 1(xi>0),M2(x2>0)>M 1M 21 |xi(4)一元二次方程ax 2 bx c 0( a 0)根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整, 且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系 统地来分析一元二次方程实根的分布.2 2 设一元二次方程ax bx c 0(a 0)的两实根为x i ,X 2,且x 1 x 2 •令f(x) ax bx c ,从以下四个方K面来分析此类问题:①开口方向:a ②对称轴位置:x —— ③判别式: ④端点函数值符号.① k < x i < X 21补充知识〗二次函数|a|2a精品文档②x i< X2 < k④k i< x i< X2< k2⑤有且仅有一个根X i (或X2)满足k i<X i (或X2) < k2f( k i)f( k2) 0,并同时考虑f( k i)=O 或f( k2)=0 这两种情况是否也符合精品文档⑥k i<X i v k2< p i< x>< p2 此结论可直接由⑤推出.(5)二次函数f(x)ax2bx c(a 0)在闭区间[p, q]上的最值设f(x)在区间[p, q]上的最大值为M ,最小值为m,令X。

数学:函数小结与复习(新人教A版必修1)

数学:函数小结与复习(新人教A版必修1)

小结与复习一.三维目标1.知识与技能(1)理解指数与对数,指数函数与对数函数的联系.(2)能更加熟练地解决与指数函数,对数函数有关的问题.2.过程与方法通过提问,分析点评,让学生更能熟悉指数函数,对数函数的性质.3.情感、态度、价值观(1)提高学生的认知水平,为学生塑造良好的数学认识结构.(2)培养学生数形结合的思想观念及抽象思维能力.二.重点、难点重点:指数函数与对数函数的性质。

难点:灵活运用函数性质解决有关问题。

三、学法与教具1、学法:讲授法、讨论法。

2、教具:投影仪。

四、教学设想1、回顾本章的知识结构2、指数与对数指数式与对数式的互化幂值真数b N log N = b指数←→对数值提问:在对数式中,a ,N ,b 的取值范围是什么?例1:已知54log 27=a ,54b =3,用108,log 81a b 表示的值解法1:由54b =3得54log 3=b∴108log 81=5454log 81log 108=54545454log 27log 3log 212log 272a b a b a+++==+-- 解法2:由54log 275427a ==得设108log 81,10881x x ==则所以21(5427)327x-⨯=⨯即:2(5454)5454a x b a -⨯=⨯ 所以25454,2x axa b x ax a b -+=-=+即 因此得:2a b x a +=- (1)法1是通过指数化成对数,再由对数的运算性质和换底公式计算结果.法2是通过对数化成指数,再由指数的运算性质计算出结果,但法2运算的技巧性较大。

2.指数函数与对数函数问题1:函数log x x a y a y ==与中,a与x 分别必须满足什么条件.问题2:在同一直角坐标系中画出函数log x x a y a =与的图象,并说明两者之间的关系. 问题3:根据图象说出指数函数与对数函数的性质.例2:已知函数()y x 的图象沿x 轴方向向左平移1个单位后与()3xf x =的图象关于直线y x =对称,且(19)2g a =+,则函数3(01)ax y x =<≤的值域为 .分析:函数3x y =关于直线y x =对称的函数为3log (1)y x =-∴33(19)log 182log 2g ==+∴3log 23log 2,3(3)2ax x a y x =∴===∵(0,1],(1,2]x y ∈∈则小结:底数相同的指数函数与对数函数关于y x =对称,它们之间还有一个关系式子:log (1,0,0)a N a N a a N =≠>>例3:已知1()log (01)1a x f x a a x+=>≠-且 (1)求()f x 的定义域(2)求使()0f x >的x 的取值范围分析:(1)要求1()log 1a x f x x+=-的定义域, 则应有10101010101x x x x x x +>+<⎧⎧+>⇔⎨⎨->-<-⎩⎩或 (2)注意考虑不等号右边的0化为log 1a ,则(2)小题变为1log log 1,1a a x x +>-再分a>1和0<a<1两种情况分别求出1110111x x x x++><<--和. 建议:通过提问由学生作答课堂小结:1.指数与对数实质上只是同一数量关系的两种不同的形式,它们之间可以互化,这种等价互化也是指数运算和对数运算的常用方法.2.底数相同的指数函数和对数函数互为反函数,它们的图象关于y x =对称,它们在各自的定义域内增减性是一致的,通过函数图象,利用数形结合,记作指数函数与对数函数的性质.。

