一次函数图像应用题(带解析版答案)
一次函数应用题含答案
一次函数应用题含答案一次函数应用题含答案一、方案优化问题我市某乡A、B两村盛产柑桔,A村有柑桔200吨,B村有柑桔300吨.现将这些柑桔运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨;从A村运往C、D两处的费用分别为每吨20元和25元,从B村运往C、D两处的费用分别为每吨15元和18元.设从A村运往C仓库的柑桔重量为x吨,A、B两村运往两仓库的柑桔运输费用分别为yA元和yB元.(1)请填写下表,并求出yA,yB与x之间的函数关系式;(2)试讨论A、B两村中,哪个村花的运费较少;(3)考虑到B村的经济承受能力,B村的柑桔运费不得超过4830元.在这种情况下,请问该怎样调运才能使两村运费之和最小?求出这个最小值.解:(1)yA=-5x+5000(0≤x≤200),yB=3x+4680(0≤x≤200).(2)当yA=yB时,-5x+5000=3x+4680,x=40;当yA>yB时,-5x+5000>3x+4680,x<40;当yA<yb时,-5x+5000<3x+4680,x style="padding: 0px; margin: 0px; font-family: Arial, 宋体; font-size: 14px; white-space: normal; background-color: rgb(255, 255, 255);">40.当x=40时,yA=yB即两村运费相等;当0≤x<40时,ya>yB即B村运费较少;当40<x≤200时,ya<yb即a村费用较少.(3)由yB≤4830得3x+4680≤4830∴x≤50设两村的运费之和为y,∴y=yA+yB.即:y=-2x+9680.又∵0≤x≤50时,y随x增大而减小,∴当x=50时,y有最小值,y最小值=9580(元).答:当由A村调往C仓库的柑桔重量为50吨、调往D仓库为150吨,由B村调往C仓库为190吨、调往D仓库110吨的时候,两村的运费之和最小,最小费用为9580元.要点提示:解答方案比较问题,求函数式时,对有图象的,多用待定系数法求;对没有给出图象的,直接依题意列式子;方案比较问题通常与不等式、方程相联系;比较方案,即比较同一自变量所对应的函数值,要将函数问题转化为方程、不等式问题;解答方案比较问题尤其要注意:不同的区间,对应的大小关系也多不同.二、利润最大化问题某个体小服装店主准备在夏季来临前,购进甲、乙两种T恤.两种T恤的相关信息如下表:根据上述信息,该店决定用不少于6195元,但不超过6299元的资金购进这两种T恤共100件.请解答下列问题:(1)该店有哪几种进货方案?(2)该店按哪种方案进货所获利润最大,最大利润是多少?(3)两种T恤在夏季很快销售一空,该店决定再拿出385元全部用于购进这两种T恤,在进价和售价不变的情况下,全部售出.请直接写出该店按哪种方案进货才能使所获利润最大.解:(1)设购进甲种T恤x件,则购进乙种T恤(100-x)件.可得,6195≤35x+70(100-x)≤6299.解得,20■≤x≤23.∵x为解集内的正整数,∴x=21,22,23.∴有三种进货方案:方案一:购进甲种T恤21件,购进乙种T恤79件;方案二:购进甲种T恤22件,购进乙种T恤78件;方案三:购进甲种T恤23件,购进乙种T恤77件.(2)设所获得利润为W元.W=30x+40(100-x)=-10x+4000.∵k=-10<0,∴W随x的增大而减小.∴当x=21时,W=3790.该店购进甲种T恤21件,购进乙种T恤79件时获利最大,最大利润为3790元.(3)购进甲种T恤9件、乙种T恤1件.要点提示:在一次函数y=kx+b中,x、y均可取一切实数.如果缩小x的取值范围,则其函数值就会出现最大值或最小值.求一次函数的最大值、最小值,一般都是采用“极端值法”,即用自变量的端点值,根据函数的增减性,对应求出函数的端点值(最值).三、行程问题从甲地到乙地,先是一段平路,然后是一段上坡路.小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间.假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图1中的折线OABCDE表示x与y之间的函数关系.(1)小明骑车在平路上的速度为 km/h;他途中休息了 h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?解:(1)小明骑车在平路上的速度为:4.5÷0.3=15,∴小明骑车在上坡路的速度为:15-5=10,小明骑车在下坡路的速度为:15+5=20.∴小明返回的时间为:(6.5-4.5)÷20+0.3=0.4小时,∴小明骑车到达乙地的时间为:0.3+2÷10=0.5.∴小明途中休息的时间为:1-0.5-0.4=0.1小时.故答案为:15,0.1(2)小明骑车到达乙地的时间为0.5小时,∴B(0.5,6.5).小明下坡行驶的时间为:2÷20=0.1,∴C(0.6,4.5).设直线AB的解析式为y=k1x+b1,由题意得4.5=0.3k1+b16.5=0.5k1+b1,解得:k1=10b1=1.5,∴y=10x+1.5(0.3≤x≤0.5);设直线BC的解析式为y=k2x+b2,由题意得6.5=0.5k2+b24.5=0.6k2+b2,解得:k2=-20b2=16.5,∴y=-20x+16.5(0.5<x≤0.6)(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在坡路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,由题意得10t+1.5=-20(t+0.15)+16.5,解得:t= 0.4,∴y=10×0.4+1.5=5.5,∴该地点离甲地5.5km.要点提示:行程类一次函数试题以图象、点坐标相组合的形式呈现,灵活性强,对学生分析问题、解决问题的能力要求较高,重在考查学生的识图能力和创新意识.解决图象中的行程问题除了要掌握好路程、速度和时间三者之间的基本关系外,最重要的'是要学会从图象中获取信息,理清各变量之间的关系,然后根据题意选择适当的解题方法.四、分段计费问题已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;(3)为实施省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定若企业的月用水量x超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收■元.若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量.解:(1)设y关于x的函数关系式y=kx+b,∵直线y=kx+b经过点(50,200),(60,260)∴50k+b=20060k+b=260解得k=6b=-100∴y关于x的函数关系式是y=6x-100(x≥50);(2)由可知,当y=620时,x>50∴6x-100=620,解得x=120.答:该企业2013年10月份的用水量为120吨.(3)由题意得6x-100+■(x-80)=600,化简得x2+40x-14000=0解得:x1=100,x2=-140(不合题意,舍去).答:这家企业2014年3月份的用水量是100吨.要点提示:分段函数的特征是不同的自变量区间所对应的函数式不同,其函数图象是一个折线.解决分段计费问题,关键是要与所在的区间相对应.分段函数中“折点”既是两段函数的分界点,同时又分别在两段函数上,在求解析式时要用好“折点”坐标,同时在分析图象时还要注意“折点”所表示的实际意义,“折点”的纵坐标通常是不同区间的最值.2015年第3期《锐角三角函数》参考答案1.D;2.A;3.B;4.■;5.9■;6.2■;7.120;8. 解:(1)■-3tan30°+(π-4)0-(■)-1=2■-3×■+1-2=■-1(2)■(2cos45°-sin60°)+■=■(2×■-■)+■=2-■+■=29. 解:过点A作直线BC的垂线,垂足为D.则∠CDA=90°,∠CAD=60°,∠BAD=30°,CD=240米,在Rt△ACD中,tan∠CAD=■,∴AD=■=■=80■,在Rt△ABD中,tan∠BAD=■,∴BD=ADtan30°=80■×■=80,∴BC=CD-BD=240-80=160. 答:这栋大楼的高为160米. 10.解:在Rt△CDB中,∠C=90°,BC=■=■=4,∴tan∠CBD=■.在Rt△ABC中,∠C=90°,AB=■=4■,∴sinA=■.。
一次函数图像应用题(路程类) - 副本
二.解答题(共18小题)1.小聪在学习时看到一则材料:甲、乙两人去某风景区游玩,约好在飞瀑见面,早上,甲乘景区巴士从古刹出发,沿景区公路(如图1)去飞瀑;同时,乙骑电动自行车从塔林出发,沿景区公路去飞瀑.设两人行驶的时间为t(小时),两人之间相距的路程为s(千米),s与t之间的函数关系如图2所示,小聪观察、思考后发现了图2的部分正确信息:①两人出发1小时后第一次相遇;②线段CD 表示甲到达飞瀑后,乙正在赶往飞瀑途中时s随t的变化情况,…,请你应用相关知识,与小聪一起解决下列问题(1)求乙骑电动自行车的速度;(2)当甲、乙两人第一次相遇时,他们离飞瀑还有多少千米?(3)在行驶途中,当甲、乙两人之间相距的路程不超过1千米时,求t的取值范围.2.甲、乙两人分别开汽车和摩托车从A地出发沿同一条公路匀速前往B地,乙出发半小时后甲出发,设乙行驶的时间t(h),甲、乙两人之间的距离为y(km),y与t之间关系的图象如图所示.(1)分别指出点E,F所表示的实际意义;(2)分别求出线段DE,FG所在直线的函数表达式;(3)分别求甲、乙两人行驶的速度.3.小王骑车从甲地到乙地,小季骑车从乙地到甲地,两人同时出发,沿同一条公路匀速前进,小王的速度小于小李的速度,在出发2h时,两人相距36km,在出发4h时,两人又相距36km,设小王骑行的时间为x(h),两人之间的距离为y(km),图中的折线表示y与x之间的函数关系.(1)求线段AB所表示的y与x之间的函数表达式;(2)求甲、乙两地之间的距离.4.甲从M地骑摩托车匀速前往N地,同时乙从N地沿同一条公路骑自行车匀速前往M地,甲到达N地后,原路原速返回,追上乙后返回到M地.设甲、乙与N地的距离分别为y1、y2千米,甲与乙之间的距离为s千米,设乙行走的时间为x小时.y1、y2与x之间的函数图象如图1.(1)分别求出y1、y2与x的函数表达式;(2)求s与x的函数表达式,并在图2中画出函数图象;(3)当两人之间的距离不超过5千米时,能够用无线对讲机保持联系.并且规定:持续联系时间不少于15分钟为有效联系时间.求当两人用无线对讲机保持有效联系时,x的取值范围.5.在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑摩托车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人距B地的距离y (km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地之间的距离;(2)请问甲乙两人何时相遇;(3)求出在9﹣18小时之间甲乙两人相距s与时间x的函数表达式.6.某森林公园从正门到侧门有一条公路供游客运动,甲徒步从正门出发匀速走向侧门,出发一段时间开始休息,休息了0.6小时后仍按原速继续行走.乙与甲同时出发,骑自行车从侧门匀速前往正门,到达正门后休息0.2小时,然后按原路原速匀速返回侧门.图中折线分别表示甲、乙到侧门的路程y(km)与甲出发时间x(h)之间的函数关系图象.根据图象信息解答下列问题.(1)求甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式.(2)求甲、乙第一次相遇的时间.(3)直接写出乙回到侧门时,甲到侧门的路程.7.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设一辆车先出发xh后,另一辆车也开始行驶,两车之间的距离为ykm,图中的折线表示y 与x之间的函数关系.根据图象解决以下问题:(1)慢车的速度为km/h,快车的速度为km/h;(2)求线段CD的函数解析式,并写出自变量x的取值范围;(3)求当x为多少时,两车之间的距离为300km.8.已知A、B两地相距40km,甲、乙两人沿同一公路从A地出发到B地,甲骑摩托车,乙骑自行车,图中CD、OE分别表示甲、乙离开A地的路程y(km)与时间x(h)的函数关系的图象,结合图象解答下列问题.(1)甲比乙晚出发小时,乙的速度是km/h;(2)在甲出发后几小时,两人相遇?(3)甲到达B地后,原地休息0.5小时,从B地以原来的速度和路线返回A地,求甲在返回过程中与乙相距10km时,对应x的值.9.甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t=小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.10.甲船从A港出发顺流匀速驶向B港,行至某处,发现船上一救生圈不知何时落入水中,立刻原路返回,找到救生圈后,继续顺流驶向B港.乙船从B港出发逆流匀速驶向A港.已知救生圈漂流的速度和水流速度相同;甲、乙两船在静水中的速度相同.甲、乙两船到A港的距离y1、y2(km)与行驶时间x(h)之间的函数图象如图所示.(1)写出乙船在逆流中行驶的速度;(2)求甲船在逆流中行驶的路程;(3)求甲船到A港的距离y1与行驶时间x之间的函数关系式;(4)求救生圈落入水中时,甲船到A港的距离.10.一条笔直的公路上依次有A、B、C三地,甲、乙两车同时从B地出发,匀速驶往C地.乙车直接驶往C地,甲车先到A地取一物件后立即调转方向追赶乙车(甲车取物件的时间忽略不计).已知两车间距离y(km)与甲车行驶时间x (h)的关系图象如图1所示.(1)求两车的速度分别是多少?(2)填空:A、C两地的距离是:,图中的t=(3)在图2中,画出两车离B地距离y(km)与各自行驶时间x(h)的关系图象,并求两车与B地距离相等时行驶的时间.。
专题6.4一次函数的图象(解析版)【苏科版】
专题6.4一次函数的图象姓名:__________________班级:______________得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•永嘉县校级期末)一次函数22y x =+的图象与x 轴的交点坐标是()A .(0,2)B .(0,2)-C .(1,0)-D .(1,0)【分析】把0y =代入一次函数的解析式中即可求出与x 轴的交点坐标.【解析】把0y =代入22y x =+,1x ∴=-,∴一次函数与x 轴的交点坐标为(1,0)-故选:C .2.(2020秋•永嘉县校级期末)已知直线2y x b =+,当0b <时,该直线不经过()A .第一象限B .第二象限C .第三象限D .第四象限【分析】由20>,0b <,利用一次函数图象与系数的关系可得出直线2y x b =+经过第一、三、四象限,进而可得出直线2y x b =+不经过第二象限.【解析】20> ,0b <,∴直线2y x b =+经过第一、三、四象限,即直线2y x b =+不经过第二象限.故选:B .3.(2020秋•罗湖区校级期末)如图图象中,不可能是关于x 的一次函数(6)y mx m =--的图象的是()A .B .C .D .【分析】分别根据四个答案中函数的图象求出m 的取值范围即可.【解析】A 、由函数图象可知0(6)0m m >⎧⎨-->⎩,解得06m <<;B 、由函数图象可知0(6)0m m >⎧⎨--=⎩,解得6m =;C 、由函数图象可知0(6)0m m <⎧⎨--<⎩,解得0m <,6m >,无解;D 、由函数图象可知0(6)0m m <⎧⎨-->⎩,解得0m <.故选:C .4.(2018秋•九江期末)两个一次函数1y ax b =+与2(y bx a a =+,b 为常数,且0)ab ≠,它们在同一个坐标系中的图象可能是()A .B .C .D .【分析】根据直线判断出a 、b 的符号,然后根据a 、b 的符号判断出直线经过的象限即可,做出判断.【解析】A 、可知:0a >,0b >.∴直线经过一、二、三象限,故A 错误;B 、可知:0a <,0b >.∴直线经过一、二、四象限,故B 正确;C 、0ab ≠ ,故直线不经过原点,故C 错误;D 、可知:0a <,0b >,∴直线经过一、三、四象限,故D 错误.故选:B .5.(2021春•绥棱县期末)一次函数y mx n=+与(0)=≠,在同一平面直角坐标系的图象是()y mnx mnA.B.C.D.【分析】由于m、n的符号不确定,故应先讨论m、n的符号,再根据一次函数的性质进行选择.【解析】(1)当0mn>,n>时,0m>,0一次函数y mx n=+的图象一、二、三象限,正比例函数y mnx=的图象过一、三象限,无符合项;(2)当0mn<,n<时,0m>,0一次函数y mx n=+的图象一、三、四象限,正比例函数y mnx=的图象过二、四象限,C选项符合;(3)当0mn>,n<时,0m<,0一次函数y mx n=+的图象二、三、四象限,正比例函数y mnx=的图象过一、三象限,无符合项;(4)当0mn<,m<,0n>时,0一次函数y mx n=+的图象一、二、四象限,正比例函数y mnx=的图象过二、四象限,无符合项.故选:C.6.(2021春•饶平县校级期末)一次函数(3)1=++中,y随x的增大而减小,则k的取值范围是()y k xA.0k<-D.3k>-k<C.3k>B.0【分析】根据一次函数(3)1=++中,y随x的增大而减小,推出30y k xk+<即可找到k的取值范围.【解析】 一次函数(3)1=++中,y随x的增大而减小,y k xk∴+<,30解得:3k<-.故A、B、D错误,故选:C.7.(2021•萧山区模拟)若实数a ,b ,c 满足0a b c ++=,且a b c <<,则函数y cx a =--的图象可能是()A .B .C .D .【分析】先判断出a 是负数,c 是正数,然后根据一次函数图象与系数的关系确定图象经过的象限以及与y 轴的交点的位置即可得解.【解析】0a b c ++= ,且a b c <<,0a ∴<,0c >,(b 的正负情况不能确定),0a ∴->,0c -<,∴函数y cx a =--的图象经过二、一、四象限.故选:B .8.(2020•太仓市模拟)若点(,)A m n 在一次函数3y x b =+的图象上,且32m n ->,则b 的取值范围为()A .2b <-B .2b >-C .2b <D .2b >【分析】由点A 的坐标结合一次函数图象上点的坐标特征,可得出3m b n +=,再由32m n ->,即可得出2b <-,此题得解.【解析】 点(,)A m n 在一次函数3y x b =+的图象上,3m b n ∴+=.32m n -> ,2b ∴->,即2b <-.故选:A .9.(2019秋•江干区期末)一次函数(1)(3)y m x m =-+-不经过第二象限,则m 的取值范围是()A .13m <<B .3m 且1m ≠C .3m <且1m ≠D .13m <【分析】根据题意可得一次函数图象经过第一、三象限或第一、三、四象限,进而可得m 的取值范围.【解析】 一次函数(1)(3)y m x m =-+-不经过第二象限,∴1030m m ->⎧⎨-⎩,解得:13m <,故选:D .10.(2020•拱墅区一模)直线1:l y kx b =+与直线2:l y bx k =+在同一坐标系中的大致位置是()A .B .C .D .【分析】根据一次函数的系数与图象的关系依次分析选项,找k 、b 取值范围相同的即得答案.【解析】根据一次函数的系数与图象的关系依次分析选项可得:A 、由图可得,1y kx b =+中,0k <,0b <,2y bx k =+中,0b >,0k <,b 、k 的取值矛盾,故本选项错误;B 、由图可得,1y kx b =+中,0k >,0b <,2y bx k =+中,0b >,0k >,b 的取值相矛盾,故本选项错误;C 、由图可得,1y kx b =+中,0k >,0b <,2y bx k =+中,0b <,0k >,k 、b 的取值相一致,故本选项正确;D 、由图可得,1y kx b =+中,0k >,0b <,2y bx k =+中,0b <,0k <,k 的取值相矛盾,故本选项错误;故选:C .二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2019秋•东台市期末)一次函数21y x =-一定不经过第二象限.【分析】根据一次函数图象与系数的关系求解.【解析】20k => ,10b =-<,∴一次函数图象在一、三、四象限,即一次函数图象不经过第二象限.故答案为:二.12.(2021春•徐汇区期末)已知一次函数1(0)y mx m =+≠,若y 的值随x 的增大而增大,则m 的取值范围是0m >.【分析】根据一次函数图象与系数的关系可判断0m >.【解析】 一次函数一次函数1(0)y mx m =+≠中,y 的值随x 的增大而增大,0m ∴>,故答案是:0m >.13.(2021春•巨野县期末)已知一次函数(2)(3)y m x m =+-+,y 随x 的增大而减小,且图象与y 轴的交点在x 轴下方,则实数m 的取值范围是32m -<<-.【分析】y 随x 的增大而减小,则20m +<,图象与y 轴的交点在x 轴上方,则(3)0m -+>,则可以得到不等式组求解即可.【解析】y 随x 的增大而减小,20m ∴+<,解得2m <-,函数图象与y 轴的交点在x 轴下方,(3)0m ∴-+<,解得3m >-,m ∴的取值范围为32m -<<-.故答案为:32m -<<-.14.(2020•大鹏新区一模)如图,直线l 经过第二、三、四象限,其解析式为(2)y m x m =--,则m 的取值范围为02m <<.【分析】由直线l 经过的象限,利用一次函数图象与系数的关系可得出关于m 的一元一次不等式组,解之即可得出结论.【解析】 直线(2)y m x m =--经过第二、三、四象限,∴200m m -<⎧⎨-<⎩,02m ∴<<.故答案为:02m <<.15.(2020春•定襄县期末)已知一次函数(22)3y k x k=-+-的图象经过第二、三、四象限,则k的取值范围是13k<<.【分析】根据一次函数图象的性质即可列出不等式求出k的范围.【解析】由题意可知:22030kk-<⎧⎨-<⎩,解得:13k<<,故答案为:13k<<.16.(2021秋•瑶海区校级月考)已知一次函数(31)y a x a=-++的图象经过第一、二、三象限,则a的取值范围是13a<<.【分析】根据一次函数图象的位置与系数的关系,得出不等式组,求解即可.【解析】 一次函数(31)y a x a=-++的图象经过第一、二、三象限,310a∴-+>,且0a>,解得,1 03a<<,故答案为:1 03a<<.17.(2021•金东区二模)若一次函数(3)4y k x k=-+-的图象不经过第一象限,则k的取值范围是34k<.【分析】分两种情况考虑,当一次函数(3)4y k x k=-+-的图象经过第二、四象限时,利用一次函数图象与系数的关系可得出关于k的一元一次不等式及一元一次方程,解之即可得出k值;当一次函数(3)4y k x k=-+-的图象经过第二、三、四象限时,利用一次函数图象与系数的关系可得出关于k的一元一次不等式组,解之即可得出k的取值范围.【解析】分两种情况考虑:当一次函数(3)4y k x k=-+-的图象经过第二、四象限时,3040kk-<⎧⎨-=⎩,解得:4k=;当一次函数(3)4y k x k=-+-的图象经过第二、三、四象限时,3040kk-<⎧⎨-<⎩,解得:34k<<.k∴的取值范围是34k<.故答案为:34k <.18.(2021春•芙蓉区校级期末)一次函数y ax b =+在直角坐标系中的图象如图所示,则化简||a b a b --+的是2b -.【分析】利用函数图象得1x =时,0y >,即0a b +>,然后利用绝对值的意义化简代数式.【解析】根据图象得0a >,0b <,而1x =时,0y a b =+>,所以原式()a b a b =--+a b a b=---2b =-.故答案为2b -.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•涡阳县期中)已知,一次函数(13)21y k x k =-+-,试回答:(1)k 为何值时,y 是x 的正比例函数?(2)当函数图象不经过第一象限时,求k 的取值范围.【分析】(1)由函数为正比例函数可得出关于k 的一元一次方程,解之即可得出k 值;(2)分函数图象经过第二、四象限及函数图象经过第二、三、四象限两种情况考虑,当函数图象经过第二、四象限时,由一次项系数小于0及常数项为0,即可得出关于k 的一元一次不等式及一元一次方程,解之即可得出k 值;当函数图象经过第二、三、四象限时,由一次项系数小于0及常数项小于0,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围.综上,此题得解.【解析】(1)y 是x 的正比例函数,210k ∴-=,解得:12k =,∴当12k =时,y 是x 的正比例函数.(2)当函数图象经过第二、四象限时,130210k k -<⎧⎨-=⎩,解得:12k =;当函数图象经过第二、三、四象限时,130210k k -<⎧⎨-<⎩,解得:1132k <<.∴当函数图象不经过第一象限时,k 的取值范围为1132k <.20.(2021春•朝阳区校级月考)已知一次函数||1(2)10m y m x m -=--+.(1)求出m 的值;(2)当一次函数与x 轴、y 轴的交点分别为A 和B 时,求AOB ∆的面积.【分析】(1)根据一次函数的定义求解.(2)再利用图象与坐标轴的交点坐标求出所围成的三角形面积即可.【解析】(1)根据题意得:||1120m m -=⎧⎨-≠⎩,解得:2m =-;(2)函数412y x =-+.当0y =,0412x =-+.解得:3x =,∴与x 轴交点A 为(3,0),当0x =,12y =,∴与y 轴交点B 为(0,12),∴一次函数的图象与两坐标轴所围成的三角形面积为:11||||3121822AOB S x y ∆==⨯⨯=.21.(2020秋•杏花岭区校级期中)已知一次函数22y x =+的图象与x 轴交于点A ,与y 轴交于点B .(1)求A ,B 两点的坐标;(2)在给定的直角坐标系中,画出一次函数22y x =+的图象;(3)判断1(2-,1)-是否在这个函数的图象上?否(填“是”或“否”);(4)该函图象与坐标轴围成的三角形面积是.【分析】(1)分别令0y=,0x=求解即可;(2)根据两点确定一条直线作出函数图象即可;(3)根据图象即可判断;(4)根据三角形面积公式求得即可.【解析】(1)令0y=,则1x=-;令0x=,则2y=;∴点A坐标为(1,0)-;点B坐标为(0,2),(2)函数22y x=+的图象如下:(3)由图象可知1(2-,1)-不在这个函数的图象上;故答案为:否;(4)该函图象与坐标轴围成的三角形面积是为:1121 2⨯⨯=,故答案为1.22.(2021春•韩城市期末)已知一次函数(3)8y m x m=-+-,y随x的增大而增大.(1)求m 的取值范围;(2)如果这个一次函数又是正比例函数,求m 的值.【分析】(1)根据函数的增减性得到30m ->,从而确定m 的取值范围;(2)根据正比例函数的定义得到30m -≠且80m -=,从而确定m 的值.【解析】(1)根据题意得30m ->,解得3m >;(2)根据题意,得30m -≠且80m -=,解得8m =.23.(2021春•玉田县期末)如图,一次函数2y x b =+的图象与x 轴交于点(2,0)A ,与y 轴交于点B .(1)求b 的值.(2)若直线AB 上的点C 在第一象限,且4AOC S ∆=,求点C 坐标.【分析】(1)将点A 坐标代入一次函数解析式2y x b =+,可得4b =-;(2)由4AOC S ∆=,根据三角形面积公式得到4C y =,代入24y x =-中,即可求得C 的坐标.【解析】(1)将(2,0)A 代入直线2y x b =+中,得220b ⨯+=解得4b =-;(2)4AOC S ∆= ,点(2,0)A ,2OA ∴=,∴142C OA y = ,解得4C y =,把4y =代入24y x =-得244x -=,解得4x =,(4,4)C ∴.24.(2020春•沙坪坝区校级月考)根据学习函数的经验,对经过点(0,1)和点(2,3)的函数|2|y kx b =--+的图象与性质进行如下探究.(1)求函数的表达式;(2)用合理的方式画出函数图象,并写出这个函数的一条性质函数有最大值3;(3)若关于x 的方程|2|4kx b mx --+=+有实数解,则m 的取值范围是.【分析】(1)根据待定系数法求得即可;(2)列表,描点、连线画出该函数的图象,根据图象即可得到函数的性质;(3)根据图象得到即可.【解析】(1) 函数|2|y kx b =--+的图象经过点(0,1)和点(2,3),∴21|22|3b k b -+=⎧⎨--+=⎩,解得13k b =⎧⎨=⎩,∴函数的表达式为|2|3y x =--+;(2)列表:x ⋯1-012345⋯y ⋯0123210⋯描点、连线画出函数图象如图:函数的一条性质:函数有最大值3.故答案为函数有最大值3.(3)把点(2,3)代入4y mx=+得,324m=+,解得12 m=-,由图象可知,关于x的方程|2|4kx b mx--+=+有实数解,则m的取值范围是12m-或1m>,故答案为12m-或1m>.。
(完整版)一次函数应用题(含答案).doc
一次函数应用题初一()班姓名:学号:.1、一次时装表演会预算中票价定位每张100 元,容纳观众人数不超过2000 人,毛利润 y(百元)关于观众人数x(百人)之间的函数图象如图所示,当观众人数超过1000 人时,表演会组织者需向保险公司交纳定额平安保险费5000 元(不列入成本费用)请解答下列问题:⑴求当观众人数不超过 1000 人时,毛利润 y(百元)关于观众人数 x(百人)的函数解析式和成本费用 s(百元)关于观众人数 x(百人)的函数解析式;⑵若要使这次表演会获得36000 元的毛利润,那么要售出多少张门票?需支付成本费用多少元?(注:当观众人数不超过1000 人时,表演会的毛利润=门票收入—成本费用;当观众人数超过 1000 人时,表演会的毛利润=门票收入—成本费用—平安保险费)2、转炉炼钢产生的棕红色烟尘会污染大气,某装置可通过回收棕红色烟尘中的氧化铁从而降低污染,该装置的氧化铁回收率与其通过的电流有关,现经过试验得到下列数据:通过电流强度(单位: A) 1 1.7 1.9 2.1 2.4 氧化铁回收率( %)75 79 88 87 78 如图建立直角坐标系,用横坐标表示通过的电流强度,纵坐标表示氧化铁的回收率.(1) 将试验所得数据在如图所示的直角坐标系中用点表示;(注:该图中坐标轴的交点代表点( 1,70))(2) 用线段将题( 1)中所画的点从左到右顺次连接,若用此图象来模拟氧化铁回收率y 关于通过电流 x 的函数关系,试写出该函数在 1.7 y(% )≤x≤2.4时的表达式;(3)利用( 2)所得函数关系,求氧化铁回收率大于85%时,该装置通过的电流应该控制的范围(精确到 0.1 A) . 858075O ( 1, 70)(2,70)x(A )3、如图( 1),在矩形中, = 10 cm , = 8 cm. 点 P 从 A 点出发,沿 → → →ABCDABBCA B C D路线运动,到 D 停止;点 Q 从 D 出发,沿 D →C → B → A 路线运动,到 A 停止 . 若点 P 、点 Q 同时 出发,点 P 的速度为每秒 1 cm ,点 Q 的速度为每秒 2 cm , a 秒时,点 P 、点 Q 同时改变 .. .. 速度,点 P 的速度变为每秒 b cm ,点 Q 的速度变为每秒 d cm. 图( 2)是点 P 出发 x 秒后△APD 的面积2)与 x (秒)的函数关系图象;图(3)是点 Q 出发 x 秒后△ AQD 的面积..S1 ( cm..2S 2 ( cm )与 x (秒)的函数关系图象 .22DQ →C40 S 1(cm )40 S 2(cm )24A P→ B Oa 8 c x (秒) O22x (秒)( 1)( 2)( 3)( 1)参照图( 2),求 a 、 b 及图( 2)中 c 的值; ( 2)求 d 的值;( 3)设点 P 离开点 A 的路程为 y 1( cm ),点 Q 到点 A 还需要走的路程为 y 2 ( cm ),请分别写出改变速度后 y 1 、 y 2 与出发后的运动时间 x (秒)的函数关系式,并求出 P 、 Q 相遇时 x 的值;( 4)当点 Q 出发 _________秒时,点 、点 Q 在运动路线上相距的路程为25cm.P4、教室里放有一台饮水机,饮水机上有两个放水管。
八年级数学:一次函数(应用题)练习(含解析)
C.10000,13200D.13200,15400
二.填空题
7.利民商店中有3种糖果,单价及重量如下表,若商店将以上糖果配成什锦糖,则这种什锦糖果的单价是每千克________元.