高中数学 人教版 必修1 小结《基本初等函数(I)复习课》部优课件

高中数学 人教版 必修1 小结《基本初等函数(I)复习课》部优课件

0 a 1时,在R上是减函数 a 1时,在R上是增函数
如图是指数函数 (1)y=ax,(2)y=bx, (3)y=cx,(4)y=dx的图象, 底数a,b,c,d与1之间的 大小关系为:
0b a 1 d c
在第一象限内,
图象越高,底数越大
一、知识梳理:核心速填
0,
R
基本初等函数(1)
本章学习了三种不同类型的函数模型: 指数函数、对数函数、幂函数, 刻画了客观世界中三类具有不同变化规律,因 而具有不同对应关系的变化现象。
一、知识梳理 (一)、知识结构:
以同桌两位同学为一小组, 合作画出本章的知识结构图。
一、知识梳理:知识结构 基 本 初 等 函 数(1)
指数与指数函数
对于函数f

x

a

2 2x 1
a

R :
1探索函数f x的单调性;
2是否存在实数a使函数f x为奇函数?
变式:
3求函数f x的值域; 4若f x 1在R上恒成立,求a的取值范围。
五、课堂小结
1、本节课我们的重点是梳理本章知识,归纳总结重 点题型及方法,形成知识网络。
1,0
0 a 1时,在0, 上是减函数 a 1时,在0,+上是增函数
如图是四个对数函数的 图象,则底数a,b,c,d 与1之间的大小关系为:
0c d 1 a b
在第一象限内,图象 从左到右,底数增大
一、知识梳理:核心速填
0,0,1,1 1,1
单调性:
a 0,且a 1
1

2, 3
+

2当a 1时,定义域为0,+ 当0 a 1时,定义域为-,0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章《基本初等函数》小结与复习(一)教学目标1.知识与技能掌握指数函数、对数函数、幂函数的概念和性质.对复合函数、抽象函数有一个新的认识.2.过程与方法归纳、总结、提高.3.情感、态度、价值观培养学生分析问题、解决问题和交流的能力及分类讨论、抽象理解能力.(二)教学重点、难点重点:指数函数、对数函数的性质的运用.难点:分类讨论的标准、抽象函数的理解.(三)教学方法讲授法、讨论法.(四)教学过程教学环节教学内容师生互动设计意图复习引入(多媒体投影)1.本章知识结构学生总结,老师完善.师:请同学们总结本章知识结构.生:(1)指数式和对数式:①整数指数幂;②方根和根式的概念;③分数指数幂;④有理指数幂的运算性质;⑤无理数指数幂;⑥对数概念;⑦对数的运算性质;⑧指数式与对数式的互化关系.(2)指数函数:①指数函数的概念;②指数函数的定义域、值域;③指数函数的图象(恒过定点(0,1),分a>1,0对本章知识、方法形成体系.2.方法总结<a<1两种情况);④不同底的指数函数图象的比较;⑤指数函数的单调性(分a >1,0<a<1两种情况);⑥图象和性质的应用.(3)对数函数:①对数函数的概念;②对数函数的定义域、值域;③对数函数的图象(恒过定点(0,1),分a>1和0<a<1两种情况);④不同底的对数函数图象的比较;⑤对数函数的单调性(分a>1,0<a<1两种情况);⑥图象和性质的应用;⑦反函数的有关知识.(4)幂函数:①幂函数的概念;②幂函数的定义域、值域(要结合指数来讲);③幂函数的图象(过定点情况,图象要结合指数来讲);④幂函数的性质(奇偶性、单调性等,同样要结合指数);⑥图象和性质的应用.师:请同学们归纳本章解题方法.生:(1)函数的定义域的求法:列出使函数有意义的自变量的不等关系式,求解即可求得函数的定义域.常涉及到的依据为:①分母不为0;②偶次根式中被开方数不小于0;③对数的真数大于0,底数大于零且不等于1;④零指数幂的底数不等于零;⑤实际问题要考虑实际意义等.(2)函数值域的求法:①配方法(二次或四次);②判别式法;③反函数法;④换元法;⑤函数的单调性法.(3)单调性的判定法:①设x 1、x 2是所研究区间内的任两个自变量,且x 1<x 2;②判定f (x 1)与f (x 2)的大小;③作差比较或作商比较.(注:做有关选择、填空题时,可采用复合函数单调性判定法,做解答题时必须用单调性定义和基本函数的单调性)(4)图象的作法与平移:①据函数表达式,列表、描点、连光滑曲线;②利用熟知函数的图象的平移、翻转;③利用函数图象的对称性或互为反函数图象的对称描绘函数图象.(5)常用函数的研究、总结与推广:①研究函数y =21(a x ±a -x )(a >0,且a ≠1)的定义域、值域、单调性、反函数;②研究函数y =log a (21x ±x )(a >0,且a ≠1)的定义域、单调性、反函数.(6)抽象函数〔即不给出f (x )的解析式,只知道f (x )具备的条件〕的研究.①若f (a +x )=f (a -x ),则f (x )关于直线x =a 对称.②若对任意的x 、y ∈R ,都有f (x +y )=f (x )+f (y ),则f (x )可与指数函数类比.③若对任意的x、y∈(0,+∞)都有f(xy)=f(x)+f(y),则f(x)可与对数函数类比.应用举例例1 设a>0,x=21(a n1-a n1-),求(x+21x+)n的值.例2 已知函数f(x)=11+-xxmm(m>0,且m≠1).(1)求函数f(x)的定义域和值域;(2)判断f(x)的奇偶性;例1解:1+x2=1+41(a n2-2+a n2-)=41(a n2)+2+a n2-)=[21(a n1+a n1-)]2.∵a>0,∴a n1>0,a n1->0.∴a n1+a n1->0.∴x+21x+=x+21(a n1+a n1-)=21(a n1-a n1-)+21(a n1+a n1-)=a n1.∴(x+21x+)n=a.小结:本题考查了分数指数幂的运算性质,技巧是把根号大的式子化成完全平方的形式.例2解:(1)∵m x>0,m x+1≠0恒成立,∴函数的定义域为R.∵y=11+-xxmm,∴m x=yy-+11>0.∴-1<y<1.∴函数f(x)的值域为(-1,1).进一步掌握指数函数、对数函数、幂函数的概念和性质等知识.培养学生分析问题、解决问题和交流的能力及分类讨论、抽象理解能力.(3)讨论函数f(x)的单调性.【例3】己知f(x)=1+log2x (1≤x≤4),求函数g(x)=f 2(x)+f(x2)的最大值和最小值.