品种
水果糖
花生糖
软 糖
单价(元/千克)
10
12
16
重量(千克)
3
3
4
8.某公园门票价格如下表,有27名中学生游公园,则最少应付费______元.(游客只能在公园售票处购票)
购票张数
1~29张
30~60张
60张以上
每张票的价格
10元
8元
6元
9.有一个附有进水管和出水管的容器,在单位时间内的进水量和出水量分别一定.设从某时刻开始的5分钟内只进水不出水,在随后的15分钟内既进水又出水,得到容器内水量y(升)与时间 (分)之间的函数图象如图.若20分钟后只放水不进水,这时( ≥20时) 与 之间的函数关系式是_________.
八年级数学:一次函数(应用题)练习(含解析)
一.选择题
1.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是( )
A.300m2B.150m2C.330m2D.450m2
12.【答案】2050;
【解析】解:设小明、小刚新的速得,y=x+1.5③,
由②得,4y﹣3=6x④,
③代入④得,4x+6﹣3=6x,
解得x=1.5,
故这次越野赛的赛跑全程=1600+300×1.5=1600+450=2050m.
一次函数重点题型函数图像信息题(解析版) 八年级数学下册专题训练
专题20一次函数重点题型函数图像信息题(解析版)第一部分题组训练类型一根据信息判断函数图象1.(2022•邹城市一模)如图所示:边长分别为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内除去小正方形部分的面积为S(阴影部分),那么S与t的大致图象应为()A.B.C.D.【思路引领】根据题意,设小正方形运动的速度为V,分三个阶段;①小正方形向右未完全穿入大正方形,②小正方形穿入大正方形但未穿出大正方形,③小正方形穿出大正方形,分别求出S,可得答案.【解答】解:根据题意,设小正方形运动的速度为v,由于v分三个阶段;①小正方形向右未完全穿入大正方形,S=2×2﹣vt×1=4﹣vt(vt≤1);②小正方形穿入大正方形但未穿出大正方形,S=2×2﹣1×1=3;③小正方形穿出大正方形,S=2×2﹣(1×1﹣vt)=3+vt(vt≤1).分析选项可得,A符合,C中面积减少太多,不符合.故选:A.【总结提升】考查了动点问题的函数图象,解决此类问题,注意将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况.2.(2023春•丰台区期末)如图所示,一个实心铁球静止在长方体水槽的底部,现向水槽匀速注水,下列图象中能大致反映水槽中水的深度y与注水时间x关系的是()A.B.C.D.【思路引领】根据题意可分两段进行分析:当水的深度未超过球顶时;当水的深度超过球顶时.分别分析出水槽中装水部分的宽度变化情况,进而判断出水的深度变化快慢,以此得出答案.【解答】解:当水的深度未超过球顶时,水槽中能装水的部分的宽度由下到上由宽逐渐变窄,再变宽,所以在匀速注水过程中,水的深度变化先从上升较慢变为较快,再变为较慢;当水的深度超过球顶时,水槽中能装水的部分宽度不再变化,所以在匀速注水过程中,水的深度的上升速度不会发生变化.综上,水的深度先上升较慢,再变快,然后变慢,最后匀速上升.故选:C.【总结提升】本题主要考查函数的图象,利用分类讨论思想,根据不同时间段能装水部分的宽度的变化情况分析水的深度变化情况是解题关键.3.(2023•湖北)如图,长方体水池内有一无盖圆柱形铁桶,现用水管往铁桶中持续匀速注水,直到长方体水池有水溢出一会儿为止.设注水时间为t,y1(细实线)表示铁桶中水面高度,y2(粗实线)表示水池中水面高度(铁桶高度低于水池高度,铁桶底面积小于水池底面积的一半,注水前铁桶和水池内均无水),则y1,y2随时间t变化的函数图象大致为()A.B.C.D.【思路引领】本题考查函数的图象,圆柱体和长方体的灌水时间与容积之间的关系,底面面积越大,注水相同时间,水面上升的高度越慢.【解答】解:根据题意,先用水管往铁桶中持续匀速注水,∴y1中从0开始,高度与注水时间成正比,当到达t1时,铁桶中水满,所以高度不变,y2表示水池中水面高度,从0到t1,长方体水池中没有水,所以高度为0,t1到t2时注水从0开始,又∵铁桶底面积小于水池底面积的一半,∴注水高度y2比y1增长的慢,即倾斜程度低,t2到t3时注水底面积为长方体的底面积,∴注水高度y2增长的更慢,即倾斜程度更低,长方体水池有水溢出一会儿为止,∴t3到t4,注水高度y2不变.故选:C.【总结提升】本题考查函数的图象,圆柱体和长方体的灌水时间与容积之间的关系,底面面积越大,注水相同时间,水面上升的高度越慢.解题的关键是倾斜程度的意义的理解.4.(2022春•高新区期末)一辆公共汽车从车站开出,加速行驶一段后开始匀速行驶.过了一段时间,汽车到达下一个车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶,如图的哪一幅图可以近似地刻画出汽车在这段时间内的速度变化情况()A.B.C.D.【思路引领】横轴表示时间,纵轴表示速度,根据加速、匀速、减速时,速度的变化情况,进行选择.【解答】解:公共汽车经历:加速﹣匀速﹣减速到站﹣加速﹣匀速.加速:速度增加;匀速:速度保持不变;减速:速度下降;到站速度为0.故选:D.【总结提升】此题考查的知识点是函数的图象,图象分析题一定要注意图象的横、纵坐标表示的物理量,分析出图象蕴含的物理信息,考查学生的图象分析和归纳能力.类型二根据函数图象判断物体形状5.(2022•武汉)匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线).这个容器的形状可能是()A.B.C.D.【思路引领】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:注水量一定,函数图象的走势是平缓,稍陡,陡;即随着时间的变化,水面高度变化的快慢不同,与所给容器的底面积有关.则相应的排列顺序就为选项A.故选:A.【总结提升】此题考查函数图象的应用,需注意容器粗细和水面高度变化的关联.类型三获取函数图象信息6.(2023•河西区模拟)甲、乙两车分别从A城出发前往B城,在整个行程中,甲车离开A城的距离y1(单位:km)与甲车离开A城的时间x(单位:h)的对应关系如图所示.(Ⅰ)填空:①A,B两城相距360km;②当甲车出发2.5h时,距离A城120km;③当0<x<2时,甲车的速度为60km/h;④当83<<173时,甲车的速度为80km/h;⑤若乙车比甲车晚出发12ℎ,以60km/h的速度匀速行驶,则两车相遇时,甲车离开A城的时间为52或196h.(Ⅱ)当0≤≤173时,请直接写出y1关于x的函数解析式.【思路引领】(Ⅰ)根据图表信息,即可求出相应结果.(Ⅱ)根据图象可知0≤≤173时,被分为三部分,分别是0≤x≤2、2<x≤83、83<x≤173,找到对应点求出解析式即可.【解答】解:(Ⅰ)①根据图象可得A,B两城相距为360km;故答案为:360;②当甲车出发2.5h时,距离A城120km;故答案为:120;③当0<x<2时,甲车的速度为:120÷2=60(km/h);故答案为:60;④当83<<173时,甲车的速度为:360−120173−83=80(km/h);故答案为:80;⑤第一次相遇:120÷60+12=52;第二次相遇|:360−1203+2803=60(x−12),解得x=196.即若乙车比甲车晚出发12ℎ,以60km/h的速度匀速行驶,则两车相遇时,甲车离开A城的时间为52或196h;故答案为:52或196;(II)当0≤x≤2时,y1=60x;当2<x≤83时,y1=120;当83<x≤173时,设y1关于x的函数解析式为y1=kx+b,代入(83,120),(173,360),得:+=120+=360,解得=80=−2803所以y1=80x−2803.【总结提升】本题考查了一次函数图形解决实际问题相关知识,理解数据的实际意义,并能灵活运用是解决问题的关键.7.(2023•宁津县一模)甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算,走得最快的是甲.【思路引领】当时间一样的时候,分别比较甲、乙和丙、丁的平均速度;当路程都是3千米的时候,比较甲、丁的平均速度即可得出答案.【解答】解:∵10分钟甲比乙步行的路程多,25分钟丁比丙步行的路程多,∴甲的平均速度>乙的平均速度,丁的平均速度>丙的平均速度,∵步行3千米时,乙比丙用的时间少,∴乙的平均速度>丙的平均速度,∴走得最快的是甲,故答案为:甲.【总结提升】本题考查了函数的图象,通过控制变量法比较平均速度的大小是解题的关键.8.甲乙两地相距a千米,小亮8:00乘慢车从甲地去乙地,10分钟后小莹乘快车从乙地赶往甲地.两人分别距甲地的距离y(千米)与两人行驶时刻t(×时×分)的函数图象如图所示,则小亮与小莹相遇的时刻为()A.8:28B.8:30C.8:32D.8:35【思路引领】设小亮与小莹相遇时,小亮乘车行驶了x小时,因为小亮、小莹乘车行驶的速度分别是67a 千米/时,2a千米/时,即可得到方程:67ax+2a(x−16)=a,求出x的值,即可解决问题.【解答】解:设小亮与小莹相遇时,小亮乘车行驶了x小时,∵小亮、小莹乘车行驶完全程用的时间分别是76小时,12小时,∴小亮、小莹乘车行驶的速度分别是67a千米/时,2a千米/时,由题意得:67ax+2a(x−16)=a,∴x=715,715小时=28分钟,∴小亮与小莹相遇的时刻为8:28.故选:A.【总结提升】本题考查一元一次方程的应用,关键是由题意列出方程:67ax+2a(x−16)=a.9.(2023秋•道里区校级月考)如图1,在Rt△ABC中,动点P从A点运动到B点再到C点后停止,速度为2单位/s,其中BP长与运动时间t(单位:s)的关系如图2,则AC的长为17.【思路引领】根据图象可知t=0时,点P与点A重合,得到AB=15,进而求出点P从点A运动到点所需的时间,进而得到点P从点B运动到点C的时间,求出BC的长,再利用勾股定理求出AC即可.【解答】解:由图象可知:t=0时,点P与点A重合,∴AB=15,∴点P从点A运动到点B所需的时间为15÷2=7.5(s);∴点P从点B运动到点C的时间为11.5﹣7.5=4(s),∴BC=2×4=8;在Rt△ABC中,由勾股定理可得AC=17;故答案为:17.【总结提升】本题考查动点的函数图象,勾股定理.从函数图象中有效的获取信息,求出AB,BC的长是解题的关键.10.(2021•宿迁)一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s(km)与慢车行驶的时间t(h)之间的关系如图:(1)快车的速度为100km/h,C点的坐标为(8,480).(2)慢车出发多少小时后,两车相距200km.【思路引领】(1)由图象信息先求出慢车速度,再根据相遇时慢车走的路程,从而求出快车走的路程,再根据速度=路程÷时间,求出快车速度,然后根据快车修好比慢车先到达终点可知C点是慢车到达终点时所用时间即可;(2)分两车相遇前和相遇后两种情况讨论即可.【解答】解:(1)由图象可知:慢车的速度为:60÷(4﹣3)=60(km/h),∵两车3小时相遇,此时慢车走的路程为:60×3=180(km),∴快车的速度为:(480﹣180)÷3=300÷3=100(km/h),通过图象和快车、慢车两车速度可知快车比慢车先到达终点,∴慢车到达终点时所用时间为:480÷60=8(h),∴C点坐标为:(8,480),故答案为:100,(8,480);(2)设慢车出发t小时后两车相距200km,①相遇前两车相距200km,则:60t+100t+200=480,解得:t=74,②相遇后两车相距200km,则:60t+100(t﹣1)﹣480=200,解得:t=398,∴慢车出发74h或398h时两车相距200km,答:慢车出发74h或398h时两车相距200km.【总结提升】本题考查了一次函数和一元一次方程的应用,关键是弄清图象拐点处的意义,根据题意进行运算.第二部分专题提优训练1.(2023•无为市四模)“百日长跑”是一项非常有益身心的体育活动,体育老师一声令下,小雅立即开始慢慢加速,途中一直保持匀速,最后150米时奋力冲刺跑完全程,下列最符合小雅跑步时的速度y(单位:米/分)与时间x(单位:分)之间的大致图象的是()A.B.C.D.【思路引领】根据小雅的速度的变化判断即可.【解答】解:由小雅立即开始慢慢加速,此时速度随时间的增大而增加;途中一直保持匀速,此时速度不变,图象与x轴平行;最后150米时奋力冲刺跑完全程,此时速度随时间的增大而增加,且图象比开始一段更陡.故选项B符合题意.故选:B.【总结提升】本题考查了函数图象,发现速度的变化关系是解题关键.2.(2023春•井冈山市期末)小明观看了《中国诗词大会》第三期,主题为“人生自有诗意”,受此启发根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还”,如图用y轴表示父亲与儿子行进中离家的距离,用x轴表示父亲离家的时间,那么下面图象与上述诗的含义大致相吻合的是()A.B.C.D.【思路引领】开始时,父亲离家的距离越来越远,而儿子离家的距离越来越近,车站在两人出发点之间,而父亲早到,两人停一段时间以后,两人一起回家,则离家的距离与离家时间的关系相同.【解答】解:开始时,父亲离家的距离越来越远,而儿子离家的距离越来越近,车站在两人出发点之间,而父亲早到,故A,B,C不符合题意;两人停一段时间以后,两人一起回家,则离家的距离与离家时间的关系相同,则选项D符合题意.故选:D.【总结提升】主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.3.如图,因水桶中的水由图①的位置下降到图②的位置的过程中,如果水减少的体积是y,水位下降的高度是x,那么能够表示y与x之间函数关系的图象是()A.B.C.D.【思路引领】根据水减少的体积是y,水位下降的高度是x,而且y与x之间函数关系成正比例得出图象即可.【解答】解:∵水减少的体积是y,水位下降的高度是x,∴y越大,x越大,而且它们成正比例关系,∴图象中只有C是正比例关系,故选:C.【总结提升】此题主要考查了函数图象与实际问题,利用实际问题得出函数关系是解决问题的关键.4.(中考真题•漳州)均匀地向如图的容器中注满水,能反映在注水过程中水面高度h随时间t变化的函数图象是()A.B.C.D.【思路引领】由于三个容器的高度相同,粗细不同,那么水面高度h随时间t变化而分三个阶段.【解答】解:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h随时间t的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.故选:A.【总结提升】此题主要考查了函数图象,解决本题的关键是根据容器的高度相同,每部分的粗细不同得到用时的不同.5.(2021春•七星关区期末)某列高铁从起点站出发,加速一段时间后开始匀速行驶,在快到下一站时减速并停下,等乘客上下车后开始加速,一段时间后开始匀速行驶.下面的图中哪一个能近似地刻画这一段时间内高铁的速度随时间变化情况()A.B.C.D.【思路引领】横轴表示时间,纵轴表示速度,根据加速、匀速、减速时,速度的变化情况,进行选择.【解答】解:高铁经历:加速﹣匀速﹣减速到站﹣加速﹣匀速,加速:速度增加,匀速:速度保持不变,减速:速度下降,到站:速度为0.观察四个选项的图象,只有A选项符合.故选:A.【总结提升】本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.6.(2021春•织金县期末)妈妈从家里出发去平远古镇锻炼,她连续匀速走了60分钟后回到家,如图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离S(km)与行走时间t(min)之间的关系,则下列图形中可以大致描述妈妈行走的路线的是()A.B.C.D.【思路引领】根据给定s关于t的函数图象,分析AB段可得出该段时间妈妈绕以家为圆心的圆弧进行运动,由此即可得出结论.【解答】解:观察s关于t的函数图象,发现:在图象AB段,该时间段妈妈离家的距离相等,即绕以家为圆心的圆弧进行运动,∴可以大致描述蕊蕊妈妈行走的路线是B.故选:B.【总结提升】本题考查了函数的图象,解题的关键是分析函数图象的AB段.本题属于基础题,难度不大,解决该题型题目时,根据函数图象分析出大致的运动路径是关键.7.(2022春•惠州期末)如图,点P从正方形ABCD的顶点C出发,沿着正方形的边运动,依次经过点D 和点A到达点B后停止运动.当运动路程为x时,△PBC的面积为y,则y随x变化的图象可能是()A.B.C.D.【思路引领】根据运动可以发现△PBC的面积,从增大到不变,再到不断减小,结合图象可选出答案.【解答】解:y与x的函数关系的图象大致可分三段来分析:当点P从C运动到D时,因为底BC不变,高PC逐渐增大,所以△PBC的面积随着CP的增大而增大;当点P从D运动到A时时,△PBC的底和高都不变,所以面积也不变;当点P从A运动到B的时候,因为底BC不变,高PB逐渐减小,所以△PBC的面积随着PB的减小而减小.所以选项B符合题意.故选:B.【总结提升】本题考查了动点问题的函数图象,弄清点P分别在三条边上运动时,面积的变化情况是解题关键.8.(2023春•平原县期中)一艘轮船和一艘快艇沿相同路线从甲港出发匀速行驶至乙港,行驶路程随时间变化的图象如图,则快艇比轮船每小时多行20千米.【思路引领】观察图象,根据图象中的路程和时间的关系,求出各自的速度,从而计算速度差.【解答】解:由函数图象,得:轮船的速度为:160÷8=20(km/h),快艇的速度为:160÷(6﹣2)=40(km/h),∴快艇比轮船每小时多行40﹣20=20(千米),故答案为:20.【总结提升】本题考查了函图象的运用,行程问题的数量关系的运用,解答时分析清楚函数图象提供的信息是关键.9.(2023春•青海月考)已知小明家、体育场、文具店在同一直线上,图中的信息反映的过程是:小明从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x表示时间,y表示小明离家的距离.依据图中的信息,下列说法中:①体育场离家2.5km;②小明在体育场锻炼了20分钟;③小明从体育场出发到文具店的平均速度为4km/h,其中正确的有①③(填序号).【思路引领】根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.【解答】解:由图象可得,体育场离小明家2.5km,故①正确;小明在体育场锻炼了:30﹣15=15(分钟),故②错误;③小明从体育场出发到文具店的平均速度为:(2.5﹣1.5)÷45−3060=4(km/h),故③正确.故答案为:①③.【总结提升】本题考查了函数图象,解题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.10.(2021春•思明区校级期中)如图,某个函数的图象由线段AB和线段BC组成,其中A(0,2),B(32,1),C(4,3),则此函数的最大值是3.【思路引领】直接利用函数图象上点的坐标,进而得出函数最值即可.【解答】解:∵函数的图象由线段AB和BC组成,其中点A(0,2),B(32,1),C(4,3),∴当x=4时,函数值最大为3.故答案为:3.【总结提升】此题主要考查了函数的图象以及函数值,正确利用点的坐标是解题关键.11.汽车的速度随时间变化的情况如图所示:(1)这辆汽车的最高时速是多少?(2)汽车在行驶了多长时间后停了下来,停了多长时间?(3)汽车在第一次匀速行驶(速度不变)时共用了几分钟?速度是多少?在这段时间内,它走了多远?【思路引领】(1)结合图形速度轴可以找出最高时速;(2)当速度为0时,汽车停止下来;(3)结合图形,可得出第一次匀速行驶(速度不变)时共用了几分钟,速度是多少,再利用路程=速度×时间,即可得出结论.【解答】解:(1)由汽车的速度随时间变化的情况图可看出:汽车的最高时速是120千米/时.(2)结合图形,可得知,汽车在行驶了10分钟后停了下来,停了12﹣10=2分钟.(3)由图形可知,第一次匀速行驶的速度为90千米/时,行驶的时间为6﹣2=4分钟,∵4分钟=115小时,∴行驶的路程=90×115=6(千米).答:汽车在第一次匀速行驶(速度不变)时共用了4分钟,速度是90千米/时,在这段时间内,它走了6千米.【总结提升】本题考查了一次函数的应用,解题的关键是:能熟练的运用图形解决问题.12.(2023春•尤溪县期中)周末,小明骑自行车从家出发到野外郊游,从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地,小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象,已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若追上小明后,再过5分钟妈妈到达乙地,求从家到乙地的路程.【思路引领】(1)根据函数图象中的数据,可以计算出小明骑车的速度和在甲地游玩的时间;(2)根据函数图象中的数据,可以写出小明从家出发多少小时后被妈妈追上,并计算出此时离家多远;(3)根据小明的速度,求出妈妈的速度,然后即可计算出从家到乙地的路程.【解答】解:(1)由图象可得,小明骑车的速度是:10÷0.5=20(km/h),在甲地游玩的时间为:1﹣0.5=0.5(h),即小明骑车的速度是20km/h,在甲地游玩的时间是0.5h;(2)由图象可得,小明从家出发74小时后被妈妈追上,此时离家:20×(74−0.5)=25(km),即小明从家出发74小时后被妈妈追上,此时离家25km;(3)∵妈妈驾车的速度是小明骑车速度的3倍,小明骑车的速度是20km/h,∴妈妈驾车速度为20×3﹣60(km/h),∴从家到乙地的路程是:60×(74−43+560)=60×74−60×43+60×560=105﹣80+5=30(km),即从家到乙地的路程是30km.【总结提升】本题考查一次函数的应用,利用数形结合的思想解答是解答本题的关键.。
一次函数的图像(解析版)
5.4一次函数的图像一、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,k ≠0)的函数,叫做一次函数.y kx = (k 为常数,且k ≠0)的函数,叫做正比例函数.其中k 叫做比例系数.要点:当b =0时,y kx b =+即y kx =,所以说正比例函数是一种特殊的一次函数.一次函数的定义是根据它的解析式的形式特征给出的,要注意其中对常数k ,b 的要求,一次函数也被称为线性函数.二、一次函数的图象与性质1.函数y kx b =+(k 、b 为常数,且k ≠0)的图象是一条直线:当b >0时,直线y kx b =+是由直线y kx =向上平移b 个单位长度得到的; 当b <0时,直线y kx b =+是由直线y kx =向下平移|b |个单位长度得到的. 2.一次函数y kx b =+(k 、b 为常数,且k ≠0)的图象与性质: 正比例函数的图象是经过原点(0,0)和点(1,k )的一条直线; 一次函数(0)y kx b k =+≠图象和性质如下:3. k 、b 对一次函数y kx b =+的图象和性质的影响:k 决定直线y kx b =+从左向右的趋势,b 决定它与y 轴交点的位置,k 、b 一起决定直线y kx b =+经过的象限.4. 两条直线1l :11y k x b =+和2l :22y k x b =+的位置关系可由其系数确定: (1)12k k ≠⇔1l 与2l 相交; (2)12k k =,且12b b ≠⇔1l 与2l 平行; 三、待定系数法求一次函数解析式一次函数y kx b =+(k ,b 是常数,k ≠0)中有两个待定系数k ,b ,需要两个独立条件确定两个关于k ,b 的方程,这两个条件通常为两个点或两对x ,y 的值.要点:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而具体写出这个式子的方法,叫做待定系数法.由于一次函数y kx b =+中有k 和b 两个待定系数,所以用待定系数法时需要根据两个条件列二元一次方程组(以k 和b 为未知数),解方程组后就能具体写出一次函数的解析式. 四、分段函数对于某些量不能用一个解析式表示,而需要分情况(自变量的不同取值范围)用不同的解析式表示,因此得到的函数是形式比较复杂的分段函数.解题中要注意解析式对应的自变量的取值范围,分段考虑问题.要点:对于分段函数的问题,特别要注意相应的自变量变化范围.在解析式和图象上都要反映出自变量的相应取值范围.一、单选题1.已知正比例函数34y x =-,则下列各点在该函数图象上的是( )A .()4,3-B .()4,3--C .()2,1-D .()3,4-【答案】A【提示】将选项各点坐标代入,即可判断.【解答】A .当4x =时,=3y -,故点()4,3-在函数图象上,A 项符合题意; B .当4x =-时,33y =≠-,故点()4,3--不在函数图象上,B 项不符合题意; C .当2x =-时, 1.51y =≠,故点()2,1-不在函数图象上,C 项不符合题意; D .当3x =-时, 2.254y =≠,故点()3,4-不在函数图象上,D 项不符合题意; 故选:A .【点睛】本题主要考查了正比例函数图象上的点的坐标特征,掌握正比例函数的定义是解题的关键. 2.已知一次函数y kx b =+的图象经过点()2,1-,且平行于直线2y x =-,则b 的值为( ) A .2- B .1C .3-D .4【答案】C【提示】根据两直线平行,一次项系数相等求出k 的值,再利用待定系数法求解即可. 【解答】解:∵一次函数y kx b =+与直线2y x =-平行, ∴一次函数解析式为2y x b =-+,∵一次函数2y x b =-+经过点()21-,, ∴()122b =-⨯-+, ∴3b =-, 故选:C .【点睛】本题主要考查了一次函数图象的平移,求一次函数解析式,正确求出2k =-是解题的关键. 3.关于函数21y x =--,下列结论正确的是( ) A .图象必经过点()2,1- B .y 随x 的增大而增大C .