(2)∵函数的定义域为R,关于原点对称,又∵f(-x)=11+---xxmm=xxmm+-11=-f(x),∴函数f(x)是奇函数.(3)任取x1<x2,则f(x1)-f(x2)=1111+-xxmm-1122+-xxmm=)1)(1()(22121++-xxxxmmmm.∵m1x+1>0,m2x+1>0,∴当m>1时,m1x-m2x<0,f(x1)-f(x2)<0,即f(x1)<f(x2);当0<m<1时,m1x-m2x>0,f(x1)-f(x2)>0,即f(x1)>f(x2).综上,当m>1时,函数f(x)为增函数;当0<m<1时,函数f(x)为减函数.小结:求值域用了反表示法,函数表达式中有指数式m x,它具有大于0的范围,注意反表示法求值域这类题型的特征.函数的单调性要注意分类讨论.例3解:∵f(x)的定义域为[1,4],∴g(x)的定义域为[1,2].∵g(x)=f 2(x)+f(x2)=(1+log2x)2+(1+log2x2)=(log2x+2)2-2,【例4】求函数y=log a(x -x2)(a>0,a≠1)的定义域、值域、单调区间.又1≤x≤2,∴0≤log2x≤1,∴当x=1时,g(x)min=2;当x=2时,g(x)max=7.小结:这是一道易错题,首先要考虑定义域是本题防错的关键.其实研究函数问题考虑定义域应该成为一种习惯.例4解:(1)定义域:由x-x2>0,得0<x<1,∴定义域为(0,1).(2)∵0<x-x2=-(x-21)2+41≤41,∴当0<a<1时,log a(x-x2)≥log a41,函数的值域为[log a41,+∞);当a>1时,log a(x-x2)≤log a41,函数的值域为(-∞,log a41].(3)令u=x-x2,在区间(0,1)内,u=x-x2在(0,21]上递增,在[21,1)上递减.∴当0<a<1时,函数在(0,21]上是减函数,在[21,1)上是增函数;当a>1时,函数在(0,21]上是增函数,在[21,1)上是减函数.小结:复合函数的定义域、值域、单调性、奇偶性的研究通常由里向外,本题作用要充分重视.另外,计算器或计算机可以帮助我们方便地作出函数图象,并可以动态地演示函数的变化过程,这对我们研究函数性质很有帮助.课后 作业作业:小结与复习 习案学生独立完成巩固新知 提升能力备选例题例1 已知f (x ) = lg x ,则y = |f (1 – x )|的图象是下图中的( A )【解析】方法一:y = |f (1 – x )| = |lg(1 – x )|,显然x ≠1,故排除B 、D ;又因为当x = 0时,y = 0,故排除C.方法二:从图象变换得结果:−−−−−−−→−=︒180lg 轴翻转把图象绕y x y y = lg(–x ) )1lg()lg(x y x y -=−−−−−−−−→−-=位把图象向右平移一个单 y = lg[– (x –1)]−−−−−−−−−−→−轴翻折到上方轴下方部分沿把x x y = |lg(1 – x )|. 【小结】(1)y = lg x 变成y = lg (1 – x )过程不会变换,不知道关于什么轴对称导致误解. (2)解决有关图象的选择问题,方法比较灵活,可用特值排除法,也可直接求解,但一定要注意图象的特点,对于图象的对称、平移问题一定要注意对称轴是什么. 平移是左移还是右移,移动的单位是多少,这是移动的关键.例2 设a >0,a ≠1,t >0,比较t a log 21与21log +t a 的大小,并证明你的结论. 【解析】∵t >0,∴可比较t a log 与21log +t a的大小,即比较t 与21+t 的大小. ∵当t = 1时,21+=t t ,∴21log log +=t t a a . 当t ≠1时, ∵12)(212+-=-+t t t t = 2)1(-t >0,∴t + 1>t 2,∴21+t >t . ∴当0<a <1时,t a log >21log +t a, 即t a log 21>21log +t a . 当a >1时,t a log <21log +t a, 即t a log 21<21log +t a . 综上知:当t = 1时,21log log 21+=t t aa ; 当t >0且t ≠1时,若0<a <1, 有t a log 21>21log +t a; 若a >1,则有t a log 21<21log +t a. 【小结】解决此类比较大小的题目,要注意结合函数的单调性,作差比较一定要判断差值与0的大小,从而作出大小的比较,注意分类讨论的思想应用,本题中的t +1和t 2的比较. 可由t + 1 – 222)1(21)(-=-+=t t t t ≥0,所以t + 1≥t 2 (t =1时取等号),从而得出0<12+t t ≤1和21+t ≥t .。

相关文档
最新文档