当12x >时,0y < D .图象经过第一、二、三象限 【答案】C【提示】根据一次函数的性质可进行排除选项.【解答】解:由函数21y x =--可知:20k =-<,10b =-<,则y 随x 的增大而减小,且该函数图象经过第二、三、四象限,故B 、D 选项错误;当2x =-时,则()2213y =-⨯--=,所以函数图象经过点()2,3-,故A 选项错误; 当12x >-时,0y <,所以当12x >时,0y <说法正确;故选:C .【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.4.已知一次函数31(3)y mx x m =-+<的图像经过1)A y ,2)B y ,3(5,)C y ,则123,,y y y 的大小关系是( ) A .123y y y << B .132y y y <<C .321y y y <<D .231y y y <<【答案】D【提示】根据一次函数的增减性判断即可. 【解答】解:∵3m <, ∴(3)0k m =-<, ∴y 随x 的增大而减小,又∵点1)A y ,2)B y ,3(5,)C y 均在一次函数31(3)y mx x m =-+<的图像上,∵()()22277,525,2728===,∴7527<<, ∴231y y y <<, 故选:D .【点睛】本题考查了一次函数的性质,无理数的估算,熟练掌握一次函数的性质是解本题的关键. 5.三个正比例函数的表达式分别为①y ax =;②y bx =③y cx =,其在平面直角坐标系中的图像如图所示,则a ,b ,c 的大小关系为( )A .a b c >>B .c b >>aC .b a c >>D .b c >>a 【答案】C【提示】先根据函数图象经过的象限得出0a >,0b >,0c <,再根据直线越陡,k 越大得出答案. 【解答】解:∵y ax =和y bx =的图象经过一、三象限,y cx =的图象经过二、四象限, ∴0a >,0b >,0c <, ∵直线y bx =比直线y ax =陡, ∴b a >, ∴b a c >>, 故选:C .【点睛】本题考查了正比例函数的图象,当0k >时,函数图象经过一、三象限;当0k <时,函数图象经过二、四象限;直线越陡,k 越大.6.将直线21y x =+向下平移2个单位长度后,得到直线y kx b =+,则下列关于直线y kx b =+的说法正确的是( ) A .与x 轴交于点20(,) B .与y 轴交于点()0,1-C .y 随x 的增大而减小D .与两坐标轴围成的三角形的面积为12【答案】B【提示】首先根据函数图像平移法则,向下平移2个单位,则给函数解析式右端减2,即可得到平移后的直线方程;接下来根据一次函数图像的性质分析与坐标轴围成面积,交点坐标以及y 随x 的变化关系,即可得解.【解答】解:将直线21y x =+向下平移2个单位长度后得到直线21221y x x =+-=-,A 、直线21y x =-与x 轴交于1,02⎛⎫⎪⎝⎭,故本选项不合题意;B 、直线21y x =-与y 轴交于()0,1-,故本选项,符合题意;C 、直线21y x =-,y 随x 的增大而增大,故本选项不合题意;D 、直线21y x =-与两坐标轴围成的三角形的面积为1111224⨯⨯=,故本选项不合题意;故选:B .【点睛】本题主要考查一次函数的平移及性质,熟练掌握一次函数的图象和性质是解题的关键. 7.如图中表示一次函数y mx n =+与正比例函数y mnx =(m 、n 是常数,mn≠0)图象的是( )A .B .C .D .【答案】C【提示】根据“两数相乘,同号得正,异号得负”分两种情况讨论m 、n 的符号,然后根据m 、n 同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.【解答】解:①当0mn >,y mnx =过一,三象限,m ,n 同号,同正时y mx n =+过一,二,三象限,同负时过二,三,四象限;②当0mn <时,y mnx =过二,四象限,m ,n 异号,则y mx n =+过一,三,四象限或一,二,四象限.观察图象,只有选项C 符合题意, 故选:C .【点睛】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题. 一次函数y kx b =+的图象有四种情况:①当00k b >>,,函数y kx b =+的图象经过第一、二、三象限; ②当00k b ><,,函数y kx b =+的图象经过第一、三、四象限; ③当00k b <>,时,函数y kx b =+的图象经过第一、二、四象限; ④当00k b <<,时,函数y kx b =+的图象经过第二、三、四象限.8.已知一次函数y kx b =+(0k ≠),如表是x 与y 的一些对应数值,则下列结论中正确的是( )A .y 随x 的增大而增大B .函数的图象向上平移4个单位长度得到2y x =-的图象C .函数的图象不经过第三象限D .若()11,A x y ,()22,B x y 两点在该函数图象上,且12x x <,则12y y < 【答案】C【提示】首先把04x y =⎧⎨=⎩、12x y =⎧⎨=⎩分别代入解析式,解方程组,即可求得一次函数的解析式,再根据一次函数的性质即可解答.【解答】解:把04x y =⎧⎨=⎩、12x y =⎧⎨=⎩分别代入解析式,得42b k b =⎧⎨+=⎩ 解得24k b =-⎧⎨=⎩故该一次函数的解析式为24y x =-+,故该函数图象经过一、二、四象限,不经过第三象限,故C 正确;20k <,∴y 随x 的增大而减小,故A 错误;若()11,A x y ,()22,B x y 两点在该函数图象上,且12x x <,则12y y >,故D 错误; 将该函数的图象向上平移4个单位长度得到28y x =-+的图象,故B 错误;故选:C .【点睛】本题考查了求一次函数的解析式及一次函数的性质,熟练掌握和运用一次函数的性质是解决本题的关键. 9.如图,直线l :12y x m =+交x 轴于点A ,交y 轴于点()01B ,,点()2P n ,在直线l 上,已知M 是x 轴上的动点.当以A ,P ,M 为顶点的三角形是直角三角形时,点M 的坐标为( )A .()2,0-或()3.0B .()2,0或()3.0C .()1,0或()4.0D .()2,0或()4.0 【答案】B【提示】根据题意,可以求得点A 点B 和点P 的坐标,设出点M 的坐标再根据分类讨论的方法结合勾股定理即可求得点M 的坐标. 【解答】解:∵直线l :12y x m =+交x 轴于点A ,交y 轴于点()01B ,∴当0y =,102x m +=,1012m ⨯+=, 解得1m =,2x =-,∴点A 坐标为(20)-,, ∵点()2P n ,在直线l 上 ∴当2y =,1212n =+, 解得2n =,即()22P ,设M 点坐标为()0a ,当AM PM ⊥ 时,此时点P 与点M 横坐标相同,即2a n == , ∴(20)M ,; ②当AP PM ⊥时,此时()222AM a =+ ,()2224PM a =-+ ,222[(2(2)]220AP =--+= ,根据勾股定理得()()2224202a a -++=+,解得,3a =,∴(30)M ,;综上所述∴(20)M ,或(30)M ,; 故选B .【点睛】本题考查一次函数图像上点的坐标特征,动点中的直角三角形,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.10.已知直线483y x =-+与x 轴、y 轴分别交于点A 和点B ,M 是OB 上的一点,若将ABM 沿AM折叠,点B 恰好落在x 轴上的点B '处,则直线AM 的函数解析式是( )A .142y x =-+ B .243y x =-+ C .132y x =-+ D .133y x =-+【答案】C【提示】先求出点,A B 的坐标,从而得出,OA OB 的长度,运用勾股定理求出AB 的长度,然后根据折叠的性质可知,AB AB MB MB ''==,OM x =,则8B M BM BO MO x '==-=-,1064B O AB AO ''=-=-=,运用勾股定理列方程得出OM 的长度,即点M 的坐标已知,运用待定系数法求一次函数解析式即可.【解答】解:当0x =时,4883y x =-+=,即(0,8)B ,当0y =时,6x =,即(6,0)A ,所以226810AB AB '=+=,即(4,0)B '-,设OM x =,则8B M BM BO MO x '==-=-,1064B O AB AO ''=-=-=, ∴在Rt B OM '中,B O OM B M ''+=, 即2224(8)x x +=-, 解得:3x =, ∴(0,3)M , 又(6,0)A ,设直线AM 的解析式为y kx b =+,则063k b b =+⎧⎨=⎩,解得123k b ⎧=-⎪⎨⎪=⎩, ∴直线AM 的解析式为132y x =-+.故选:C .【点睛】本题考查了一次函数与坐标轴的交点问题,折叠的性质,勾股定理,待定系数法求一次函数解析式,根据题意得出(0,3)M 的坐标是解本题的关键.二、填空题11.正比例函数()32y a x =-的图象过第一、三象限,则a 的取值范围是______. 【答案】23a >##23a <【提示】根据正比例函数的图象经过第一、三象限,得k>0,即320a ->,计算即可得解. 【解答】解:由正比例函数()32y a x =-的图象经过第一、三象限, 可得:320a ->,则23a >.故答案为:23a >.【点睛】本题考查了正比例函数的性质,对于正比例函数y=kx (k≠0),当k>0时,图象经过一、三象限,y 随x 的增大而增大;当k<0时,图象经过二、四象限,y 随x 的增大而减小. 12.已知直线1L :26y x =-,则直线1L 关于x 轴对称的直线2L 的函数解析式是______. 【答案】26y x =-+##62y x =-【提示】直接根据关于x 轴对称的点横坐标不变纵坐标互为相反数进行解答即可. 【解答】解:∵关于x 轴对称的点横坐标不变纵坐标互为相反数, ∴直线1L :y=2x-6与直线2L 关于x 轴对称, 则直线2L 的解析式为-y=2x-6,即y=-2x+6. 故答案为:y=-2x+6.【点睛】本题考查的是一次函数的图象与几何变换,熟知关于x 轴对称的点的坐标特点是解答此题的关键.13.如图,正比例函数11y k x =和一次函数22y k x b =+的图象相交于点2,1A (),当2x <时,1y ___________2y (填“>”或“<”)【答案】<【提示】根据两函数图象及交点坐标,即可解答.【解答】解:正比例函数11y k x =和一次函数22y k x b =+的图象相交于点2,1A (),∴由图象可知:当2x <时,12y y <, 故答案为:<.【点睛】本题考查了利用函数图象比较函数值的大小,采用数形结合的思想是解决此类题的关键. 14.已知(,1)A n n +、(1,4)B n n -+、(,)C m t 是正比例函数y kx =图象上的三个点,当3m >时,t 的取值范围是______. 【答案】9t <-【提示】根据,A B 两点在y kx = 上求出k 得出该正比例函数解析式后,由单调性判断即可.【解答】将点A 与点B 代入y kx = ,得:141n knn k n +=⎧⎨+=-⎩() , 两式相减,得:3k =- , 3y x ∴=-,∴ y 随x 的增大而减小,当3m = 时,339t =-⨯=-, ∴ 当m >3时,t <-9,故答案为:t <-9.【点睛】本题考查函数解析式的求解与正比例函数的性质,将未知点代入求出解析式为关键,属于中等题.15.在平面直角坐标中,点()3,2A --、()1,2B --,直线()0y kx k =≠与线段AB 有交点,则k 的取值范围为______. 【答案】232k ≤≤##223x ≥≥ 【提示】因为直线y =kx (k≠0)与线段AB 有交点,所以当直线y =kx (k≠0)过()1,2B --时,k 值最大;当直线y =kx (k≠0)过A (﹣3,﹣2)时,k 值最小,然后把B 点和A 点坐标代入y =kx (k≠0)可计算出对应的k 的值,从而得到k 的取值范围. 【解答】解:∵直线y =kx (k≠0)与线段AB 有交点,∴当直线y =kx (k≠0)过B (﹣1,﹣2)时,k 值最大,则有﹣k =﹣2,解得k =2; 当直线y =kx (k≠0)过A (﹣3,﹣2)时,k 值最小,则﹣3k =﹣2,解得k =23, ∴k 的取值范围为232k ≤≤.故答案为:232k ≤≤. 【点睛】本题考查了一次函数图象与系数的关系,一次函数图象上点的坐标特征,解题的关键是熟悉一次函数图象的性质.16.直线8y mx =-与直线12y nx =-分别交y 轴于B ,C 两点,两直线相交于x 轴上同一点A . (1):m n =________(2)若8ABC S =△,点A 的坐标是______________ 【答案】 2:3 ()4,0或()4,0-【提示】根据两直线相交同一点,则横坐标相同,即可;设A 的坐标为:()0a ,,根据8ABC S =△,则12ABCSBC a =⨯⨯,解出a ,即可. 【解答】∵直线8y mx =-和直线12y nx =-相交x 轴上同一点A ∴08mx =-,012nx =-∴直线8y mx =-与x 轴的交点为8,0m ⎛⎫⎪⎝⎭,直线12y nx =-与x 轴的交点为12,0n ⎛⎫ ⎪⎝⎭∴812m n= ∴:2:3m n =;设A 的坐标为:()0a , ∵8ABC S =△ ∴12ABCSBC a =⨯⨯ ∵直线8y mx =-与直线12y nx =-分别交y 轴于B ,C 两点 ∴点()0,8B -,()0,12C - ∴1482ABCSa =⨯⨯= ∴4a =∴4a =±∴点A 的坐标为()4,0或()4,0-. 故答案为:2:3;()4,0或()4,0-.【点睛】本题考查一次函数的知识,解题的关键是掌握一次函数图象与性质.17.已知一次函数(0)y kx b k =+≠的图象经过点A(3,0),与y 轴交于点B ,O 为坐标原点. 若△AOB 的面积为6,则该一次函数的解析式为_____________ .【答案】443y x =--或443y x =+【提示】分两种情况:当点B 在y 轴正半轴时,当点B 在y 轴负半轴时,然后利用待定系数法进行计算即可解答.【解答】解:点(3,0)A ,3OA ∴=,AOB ∆的面积为6,∴162OA OB ⋅=, ∴1362OB ⨯⋅=,4OB ∴=,(0,4)B ∴或(0,4)-,将(3,0)A ,(0,4)B 代入(0)y kx b k =+≠得: 304k b b +=⎧⎨=⎩,解得:434k b ⎧=-⎪⎨⎪=⎩, ∴一次函数的解析式为:443y x =-+,将(3,0)A ,(0,4)B -代入(0)y kx b k =+≠得:304k b b +=⎧⎨=-⎩,解得:434k b ⎧=⎪⎨⎪=-⎩, ∴一次函数的解析式为:443y x =-,综上所述:一次函数的解析式为:443y x =-+或443y x =-,故答案为:443y x =-+或443y x =-.【点睛】本题考查了待定系数法求一次函数解析式,一次函数的性质,一次函数图象上点的坐标特征,分两种情况讨论是解题的关键.18.如图,在平面直角坐标系xOy 中,直线4y x =-+与坐标轴交于A ,B 两点,OC AB ⊥于点C ,P 是线段OC 上的一个动点,连接AP ,将线段AP 绕点A 逆时针旋转45︒,得到线段'AP ,连接'CP ,则线段'CP 的最小值为______.【答案】222-【提示】由点P 的运动确定P '的运动轨迹是在与x 轴垂直的一段线段MN ,当线段'CP 与MN 垂直时,线段'CP 的值最小.【解答】解:由已知可得()()0,44,0A B , ∴三角形OAB 是等腰直角三角形,OC AB ⊥,()2,2C ∴,又P 是线段OC 上动点,将线段AP 绕点A 逆时针旋转45︒, P 在线段OC 上运动,所以P'的运动轨迹也是线段,当P 在O 点时和P 在C 点时分别确定P'的起点与终点,'P ∴的运动轨迹是在与x 轴垂直的一段线段MN ,∴当线段'CP 与MN 垂直时,线段'CP 的值最小,在AOB 中,4AO AN ==,42AB =424NB ∴=,又Rt HBN 是等腰直角三角形,422HB ∴=-('24422CP OB BH ∴=--=---=.故答案为2.【点睛】此题考查了直角三角形的性质,一次函数图象上点的坐标特点,动点运动轨迹的判断,垂线段最短,熟练掌握一次函数图象的性质是解题的关键.三、解答题19.已知一次函数()2312y k x k =--+.(1)当k 为何值时,图像与直线29y x =+的交点在y 轴上? (2)当k 为何值时,图像平行于直线2y x =-? (3)当k 为何值时,y 随x 的增大而减小? 【答案】(1)1k = (2)0k = (3)2k <【提示】(1)先求出直线29y x =+与y 轴的交点坐标,把此点坐标代入所求一次函数的解析式即可求出k 的值;(2)根据两直线平行时其自变量的系数相等,列出方程,求出k 的值即可; (3)根据比例系数0<时,数列出不等式,求出k 的取值范围即可. 【解答】(1)解:当0x =时,9y =,∴直线29y x =+与y 轴的交点坐标为()09,, ∵一次函数()2312y k x k =--+的图像与直线29y x =+的交点在y 轴上, ∴()203129k k -⨯-+=, 解得:1k =;(2)解:∵一次函数()2312y k x k =--+的图像平行于直线2y x =-,即直线2y x =-向上或向下平移312k -+个单位后的图像与一次函数()2312y k x k =--+的图像重合,∴22k -=-且3120k -+≠,20k -≠, 解得:0k =.(3)解:∵y 随x 的增大而减小,解得:2k <.【点睛】本题考查一次函数图像上点的坐标特征及函数性质,图形平移等知识点.熟练掌握一次函数的性质是题的关键.20.如图,直线OA 经过点()4,2A --.(1)求直线OA 的函数的表达式;(2)若点()12,P n 和点()25,Q n 在直线OA 上,直接写出12n n 、的大小关系; (3)将直线OA 向上平移m 个单位后经过点()2,4M ,求m 的值. 【答案】(1)12y x = (2)12n n < (3)m=3【提示】(1)设函数解析式为y kx =,将()4,2A --代入函数解析式中,可求出k 的值; (2)根据函数的增减性分析即可;(3)先求出平移后的函数解解析式,由此可求出m 的值. (1)解:设函数解析式为y kx =,将()4,2A --代入函数解析式中得:24k -=-,12k =, 故函数解析式为:12y x =; (2)解:∵0k >,∴y 随x 的增大而增大, ∵()12,P n ,()25,Q n 中,2<5,(3)解:设平移后函数解析式为:12y x b =+, 将()2,4M 代入函数解析式中得:1422b =⨯+,解得:3b =, 故函数的解析式为:132y x =+, 故m=3.【点睛】本题考查根据函数图象求正比例函数的解析式,求函数的增减性,函数图象的平移. 21.如图,在平面直角坐标系xOy 中,直线1l 经过点O 和点A ,将直线1l 绕点O 逆时针旋转90︒,再向上平移2个单位长度得到直线2l .求直线1l 与2l 的解析式.【答案】直线1l 的解析式是2y x =;直线2l 的解析式是122y x =-+ 【提示】根据A 点坐标,利用待定系数法求直线1l 的解析式;同理求出旋转90︒后的直线解析式,再根据“上加下减”求出向上平移2个单位后的解析式.【解答】解:由图象可知:点A 的坐标是(2,4),点A 逆时针旋转90︒后得到点A '的坐标是(4,2)-, 设直线1l 的解析式是1y k x =, 则可得:124k =, 解得:12k =,故直线1l 的解析式是2y x =.设直线1l 绕点O 逆时针旋转90︒后的直线解析式是2y k x =, 把点(4,2)A '-代入2y k x =,得242k -=,解得212k =-,即12y x =-.故可得直线2l 的解析式是122y x =-+. 【点睛】本题考查一次函数的旋转与平移,解题的关键是能够利用待定系数法求函数解析式,并掌握函数图象平移的规律. 22.如图,直线13342y x =+与x 轴、y 轴分别交于点A 、B .直线2y kx b =+经过()30D ,,与直线13342y x =+交于点()3C m ,.(1)求直线CD 的解析式;(2)判断ACD 的形状,并说明理由. 【答案】(1)39y x =-+(2)ACD 是等腰三角形,理由见解析【提示】(1)先求出点C 的坐标,然后利用待定系数法求出直线CD 的解析式即可; (2)先求出点A 的坐标,进而求出AC CD AD 、、的长即可得到答案.【解答】(1)解:∵直线2y kx b =+经过()30D ,,与直线13342y x =+交于点()3C m ,, ∴33342m =+,∴2m =,∴点C 的坐标为()23,, ∴2330k b k b +=⎧⎨+=⎩,∴39k b =-⎧⎨=⎩,∴直线CD 的解析式为39y x =-+; (2)解:ACD 是等腰三角形,理由如下: 对于13342y x =+,当0y =时,2x =-,∴点A 的坐标为()20-,, ∴()()22522035AD AC ==--+-=,,()()22233010CD =-+-=,∴AD AC =,∴ACD 是等腰三角形.【点睛】本题主要考查了求一次函数解析式,勾股定理,等腰三角形的判定,熟知待定系数法求一次函数解析式是解题的关键.23.如图,在平面直角坐标系中,一次函数3124y x =-+与两坐标轴分别交于A ,B 两点,OM AB ⊥,垂足为点M .(1)求点A ,B 的坐标; (2)求OM 的长;(3)存在直线AB 上的点N ,使得12OAN OAB S S ∆∆=,请求出所有符合条件的点N 的坐标. 【答案】(1)A (160),,B (0)12,; (2)9.6OM =; (3)N (86),或(246)-,.【提示】(1)利用坐标轴上点的特点直接得出点A ,B 坐标; (2)利用三角形的面积的计算即可求出OM ;(3)设出点N 的坐标,利用三角形的面积列方程求解即可. 【解答】(1)解:令0x =, ∴12y =, ∴B (0)12,, 令0y =, ∴31204x -+=,∴16x =, ∴A (160),;(2)解:由(1)知,A (160),,B (0)12,, ∴1612OA OB ==,,∴196202OAB S OA OB AB =⨯===,△,∵OM AB ⊥, ∴11209622OAB S AB OM OM =⨯=⨯⨯=△, ∴9.6OM =;(3)解:由(2)知,96OAB S =△,16OA =, ∵直线AB 上的点N , ∴设N 3(12)4m m -+,, ∵12OAN OAB S S =△△, ∴111||16||8||9648222OAN N N N S OA y y y =⨯=⨯⨯=⨯=⨯=△,∴38|12|484m ⨯-+=,∴8m =或24m =, ∴N (86),或(246)-,. 【点睛】此题是一次函数综合题,主要考查了坐标轴上点的特点,三角形的面积公式,绝对值方程的求解,列出方程是解本题的关键,是一道比较简单的基础题目.24.当m ,n 为实数,且满足1m n +=时,就称点(),m n 为“和谐点”,已知点()0,7A 在直线l :y x b =+,点B ,C 是“和谐点”,且B 在直线l 上. (1)求b 的值及判断点()2,1F -是否为“和谐点”; (2)求点B 的坐标;(3)若AC =C 的横坐标. 【答案】(1)7b =,点()2,1F -是“和谐点”(2)()34B -,(3)点C 的横坐标为1或7-【提示】(1)将点()0,7A 代入直线l :y x b =+,可得b 的值,根据“和谐点”的定义即可判断; (2)点B 是“和谐点”,所以设出点B 的横坐标,表示出纵坐标,因为点B 在直线l :7y x =+上,把点B 代入解析式中求得横坐标,进而求得点B 的坐标;(3)点C 是“和谐点”,所以设出点C 的横坐标为c ,表示出纵坐标1c -,根据勾股定理即可得出当52AC =时对应的点C 的横坐标.【解答】(1)解:∵点A 在直线y x b =+上, ∴把()0,7A 代入y x b =+, ∴7b =,∵点()2,1F -,()211+-=, ∴点()2,1F -是“和谐点”; (2)解:∵点B 是“和谐点”,∴设点B 的横坐标为p ,则纵坐标为1p -,点B 的坐标为(),1p p -, ∵点B 在直线l :7y x =+上,∴把点(),1B p p -代入y=x+7得,3p =-, ∴14p -=,∴()34B -,; (3)解:设点C 的横坐标为c , ∵点C 是“和谐点”, ∴纵坐标1c -,当52AC =时,()221752AC c c =+--=, 解得7c =-或1,∴点C 的横坐标为1或7-.【点睛】本题考查待定系数法求解析式,一次函数图象上点的坐标特征,根据定义判断一个点是不是“和谐点”,勾股定理等知识,理解新定义是解题的关键.25.对于函数y x b =+,小明探究了它的图象及部分性质.下面是他的探究过程,请补充完整:(1)自变量x 的取值范围是 ;(2)令b 分别取0,1和2-,所得三个函数中的自变量与其对应的函数值如下表,则表中m 的值是 ,n 的值是 .(3)根据表中数据,补全函数y x =,1y x =+,2y x =-的图象;(4)结合函数y x =,1y x =+,2y x =-的图象,写出函数y x b =+中y 随x 的变化的增减情况;(5)点11(,)x y 和点22(,)x y 都在函数y x b =+的图象上,当12>0x x 时,若总有12<y y ,结合函数图象,直接写出1x 和2x 大小关系.【答案】(1)任意实数(2)3,1-(3)见解析(4)当0x>时,函数y 随x 的增大而增大,当<0x 时,函数y 随x 的增大而减小(5)210x x <<或120x x <<【提示】(1)根据解析式即可确定自变量取值范围;(2)把2x =-代入1y x =+,求得3m =,把=1x -代入2y x =-,求得1n =-;(3)根据表格数据补全函数y x =,1y x =+,2y x =-的图像即可;(4)观察图像即可求得;(5)根据图像即可得到结论.【解答】(1)解:函数y x b =+中,自变量x 可以是全体实数,故答案为:全体实数;(2)解:把2x =-代入1y x =+,得3y =,把=1x -代入2y x =-,得1y =-,∴3,1m n ==-,故答案为:3,1-;(3)解:补全函数y x =,1y x =+,2y x =-的图像如下:(4)解:由图知,当0x >时,函数y 随x 的增大而增大,当0x <时,函数y 随x 的增大而减小; 故答案为:当0x >时,函数y 随x 的增大而增大,当0x <时,函数y 随x 的增大而减小; (5)解:∵点11(,)x y 和点22(,)x y 都在函数y x b =+的图像上,当120x x >时,∴点11(,)x y 和点22(,)x y 在y 轴的同一侧,观察图像,当120x x >时,若总有12y y <,即210x x <<或120x x <<.【点睛】本题考查了通过列表法和解析式法对函数的性质进行分析,画出函数图像,并研究和总结函数的性质;数形结合是解题的关键.。
(完整版)一次函数应用题【图象型】
一次函数的应用题(图象型)(一)收费类型1随着地球上的水资源日益枯竭,各级政府越来越重视倡导节约用水.某市对居民生活用水按“阶梯水价”方式进行收费,人均月生活用水收费标准如图所示.图中x 表示人均月生活用水的吨数,y 表示收取的人均月生活用水费(元).请根据图象信息,回答下列问题:(1)该市人均月生活用水的收费标准是:不超过5吨,每吨按_____元收取;超过5吨的部分,每吨按_____元收取;(2)请写出y 与x 的函数关系式;(3)若某个家庭有5人,五月份的生活用水费共76元,则该家庭这个月用了多少吨生活用水?2今年我省部分地区遭遇干早,为鼓励市民节约用水,我市自来水公司按分段收费标准收费,右图反映的是毎月收取水费y (元)与用水量x (吨)之间的函数关系.(1)小聪家五月份用水7吨,应交水费 元:(2)按上述分段收费标准,小聪家三、四月份分别交水费29元和19.8元,问四片份比三月份节约用水多少吨?3我国是世界上严重缺水的国家之一.为了增强居民的节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)用户,每吨收水费a 元;一月用水超过10吨的用户,10吨水仍按每吨a 元水费,超过的部分每吨按b 元(b>a)收费.设一户居民月用水y 元,y 与x 之间的函数关系如图所示.(1)求a 的值,(2)若某户居民上月用水8吨,应收水费多少元?求b 的值,并写出当x 大于10时,y 与x 之间的函数关系;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨? 4为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,所示: 每月用气量 单价(元/m3)不超出75m3的部分 2.5超出75m3不超出125m3的部分 a超出125m3的部分 a+0.25(1)若甲用户3月份的用气量为60m3,则应缴费 元;(2)若调价后每月支出的燃气费为y (元),每月的用气量为x (m3),y 与x 之间的关系如图所示,求a 的值及y 与x 之间的函数关系式;2010y(元)x(吨403530252015105(3)在(2)的条件下,若乙用户2、3月份共用1气175m3(3月份用气量低于2月份用气量),共缴费455元,乙用户2、3月份的用气量各是多少?5某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下面的问题:(1)出租车的起步价是多少元?当x>3时,求y关于x的函数关系式.(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.(二)行程类型1甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA 表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.(3)轿车到达乙地后,马上沿原路以CD段速度返回,求轿车从甲地出发后多长时间再与货车相遇(结果精确到0.01).2设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x秒后两车间的距离为y千米,y关于x的函数关系如图所示,则甲车的速度是米/秒.220200100x /(秒)y/(米)500ABC D第14题图O 9003早晨,小刚沿着通往学校唯一的一条路(直路)上学,途中发现忘带饭盒,停下往家里打电话,妈妈接到电话后带上饭盒马上赶往学校,同时小刚返回,两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,小刚始终以100米/分的速度步行,小刚和妈妈的距离y (单位:米)与小刚打完电话后的步行时间t (单位:分)之间的函数关系如图,下列四种说法:①打电话时,小刚和妈妈的距离为1250米;②打完电话后,经过23分钟小刚到达学校;③小刚和妈妈相遇后,妈妈回家的速度为150米/分;④小刚家与学校的距离为2550米.其中正确的个数是( )个4一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,两车距甲地的距离y 千米与行驶时间x 小时之间的函数图象如图所示,则下列说法中错误的是( )A .客车比出租车晚4小时到达目的地B .客车速度为60千米/时,出租车速度为100千米/时C .两车出发后3.75小时相遇D . 两车相遇时客车距乙地还有225千米【4的变式题】一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为1y 千米,出租车离甲地的距离为2y 千米,两车行驶的时间为x 小时,1y 、2y 关于x 的函数图像如右图所示:(1)根据图像,直接写出1y 、2y 关于x 的函数关系式;(2)若两车之间的距离为S 千米,请写出S 关于x 的函数关系式;(3)甲、乙两地间有A 、B 两个加油站,相距200千米,若客车进入A 加油站时,出租车恰好进入B 加油站,求A 加油站离甲地的距离.5甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y (米)与乙出发的时间t (秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是( ) 6甲乙两车分别从A 、B 两地相向而行,甲车出发1小时后乙车出发,并以各自速度匀速行驶,两车相遇后依然按照原速度原方向各自行驶,如图所示是甲乙两车之间的距离S (千米)与甲车出发时间t (小时)之间的函数图象,其中D 点表示甲车到达B 地,停止行驶. (1)A 、B 两地的距离----- 千米;乙车速度是 ;a= . (2)乙出发多长时间后两车相距330千米?7“五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们家的距离(千米)与汽车行驶时间(小时)之间的函数图像,当他们离目的地还有20千米时,汽车一共行驶的时间是8在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A 地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地直接的距离;(2)求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.9周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.(三)接水问题出水放水问题类型1一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是常数.容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图10所示. 当容器内的水量大于5升时,求时间x的取值范围.2一个装有进水管和出水管的容器,单位时间内进出的水量都是一定的.设从某刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,得到时间(分)与容器内存水量(升)之间的关系如图所示.(1)求进水管和出水管每分钟进水多少升?出水多少升?(2)当4≤x≤12时,求y关于的函数解析式(3)若12分钟过后只放水不进水,求y与x之间的函数关系及何时放完水?3教室里放有一台饮水机(如图),饮水机上有两个放水管.课间同学们依次到饮水机前用茶杯接水.假设接水过程中水不发生泼洒,每个同学所接的水量都是相等的.两个放水管同时打开时,他们的流量相同.放水时先打开一个水管,过一会儿,再打开第二个水管,放水过程中阀门一直开着.饮水机的存水量y(升)与放水时间x(分钟)的函数关系如图所示:(1)求出饮水机的存水量y(升)与放水时间x(分钟)(x≥2)的函数关系式;(2)如果打开第一个水管后,2分钟时恰好有4个同学接水结束,则前22个同学接水结束共需要几分钟?(3)按(2)的放法,求出在课间10分钟内班级中最多有多少个同学能及时接完水?4课间休息时,同学们到饮水机旁依次每人接水0.25升,他们先打开了一个饮水管,后来又打开了第二个饮水管.假设接水的过程中每根饮水管出水的速度是匀速的,在不关闭饮水管的情况下,饮水机水桶内的存水量y(升)与接水时间x(分)的函数关系图象如图所示.请结合图象回答下列问题:(1)存水量y(升)与接水时间x(分)的函数关系式;(2)如果接水的同学有28名,那么他们都接完水需要几分钟?(3)如果有若干名同学按上述方法接水,他们接水所用时间要比只开第一个饮水管接水的时间少用2分钟,那么有多少名学生接完水?(四)工程类型1甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x(时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC-CD-DE,如图所示,从甲队开始工作时计时.(1)分别求线段BC、DE所在直线对应的函数关系式.(2)当甲队清理完路面时,求乙队铺设完的路面长.2如图是某工程队在"村村通"工程中,修筑的公路长度y (米)与时间x (天)之间的关系图象,根据图象提供的信息,可知修筑该公路的时间是_________天.【变式题】如图是某工程队在"村村通"工程中,修筑的公路长度y(米)与时间x(天)之间的关系图象.根据图象提供的信息,可知该公路的长度是_________米.3某路桥公司承包了一段路基工程,进入施工场地后,所挖筑路基的长度y(m)与挖筑时间x(天)之间的函数关系如图所示,请根据提供的信息解答下列问题.(1)求y与x的函数关系式.(2)用所求的函数解析式预测完成1620m的路基工程,需要挖筑多少天?4.甲,乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)·与挖掘时间x小时之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)乙队开挖到30米时,用了_________.小时。
初中数学专题练习:一次函数应用题(解析版)
专题30一次函数应用题1.有一科技小组进行了机器人行走性能试验,在试验场地有PQR三点顺次在同一条笔直的赛道上,甲、乙两机器人分别从P、Q两点同时同向出发,历时7分钟同时到达R点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,其中FG∥x轴,请结合图象,回答下列问题:(Ⅰ)求甲机器人前2分钟的速度.(Ⅱ)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式.(Ⅲ)直接写出两机器人出发多少分钟时相距21千米.解:(Ⅰ)由题意可得,甲的速度为:(70+60×2)÷2=(70+120)÷2=190÷2=95米/分,答:甲机器人前2分钟的速度是95米/分;(Ⅱ)由题意可得,点F对应的纵坐标为:(95﹣60)×1=35,∴点F的坐标为(3,35),设线段EF所在直线的函数解析式是y=kx+b,,解得,,即线段EF所在直线的函数解析式是y=35x﹣70;(Ⅲ)设前二分钟y与x的函数解析式为y=cx+d,,得,即前二分钟y与x的函数解析式为y=﹣35x+70,令y=21,则21=﹣35x+70,得x=,将y=21代入y=35x﹣70,得x=,设当4≤x≤7时,y与x的函数解析式为y=mx+n,,得,即当4≤x≤7时,y与x的函数解析式为y=,将y=21代入y=,得x=,即两机器人出发分钟、分钟或分钟时相距21千米.2.张师傅开车到某地送货,汽车出发前油箱中有油50升,行驶一段时间,张师傅在加油站加油,然后继续向目的地行驶.已知加油前、后汽车都匀速行驶,汽车行驶时每小时的耗油量一定.油箱中剩余油量Q(升)与汽车行驶时间t(时)之间的函数图象如图所示.(1)张师傅开车行驶小时后开始加油,本次加油升.(2)求加油前Q与t之间的函数关系式.(3)如果加油站距目的地210千米,汽车行驶速度为70千米/时,张师傅要想到达目的地,油箱中的油是否够用?请通过计算说明理由.解:(1)观察函数图象可知:张师傅开车行驶3小时后开始加油,45﹣14=31(升).故答案为:3;31.(2)设加油前Q与t之间的函数关系式为Q=kt+b(k≠0),将(0,50)、(3,14)代入Q=kt+b,得:,解得:,加油前Q与t之间的函数关系式为Q=﹣12t+50(0≤t≤3).(3)该车每小时耗油量为:(50﹣14)÷3=12(升),∴到达目的地还需耗用12×(210÷70)=36(升),∵45>36,∴张师傅要想到达目的地,油箱中的油够用.3.如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与x轴交于点A(﹣3,0),与y轴交于点B,且与正比例函数y=2x的图象交于点C(3,6).(1)求一次函数y=mx+n的解析式;(2)点P在x轴上,当PB+PC最小时,求出点P的坐标;(3)若点E是直线AC上一点,点F是平面内一点,以O、C、E、F四点为顶点的四边形是矩形,请直接写出点F的坐标.解:(1)∵一次函数y=mx+n(m≠0)的图象经过点A(﹣3,0),点C(3,6),∴,解得,∴一次函数的解析式为y=x+3.(2)如图1中,作点P关于x轴的对称点B′,连接CB′交x轴于P,此时PB+PC的值最小.∵B(0,3),C(3,6)∴B′(0,﹣3),∴直线CB′的解析式为y=3x﹣3,令y=0,得到x=1,∴P(1,0).(3)如图,①当OC为边时,四边形OCFE是矩形,此时EO⊥OC,∵直线OC的解析式为y=2x,∴直线OE的解析式为y=﹣x,由,解得,∴E(﹣2,1),∵EO=CF,OE∥CF,∴F(1,7).②当OC为对角线时,四边形OE′CF′是矩形,此时OE′⊥AC,∴直线OE′的解析式为y=﹣x,由,解得,∴E′(﹣,),∵OE′=CF′,OE′∥CF′,∴F′(,),综上所述,满足条件的点F的坐标为(1.7)或(,).4.如图,在平面直角坐标系中,已知点A,B的坐标分别为(8,0),(0,2),C是AB中点,过点C作y轴的垂线,垂足为D.动点P从点D出发,沿DC向C匀速运动,过点P作x轴的垂线,垂足为E,连接BP,EC.(1)当BP所在直线与EC所在直线垂直时,求点P的坐标.(2)当BP所在直线平分三角形PEC面求点P的坐标.解:如图:当BP所在直线与EC所在直线第一次垂直时,设BP与CE交于点F,则∠FCP=∠DBP∵点A、B的坐标分别为(8,0),(0,2)∴BO=2,AO=8由CD⊥BO,C是AB的中点,可得BD=DO=BO==PE,CD=AO=4,设DP=a,则CP=4﹣a又∵EP⊥CP,PD⊥BD∴∠EPC=∠PDB=90°∴△EPC∽△PDB∴=,即=,解得a1=1,a2=3∴DP=1或3,又∵PE=,∴P(1,)或(3,).(2)如图,当BP所在直线平分三角形PEC面积时,EF=CF,设DP=a,则CP=4﹣a,∴PF=CF=EF,∴∠FPC=∠PCF=∠BPD,∴△CPE∽△PDB,∴=,∴=,∴a=2,∴P(2,).5.如图①,直线AB,AC交于点A(3,8),与x轴分别交于点B(﹣3,0),C(7,0),直线AB与y 轴交于点D,点Q、E分别在线段BC、AC上,且QE∥AB,设点Q的坐标为(m,0).(1)用含有m的代数式表示点E的纵坐标,并求△CEQ的面积S与m间的函数关系式;(2)若△CEQ的面积为10,求点Q的坐标;(3)如图②,连接DE,在(2)的条件下判断四边形BQED的形状,并写明理由.解:(1)∵B(﹣3,0),C(7,0),A(3,8),∴BC=7﹣(﹣3)=10,=×10×8=40,∴S△ABC∵QE∥AB,∴△CEQ∽△CAB,∴=()2∵Q(m,0),∴CQ=7﹣m,∴=()2,∴S=m2﹣m+;(2)在S=m2﹣m+中,令S=10,可得10=m2﹣m+,解得m=2或m=12,∵Q在线段BC上,∴m=12舍去,∴m=2,∴Q(2,0);(3)四边形BQED为菱形,理由如下:设直线AB解析式为y=kx+b,∵A(3,8),B(﹣3,0),∴,解得,∴直线AB解析式为y=x+4,∴D(0,4),∵QE∥AB,∴可设直线QE解析式为y=x+b′,∵Q(2,0),∴×2+b′=0,解得b′=﹣,∴直线QE解析式为y=x﹣,设直线AC解析式为y=sx+t,∵A(3,8),C(7,0),∴,解得,∴直线AC解析式为y=﹣2x+14,联立直线AC和直线QE解析式可得,解得,∴E(5,4),∴DE∥BQ,且QE∥AB,∴四边形BQED平行四边形,∵DE=5,BD=5,∴四边形BQED为菱形.6.如图,已知直线与x轴、y轴分别交于点A、B两点,点C是点A关于y轴的对称点.(1)试确定直线BC的解析式.(2)若动点P从A点出发沿AC向点C运动(不与A、C重合),同时动点Q从C点出发沿CBA向点A运动(不与C、A重合),动点P的运动速度是每秒1个单位长度,动点Q的运动速度是每秒2个单位长度.设△APQ的面积为S,P点的运动时间为t秒,求S与t的函数关系式,并写出自变量的取值范围.(3)在(2)的条件下,当△APQ的面积最大时,y轴上有一点M,平面内是否存在一点N,使以A、Q、M、N为顶点的四边形为菱形?若存在,请直接写出N点的坐标;若不存在,请说明理由.解:(1)∵直线与x轴、y轴分别交于点A、B两点,∴A(﹣4,0),B(0,4),∵点C是点A关于y轴的对称点,∴C(4,0),设直线BC的解析式为y=kx+4,∴4k+4=0,∴k=﹣,∴直线BC的解析式为y=﹣x+4;(2)∵A(﹣4,0),B(0,4),C(4,0),∴AB=BC==8,AC=8,∴AC=AB=BC,∴△ABC是等边三角形,∴OA=OC=AB=BC,∵动点P的运动速度是每秒1个单位长度,动点Q的运动速度是每秒2个单位长度,∴点P在线段OA上时,点Q在线段BC上,点P在线段OC上时,点Q在线段AB上,如图1,当P点在AO上时,作QH⊥x轴,∵,∴,∴QH=t=AP•QH=t•t=t2(0<t≤4),∴S△APQ=t•(8﹣t)=﹣t2+4t(4≤t<8);当P点在OC上时,同理可得S△APQ=t2(0<t≤4),(3)存在.由(2)知,S△APQ当t=4时,△APQ的面积最大为8,由(2)知,S=﹣t2+4t=﹣(t﹣4)2+8(4≤t<8);△APQ∴当t=4时,△APQ的面积取得最大为8,∴当t=4时,△APQ的面积取得最大值∵AO=4,BC=8,所以此时Q点和B点重合,①当AQ是菱形的边时,如图所示,(Ⅰ)在菱形AM1N1Q中,∵AC⊥OB,点C是点A的对称点,∴点N1于点C重合,∴N1点的坐标为(4,0),(Ⅱ)在菱形AQM2N2中,AN2∥OB,AN2=AQ=8,∴N2点的坐标为(﹣4,8),(Ⅲ)在菱形AQM3N3中,AN3∥OB,AN3=AB=8,∴N3点的坐标为(﹣4,﹣8),②当AQ为菱形的对角线时,如图所示的菱形AM4QN4,设菱形的边长为x,则在Rt△AM4O中,AM42=AO2+M4O2,即x2=42+(4﹣x)2,解得x=,所以N4(﹣4,).综上可得,平面内满足条件的N点的坐标为(4,0)或(﹣4,8)或(﹣4,﹣8)或(﹣4,).7.某乡A,B两村盛产大蒜,A村有大蒜200吨,B村有大蒜300吨,现将这些大蒜运到C,D两个冷藏仓库.已知C仓库可储存240吨,D仓库可储存260吨,从A村运往C,D两处的费用分别为每吨40元和45元;从B村运往C,D两处的费用分别为每吨25元和32元.设从A村运往C仓库的大蒜为x吨,A,B两村运大蒜往两仓库的运输费用分别为y A元,y B元.(1)请填写下表,并求出y A,y B与x之间的函数关系式;C D总计A x吨200吨B300吨总计240吨260吨500吨(2)当x为何值时,A村的运费较少?(3)请问怎样调运,才能使两村的运费之和最小?求出最小值.解:(1)设从A村运往C仓库的大蒜为x吨,则从A村运往D仓库的大蒜为(200﹣x)吨,从B村运往C 仓库的大蒜为(240﹣x)吨,从B村运往D仓库的大蒜为(60+x)吨,根据题意得:y A=40x+45(200﹣x)=﹣5x+9000;y B=25(240﹣x)+32(60+x)=7x+7920.故答案为:(200﹣x)吨;(240﹣x)吨;(60+x)吨.(2)根据题意得:﹣5x+9000<7x+7920,解得:x>90,∴当90<x≤200时,A村的运费较少.(3)设总运费为y元,则y=y A+y B=﹣5x+9000+7x+7920=2x+16920,∵k=2>0,∴y值随x值的增大而增大,∴当x=0时,y取最小值,最小值为16920.答:当A村大蒜运往C仓库0吨、D仓库200吨,B村大蒜运往C仓库240吨、D仓库60吨时,两村的运费之和最小,最小值为16920元.8.已知:如图1,在平面直角坐标系中,直线y=x+与直线y=﹣kx+2k分别与x轴交于B、A两点,它们交于点C,且△ABC的面积为.(1)求k的值;(2)如图2,点P在直线BC上,过P点作x轴的垂线交直线AC于点Q,设点P的横坐标为t,线段PQ的长为d,求d与t的函数关系式并直接写出自变量t的取值范围;(3)如图3,点P和点D分别为线段BC和线段上AC上的点,且满足PB=BD,延长BD至E,使得PB=PE,当∠BPE=4∠DBA时,求点P的坐标.解:(1)如图1中,作CH⊥AB于H,设C(m,n).∵直线y=x+与直线y=﹣kx+2k分别与x轴交于B、A两点,∴A(2,0),B(﹣,0),=,∵S△ABC∴(2+)×n=,∴n=4,∴4=m+,∴m=,∴C(,4),∵点C在y=﹣kx+2k上,∴4=﹣k+2k,∴k=3.(2)①如图2中,当t<时,∵直线BC的解析式为y=x+,直线AC的解析式为y=﹣3x+6.∵P(t,t+),Q(t,﹣3t+6),∴d=PQ=﹣3t+6﹣(+)=﹣t+.②当t≥时,d=(t+)﹣(﹣3t+6)=t﹣.(3)如图3中,设直线BC交y轴于F(0,),直线BE交y轴于K,作PH⊥AB于H.∵∠BPE=4∠EBA,设∠EBA=x,则∠BPE=4x,∵PB=PE,∴∠PBE=(180°﹣4x)=90°﹣2x,∵∠PBE=90°﹣∠KBO﹣∠BFO,∴∠BFO=x,∴∠OBK=∠BFO,∵∠BOK=∠BOF,∴△OBK∽△OFB,∴OB2=OK•OF,可得OK=,∴直线BE的解析式为y=x+,由,解得,∴D(,),∴BD==,∴BP=BD=,∵PH∥OF,∴==,可得PH=3,BH=,∴OH=BHOB=﹣=,∴P(,3).9.如图,矩形OABC摆放在平面直角坐标系xOy中,点A在x轴上,点C在y轴上,OA=8,OC=6.(1)求直线AC的表达式;(2)若直线y=x+b与矩形OABC有公共点,求b的取值范围;(3)直线l:y=kx+10与矩形OABC没有公共点,直接写出k的取值范围.解:(1)∵OA=8,OC=6,∴A(8,0),C(0,6),设直线AC表达式为y=kx+b,∴,解得,∴直线AC表达式为y=﹣x+6;(2)∵直线y=x+b可以看到是由直线y=x平移得到,∴当直线y=x+b过A、C时,直线与矩形OABC有一个公共点,如图1,当过点A时,代入可得0=8+b,解得b=﹣8,当过点C时,可得b=6,∴直线y=x+b与矩形OABC有公共点时,b的取值范围为﹣8≤b≤6;(3)∵y=kx+10,∴直线l过D(0,10),且B(8,6),如图2,直线l绕点D旋转,当直线过点B时,与矩形OABC有一个公共点,逆时针旋转到与y轴重合时与矩形OABC有公共点,当过点B时,代入可得6=8k+10,解得k=﹣,∴直线l:y=kx+10与矩形OABC没有公共点时k的取值范围为k>﹣.10.如图,墙面OC与地面OD垂直,一架梯子AB长5米,开始时梯子紧贴墙面,梯子顶端A沿墙面匀速每分钟向下滑动1米,x分钟后点A滑动到点A′,梯子底端B沿地面向左滑动到点B′,OB′=y米,滑动时梯子长度保持不变.(1)当x=1时,y=米;(2)求y关于x的函数关系式,并写出自变量x的取值范围;(3)梯子底端B沿地面向左滑动的速度是A.匀速B.先加速后减速C.减速D.先减速后加速(4)研究(2)中函数图象及其性质.①在所给的坐标系中画出函数图象;②观察图象,你发现,它到的距离都是个单位(5)梯子在滑动过程中,它的中点Q的运动路径长.解:(1)x=1时,A′B=5﹣1=4,A′B′=5,∵∠O=90°,∴y=OB′==3.故答案为3;(2)y==,(0≤x≤5);(3)如图2中,在半径OQ上取AB=BC,过A、B、C作x轴的垂线交圆弧于D、E、F,作DM⊥BE,EN⊥CF,延长DE交CF于G.那么GN=EM,∵GN>FN,∴EM>FN,即点A移动的距离大于点B移动的距离,∴是减速,故选C.(4)填表:②图象如图所示:∵y=,∴y2+(5﹣x)2=52,即PQ2=PR2+RQ2=25,∴PQ=5,∴P到点Q(5,0)的距离是5个单位,故答案为:Q(5,0),5;(5)(4)可知,函数图象是以Q为圆心的圆弧,∴它的中点Q的运动路径长==π.故答案为:π.。
一次函数的概念及图象(解析版)
第07讲:一次函数的概念及图象题型一:函数的判定1下列关于变量x,y的关系,其中y不是x的函数的是(B)A. B. C. D.解析【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.【解析】A、C、D当x取值时,y有唯一的值对应,选B.【小结】此题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.2在下列等式中,y是x的函数的有(C)3x-2y=0,x2-y2=1,y=x,y=x ,x=y .A.1个B.2个C.3个D.4个解析【答案】C【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.【详解】解:根据函数定义判断,是函数的有:3x-2y=0,y=x,y=|x|共有3个.故选:C.【点睛】主要考查了函数的定义,掌握函数的定义并能灵活应用是解题的关键.3下列函数中与y=x表示相同的函数关系式的是(D)A.y=|x|B.y=x2x C.y=x2 D.y=3x3答案【答案】D解析【分析】函数y=x中,自变量和函数值均可取任意实数,依次分析四个选项,自变量和函数值均可取任意实数的为正确答案.【详解】解:A、y=|x|与y=x的解析式不同,而且y不能为负数;故不是同一函数;B、y=x2x=x,但x不能为0,故不是同一函数;C、y=x2=x,但x为非负数;故不是同一函数;D、y=3x3=x,与y=x的解析式相同,而且自变量取值范围相同,故是同一函数,符合题意.故选:D.4下列各曲线中表示y是x的函数的是(D)A. B. C. D.解析【分析】根据函数的意义即可求出答案.【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以D正确.选D.【小结】本题考查了函数的定义.解题的关键是掌握函数的定义,在一个变化过程中有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.题型二:函数的表示5下表为某旅游景点旺季时的售票量、售票收入的变化情况,在该变化过程中,常量是(A)日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日售票量x(张)3154222452385048746564262761512714售票收入y(元)3154200224520038540004874600564260027615001271400A.票价B.售票量C.日期D.售票收入解析【答案】A【分析】结合题意,根据变量和常量的定义分析,即可得到答案.【详解】根据题意,10月1日到10月7日的数据计算,得票价均为100元∴常量是票价故选:A.6变量x,y的一些对应值如下表:x⋯-2-10123⋯y⋯-8-101827⋯根据表格中的数据规律,当x=-5时,y的值是(D)A.75B.-75C.125D.-125解析【答案】D【分析】根据表格数据得到函数为y=x3,把x=-5代入求函数值即可.【详解】解:根据表格数据画出图象如图:由图象可知,函数的解析式为y=x3,把x=-5代入得,y=-125.故选择:D.7弹簧挂重物会伸长,测得弹簧长度y cm间有下面的关系.最长为20cm,与所挂物体重量x kgx01234⋯⋯y88.599.510⋯⋯下列说法不正确的是(D)A.x与y都是变量,x是自变量,y是因变量B.所挂物体为6kg,弹簧长度为11cmC.物体每增加1kg,弹簧长度就增加0.5cmD.挂30kg物体时一定比原长增加15cm解析【答案】D【分析】弹簧长度随所挂物体的重量的变化而变化,由表格数据可知物体每增加1kg,弹簧长度就增加0.5cm,可以计算当所挂物体为6kg或30kg时弹簧的长度,但应注意弹簧的最大长度为20cm.【详解】解:A.因为弹簧长度随所挂物体的重量的变化而变化,所以x是自变量,y是因变量.故本选项正确;B.当所挂物体为6kg时,弹簧的长度为8+0.5×6=11cm.故本选项正确;C.从表格数据中分析可知,物体每增加1kg,弹簧长度就增加0.5cm.故本选项正确;D.当所挂物体为30kg时,弹簧长度为8+0.5×30=23cm>20cm.故本选项不正确.故选:D8王涵准备测量食用油的沸点(液体沸腾时的温度),已知食食用油的沸点温度高于水的沸点温度(100℃),王涵家只有刻度不超过100度的温度计;她的方法是在锅中导入一些食用油,用媒气灶均匀加热,并每隔10s,测量一下锅中的油温,测量得到的数据如表所示,王涵发现,加热110s时,油沸腾了,则下列判断不正确的是(C)时间t/s010203040油温1030507090A.没有加热时,油的温度是10°CB.每加热10s.油的温度升富20°CC.如热50s时,油的温度是100°CD.这种食用油的沸点温度是230°C解析【详解】A.从表格可知:t=0时,y=10,即没有加热时,油的温度为10℃,正确,不符合题意;B.从表格可知:每增加10秒,温度上升20℃,正确,不符合题意;C.∵每增加10秒,温度上升20℃,∴t=50时,油温度y=50÷10×20+10=110,不正确,符合题意;D.110÷10×20+10=230,即t=110秒时,温度y=230,正确,不符合题意.故选:C.【点睛】本题考查函数的表示方法;能够通过表格确定自变量与因变量的变化关系是解题的关键.9铅笔每支售价0.20元,在平面直角坐标系内表示小明买1支到10支铅笔需要花费的钱数的图像是(D) A.一条直线 B.一条射线 C.一条线段 D.10个不同的点解析【答案】D【解析】【分析】列出函数的解析式为:y=0.2x(x正整数,且1≤x≤10);据此即可求得点的个数.【详解】∵函数的解析式为:y=0.2x(x正整数,且1≤x≤10); ∴在坐标平面内表示为一条直线上的10个点. 故选D.【点睛】本题考查的是函数的图像,熟练掌握函数的图像是解题的关键.10八年级(6)班一同学感冒发烧住院洽疗,护士为了较直观地了解这位同学这一天24h的体温和时间的关系,可选择的比较好的方法是(B)A.列表法B.图象法C.解析式法D.以上三种方法均可答案【答案】B解析【解析】【分析】列表法能具体地反映自变量与函数的数值对应关系,在实际生活中应用非常广泛;解析式法准确地反映了函数与自变量之间的对应规律,根据它可以由自变量的取值求出相应的函数值,反之亦然;图象法直观地反映函数值随自变量的变化而变化的规律.【详解】解:护士为了较直观地了解这位同学这一天24h的体温和时间的关系,可选择的比较好的方法是图象法,有利于判断体温的变化情况,故选:B.【点睛】本题主要考查了函数的表示方法,图象法直观地反映函数值随自变量的变化而变化的规律.11函数y=(x-a)2(x-b)(0<a<b),则函数的图象大致为(C)A. B. C. D.解析【答案】C【分析】根据题意,分两种情况讨论:当x>b,x≤b时y的符号变化确定图象即可.【详解】解:当x>b时,(x-a)2>0,x-b>0,所以y>0,此时图象在x轴的上方;当x≤b时,(x-a)2≥0,x-b≤0,所以y≤0,此时图象在x轴的下方;所以排除A,B,D,综上所述,函数的图象大致为C选项.故选:C.【点睛】本题考查了函数的图象,解决本题的关键是利用特殊情况x>b,x<b时y的符号变化确定即可.题型三:函数自变量的取值范围12函数y=11-3x+(x+2)0的自变量x的取值范围是(C)A.x>13B.x<13C.x<13且x≠-2 D.x≠13解析【分析】根据分母不为0、二次根式有意义的条件和零指数幂的意义得到1-3x>0且x+2≠0,然后求出它们的公共部分即可.【解析】根据题意得1-3x>0且x+2≠0,所以x<13且x≠-2.选C.【小结】本题考查了函数自变量的取值范围:自变量的取值范围必须使含有自变量的表达式都有意义.13下列函数中,自变量取值范围错误的是(D)A.y=12x-1(x≠12) B.y=1-x(x≤1)C.y=x2-1(x为任意实数)D.y=1x-1(x≥1)解析【分析】利用2x-1≠0可对A进行判断;利用1-x≥0可对B进行判断;利用x全体实数可对C进行判断;利用x-1>0可对D进行判断.【解析】y=12x-1的自变量的取值范围为x≠12;y=1-x的自变量的取值范围为x≤1;y=x2-1的自变量的取值范围为x为任意实数;y=1x-1的自变量的取值范围为x>1.选D.【小结】本题考查了函数自变量的取值范围:自变量的取值范围必须使含有自变量的表达式都有意义.④于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.题型四:一次函数的图象特征14一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系的图象是(C)A. B. C. D.解析【分析】由于m、n的符号不确定,故应先讨论m、n的符号,再根据一次函数的性质进行选择.【解析】(1)当m>0,n>0时,mn>0,一次函数y=mx+n的图象一、二、三象限,正比例函数y=mnx的图象过一、三象限,无符合项;(2)当m>0,n<0时,mn<0,一次函数y=mx+n的图象一、三、四象限,正比例函数y=mnx的图象过二、四象限,C选项符合;(3)当m<0,n<0时,mn>0,一次函数y=mx+n的图象二、三、四象限,正比例函数y=mnx的图象过一、三象限,无符合项;(4)当m<0,n>0时,mn<0一次函数y=mx+n的图象一、二、四象限,正比例函数y=mnx的图象过二、四象限,无符合项.选C.【小结】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.15已知如图是函数y=kx+b的图象,则函数y=kbx+k的大致图象是(C)A. B. C. D.解析【分析】根据函数y=kx+b的图象确定k,b的取值范围,即可确定函数y=kbx+k的大致图象.【解析】由函数y=kx+b的图象可知k<0、b>0,∴kb<0,∴函数y=kbx+k的图象经过第二、三、四象限;选C.【小结】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.16若直线y=(m+5)x+(m-1)经过第一、三、四象限,则常数m的取值范围是-5<m<1答案【答案】-5<m<1解析【解析】∵直线y=(m+5)x+(m-1)经过第一、三、四象限,∴m+5>0m-1<0,解得:-5<m<1;故答案为-5<m<1.题型五:函数图象的判定17“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉. 当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点⋯⋯. 用s1、s2分别表示乌龟和兔子所行的路程,t为时间,则下列图像中与故事情节相吻合的是(A)A. B.C. D.解析【答案】A【分析】根据题意,兔子的路程随时间的变化分为3个阶段,由此即可求出答案.【详解】解:根据题意:s1一直增加;s2有三个阶段,第一阶段:s2增加;第二阶段,由于睡了一觉,所以s2不变;第三阶段,当它醒来时,发现乌龟快到终点了,于是急忙追赶,s2增加;∵乌龟先到达终点,即s1在s2的上方.故选:A.18一天早上小明步行上学,他离开家后不远便发现有东西忘在了家里,马上以相同的速度回家去拿,到家后因事耽误一会,忙完后才离开,为了不迟到,小明跑步到了学校,则小明离学校的距离y与离家的时间t之间的函数关系的大致图象是(B)A. B. C. D.解析【分析】根据题意和各个选项中函数图象可以判断哪个选项是正确的,本题得以解决.【解析】由题意可得,小明步行上学时小明离学校的距离减小,而后离开家后不远便发现有东西忘在了家里,于是以相同的速度回家去拿时小明离学校的距离增大,到家后因事耽误一会,忙完后才离开,此时距离不变,小明跑步到了学校时小明离学校的距离减小直至为0.故B选项符合,选B.【小结】此题考查函数图象,关键是根据题意得出距离先减小再增大,然后不变后减小为0进行判断19向一个垂直放置的容器内匀速注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化情况如图所示.则这个容器的形状可能是(D)A. B. C. D.解析【详解】解:由函数的图像可得BC段最陡,OA段次之,AB段较平缓,所以水面上升速度BC段最快,OA段次之,AB段最慢,所以对应的容器的粗细为AB段最粗,OA段次之,BC段最细,所以A,B,C,不符合题意,D符合题意.故选:D.【点睛】本题考查的是函数的图像及从函数图像中获取信息,掌握从函数图像中获取信息是解题的关键.20如图,向一个半径为R、容积为V的球形容器内注水,则能反映容积内水的体积y与容器内水深x之间的关系的图象可能为(A)A. B. C. D.解析【分析】水深h越大,水的体积v就越大,故容器内水的体积y与容器内水深x间的函数是增函数,根据球的特征进行判断分析即可.【解析】根据球形容器形状可知,函数y变化趋势呈现出,当0<x<R时,y增量越来越大,当R<x<2R时,y增量越来越小,曲线上点的切线斜率先逐渐变大,后逐渐变小,故y关于x函数图象先凹后凸.选A【小结】本题主要考查了函数图象的变化特征,解题的关键是利用数形结合的数学思想方法.解得此类试题时注意,如果水的体积随深度的增加而逐渐变快,对应图象是曲线从缓逐渐变陡.题型六:通过图象信息求解行程问题21在徐州全民健身越野赛中,甲、乙两选手的行程y(干米)随时间(时)变化的图象(全程)如图所示.下列四种说法:①起跑后1小时内,甲最多领先乙5千米;②第1小时两人都跑了10千米;③起跑1小时后,甲在乙的前面;④两人都跑了20千米.正确的个数有(B)A.1个B.2个C.3个D.4个解析【详解】解:①由纵坐标看出,起跑后1小时内,甲最多领先乙8-5=3千米,故①错误;②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;③由横纵坐标看出,起跑1小时后,乙在甲的前面;故③错误;④由纵坐标看出,甲乙二人都跑了20千米,故④正确;正确的有2个故选B.【点睛】此题考查的是根据函数图象解决实际问题,掌握函数图象横纵坐标的意义是解题关键.22如图表示一艘船从甲地航行到乙地,到达乙地后旋即返回.横坐标表示航行的时间,纵坐标表示船与甲地的距离.下列说法错误的是(D )A.船从甲地到乙地航行的速度比返航的速度更快B.船从甲地航行到乙地的路程为s 1,时间为t 1C.船往返的平均速度为v =2s1t 2 D.t 2表示船在返航时所用的时间解析【详解】解:由图象可知:这艘船从甲地航行到乙地的路程为s 1,时间为t 1,B 选项正确,故B 不符合题意;返航的路程为s 1,时间为t 2-t 1,D 选项错误,故D 符合题意;而t 1<t 2-t 1∴s 1t 1>s 1t 2-t 1∴船从甲地到乙地航行的速度比返航的速度更快,A 选项正确,故A 不符合题意;船往返的总路程为2s 1,总时间为t 2∴船往返的平均速度为v =2s1t 2,C 选项正确,故C 不符合题意.故选D .23重庆实验外国语学校运动会期间,小明和小欢两人打算匀速从教室跑到600米外的操场参加入场式,出发时小明发现鞋带松了,停下来系鞋带,小欢继续跑往操场,小明系好鞋带后立即沿同一路线开始追赶小欢小明在途中追上小欢后继续前行,小明到达操场时入场式还没有开始,于是小明站在操场等待,小欢继续前往操场.设小明和小欢两人相距s(米),小欢行走的时间为t(分钟),s关于t的函数图象如图所示,则在整个运动过程中,小明和小欢第一次相距80米后,再过9分钟两人再次相距80米.解析【分析】由题意小欢的速度为40米/分钟,小明的速度为80米/分钟,设小明在途中追上小欢后需要x分钟两人相距80米,则:80x-40x=80,解得x=2分钟,推出小欢一共走了40×(2+2)=160(米),由此即可解决问题.【解析】由题意小欢的速度为40米/分钟,小明的速度为80米/分钟,设小明在途中追上小欢后需要x分钟两人相距80米,则有:80x-40x=80,∴x=2,此时小欢一共走了40×(2+2)=160(米),(600-160-80)÷40=9(分).即小明和小欢第一次相距80米后,再过9分钟两人再次相距80米.故答案为:9【小结】本题考查一次函数的应用,路程,速度,时间的关系等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.题型七:通过图象求解动点问题24如图1,在长方形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止,设点P运动的路程为x,三角形ABP的面积为y,如果y关于x的图象如图2所示,则长方形ABCD的周长是(C)A.13B.17C.18D.26解析【分析】根据函数的图象、结合图形求出AB、BC的值,即可得出矩形ABCD的周长.【解析】∵动点P从点B出发,沿BC、CD、DA运动至点A停止,而当点P运动到点C,D之间时,△ABP的面积不变,函数图象上横轴表示点P运动路程,x=4时,y开始不变,说明BC=4,x=9时,接着变化,说明CD=9-4= 5,∴AB=5,BC=4,∴矩形ABCD的周长=2(AB+BC)=18.选C.【小结】本题主要考查了动点问题的函数图象,在解题时要能根据函数的图象求出AB、BC的长度是解决问题的关键.25如图①.在正方形ABCD的边BC上有一点E,连接AE.点P从正方形的顶点A出发,沿A→D→C以1cm/s的速度匀速运动到点C.图②是点P运动时,△APE的面积y(cm2)随时间x(s)变化的函数图象.当x=7时,y的值为(C)A.7B.6C.132D.112解析【分析】①当点P在点D时,y=12AB×AD=12×a×a=8,解得:a=4,②当点P在点C时,y=12EP×AB=12×EP×4=6,解得:EP=3,即EC=3,BE=1,③当x=7时,y=S正方形ABCD-(S△ABE+S△ECP+S△APD,即可求解.【解析】设正方形的边长为a,①当点P在点D时,y=12AB×AD=12×a×a=8,解得:a=4,②当点P在点C时,y=12EP×AB=12×EP×4=6,解得:EP=3,即EC=3,BE=1,③当x=7时,如下图所示:此时,PC=1,PD=7-4=3,当x=7时,y=S正方形ABCD -(S△ABE+S△ECP+S△APD)=4×4-12(4×1+1×3+4×3)=132,选C.【小结】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.1.变量x、y有如下的关系,其中y是x的函数的是(C)A.y2=8xB.|y|=xC.y=1x D.x=12y4解析【分析】根据函数的定义:设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量进行分析即可.【解析】A.y2=8x,y不是x的函数,故此选项错误;B.|y|=x,y不是x的函数,故此选项错误;C.y=1x,y是x的函数,故此选项正确;D.x=12y4,y不是x的函数,故此选项错误;选C.【小结】此题主要考查了函数概念,关键是对函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.2.下列曲线中表示y是x的函数的是(C)A. B. C. D.解析【答案】C【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定答案.【详解】解:A、对于x的每一个取值,y可能有两个值与之对应,不符合题意;B、对于x的每一个取值,y可能有两个值与之对应,不符合题意;C、对于x的每一个取值,y都有唯一确定的值与之对应,符合题意;D、对于x的每一个取值,y可能有两个值与之对应,不符合题意;故选:C.3.某销售商对某品牌豆浆机的销量与定价的关系进行了调查,结果如下表所示,则(C)定价(元)100110120130140150销量(台)801001101008060A.定价是常量B.销量是自变量C.定价是自变量D.定价是因变量解析【答案】C【分析】根据自变量、因变量、常量的定义即可得.【详解】由表格可知,定价与销量都是变量,其中,定价是自变量,销量是因变量,故选:C.4.变量x,y的一些对应值如下表:x⋯-2-10123⋯y⋯-8-16132027⋯根据表格中的数据规律,当x=-5时,y的值是(B)A.75B.-29C.41D.75解析【答案】B【分析】根据表格分析,当x减少1时,y减少7,从而可写出当x=-5时,y的值.【详解】据表格分析,当x减少1时,y减少7,所以当x=-5时,y=6-5×7=-29,故选:B.【点睛】本题考查变量之间的关系,准确从表格中观察出变量之间的变化规律是解题关键.5.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据温度/℃-20-100102030声速/m/s318324330336342348下列说法错误的是(B)A.这个问题中,空气温度和声速都是变量B.空气温度每降低10℃,声速减少6m/sC.当空气温度为20℃时,声音5s可以传播1710mD.由数据可以推测,在一定范围内,空气温度越高,声速越快解析【答案】B【分析】根据表格中两个变量的数据变化情况,逐项判断即可.【详解】解:这个问题中,空气温度和声速都是变量,因此选项A不符合题意;在一定的范围内,空气温度每降低10℃,声速减少6m/s,表格之外的数据就不一定有这样规律,因此选项B 符合题意;当空气温度为20℃时,声速为342m/s,声音5s可以传播342×5=1710m,因此选项C不符合题意;从表格可得,在一定范围内,空气温度越高,声速越快,因此选项D不符合题意;故选:B.【点睛】本题考查变量之间的关系,理解自变量、因变量之间的变化关系是正确判断的前提.6.某游泳池水深20dm,现需换水,每小时水位下降5dm,那么剩下的高度h dm与时间t(小时)的关系图象表示为(D)A. B. C. D.解析【答案】D【分析】根据两个变量的变化规律,随着时间的增多,剩下的高度就越来越小,由此即可求出答案.【详解】解:根据两个变量的变化规律,剩下的高度h dm随时间t(小时)的增大而减小,图象由左到右是下降的,又因为水深和时间不能取负值;只有D选项符合题意;也可求出解析式:h=20-5t(0≤t≤4),用一次函数图象特征来判断;故选:D.【点睛】本题考查了函数图象,解题关键是知道两个变量的变化规律,判断图象从左至右是上升还是下降,要注意自变量的取值范围.7.在函数y=1-xx-2中,自变量x的取值范围是(C)A.x≥0B.x≠2C.x≥0且x≠2D.0≤x≤2解析【答案】C【分析】根据二次根式有意义的条件以及分母不等于0,列出不等式,即可求解.【详解】由题意得:x≥0且x-2≠0,∴x≥0且x≠2,故选C.8.关于函数y=-3x-1,下列说法正确的是(D)A.它的图像过点2,-9B.y值随着x值的增大而增大C.它的图像不经过第三象限D.当x<-13时,y>0答案【答案】D解析【解析】∵y=-3x-1,∴当x=2时,y=-7,故选项A错误,k=-3<0,y随x的增大而减小,故选项B错误,k=-3,b=-1,该函数的图象过第二、三、四象限,故选项C错误,当x<-13时,y>0,故选项D正确,故选:D.9.如图所示,直线l1:y=ax+b和l2:y=-bx+a在同一坐标系中的图象大致是(B)A. B.C. D.解析【分析】根据各选项中的函数图象判断出a、b异号,然后分别确定出两直线经过的象限以及与y轴的交点位置,即可得解.【解析】∵直线l1:经过第一、三象限,∴a>0,又∵该直线与y轴交于负半轴,∴b<0.∴直线l2经过第一、二、三象限.选B.【小结】本题考查了一次函数的图象,一次函数y=kx+b(k≠0),k>0时,一次函数图象经过第一三象限,k<0时,一次函数图象经过第二四象限,b>0时与y轴正半轴相交,b<0时与y轴负半轴相交.10.如图,在矩形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y和x,则y与x的函数图象大致是(A)A. B. C. D.答案【答案】A解析【解析】由题意得,y-x2=π2x即y=π2+12x,所以该函数的图象大约为A中函数的形式.故选:A.11.成都市双流新城公园是亚洲最大的城市湿地公园,周末小李在这个公园里某笔直的道路上骑车游玩,先前进了a千米,体息了一段时间,又原路返回b千米(b<a),再前进c千米,则他离起点的距离s与时间t的关系的示意图是(D)A. B. C. D.解析【分析】根据前进时路程增加,休息时路程不变,返回时路程减少,再前进时路程增加,可得答案.【解析】由题意,路程先增加,路程不变,路程减少,路程又增加,故D符合题意;【小结】考查函数图象,理解题意掌握路程与时间关系是解题关键,注意B图象中时间没变路程无法减少.12.已知A、B两地相距600米,甲、乙两人同时从A地出发前往B地,所走路程y(米)与行驶时间x(分)之间的函数关系如图所示,则下列说法中:①甲每分钟走100米;②两分钟后乙每分钟走50米;③甲比乙提前3分钟到达B地;④当x=2或6时,甲乙两人相距100米.正确的有①②④(在横线上填写正确的序号).解析【分析】①根据函数图象中的数据,可知甲6分钟走了600米,从而可以计算出甲每分钟走的路程,从而可以判断该小题是否正确;②根据图象中的数据可知,乙2分钟到6分钟走的路程是500-300=200米,从而可以计算出两分钟后乙每分钟走的路程,从而可以判断该小题是否正确;③根据乙2分钟后的速度,可以计算出乙从A地到B地用的总的时间,然后与6作差,即可判断该小题是否正确;④根据图象,可以分别计算出x=2和x=6时,甲乙两人的距离,从而可以判断该小题是否正确.【解析】由图象可得,甲每分钟走:600÷6=100(米),故①正确;两分钟后乙每分钟走:(500-300)÷(6-2)=200÷4=50(米),故②正确;乙到达B地用的时间为:2+(600-300)÷50=2+300÷50=2+6=8(分钟),则甲比乙提前8-6=2分钟达到B地,故③错误;当x=2时,甲乙相距300-100×2=300-200=100(米),当x=6时,甲乙相距600-500=100米,④正确;故答案为:①②④.【小结】本题考查函数图象,解答本题关键是明确题意,找出所求问题的条件,利用数形结合的思想解答.。
一次函数图像应用题(路程类)
二.解答题(共18小题)1.小聪在学习时看到一则材料:甲、乙两人去某风景区游玩,约好在飞瀑见面,早上,甲乘景区巴士从古刹出发,沿景区公路(如图1)去飞瀑;同时,乙骑电动自行车从塔林出发,沿景区公路去飞瀑.设两人行驶的时间为t(小时),两人之间相距的路程为s(千米),s与t之间的函数关系如图2所示,小聪观察、思考后发现了图2的部分正确信息:①两人出发1小时后第一次相遇;②线段CD 表示甲到达飞瀑后,乙正在赶往飞瀑途中时s随t的变化情况,…,请你应用相关知识,与小聪一起解决下列问题(1)求乙骑电动自行车的速度;(2)当甲、乙两人第一次相遇时,他们离飞瀑还有多少千米?(3)在行驶途中,当甲、乙两人之间相距的路程不超过1千米时,求t的取值范围.【解答】解:(1)由CD段可知,乙骑电动自行车的速度==20千米/小时.(2)第一次相遇在B点,离飞瀑的距离为20×0.75=15千米.(3)设甲的速度为x千米/小时,由BC段可知,0.5(x﹣20)=5,∴x=30,∴A(0,30),B(1,0),C(1.5,5),D(1.75,0),∴直线AB的解析式为y=﹣30x+30,直线BC的解析式为y=10x﹣10,直线CD的解析式为y=﹣20x+35,当y=1时,x的值分别为h,h,h,∴当甲、乙两人之间相距的路程不超过1千米时,t的取值范围为≤t≤或≤t≤1.75.2.甲、乙两人分别开汽车和摩托车从A地出发沿同一条公路匀速前往B地,乙出发半小时后甲出发,设乙行驶的时间t(h),甲、乙两人之间的距离为y(km),y与t之间关系的图象如图所示.(1)分别指出点E,F所表示的实际意义;(2)分别求出线段DE,FG所在直线的函数表达式;(3)分别求甲、乙两人行驶的速度.【解答】解:(1)点E表示的实际意义是甲、乙两人在乙出发2小时时相遇,此时两人之间的距离为0,F所表示的实际意义乙出发5小时时甲到达B地,此时两人之间的距离为60km;(2)设直线DE的函数表达式为y=kx+b,把(0.5,30),(2,0)代入得,解得:,则直线DE的函数表达式为y=﹣20x+40,设直线FG的函数表达式为y1=k1x+b1,把(5,60),(6,0)代入得,解得,∴直线FG的函数表达式为y1=﹣60x+360;(3)设甲的速度为vkm/h,甲的速度为v乙km/h,甲根据图象得,解得:,答:甲行驶的速度是80km/h,乙行驶的速度是60km/h.3.小王骑车从甲地到乙地,小季骑车从乙地到甲地,两人同时出发,沿同一条公路匀速前进,小王的速度小于小李的速度,在出发2h时,两人相距36km,在出发4h时,两人又相距36km,设小王骑行的时间为x(h),两人之间的距离为y(km),图中的折线表示y与x之间的函数关系.(1)求线段AB所表示的y与x之间的函数表达式;(2)求甲、乙两地之间的距离.【解答】解:(1)∵出发2h时,两人相距36km,在出发4h时,两人又相距36km,∴B(3,0),设线段AB所表示的y与x之间的函数关系式为:y=kx+b,根据题意,得:,解得:.所以解析式为:y=﹣36x+108;(2)把x=0代入解析式,可得y=108,所以甲、乙两地的距离为108千米.4.甲从M地骑摩托车匀速前往N地,同时乙从N地沿同一条公路骑自行车匀速前往M地,甲到达N地后,原路原速返回,追上乙后返回到M地.设甲、乙与N地的距离分别为y1、y2千米,甲与乙之间的距离为s千米,设乙行走的时间为x小时.y1、y2与x之间的函数图象如图1.(1)分别求出y1、y2与x的函数表达式;(2)求s与x的函数表达式,并在图2中画出函数图象;(3)当两人之间的距离不超过5千米时,能够用无线对讲机保持联系.并且规定:持续联系时间不少于15分钟为有效联系时间.求当两人用无线对讲机保持有效联系时,x的取值范围.【解答】解:(1)由图1知摩托车的速度为:=45(千米/小时),自行车的速度=15(千米/小时),∴点B的坐标为(2,0),点D 的坐标为(4,90),当0≤x≤2时,y1=90﹣45x,当2≤x≤4时,y1=45x﹣90,y2=15x,(2)甲和乙在A点第一次相遇,时间t1==1.5小时,甲和乙在C点第二次相遇,时间t2==3小时,.当0≤x≤1.5时,s=y1﹣y2=﹣45x+90﹣15x=﹣60x+90,∴x=1.5时,s=0,当1.5≤x≤2时,s=y2﹣y1=15x﹣(﹣45x+90)=60x﹣90,∴x=2时,s=30,当2≤x≤3时,s=y2﹣y1=15x﹣(45x﹣90)=﹣30x+90,∴x=3时,s=0,当3时,s=y1﹣y2=45x﹣90﹣15x=30x﹣90,∴x=4时,s=30,当4≤x≤6时,s=90﹣y2=90﹣15x,∴x=6时,s=0,故描出相应的点就可以补全图象.如图所示,(3)∵0≤x≤1.5,s=﹣60x+90,s=5时,x=,1.5≤x≤2,s=﹣60x﹣90,s=5时,x=,2≤x≤3,s=﹣30x+90,s=5时,x=,3≤x≤4,s=30x﹣90,s=5时,x=,4≤x≤6,s=﹣1.5x+90,s=5时,x=,∴由图象知当两人距离不超过5千米时x的取值范围为:≤x≤,≤x≤,≤x≤6,60×(﹣)=10分钟,60×(﹣)=20分钟,60×(6﹣)=20分钟.∴当两人能够用无线对讲机保持有效联系时x的取值范围为:≤x≤,≤x≤6.5.在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑摩托车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人距B地的距离y (km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地之间的距离;(2)请问甲乙两人何时相遇;(3)求出在9﹣18小时之间甲乙两人相距s与时间x的函数表达式.【解答】解:(1)由题意的AB两地相距360米;(2)由图得,V甲=360÷18=20km/h,V乙=360÷9=40km/h,则t=360÷(20+40)=6h;(3)在9﹣18小时之间,甲乙两人分别与A的距离为S甲=20x,S乙=40(x﹣9)=40x﹣360,则s=S甲﹣S乙=360﹣20x.6.某森林公园从正门到侧门有一条公路供游客运动,甲徒步从正门出发匀速走向侧门,出发一段时间开始休息,休息了0.6小时后仍按原速继续行走.乙与甲同时出发,骑自行车从侧门匀速前往正门,到达正门后休息0.2小时,然后按原路原速匀速返回侧门.图中折线分别表示甲、乙到侧门的路程y(km)与甲出发时间x(h)之间的函数关系图象.根据图象信息解答下列问题.(1)求甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式.(2)求甲、乙第一次相遇的时间.(3)直接写出乙回到侧门时,甲到侧门的路程.【解答】解:(1)设甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式为:y=kx+b,∵点(0,15)和点(1,10)在此函数的图象上,∴,解得k=﹣5,b=15.∴y=﹣5x+15.即甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式为:y=﹣5x+15.(2)设乙骑自行车从侧门匀速前往正门对应的函数关系式y=kx,将(1,15)代入可得k=15,∴乙骑自行车从侧门匀速前往正门对应的函数关系式y=15x,∴解得x=0.75.即第一次相遇时间为0.75h.(3)乙回到侧门时,甲到侧门的路程是7km.设甲休息了0.6小时后仍按原速继续行走对应的函数解析式为:y=kx+b.将x=1.2代入y=﹣5x+15得,y=9.∵点(1.8,9),(3.6,0)在y=kx+b上,∴,解得k=﹣5,b=18.∴y=﹣5x+18.将x=2.2代入y=﹣5x+18,得y=7.即乙回到侧门时,甲到侧门的路程是7km.7.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设一辆车先出发xh后,另一辆车也开始行驶,两车之间的距离为ykm,图中的折线表示y 与x之间的函数关系.根据图象解决以下问题:(1)慢车的速度为km/h,快车的速度为km/h;(2)求线段CD的函数解析式,并写出自变量x的取值范围;(3)求当x为多少时,两车之间的距离为300km.【解答】解:(1)(480﹣440)÷0.5=80km/h,440÷(2.7﹣0.5)﹣80=120km/h,所以,慢车速度为80km/h,快车速度为120km/h;故答案为:80,120;(2)快车到达乙地(出发了4小时快车慢车相距360KM时甲车到达乙地);∵快车走完全程所需时间为480÷120=4(h),∴点D的横坐标为4.5,纵坐标为(80+120)×(4.5﹣2.7)=360,即点D(4.5,360);设CD的直线的解析式为:y=kx+b,可得:,解得:,解析式为y=200x﹣540(2.7≤x≤4.5);(3)由题意,可知两车行驶的过程中有2次两车之间的距离为300km.即相遇前:(80+120)×(x﹣0.5)=440﹣300,解得x=1.2(h),相遇后:(80+120)×(x﹣2.7)=300,解得x=4.2(h),故x=1.2 h或4.2 h,两车之间的距离为300km.8.已知A、B两地相距40km,甲、乙两人沿同一公路从A地出发到B地,甲骑摩托车,乙骑自行车,图中CD、OE分别表示甲、乙离开A地的路程y(km)与时间x(h)的函数关系的图象,结合图象解答下列问题.(1)甲比乙晚出发小时,乙的速度是km/h;(2)在甲出发后几小时,两人相遇?(3)甲到达B地后,原地休息0.5小时,从B地以原来的速度和路线返回A地,求甲在返回过程中与乙相距10km时,对应x的值.【解答】解:(1)由图象可得,甲比乙晚出发1小时,乙的速度是:20÷2=10km/h,故答案为:1,10;(2)设甲出发x小时,两人相遇,[40÷(2﹣1)]x=10(x+1),解得,x=,即在甲出发小时后,两人相遇;(3)设OE所在直线的解析式为y=kx,20=2k,得k=10,∴OE所在直线的解析式为y=10x;设甲车在返回时对应的函数解析式为y=ax+b,则,得,即甲车在返回时对应的函数解析式为y=﹣40x+140,∴|﹣40x+140﹣10x|=10,解得,,x2=3,即甲在返回过程中与乙相距10km时,对应x的值是或3.9.甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t=小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.【解答】解:(1)根据图示,可得乙车的速度是60千米/时,甲车的速度是:(360×2)÷(480÷60﹣1﹣1)=720÷6=120(千米/小时)∴t=360÷120=3(小时).(2)①当0≤x≤3时,设y=k1x,把(3,360)代入,可得3k1=360,解得k1=120,∴y=120x(0≤x≤3).②当3<x≤4时,y=360.③4<x≤7时,设y=k2x+b,把(4,360)和(7,0)代入,可得解得∴y=﹣120x+840(4<x≤7).(3)①(480﹣60﹣120)÷(120+60)+1=300÷180+1==(小时)②当甲车停留在C地时,(480﹣360+120)÷60=240÷60=4(小时)③两车都朝A地行驶时,设乙车出发x小时后两车相距120千米,则60x﹣[120(x﹣1)﹣360]=120,所以480﹣60x=120,所以60x=360,解得x=6.综上,可得乙车出发后两车相距120千米.故答案为:60、3.10.甲船从A港出发顺流匀速驶向B港,行至某处,发现船上一救生圈不知何时落入水中,立刻原路返回,找到救生圈后,继续顺流驶向B港.乙船从B港出发逆流匀速驶向A港.已知救生圈漂流的速度和水流速度相同;甲、乙两船在静水中的速度相同.甲、乙两船到A港的距离y1、y2(km)与行驶时间x(h)之间的函数图象如图所示.(1)写出乙船在逆流中行驶的速度;(2)求甲船在逆流中行驶的路程;(3)求甲船到A港的距离y1与行驶时间x之间的函数关系式;(4)求救生圈落入水中时,甲船到A港的距离.【解答】解:(1)乙船在逆流中行驶的速度为6km/h.(2分)(2)甲船在逆流中行驶的路程为6×(2.5﹣2)=3(km).(4分)(3)方法一:设甲船顺流的速度为akm/h,由图象得2a﹣3+(3.5﹣2.5)a=24,解得a=9.(5分)当0≤x≤2时,y1=9x,当2≤x≤2.5时,设y1=﹣6x+b1,把x=2,y1=18代入,得b1=30,∴y1=﹣6x+30,当2.5≤x≤3.5时,设y1=9x+b2,把x=3.5,y1=24代入,得b2=﹣7.5,∴y1=9x﹣7.5.(8分)方法二:设甲船顺流的速度为akm/h,由图象得2a﹣3+(3.5﹣2.5)a=24,解得a=9,(5分)当0≤x≤2时,y1=9x,令x=2,则y1=18,当2≤x≤2.5时,y1=18﹣6(x﹣2),即y1=﹣6x+30,令x=2.5,则y1=15,当2.5≤x≤3.5时,y1=15+9(x﹣2.5),y1=9x﹣7.5.(8分)(4)水流速度为(9﹣6)÷2=1.5(km/h),设甲船从A港航行x小时救生圈掉落水中.根据题意,得9(2﹣x)=1.5(2.5﹣x)+3,解得x=1.5,1.5×9=13.5,即救生圈落水时甲船到A港的距离为13.5km.(10分)参考公式:船顺流航行的速度=船在静水中航行的速度+水流速度,船逆流航行的速度=船在静水中航行的速度﹣水流速度.10.一条笔直的公路上依次有A、B、C三地,甲、乙两车同时从B地出发,匀速驶往C地.乙车直接驶往C地,甲车先到A地取一物件后立即调转方向追赶乙车(甲车取物件的时间忽略不计).已知两车间距离y(km)与甲车行驶时间x (h)的关系图象如图1所示.(1)求两车的速度分别是多少?(2)填空:A、C两地的距离是:,图中的t=(3)在图2中,画出两车离B地距离y(km)与各自行驶时间x(h)的关系图象,并求两车与B地距离相等时行驶的时间.【解答】解:(1)由直线1可得,出v甲+v乙=150①;由直线2得,v甲﹣v乙=30②,结合①②可得:v甲=90km/小时,v乙=60km/小时;(2)由直线1、2得,乙运用3.5小时候到达C地,故B、C之间的距离为:v乙t=3.5×60=210km.由图也可得:甲用1小时从B到达A,故A、B之间的距离为v甲t=90×1=90km,综上可得A、C之间的距离为:AB+BC=300km;甲需要先花1小时从B到达A,然后再花=小时从A到达C,从而可得t=+1=;(3)甲:当0≤t≤1时,y=90x;②当1<t≤2时,y=180﹣90x;③当2<x≤,y=90x﹣180;乙:y=60x.乙由题意可得,当甲从A到B行驶的过程中会出现题意所述情况,故可得:90﹣90(t﹣1)=60t,解得:t=小时.答:两车与B地距离相等时行驶的时间为1.2小时或小时.。
一次函数图像应用题(带解析版答案)
一次函数中考专题一.选择题1.如图,是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费()A.元B.元C.约元D.元2.如图,函数y=kx(k≠0)和y=ax+4(a≠0)的图象相交于点A(2,3),则不等式kx>ax+4的解集为()A.x>3 B.x<3 C.x>2 D.x<2 3.如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是()A.x>﹣5 B.x>﹣2 C.x>﹣3 D.x<﹣24.甲、乙两汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t的值为;④当t=3时,两车相距40千米,其中不正确的个数为()A.0个B.1个 C.2个 D.3个【解答】①由函数图象,得a=120÷3=40故①正确,②由题意,得﹣3﹣120÷(40×2),=﹣,=1.∴甲车维修的时间为1小时;故②正确,③如图:∵甲车维修的时间是1小时,∴B(4,120).∵乙在甲出发2小时后匀速前往B地,比甲早30分钟到达.∴E(5,240).∴乙行驶的速度为:240÷3=80,∴乙返回的时间为:240÷80=3,∴F(8,0).设BC的解析式为y1=k1t+b1,EF的解析式为y2=k2t+b2,由图象,得,解得,,∴y1=80t﹣200,y2=﹣80t+640,当y1=y2时,80t﹣200=﹣80t+640,t=.∴两车在途中第二次相遇时t的值为小时,故弄③正确,④当t=3时,甲车行的路程为120km,乙车行的路程为80×(3﹣2)=80km,∴两车相距的路程为:120﹣80=40千米,故④正确,故选:A.5.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论:(1)a=40,m=1;(2)乙的速度是80km/h;(3)甲比乙迟h到达B地;(4)乙车行驶小时或小时,两车恰好相距50km.正确的个数是()A.1 B.2 C.3 D.4【解答】(1)由题意,得m=﹣=1.120÷(﹣)=40(km/h),则a=40,故(1)正确;(2)120÷(﹣2)=80km/h(千米/小时),故(2)正确;(3)设甲车休息之后行驶路程y(km)与时间x(h)的函数关系式为y=kx+b,由题意,得解得:∴y=40x﹣20,根据图形得知:甲、乙两车中先到达B地的是乙车,把y=260代入y=40x﹣20得,x=7,∵乙车的行驶速度80km/h,∴乙车行驶260km需要260÷80=,∴7﹣(2+)=h,∴甲比乙迟h到达B地,故(3)正确;(4)当<x≤7时,y=40x﹣20.设乙车行驶的路程y与时间x之间的解析式为y=k'x+b',由题意得解得:∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=.当40x﹣20+50=80x﹣160时,解得:x=.∴﹣2=,﹣2=.所以乙车行驶或小时,两车恰好相距50km,故(4)错误.故选(C)二.填空题(共3小题)6.如图,已知A1,A2,A3,…,A n是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1,A2,A3,…,A n+1作x轴的垂线交一次函数的图象于点B1,B2,B3,…,B n+1,连接A1B2,B1A2,A2B3,B2A3,…,A n B n+1,B n A n+1依次产生交点P1,P2,P3,…,P n,则P n的坐标是(n+,).【解答】由已知得A1,A2,A3,…的坐标为:(1,0),(2,0),(3,0),…,又得作x轴的垂线交一次函数y=x的图象于点B1,B2,B3,…的坐标分别为(1,),(2,1),(3,),….由此可推出A n,B n,A n+1,B n+1四点的坐标为(n,0),(n ,),(n+1,0),(n+1,).所以得直线A n B n+1和A n+1B n 的直线方程分别为解得故答案为:(n+,).7. 下图是护士统计一病人的体温变化图,这位病人中午12时的体温约为℃.8.某高速铁路即将在2019年底通车,通车后,重庆到贵阳、广州等地的时间将大大缩短.5月初,铁路局组织甲、乙两种列车在该铁路上进行试验运行,现两种列车同时从重庆出发,以各自速度匀速向A地行驶,乙列车到达A地后停止,甲列车到达A地停留20分钟后,再按原路以另一速度匀速返回重庆,已知两种列车分别距A地的路程y(km)与时间x(h)之间的函数图象如图所示.当乙列车到达A地时,则甲列车距离重庆km.【解答】设乙列车的速度为xkm/h,甲列车以ykm/h的速度向A地行驶,到达A 地停留20分钟后,以zkm/h的速度返回重庆,则根据3小时后,乙列车距离A地的路程为240,而甲列车到达A地,可得3x+240=3y,①根据甲列车到达A地停留20分钟后,再返回重庆并与乙列车相遇的时刻为4小时,可得x+(1﹣)z=240,②根据甲列车往返两地的路程相等,可得(﹣3﹣)z=3y,③由①②③,可得x=120,y=200,z=180,∴重庆到A地的路程为3×200=600(km),∴乙列车到达A地的时间为600÷120=5(h),∴当乙列车到达A地时,甲列车距离重庆的路程为600﹣(5﹣3﹣)×180=300(km),故答案为:300.三.解答题(共10小题)9.为倡导绿色出行,某共享单车近期登陆徐州,根据连续骑行时长分段计费:骑行时长在2h以内(含2h)的部分,每计费1元(不足按计算);骑行时长超出2h的部分,每小时计费4元(不足1h按1h计算).根据此收费标准,解决下列问题:(1)连续骑行5h,应付费多少元(2)若连续骑行xh(x>2且x为整数)需付费y元,则y与x的函数表达式为;(3)若某人连续骑行后付费24元,求其连续骑行时长的范围.【解答】(1)当x=5时,y=2×2+4×(5﹣2)=16,∴应付16元;(2)y=4(x﹣2)+2×2=4x﹣4;故答案为:y=4x﹣4;(3)当y=24,24=4x﹣4,x=7,∴连续骑行时长的范围是:6<x≤7.10.如图,“十一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)当租车时间为多少小时时,两种方案所需费用相同;(3)根据(2)的计算结果,结合图象,请你帮助小明选择怎样的出游方案更合算.【解答】(1)设y1=k1x+80,把点(1,95)代入,可得:95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;答:当租车时间为小时时,两种方案所需费用相同;(3)由(2)知:当y1=y2时,x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80<30x,解得x>;∴当租车时间为小时,任意选择其中的一个方案;当租车时间小于小时,选择方案二合算;当租车时间大于小时,选择方案一合算.11.如表给出A、B、C三种上网的收费方式:收费方式月使用费/元包时上网时间/小时超时费/(元/分钟)A3025B5050C120不限时(1)假设月上网时间为x小时,分别直接写出方式A、B、C三种上网方式的收费金额分别为y1、y2、y3与x的函数关系式,并写出自变量的范围(注意结果要化简);(2)给出的坐标系中画出这三个函数的图象简图;(3)结合函数图象,直接写出选择哪种上网方式更合算.【分析】从题意可知,本题中的一次函数又是分段函数,关键是理清楚自变量的取值范围,由取值来确定函数值,从而作出函数图象.【解答】(1)收费方式A:y=30 (0≤x≤25),y=30+3x (x>25);收费方式B:y=50 (0≤x≤50),y=50+3x (x>50);收费方式C:y=120 (0≤x);(2)函数图象如图:(3)由图象可知,上网方式C更合算。
一次函数的应用 练习题(带答案
一次函数的应用 题集一、一次函数与实际应用(1)(2)(3)1.某周六上午小明从家出发,乘车小时到郊外某基地参加社会实践活动.在基地活动小时后,因家里有急事,他立即按原路以千米/时的平均速度步行返回,同时爸爸开车从家出发沿同一路线接他,在离家千米处与小明相遇.接到小明后保持车速不变,立即按原路返回.设小明离开家的时间为小时,小明离家的路程(千米)与(小时)之间的函数图象如图所示.(小时)(千米)小明去基地乘车的平均速度是 千米/时,爸爸开车的平均速度是 千米/时.求线段所表示的函数关系式,不用写出自变量的取值范围.问小明能否在中午前回到家?若能,请说明理由;若不能,请算出中午时他离家的路程.【答案】(1)(2)(3) ;.不能在前回家,此时离家的距离为千米.【解析】(1)观察图象可知:小明去基地乘车小时后离基地的距离为千米,(2)(3)因此小明去基地乘车的平均速度是千米/小时;在返回时小明以千米/时的平均速度步行,行驶千米后遇到爸爸,∵两个人同时走,小明走了小时,即爸爸也走了小时,∴他爸爸在小时内行驶了千米,故爸爸开车的平均速度应是千米/小时.设线段所表示的函数关系式为,易得,,∴,解得,∴.小明从家出发到回家一共需要时间:(小时),从经过小时已经过了,∴不能在前回家,此时离家的距离:(千米).【标注】【知识点】函数图象与实际问题(1)(2)12(3)2.,两地相距千米,甲车从地出发匀速行驶到地,乙车从地出发匀速行驶到地.乙车行驶小时后,甲车出发,两车相向而行.设行驶时间为小时(),甲、乙两车离地的距离分别为,千米,,与之间的函数关系图象如图所示,根据图象解答下列问题:小时千米图小时千米图求,与的函数关系式.乙车出发几小时后,两车相遇?相遇时,两车离地多少千米?设行驶过程中,甲、乙两车之间的距离为千米,在图的直角坐标系中,已经画出了与之间的部分函数图象.图中点的坐标为,则.求与的函数关系式,并在图中补全整个过程中与之间的函数图象.【答案】(1)(2)12(3),.乙车出发小时后两车相遇,两车相遇时,两车相距地千米.当时,,当时,.画图见解析.【解析】(1)(2)12(3)设,,由图象可知,时,,时,,∴,,∴.由图象可知,,,时,,∴,,∴.故与的关系式分别为:,.两车相遇时,甲乙两车距地距离相等,∴,∴,∴.将代入中得.故乙车出发小时后两车相遇,两车相遇时,两车相距地千米.由图可知,乙车速度为(千米/小时).过程中甲车在地,乙车在行驶.时,甲乙两车相距千米.时,甲乙两车相距(千米).∴.由图可知,甲车速度为(千米/小时).由()可知甲乙两车在时相遇.∴当时,,当时,.,故整个过程中与函数图象如下图所示:小时千米【标注】【知识点】一元一次方程的行程问题-相遇问题(1)(2)(3)3.在一条直线上依次有、、三个港口,甲、乙两船同时分别从、港口出发,沿直线匀速驶向港,最终到达港.设甲、乙两船行驶后,与港的距离分别为、,、与的函数关系如图所示.甲乙填空:、两港口间的距离为 , .求图中点的坐标.若两船的距离不超过时能够相互望见,求甲、乙两船可以相互望见时的取值范围.【答案】(1)(2)(3); .或.【解析】(1)、两港口间距离,又由于甲船行驶速度不变,(2)(3)故,则.故答案为:;.由点求得,.当时,由点,求得,.当时,,解得,.此时.所以点的坐标为.根据题意知甲、乙两船的速度分别为小时、小时,①当时,根据题意可知甲船开始出发到达港这段时间,甲乙两船的距离从逐渐缩小,两船行驶时,乙船在甲船的前方:处,所以这段时间内,两船不能相互望见;②当时,乙船在甲船的前方(直至追上).依题意,,解得,即时,甲、乙两船可以相互望见;③当时,甲船在乙船的前方依题意,,解得,即时,甲、乙两船可以相互望见;④当时,甲船已经到达港,而乙船继续行驶向甲船靠近,依题意,,解得,即,甲、乙两船可以相互望见.综上所述,当或时,甲、乙两船可以相互望见.【标注】【知识点】一次函数的依据图象解决实际问题4.某地为了鼓励市民节约用水,采取阶梯分段收费标准,共分三个梯段,吨为基本段,吨为极限段,超过吨为较高收费段,且规定每月用水超过吨时,超过的部分每吨元,居民每月应交水费(元)是用水量(吨)的函数,其图象如图所示:(1)(2)(3)吨元求出基本段每吨水费,若某用户该月用水吨,问应交水费多少元?写出与的函数解析式.若某月一用户交水量元,则该用户用水多少吨?【答案】(1)(2)(3)元..吨.【解析】(1)(2)∵用水吨交水费元,∴基本段每吨水费元,∴若某用户该月用水吨,应交水费元.分三种情况:①当时,易得;②当时,设,∵,在直线上,∴,解得,∴;③当时,设,∵,在直线上,∴,解得,∴.综上所述,与的函数解析式为.(3)若某月一用户交水量元,设该用户用水吨.∵用水吨交水费元,用水吨交水费元,而,∴.由题意,得,解得.答:若某月一用户交水量元,则该用户用水吨.【标注】【能力】运算能力【知识点】一元一次方程的梯度计价问题【知识点】有理数乘除法与实际问题【知识点】一次函数与实际问题【思想】函数思想【思想】方程思想(1)(2)(3)5.某市按阶梯电价进行收费,阶梯电价收费标准为:若每月用电量为度及以下,收费标准为元/度,若每月用电量超过度,收费标准由两部分组成:①度按元/度收费,②超出度的部分按元/度收费.如果月用电量用(度)来表示,实付金额用(元)来表示,请分别写出这两种情况实付金额与月用电量之间的函数关系式.若小芳和小华家一个月的实际用电量分别为度和度,则实付金额分别为多少元?按照阶梯电价方案的规定,一居民家某月电费为元,请你计算这个家庭本月的实际用电量.【答案】(1)(2)(3).实付金额分别为元、元.这个家庭本月的实际用电量是度.【解析】(1)根据度时,按元/度收费,(2)(3)则当时,;根据超出度的部分按元/度收费得:当时,;故函数关系式为:.小芳家用电量是 度,则实付金额是:(元);小华家用电量是 度,则实付金额是:(元).答:实付金额分别为元、元.设这个家庭本月的实际用电量度,根据题意得:解得:,答:这个家庭本月的实际用电量是度.【标注】【知识点】一次函数与实际问题(1)(2)(3)6.在某次抗震救灾中得知,甲、乙两个重灾区急需一种大型挖掘机,甲地需要台,乙地需要台;、两省获知情况后慷慨相助,分别捐赠该型号挖掘机台和台并将其全部调往灾区.如果从省调运一台挖掘机到甲地要耗资万元,到乙地要耗资万元;从省调运一台挖掘机到甲地要耗资万元,到乙地要耗资万元.设从省调往甲地台挖掘机,、两省将捐赠的挖掘机全部调往灾区共耗资万元.省捐赠台省捐赠台甲灾区需台乙灾区需台请直接写出与之间的函数关系式及自变量的取值范围.若要使总耗资不超过万元,有哪几种调运方案?怎样设计调运方案能使总耗资最少?最少耗资多少万元?【答案】(1)(2)(3)( ).两种.方案二可使总耗资最少为万元.【解析】(1)(2)(3) 省省台数(台)耗资(万元)台数(台)耗资(万元)甲区乙区或由上表可知化简得,又∵,,,∴自变量的取值范围为.,得,∵为整数且,∴,.∴调运方案有两种,如下列:方案一:甲乙方案二:甲乙由可知随的增大而减小,∴当时,,∴()问中的方案二可使总耗资最少为万元.【标注】【知识点】一次函数与实际问题(1)7.育才中学需要购置某种仪器,方案:到商家购买,每件元;方案:学校自己制作,每件元,另外需付制作工具的租用费元.设购置仪器件,方案与方案的费用(单位:元)分别为,.分别写出,的函数表达式.(2)(3)当购置仪器多少件时,两种方案的费用相同?若方案便宜,则仪器件数范围是多少?【答案】(1)(2)(3),.件..【解析】(1)(2)(3)(,且为整数),(,且为整数).依题意,得,即,解得,∴当购置的仪器为件时,两种方案的费用相同.∵,∴,解得.∴当需要的仪器件数为整数且时,选择方案便宜.【标注】【知识点】一次函数与实际问题【知识点】不等式组的方案选择问题二、一次函数与三角形面积(1)(2)8.已知一次函数的图象与轴交于点,且与正比例函数的图象相交于点,求:求点的坐标.求出这两个函数的图象与轴围成的的面积.【答案】(1)(2)..【解析】(1)(2)由题意知,,解得,,∴点的坐标为.令,则,∴,∴.【标注】【知识点】一次函数与面积(1)(2)9.如图,在平面直角坐标系中,直线与轴,轴分别交于、两点,且直线上所有点的坐标都是二元一次方程的解,直线与轴,轴分别交于、两点,且直线上所有点的坐标都是二元一次方程的解,直线与交于点.分别求出点,点的坐标.求四边形的面积.【答案】(1)(2),..【解析】(1)∵直线上所有点的坐标都是二元一次方程的解,∴当时,,(2)∴点的坐标为:,∵直线上所有点的坐标都是二元一次方程的解,∴时,,∴点的坐标为:.作轴于,,解得,∴点的坐标为,则四边形的面积四边形的面积的面积.【标注】【知识点】一次函数与面积10.在平面直角坐标系中,为坐标原点,已知及在第一象限的动点,且.则当时,点的坐标为 .【答案】【解析】∵,∴.∴∵∴.得:.∴,∴时,点坐标为.【标注】【知识点】一次函数与面积(1)(2)(3)(4)11.如图,直线的解析表达式为:,且与轴交于点,直线经过点、,直线,交于点.求点的坐标.求直线的解析表达式.求的面积.在直线上存在异于点的另一点,使得与的面积相等,请直接写出点的坐标.【答案】(1)(2)(3)(4).直线的解析表达式为...【解析】(1)(2)(3)由,令,得,∴,∴.设直线的解析表达式为,,由图象知:、,、,代入表达式,∴,∴,∴直线的解析表达式为.由,(4)∴,∴,∵,∴.与底边都是,面积相等所以高相等,高就是点到直线的距离,即纵坐标的绝对值,则到距离,∴纵坐标的绝对值,点不是点,∴点纵坐标是,∵,,∴,∴,∴.【标注】【知识点】公式法求面积12.如图直线与轴、轴分别交于、两点,以线段为边在第一象限内作等腰直角,且,如果在第二象限内有一点,且的面积与的面积相等,求的值.【答案】【解析】∵直线与轴、轴分别交于、两点,∴,,,∴,又∵,∴,解得.【标注】【知识点】一次函数与面积,,三、一次函数与线段最值(1)(2)13.如图,一次函数的图象与、轴分别交于点、.求该函数的解析式.为坐标原点,设、的中点分别为、,为上一动点,求的最小值,并求取得最小值时点的坐标.【答案】(1)(2),点坐标为.【解析】(1)(2)将、代入得,.∴解析式为:.设点关于点的对称点为,连接、,则.∴,即、、共线时,的最小值是.连接,在中,;易得点坐标为.【标注】【知识点】一次函数与轴对称最值问题14.直角坐标系中,有两个点,,在轴上找一个点,在轴上找一点,使四边形的周长最短,此时点的坐标为.【答案】【解析】如图设所在直线的表达式为.由于、在直线上,有解得∴所在直线表达式为,它与轴交于.【标注】【知识点】四边形周长最小15.在平面直角坐标系中,点,点,在轴上存在一个点,直线上存在点,使得四边形的周长最小,求满足条件的、两点的坐标.xy OABCD【答案】,.【解析】将点、分别关于轴,对称到、,直线与轴,的交点即为、点,求得直线的解析式为,得:,.故答案为:,.【标注】【知识点】一次函数与轴对称最值问题(1)(2)16.如图,在直角坐标系中,,,点是轴正半轴上的一个动点.当点到,两点的距离相等时,求点的坐标.当点到,两点的距离之和最小时,求点的坐标,并求出此时的值.【答案】(1)(2)..【解析】(1)如图作的中垂线与轴交于,过作轴于,∵,∴,,∵,∴,设,则,又∵,,,,(2)∴,即,,得,∴.如图,作关于轴对称点,连接交于,则即为所求,∵,∴且,设所在直线解析式为()代入,得,∴,∴直线,∴当,,∴,.【标注】【知识点】一次函数与轴对称最值问题17.如图,直线的函数表达式为,且与轴交于点,直线经过点且与交于点,已知点的横坐标是.(1)(2)求点和点的坐标.在轴上求点的坐标,使得最小.【答案】(1)(2),..【解析】(1)(2)对于直线,令,得到,∴,∵点的横坐标为,∴.作点关于轴的对称点,连接交轴于,此时的值最小,设最小的解析式为,则有,解得,∴直线的解析式为,∴.A. B.C.D.18.如图,在中,,,点在边上,且,点为的中点,点为边上的动点,当点在上移动时,使四边形周长最小的点的坐标为( ).【答案】C 【解析】∵在中,,,∴,,∵,点为的中点,∴,,∴,,作关于直线的对称点,连接交于,则此时,四边形周长最小,,∵直线的解析式为,设直线的解析式为,∴,解得:,∴直线的解析式为,解得,∴.故选.19.如图,已知点坐标为,点坐标为,在直线上有一点,满足轴,连接,,当线段位于何位置时,线段最短?求出的最小值,并求出点坐标.【答案】最小值是;点坐标为【解析】'坐标为,解析式为:,点坐标为,点坐标为,.【标注】【知识点】一次函数与轴对称最值问题,20.如图,平面直角坐标系中,已知点的坐标为,点的坐标为时,在轴上另取两点,,且.线段在轴上平移,线段平移至何处时,四边形的周长最小?求出此时点的坐标.【答案】.【解析】如图,过点作轴的平行线,并且在这条平行线上截取线段,使,作点关轴的对称点,连接,交轴于点,在轴上截取线段,则此时四边形的周长最小.∵,∴,∵,∴,设直线的解析式为,则,解得.∴直线的解析式为,当时,,解得.故线段平移至如图所示位置时,四边形的周长最小,此时点的坐标为,∴点的坐标为.【标注】【知识点】一次函数与轴对称最值问题(1)(2)(3)21.如图,一次函数的图象与轴和轴分别交于点和,再将沿直线对折,使点与点重合、直线与轴交于点,与交于点.点的坐标为 ,点的坐标为 .在直线上是否存在点使得的面积为?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.求的长度.【答案】(1)(2)(3) ;存在,或..【解析】(1)已知函数为,∴令,则,(2)(3)令,则,∴,.∵,,∴以为底,则的高为,即点到的距离为,又∵点在,∴,∴或,∴或.在折叠后,,所以.因为,设,,则.在中,,由勾股定理知,即,去括号得,整理得,解得.故.【标注】【知识点】一次函数与直角三角形结合。
一次函数的图象与性质(优选真题60道)(解析版)
三年(2021-2023)中考数学真题分项汇编【全国通用】一次函数的图象与性质(优选真题60道)一、单选题1.(2023·江苏无锡·统考中考真题)将函数y=2x+1的图像向下平移2个单位长度,所得图像对应的函数表达式是()A.y=2x−1B.y=2x+3C.y=4x−3D.y=4x+5【答案】A【分析】根据题目条件函数y=2x+1的图像向下平移2个单位长度,则b的值减少2,代入方程中即可.【详解】解:∵函数y=2x+1的图像向下平移2个单位长度,∴y=2x+1−2=2x−1,故答案为:A.【点睛】本题主要考查函数平移,根据题目信息判断是沿y轴移动还是沿x轴移动是解题的关键.2.(2023·新疆·统考中考真题)一次函数y=x+1的图象不经过...()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【分析】根据k=1>0,b=1>0即可求解.【详解】解:∵一次函数y=x+1k=1>0,b=1>0,∴一次函数y=x+1的图象不经过第四象限,故选:D.【点睛】本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.3.(2023·内蒙古·统考中考真题)在平面直角坐标系中,将正比例函数y=−2x的图象向右平移3个单位长度得到一次函数y=kx+b(k≠0)的图象,则该一次函数的解析式为()A.y=−2x+3B.y=−2x+6C.y=−2x−3D.y=−2x−6【答案】B【分析】根据一次函数的平移规律求解即可.【详解】解:正比例函数y=−2x的图象向右平移3个单位长度得:y=−2(x−3)=−2x+6,故选:B.【点睛】题目主要考查一次函数的平移,熟练掌握平移规律是解题关键.4.(2023·四川乐山·统考中考真题)下列各点在函数y=2x−1图象上的是()A.(−1,3)B.(0,1)C.(1,−1)D.(2,3)【答案】D【分析】根据一次函数图象上点的坐标特征,将选项中的各点分别代入函数解析式y=2x−1,进行计算即可得到答案.【详解】解:∵一次函数图象上的点都在函数图象上,∴函数图象上的点都满足函数解析式y=2x−1,A.当x=−1时,y=−3,故本选项错误,不符合题意;B.当x=0时,y=−1,故本选项错误,不符合题意;C.当x=1时,y=1,故本选项错误,不符合题意;D.当x=2时,y=3,故本选项正确,符合题意;故选:D.【点睛】本题主要考查了一次函数图象上点的坐标特征,熟练掌握一次函数图象上的点都在函数图象上,是解题的关键.5.(2023·甘肃兰州·统考中考真题)一次函数y=kx−1的函数值y随x的增大而减小,当x=2时,y的值可以是()【分析】根据一次函数的增减性可得k的取值范围,再把x=2代入函数y=kx−1,从而判断函数值y的取值.【详解】∵一次函数y=kx−1的函数值y随x的增大而减小∴k<0∴当x=2时,y=2k−1<−1故选:D【点睛】本题考查一次函数的性质,不等式的性质,熟悉一次函数的性质是解题的关键.6.(2023·内蒙古通辽·统考中考真题)在平面直角坐标系中,一次函数y=2x−3的图象是()A.B.C.D.【答案】D,0),即可得到一次函数y=2x−3的图象经【分析】依据一次函数y=2x−3的图象经过点(0,−3)和(32过一、三、四象限.,【详解】解:一次函数y=2x−3中,令x=0,则y=−3;令y=0,则x=32,0),∴一次函数y=2x−3的图象经过点(0,−3)和(32∴一次函数y=2x−3的图象经过一、三、四象限,故选:D.7.(2023·甘肃武威·统考中考真题)若直线y=kx(k是常数,k≠0)经过第一、第三象限,则k的值可为()【答案】D【分析】通过经过的象限判断比例系数k的取值范围,进而得出答案.【详解】∵直线y=kx(k是常数,k≠0)经过第一、第三象限,∴k>0,∴k的值可为2,故选:D.【点睛】本题考查正比例函数的图象与性质,熟记比例系数与图象经过的象限之间的关系是解题的关键.8.(2023·上海·统考中考真题)下列函数中,函数值y随x的增大而减小的是()【答案】B【分析】根据一次函数和反比例函数的性质,逐项分析即可得到答案.【详解】解:A、y=6x,k=6>0,y随x的增大而增大,不符合题意;B、y=−6x,k=−6<0,y随x的增大而减小,符合题意;C、y=6x,k=6>0,在每个象限内,y随x的增大而减小,不符合题意;D、y=−6x,k=−6<0,在每个象限内,y随x的增大而增大,不符合题意;故选:B.【点睛】本题主要考查了一次函数、反比例函数的性质,熟练掌握函数的性质,是解题的关键.9.(2023·湖北十堰·统考中考真题)已知点A(x1,y1)在直线y=3x+19上,点B(x2,y2),C(x3,y3)在抛物线y= x2+4x−1上,若y1=y2=y3且x1<x2<x3,则x1+x2+x3的取值范围是()A.−12<x1+x2+x3<−9B.−8<x1+x2+x3<−6C.−9<x1+x2+x3<0D.−6<x1+x2+x3<1【答案】A【分析】设直线y=3x+19与抛物线y=x2+4x−1对称轴左边的交点为P,设抛物线顶点坐标为Q,求得其坐标的横坐标,结合图象分析出1的范围,根据二次函数的性质得出x2+x3=2×(−2)=−4,进而即可求解.【详解】解:如图所示,设直线y=3x+19与抛物线y=x2+4x−1对称轴左边的交点为P,设抛物线顶点坐标为Q联立{y =3x +19y =x 2+4x −1解得:{x =−5y =4或{x =4y =31 ∴P (−5,4),由y =x 2+4x −1=(x +2)2−5,则Q (−2,−5),对称轴为直线x =−2,设m =y 1=y 2=y 3,则点A,B,C 在y =m 上,∵y 1=y 2=y 3且x 1<x 2<x 3,∴A 点在P 点的左侧,即x 1<−5,x 2<−2<x 3,当m =−5时,x 2=x 3对于y =3x +19,当y =−5,x =−8,此时x 1=−8,∴x 1>−8,∴−8<x 1<−5∵对称轴为直线x =−2,则x 2+x 3=2×(−2)=−4,∴x 1+x 2+x 3的取值范围是−9<x 1+x 2+x 3<−12,故选:A .【点睛】本题考查了二次函数的性质,一次函数的性质,数形结合熟练掌握是解题的关键.【答案】C【分析】首先根据一次函数的性质确定k ,b 的符号,再确定一次函数y =kx +b (k ≠0)系数的符号,判断出函数图象所经过的象限.【详解】解:∵一次函数y =kx +b 的图象不经过第二象限,∴k >0,b <0,故选项A 正确,不符合题意;∴kb<0,故选项B正确,不符合题意;∵一次函数y=kx+b的图象经过点(2,0),∴2k+b=0,则b=−2k,∴k+b=k−2k=−k<0,故选项C错误,符合题意;∵b=−2k,b,故选项D正确,不符合题意;∴k=−12故选:C.【点睛】本题考查一次函数图象与系数的关系,解决此类题目的关键是确定k、b的正负.11.(2023·安徽·统考中考真题)下列函数中,y的值随x值的增大而减小的是()A.y=x2+1B.y=−x2+1C.y=2x+1D.y=−2x+1【答案】D【分析】根据二次函数的性质,一次函数的性质,逐项分析判断即可求解.【详解】解:A. y=x2+1,a>0,对称轴为直线x=0,当x<0时,y的值随x值的增大而减小,当x>0时,y的值随x值的增大而增大,故该选项不正确,不符合题意;B. y=−x2+1,a<0,对称轴为直线x=0,当x<0时,y的值随x x>0时,y的值随x值的增大而减小,故该选项不正确,不符合题意;C. y=2x+1,k>0,y的值随x值的增大而增大,故该选项不正确,不符合题意;D. y=−2x+1,k<0,y的值随x值的增大而减小,故该选项正确,符合题意;故选:D.【点睛】本题考查了一次函数与二次函数的性质,熟练掌握一次函数与二次函数的性质是解题的关键.12.(2023·四川巴中·统考中考真题)一次函数y=(k−3)x+2的函数值y随x增大而减小,则k的取值范围是()A.k>0B.k<0C.k>3D.k<3【答案】D【分析】根据已知条件函数值y随x的增大而减小推出自变量x的系数小于0 ,然后解得即可.【详解】解:∵y=(k−3)x+2是一次函数且函数值y随x的增大而减小,∴k−3<0,故选:D.【点睛】本题考查一次函数图像与系数的关系,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小,熟记此关系是解题的关键.13.(2022·山东德州·统考中考真题)如图是y关于x的一个函数图象,根据图象,下列说法正确的是()A.该函数的最大值为7B.当x≥2时,y随x的增大而增大C.当x=1时,对应的函数值y=3D.当x=2和x=5时,对应的函数值相等【答案】D【分析】根据函数图象的相应点坐标以及增减性,可得答案.【详解】解:由图象可知:A.该函数的最大值为6,原说法错误,故本选项不合题意;B.当x⩽3时,y随x的增大而增大,原说法错误,故本选项不合题意;C.当x=1时,对应的函数值y=2,原说法错误,故本选项不合题意;D.设x⩽3时,y=kx,则3k=6,解得k=2,∴y=2x,∴当x=2时,y=2×2=4;设x⩾3时,y=mx+n,则{3m+n=66m+n=3,解得{m=−1n=9,∴y=−x+9,∴当x=5时,y=−5+9=4,∴当x=2和x=5时,对应的函数值都等于4,∴当x=2和x=5时,对应的函数值相等,说法正确,故本选项符合题意.【点睛】本题考查了一次函数的应用,解题的关键是通过函数图象获得有效信息.14.(2022·贵州六盘水·统考中考真题)如图是一次函数y=kx+b的图象,下列说法正确的是()A.y随x增大而增大B.图象经过第三象限C.当x≥0时,y≤b D.当x<0时,y<0【答案】C【分析】根据一次函数的图象与性质逐项判断即可得.【详解】解:A、y随x增大而减小,则此项错误,不符合题意;B、图象不经过第三象限,则此项错误,不符合题意;C、函数图象与y轴的交点的纵坐标为b,所以当x≥0时,y≤b,则此项正确,符合题意;D、当x<0时,y>0,则此项错误,不符合题意;故选:C.【点睛】本题考查了一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题关键.15.(2022·江苏南通·统考中考真题)根据图像,可得关于x的不等式kx>−x+3的解集是()A.x<2B.x>2C.x<1D.x>1【答案】D【分析】写出直线y=kx在直线y=−x+3上方所对应的自变量的范围即可.【详解】解:根据图象可得:不等式kx>−x+3的解集为:x>1.故选:D.【点睛】本题考查了一次函数与一元一次不等式,根据两个函数的交点坐标及图象确定不等式的解集是解题的关键.16.(2022·山东日照·统考中考真题)下列说法正确的是()−1=x的解是x=2A.一元一次方程x2B.在连续5次数学测试中,两名同学的平均成绩相同,则方差较大的同学的成绩更稳定C.从5名男生,2名女生中抽取3人参加活动,至少会有1名男生被抽中D.将一次函数y=-2x+5的图象向上平移两个单位,则平移后的函数解析式为y=-2x+1【答案】C【分析】根据一元一次方程的解的概念,方差的意义,抽屉原理,一次函数图象平移的规律逐项判断.−1=x的解是x=-2,故A错误,不符合题意;【详解】解:一元一次方程x2在连续5次数学测试中,两名同学的平均成绩相同,则方差较小的同学的成绩更稳定,故B错误,不符合题意;从5名男生,2名女生中抽取3人参加活动,至少会有1名男生被抽中,故C正确,符合题意;将一次函数y=-2x+5的图象向上平移两个单位,则平移后的函数解析式为y=-2x+7,故D错误,不符合题意;故选:C.【点睛】本题考查一元一次方程的解,方差的应用,抽屉原理的应用,一次函数图象的平移等知识,解题的关键是掌握教材上相关的概念和定理.17.(2022·甘肃兰州·统考中考真题)若一次函数y=2x+1的图象经过点(−3,y1),(4,y2),则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1≤y2D.y1≥y2【答案】A【分析】先根据一次函数的解析式判断出函数的增减性,再根据-3<4即可得出结论.【详解】解:∵一次函数y=2x+1中,k=2>0,∴y随着x的增大而增大.∵点(-3,y1)和(4,y2)是一次函数y=2x+1图象上的两个点,-3<4,∴y1<y2.故选:A.【点睛】本题考查的是一次函数图象上点的坐标特征,熟知一次函数图象的增减性是解答此题的关键.18.(2022·广东广州·统考中考真题)点(3,−5)在正比例函数y=kx(k≠0)的图象上,则k的值为()【答案】D【分析】直接把已知点代入,即可求出k的值.【详解】解:∵点(3,−5)在正比例函数y=kx(k≠0)的图象上,∴−5=3k,,∴k=−53故选:D.【点睛】此题考查了用待定系数法求正比例函数的解析式,解题关键是正确得出k的值..B..D.【答案】C【分析】观察一次函数解析式,确定出k与b的符号,利用一次函数图象及性质判断即可.【详解】解:∵一次函数y=x+1,其中k=1>0,b=1>0,∴图象过一、二、三象限,故选C.【点睛】此题主要考查一次函数图象的性质,熟练掌握一次函数图象的性质是解题的关键.20.(2022·四川广安·统考中考真题)在平面直角坐标系中,将函数y=3x +2的图象向下平移3个单位长度,所得的函数的解析式是()A.y=3x+5B.y=3x﹣5C.y=3x+1D.y=3x﹣1【答案】D【分析】根据“上加下减,左加右减”的平移规律即可求解.【详解】解:将函数y=3x +2的图象向下平移3个单位长度,所得的函数的解析式是y=3x﹣1,故选:D【点睛】本题考查了一次函数的平移,掌握平移规律是解题的关键.21.(2022·辽宁抚顺·统考中考真题)如图,在同一平面直角坐标系中,一次函数y=k1x+b1与y=k2x+b2的图象分别为直线l1和直线l2,下列结论正确的是()【分析】先根据两条直线的图象得到k1>0,b1>0,k2>0,b2<0,然后再进行判定求解.【详解】解:∵一次函数y=k1x+b1与y=k2x+b2的图象分别为直线l1和直线l2,∴k1>0,b1>0,k2>0,b2<0,∴k1⋅k2>0,k1+k2>0,b1−b2>0,b1⋅b2<0,故A,B,C项均错误,D项正确.故选:D.【点睛】本题主要考查了一次函数图象与k和b符号的关系,掌握当直线与y轴交于正半轴上时,b>0;当直线与y轴交于负半轴时,b<0是解答关键.(k≠0)图象的两个分支分别位于第一、三象限,则一22.(2021·山东济南·统考中考真题)反比例函数y=kx次函数y=kx−k的图象大致是()A.B.C.D.【答案】D【分析】根据题意可得k>0,进而根据一次函数图像的性质可得y=kx−k的图象的大致情况.【详解】∵反比例函数y=kx(k≠0)图象的两个分支分别位于第一、三象限,∴k>0∴一次函数y=kx−k的图象与y轴交于负半轴,且经过第一、三、四象限.观察选项只有D选项符合.故选D【点睛】本题考查了反比例函数的性质,一次函数图像的性质,根据已知求得k>0是解题的关键.A.k>1B.k>﹣1C.k<1D.k<﹣1【答案】B【分析】将k看作常数,解方程组得到x,y的值,根据P在直线上方可得到b>a,列出不等式求解即可.【详解】解:解方程组{3x+2y=k−12x+3y=3k+1可得,{x=−35k−1y=75k+1,∵点P(a,b)总在直线y=x上方,∴b>a,∴7 5k+1>−35k−1,解得k>-1,故选:B.【点睛】本题考查了解二元一次方程组,一次函数上点的坐标特征,解本题的关键是将k看作常数,根据点在一次函数上方列出不等式求解.24.(2021·山东潍坊·统考中考真题)记实数x 1,x 2,…,x n 中的最小数为min|x 1,x 2,…,x n |,例如min|-1,1,2|=﹣1,则函数y =min|2x ﹣1,x ,4﹣x |的图象大致为( )A .B .C .D .【答案】B 【分析】分别画出函数y =x,y =2x −1,y =4−x 的图像,然后根据min|x1,x2,…,xn|=﹣1即可求得.【详解】如图所示,分别画出函数y =x,y =2x −1,y =4−x 的图像,由图像可得, y ={2x −1,(x <1)x,(1≤x ≤2)4−x(x >2),故选:B .【点睛】此题考查了一次函数图像的性质,解题的关键是由题意分析出各函数之间的关系.25.(2021·贵州安顺·统考中考真题)小星在“趣味数学”社团活动中探究了直线交点个数的问题.现有7条不同的直线y =k n x +b n (n =1,2,3,4,5,6,7),其中k 1=k 2,b 3=b 4=b 5,则他探究这7条直线的交点个数最多是( )A .17个B .18个C .19个D .21个【答案】B【分析】因为题中已知k1=k2,b3=b4=b5,可知:第1、2条直线相互平行没有交点,第3、4、5条直线交于一点,由此即可求解此题.【详解】解:∵直线y=k n x+b n(n=1,2,3,4,5,6,7),其中k1=k2,b3=b4=b5∴第1、2条直线相互平行没有交点,第3、4、5条直线交于一点,∴这5条直线最多有7个交点,第6条直线,与前面5条直线的交点数最多有5个,第7条直线,与前面6条直线的交点数最多有6个,∴得出交点最多就是7+5+6=18条,故选:B.【点睛】本题考查了两条直线相交或平行问题,做题关键在于分析得出两条平行直线,三条直线相交于一点.二、填空题26.(2023·江苏无锡·统考中考真题)请写出一个函数的表达式,使得它的图象经过点(2,0):__________.【答案】y=x−2(答案不唯一)【分析】根据一次函数的定义,可以先给出k值等于1,再找出符合点的b的值即可,答案不唯一.【详解】解:设k=1,则y=x+∵它的图象经过点(2,0),∴代入得:2+b=0,解得:b=−2,∴一次函数解析式为y=x−2,故答案为:y=x−2(答案不唯一).【点睛】本题主要考查对一次函数的常数k、b的理解和待定系数法的运用,是开放型题目.27.(2023·江苏苏州·统考中考真题)已知一次函数y=kx+b的图象经过点(1,3)和(−1,2),则k2−b2=________________.【答案】−6【分析】把点(1,3)和(−1,2)代入y=kx+b,可得{k+b=3k−b=−2,再整体代入求值即可.【详解】解:∵一次函数y=kx+b的图象经过点(1,3)和(−1,2),∴{k+b=3−k+b=2,即{k+b=3k−b=−2,∴k2−b2=(k+b)(k−b)=3×(−2)=−6;故答案为:−6【点睛】本题考查的是一次函数的性质,利用待定系数法求解一次函数的解析式,利用平方差公式分解因式,熟练的利用平方差公式求解代数式的值是解本题的关键.28.(2023·山东·统考中考真题)一个函数过点(1,3),且y随x增大而增大,请写出一个符合上述条件的函数解析式_________.【答案】y=3x(答案不唯一)【分析】根据题意及函数的性质可进行求解.【详解】解:由一个函数过点(1,3),且y随x增大而增大,可知该函数可以为y=3x(答案不唯一);故答案为y=3x(答案不唯一).【点睛】本题主要考查正比例函数的性质,熟练掌握正比例函数的性质是解题的关键.29.(2023·广西·统考中考真题)函数y=kx+3的图象经过点(2,5),则k=______.【答案】1【分析】把点(2,5)代入函数解析式进行求解即可.【详解】解:由题意可把点(2,5)代入函数解析式得:2k+3=5,解得:k=1;故答案为1.【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.30.(2023·湖南郴州·统考中考真题)在一次函数y=(k−2)x+3中,y随x的增大而增大,则k的值可以是___________(任写一个符合条件的数........即可).【答案】3(答案不唯一)【分析】根据一次函数的性质可知“当k−2>0时,变量y的值随x的值增大而增大”,由此可得出结论.【详解】解:∵一次函数y=(k−2)x+3中,y随x的值增大而增大,∴k−2>0.解得:k>2,故答案为:3(答案不唯一).【点睛】本题考查了一次函数的性质,解题的关键是根据函数的单调性确定k的取值范围.本题属于基础题,难度不大,解决该题型题目时,结合一次函数的增减性,得出k的取值范围是关键.31.(2023·天津·统考中考真题)若直线y=x向上平移3个单位长度后经过点(2,m),则m的值为________.【答案】5【分析】根据平移的规律求出平移后的解析式,再将点(2,m)代入即可求得m的值.【详解】解:∵直线y=x向上平移3个单位长度,∴平移后的直线解析式为:y=x+3.∵平移后经过(2,m),∴m=2+3=5.故答案为:5.【点睛】本题考查的是一次函数的平移,解题的关键在于掌握平移的规律:左加右减,上加下减.b>0的不等式的32.(2022·江苏徐州·统考中考真题)若一次函数y=kx+b的图像如图所示,则关于kx+32解集为________.【答案】x>3【分析】根据函数图像得出b=−2k,然后解一元一次不等式即可求解.【详解】解:∵根据图像可知y=kx+b与x轴交于点(2,0),且k>0,∴2k+b=0,解得b=−2k,b>0,∴kx+32,∴x>−3b2k即x>−3·(−2k),解得x>3,2k故答案为:x>3.【点睛】本题考查了一次函数与坐标轴的交点问题,解一元一次不等式,求得一次函数与坐标轴的交点是解题的关键.33.(2022·江苏南通·统考中考真题)平面直角坐标系xOy中,已知点A(m,6m),B(3m,2n),C(−3m,−2n)是函数y=kx(k≠0)图象上的三点.若S△ABC=2,则k的值为___________.【答案】34/0.75【分析】由点A、B、C的坐标可知k=6m2>0,m=n,点B、C关于原点对称,求出直线BC的解析式,不妨设m>0,如图,过点A作x轴的垂线交BC于D,根据S△ABC=2列式求出m2,进而可得k的值.【详解】解:∵点A(m,6m),B(3m,2n),C(−3m,−2n)是函数y=kx(k≠0)图象上的三点,∴k=6m2>0,k=6mn,∴m=n,∴B(3m,2m),C(−3m,−2m),∴点B、C关于原点对称,∴设直线BC的解析式为y=kx(k≠0),代入B(3m,2m)得:2m=3mk,解得:k=23,∴直线BC的解析式为y=23x,不妨设m>0,如图,过点A作x轴的垂线交BC于D,把x=m代入y=23x得:y=23m∴D(m,23m),∴AD=6m−23m=163m,∴S△ABC=12×163m⋅(3m+3m)=2,∴m2=18,∴k=6m2=6×18=34,而当m<0时,同样可得k=34,故答案为:34.【点睛】本题考查了反比例函数与几何综合,中心对称的性质,待定系数法求函数解析式,熟练掌握反比例函数的图象和性质,学会利用数形结合的数学思想解答是解题的关键. 34.(2022·山东日照·统考中考真题)如图,在平面直角坐标系xOy 中,点A 的坐标为(0,4),P 是x 轴上一动点,把线段P A 绕点P 顺时针旋转60°得到线段PF ,连接OF ,则线段OF 长的最小值是__________.【答案】2【分析】点F 运动所形成的图象是一条直线,当OF ⊥F1F2时,垂线段OF 最短,当点F1在x 轴上时,由勾股定理得:P 1O =F 1O =4√33,进而得P 1A =P 1F 1=AF 1=8√33,求得点F1的坐标为(4√33,0),当点F2在y 轴上时,求得点F2的坐标为(0,-4),最后根据待定系数法,求得直线F1F2的解析式为y=√3x -4,再由线段中垂线性质得出F 1F 2=AF 1=8√33,在Rt △OF1F2中,设点O 到F1F2的距离为h ,则根据面积法得12×OF 1×OF 2=12×F 1F 2×ℎ,即12×4√33×4=12×8√33×ℎ,解得h=2,根据垂线段最短,即可得到线段OF的最小值为2. 【详解】解:∵将线段PA 绕点P 顺时针旋转60°得到线段PF ,∴∠APF=60°,PF=PA ,∴△APF 是等边三角形,∴AP=AF ,如图,当点F1在x 轴上时,△P1AF1为等边三角形,则P1A=P1F1=AF1,∠AP1F1=60°,∵AO ⊥P1F1,∴P1O=F1O ,∠AOP1=90°,∴∠P1AO=30°,且AO=4,由勾股定理得:P 1O =F 1O =4√33, ∴P 1A =P 1F 1=AF 1=8√33, ∴点F1的坐标为(4√33,0), 如图,当点F2在y 轴上时,∵△P2AF2为等边三角形,AO ⊥P2O ,∴AO=F2O=4,∴点F2的坐标为(0,-4),∵tan∠OF 1F 2=OF 2OF 1=4√33=√3,∴∠OF1F2=60°,∴点F 运动所形成的图象是一条直线,∴当OF ⊥F1F2时,线段OF 最短,设直线F1F2的解析式为y=kx+b , 则{4√33k +b =0b =−4 ,解得{k =√3b =−4 ,∴直线F1F2的解析式为y=√3x-4,∵AO=F2O=4,AO⊥P1F1,∴F1F2=AF1=8√33,在Rt△OF1F2中,OF⊥F1F2,设点O到F1F2的距离为h,则12×OF1×OF2=12×F1F2×ℎ,∴1 2×4√33×4=12×8√33×ℎ,解得h=2,即线段OF的最小值为2,故答案为2.【点睛】本题属于三角形的综合题,主要考查了旋转的性质,勾股定理的应用,等边三角形的性质以及待定系数法的运用等,解决问题的关键是作辅助线构造等边三角形以及面积法求最短距离,解题时注意勾股定理、等边三角形三线合一以及方程思想的灵活运用.35.(2022·山东济宁·统考中考真题)已知直线y1=x-1与y2=kx+b相交于点(2,1).请写出b值____(写出一个即可),使x>2时,y1>y2.【答案】2(答案不唯一)【分析】根据题意将点(2,1)代入y2=kx+b可得2k+b=1,即k=1−b2,根据x>2时,y1>y2,可得k<1,即可求得b的范围,即可求解.【详解】解:∵直线y1=x-1与y2=kx+b相交于点(2,1),∴点(2,1)代入y2=kx+b,得2k+b=1,解得k=1−b2,∵直线y1=x-1,y随x的增大而增大,又x>2时,y1>y2,∴k<1,∴1−b<2,解得b>−1,故答案为:2(答案不唯一)【点睛】本题考查了两直线交点问题,掌握一次函数的性质是解题的关键.36.(2022·辽宁锦州·统考中考真题)点A(x1,y1),B(x2,y2)在一次函数y=(a−2)x+1的图像上,当x1>x2时,y1<y2,则a的取值范围是____________.【答案】a<2【分析】根据一次函数的性质,建立不等式计算即可.【详解】∵当x1>x2时,y1<y2,∴a-2<0,∴a<2,故答案为:a<2.【点睛】本题考查了一次函数的性质,熟练掌握性质是解题的关键.37.(2021·四川甘孜·统考中考真题)已知一次函数y=ax-1,若y随x的增大而减小,则它的图象不经过第______象限.【答案】一【分析】由题意根据一次函数的性质可以判断k的正负和经过定点(0,-1),从而可以得到该函数不经过哪个象限.【详解】解:∵在一次函数y=ax-1中,若y随x的增大而减小,∴a<0,该函数经过点(0,-1),∴该函数经过第二、三、四象限,∴该函数不经过第一象限,故答案为:一.【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.(k≠0)的图38.(2021·广西河池·统考中考真题)在平面直角坐标系中,一次函数y=2x与反比例函数y=kx象交于A(x1,y1),B(x2,y2)两点,则y1+y2的值是____________.【答案】0【分析】根据正比例函数和反比例函数的图像关于原点对称,则交点也关于原点对称,即可求得y1+y2(k≠0)的图象交于A(x1,y1),B(x2,y2)两点,【详解】∵一次函数y=2x与反比例函数y=kx(k≠0)的图象关于原点对称,一次函数y=2x与反比例函数y=kx∴y1+y2=0故答案为:0【点睛】本题考查了正比例函数和反比例函数图像的性质,掌握以上性质是解题的关键.【答案】{x =2y =1【分析】由题意,两直线的交点坐标就是这两条直线组成的方程组的解,即可得到答案. 【详解】解:根据题意,∵直线l1:y =14x +12与直线l2:y =kx+3相交于点A (2,1), ∴方程组{y =14x +12y =kx +3的解为{x =2y =1 ;故答案为:{x =2y =1.直线组成的方程组的解.40.(2021·江苏苏州·统考中考真题)若2x +y =1,且0<y <1,则x 的取值范围为______. 【答案】0<x <12【分析】根据2x +y =1可得y =﹣2x+1,k =﹣2<0进而得出,当y =0时,x 取得最大值,当y =1时,x 取得最小值,将y =0和y =1代入解析式,可得答案. 【详解】解:根据2x +y =1可得y =﹣2x+1, ∴k =﹣2<0 ∵0<y <1,∴当y =0时,x 取得最大值,且最大值为12, 当y =1时,x 取得最小值,且最小值为0,∴0<x <12故答案为:0<x <12.【点睛】此题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.三、解答题41.(2023·浙江温州·统考中考真题)如图,在直角坐标系中,点A (2,m )在直线y =2x −52上,过点A 的直线交y 轴于点B (0,3).(1)求m 的值和直线AB 的函数表达式.(2)若点P (t,y 1)在线段AB 上,点Q (t −1,y 2)在直线y =2x −52上,求y 1−y 2的最大值. 【答案】(1)m =32,y =−34x +3(2)152【分析】(1)把点A 的坐标代入直线解析式可求解m ,然后设直线AB 的函数解析式为y =kx +b ,进而根据待定系数法可进行求解函数解析式;(2)由(1)及题意易得y 1=−34t +3(0≤t ≤2),y 2=2(t −1)−52=2t −92,则有y 1−y 2=−34t +3−(2t −92)=−114t +152,然后根据一次函数的性质可进行求解.【详解】(1)解:把点A (2,m )代入y =2x −52,得m =32. 设直线AB 的函数表达式为y =kx +b ,把点A (2,32),B (0,3)代入得 {2k +b =32b =3. ,解得{k =−34b =3., ∴直线AB 的函数表达式为y =−34x +3.(2)解:∵点P(t,y1)在线段AB上,点Q(t−1,y2)在直线y=2x−52上,∴y1=−34t+3(0≤t≤2),y2=2(t−1)−52=2t−92,∴y1−y2=−34t+3−(2t−92)=−114t+152.∵k=−114<0,∴y1−y2的值随x的增大而减小,∴当t=0时,y1−y2的最大值为152.【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.42.(2023·广东·统考中考真题)(1)计算:√83+|−5|+(−1)2023;(2)已知一次函数y=kx+b的图象经过点(0,1)与点(2,5),求该一次函数的表达式.【答案】(1)6;(2)y=2x+1【分析】(1)先求出立方根及有理数的乘方运算,绝对值的化简,然后计算加减法即可;(2)将两个点代入解析式求解即可.【详解】解:(1)√83+|−5|+(−1)2023=2+5−1=6;(2)∵一次函数y=kx+b的图象经过点(0,1)与点(2,5),∴代入解析式得:{1=b5=2k+b,解得:{b=1k=2,∴一次函数的解析式为:y=2x+【点睛】题目主要考查实数的混合运算及待定系数法确定一次函数解析式,熟练掌握这些基础知识点是解题关键.43.(2022·湖南益阳·统考中考真题)如图,直线y=12x+1与x轴交于点A,点A关于y轴的对称点为A′,经过点A′和y轴上的点B(0,2)的直线设为y=kx+b.(1)求点A′的坐标;(2)确定直线A′B对应的函数表达式.【答案】(1)A′(2,0)(2)y=﹣x+2【分析】(1)利用直线解析式求得点A坐标,利用关于y轴的对称点的坐标的特征解答即可;(2)利用待定系数法解答即可.【详解】(1)解:令y=0,则12x+1=0,∴x=﹣2,∴A(﹣2,0).∵点A关于y轴的对称点为A′,∴A′(2,0).(2)解:设直线A′B的函数表达式为y=kx+b,∴{2k+b=0b=2,解得:{k=−1b=2,∴直线A′B对应的函数表达式为y=﹣x+2.【点睛】本题主要考查了一次函数图象的性质、一次函数图象上点的坐标的特征、待定系数法确定函数的解析式、关于y轴的对称点的坐标的特征等知识,利用待定系数法求函数解析式是解题的关键.【答案】(1)y=12x−1;(2)12≤m≤1【分析】(1)由图象的平移及题意可直接求得一次函数的解析式;(2)由题意可先假设函数y=mx(m≠0)与一次函数y=kx+b的交点横坐标为−2,则由(1)可得:m=1,然后结合函数图象可进行求解.【详解】解:(1)由一次函数y=kx+b(k≠0)的图象由函数y=12x的图象向下平移1个单位长度得到可得:一次函数的解析式为y=12x−1;(2)由题意可先假设函数y=mx(m≠0)与一次函数y=kx+b的交点横坐标为−2,则由(1)可得:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数中考专题一.选择题1.如图,是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费()A.0.4元 B.0.45 元C.约0.47元D.0.5元2.如图,函数y=kx(k≠0)和y=ax+4(a≠0)的图象相交于点A(2,3),则不等式kx>ax+4的解集为()A.x>3 B.x<3 C.x>2 D.x<2 3.如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是()A.x>﹣5 B.x>﹣2 C.x>﹣3 D.x<﹣24.甲、乙两汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为()A.0个B.1个 C.2个 D.3个【解答】①由函数图象,得a=120÷3=40故①正确,②由题意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1.∴甲车维修的时间为1小时;故②正确,③如图:∵甲车维修的时间是1小时,∴B(4,120).∵乙在甲出发2小时后匀速前往B地,比甲早30分钟到达.∴E(5,240).∴乙行驶的速度为:240÷3=80,∴乙返回的时间为:240÷80=3,∴F(8,0).设BC的解析式为y1=k1t+b1,EF的解析式为y2=k2t+b2,由图象,得,解得,,∴y1=80t﹣200,y2=﹣80t+640,当y1=y2时,80t﹣200=﹣80t+640,t=5.25.∴两车在途中第二次相遇时t的值为5.25小时,故弄③正确,④当t=3时,甲车行的路程为120km,乙车行的路程为80×(3﹣2)=80km,∴两车相距的路程为:120﹣80=40千米,故④正确,故选:A.5.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论:(1)a=40,m=1;(2)乙的速度是80km/h;(3)甲比乙迟h到达B地;(4)乙车行驶小时或小时,两车恰好相距50km.正确的个数是()A.1 B.2 C.3 D.4【解答】(1)由题意,得m=1.5﹣0.5=1.120÷(3.5﹣0.5)=40(km/h),则a=40,故(1)正确;(2)120÷(3.5﹣2)=80km/h(千米/小时),故(2)正确;(3)设甲车休息之后行驶路程y(km)与时间x(h)的函数关系式为y=kx+b,由题意,得解得:∴y=40x﹣20,根据图形得知:甲、乙两车中先到达B地的是乙车,把y=260代入y=40x﹣20得,x=7,∵乙车的行驶速度80km/h,∴乙车行驶260km需要260÷80=3.25h,∴7﹣(2+3.25)=h,∴甲比乙迟h到达B地,故(3)正确;(4)当1.5<x≤7时,y=40x﹣20.设乙车行驶的路程y与时间x之间的解析式为y=k'x+b',由题意得解得:∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=.当40x﹣20+50=80x﹣160时,解得:x=.∴﹣2=,﹣2=.所以乙车行驶或小时,两车恰好相距50km,故(4)错误.故选(C)二.填空题(共3小题)6.如图,已知A1,A2,A3,…,A n是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1,A2,A3,…,A n+1作x轴的垂线交一次函数的图象于点B1,B2,B3,…,B n+1,连接A1B2,B1A2,A2B3,B2A3,…,A n B n+1,B n A n+1依次产生交点P1,P2,P3,…,P n,则P n的坐标是(n+,).【解答】由已知得A1,A2,A3,…的坐标为:(1,0),(2,0),(3,0),…,又得作x轴的垂线交一次函数y=x的图象于点B1,B2,B3,…的坐标分别为(1,),(2,1),(3,),….由此可推出A n,B n,A n+1,B n+1四点的坐标为(n,0),(n ,),(n+1,0),(n+1,).所以得直线A n B n+1和A n+1B n 的直线方程分别为解得故答案为:(n +,).7. 下图是护士统计一病人的体温变化图,这位病人中午12时的体温约为℃.8.某高速铁路即将在2019年底通车,通车后,重庆到贵阳、广州等地的时间将大大缩短.5月初,铁路局组织甲、乙两种列车在该铁路上进行试验运行,现两种列车同时从重庆出发,以各自速度匀速向A地行驶,乙列车到达A地后停止,甲列车到达A地停留20分钟后,再按原路以另一速度匀速返回重庆,已知两种列车分别距A地的路程y(km)与时间x(h)之间的函数图象如图所示.当乙列车到达A地时,则甲列车距离重庆km.【解答】设乙列车的速度为xkm/h,甲列车以ykm/h的速度向A地行驶,到达A 地停留20分钟后,以zkm/h的速度返回重庆,则根据3小时后,乙列车距离A地的路程为240,而甲列车到达A地,可得3x+240=3y,①根据甲列车到达A地停留20分钟后,再返回重庆并与乙列车相遇的时刻为4小时,可得x+(1﹣)z=240,②根据甲列车往返两地的路程相等,可得(﹣3﹣)z=3y,③由①②③,可得x=120,y=200,z=180,∴重庆到A地的路程为3×200=600(km),∴乙列车到达A地的时间为600÷120=5(h),∴当乙列车到达A地时,甲列车距离重庆的路程为600﹣(5﹣3﹣)×180=300(km),故答案为:300.三.解答题(共10小题)9.为倡导绿色出行,某共享单车近期登陆徐州,根据连续骑行时长分段计费:骑行时长在2h以内(含2h)的部分,每0.5h计费1元(不足0.5h按0.5h计算);骑行时长超出2h的部分,每小时计费4元(不足1h按1h计算).根据此收费标准,解决下列问题:(1)连续骑行5h,应付费多少元?(2)若连续骑行xh(x>2且x为整数)需付费y元,则y与x的函数表达式为;(3)若某人连续骑行后付费24元,求其连续骑行时长的范围.【解答】(1)当x=5时,y=2×2+4×(5﹣2)=16,∴应付16元;(2)y=4(x﹣2)+2×2=4x﹣4;故答案为:y=4x﹣4;(3)当y=24,24=4x﹣4,x=7,∴连续骑行时长的范围是:6<x≤7.10.如图,“十一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)当租车时间为多少小时时,两种方案所需费用相同;(3)根据(2)的计算结果,结合图象,请你帮助小明选择怎样的出游方案更合算.【解答】(1)设y1=k1x+80,把点(1,95)代入,可得:95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;答:当租车时间为小时时,两种方案所需费用相同;(3)由(2)知:当y1=y2时,x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80<30x,解得x>;∴当租车时间为小时,任意选择其中的一个方案;当租车时间小于小时,选择方案二合算;当租车时间大于小时,选择方案一合算.11.如表给出A、B、C三种上网的收费方式:收费方式月使用费/元包时上网时间/小时超时费/(元/分钟)A30250.05B50500.05C120不限时(1)假设月上网时间为x小时,分别直接写出方式A、B、C三种上网方式的收费金额分别为y1、y2、y3与x的函数关系式,并写出自变量的范围(注意结果要化简);(2)给出的坐标系中画出这三个函数的图象简图;(3)结合函数图象,直接写出选择哪种上网方式更合算.【分析】从题意可知,本题中的一次函数又是分段函数,关键是理清楚自变量的取值范围,由取值来确定函数值,从而作出函数图象.【解答】(1)收费方式A:y=30 (0≤x≤25),y=30+3x (x>25);收费方式B:y=50 (0≤x≤50),y=50+3x (x>50);收费方式C:y=120 (0≤x);(2)函数图象如图:(3)由图象可知,上网方式C更合算。
12.某化工厂生产一种产品,每件产品的售价50元,成本价为25元.在生产过程中,平均每生产一件产品有0.5m3的污水排出,为净化环境,工厂设计了如下两种方案对污水进行处理,并准确实施:为案A:工厂将污水先进行处理后再排出,每处理1m3污水所用原料费为2元,每月排污设备的损耗费为3000元.方案B:工厂将污水排到污水处理厂统一处理,每处理1m3污水需付14元排污费.(1)设工厂每月生产x件产品,每月利润为y元,分别求出A、B两中方案处理污水时,y与x的函数关系式.(2)当工厂每月生产量为6000件时,作为厂长在不污染环境又节约资金的前提下,应选用哪种污水的处理方案?请通过计算说明理由.(3)求:一般的,每月产量在什么范围内,适合选用方案A.【分析】(1)每件产品的售价50元,共x件,则总收入为50x,成本费为25x,产生的污水总量为0.5x,根据利润=总收入﹣总支出即可得到y与x的关系;(2)根据(1)中得到的x与y的关系,将x=6000代入,比较y的大小即可得采用哪种方案工厂利润高;(3)当两种方案所得利润相等时,所得的x值即为临界点,如此可根据产量选择适合的方案.【解答】(1)采用方案A时的总利润为:y1=50x﹣25x﹣(0.5x×2+3000)=24x﹣3000;采用方案B是的总利润为:y2=50x﹣25x﹣0.5x×14=18x;(2)x=6000,当采用第一种方案是工厂利润为:y1=24×6000﹣3000=114000﹣3000=111000;当采用方案B时工厂利润为:y2=18×6000=108000;y1>y2所以工厂采用方案A.(3)假设y1=y2,即方案A和方案B所产生的利润一样多。