遥感图像几何处理

合集下载

遥感数字图像的几何处理

遥感数字图像的几何处理

几何精校正
• 又称为几何配准
– 是把不同传感器具有几何精度的图像、地图或数据集 中的相同地物元素精确地彼此匹配、叠加在一起的过 程。
– 由用户进行。 –重要性
• 第一,对遥感原始图像进行几何变形改正后,才能对图像信息 进行各种分析,制作满足量测和定位要求的各类地球资源及环 境的遥感专题图。
• 第二,当应用不同传感方式、不同光谱范围以及不同成像时间 的各种同一地域复合图像数据来进行计算机自动分类、地物特 征的变化监测或其他应用处理时,必须进行图像间的几何配准, 保证各不同图像间的几何一致性。
–对于第一种情况,只需要进行单片解析就可以了;对 于第二种情况,还需要立体模型的解算。
• 实际工作中所拍摄的相片有倾斜和旋转,因此必 须建立物体与相片之间的数学关系。
• 二 空间直角变换
–要建立物体与相片上相应影像的关系,
• 首先要确定摄影瞬间摄影中心与相片在地面设定的空间坐标系 中的位置与姿态,描述这些位置和姿态的参数称为相片的方位 元素。
• 由于摄影像机安装造成的误 差,像主点与像平面坐标系 原点并不重合;
– 像主点在像平面坐标系中 的坐标为xo,yo,
• 摄影中心到相片的垂距(主 距)f构成了内方位元素的三 个参数,内方位元素一般为 已知值,由摄影机鉴定单位 提供。
• 像点在像空间坐标系和像空间辅助坐标系 之间的变换关系式由传感器的方位元素得 来,内方位元素和外方位元素6个参数得出 构像方程解决像点的恢复,然后得出像点 与物点之间的构像方程以纠正影像。
–外部变形误差指的是传感器本身处在正常工作的条件下,由传感 器以外的各因素所造成的误差。
• 例如传感器的外方位(位置、姿态)变化、传感介质的不均匀、 地球曲率、地形起伏、地球旋转等因素所引起的变形误差等。

ENVI遥感图像处理实验教程 实验三 几何校正(影像、地形图)ok

ENVI遥感图像处理实验教程 实验三 几何校正(影像、地形图)ok

实验三 ENVI影像的几何校正本专题旨在介绍如何在ENVI中对影像进行地理校正,添加地理坐标,以及如何使用ENVI进行影像到影像的几何校正。

遥感图像的几何纠正是指消除影像中的几何形变,产生一幅符合某种地图投影或图形表达要求的新影像。

一般常见的几何纠正有从影像到地图的纠正,以及从影像到影像的纠正,后者也称为影像的配准。

遥感影像中需要改正的几何形变主要来自相机系统误差、地形起伏、地球曲率以及大气折射等。

几何纠正包括两个核心环节:一是像素坐标的变换,即将影像坐标转变为地图或地面坐标;二是对坐标变换后的像素亮度值进行重采样。

本实验将针对不同的数据源和辅助数据,提供以下几种校正方法:Image to Map几何校正:通过地面控制点对遥感图像几何进行平面化的过程,控制点可以是键盘输入、从矢量文件中获取。

地形图校正就采取这种方法。

Image to image几何校正:以一副已经经过几何校正的栅格影像作为基准图,通过从两幅图像上选择同名点(GCP)来配准另一幅栅格影像,使相同地物出现在校正后的图像相同位置。

大多数几何校正都是利用此方法完成的。

Image to image自动图像配准:根据像元灰度值自动寻找两幅图像上的同名点,根据同名点完成两幅图像的配准过程。

当同一地区的两幅图像由于各自校正误差的影像,使得图上的相同地物不重叠时,可利用此方法进行调整1. 地形图的几何校正(1)打开并显示地形图从ENVI主菜单中,选择file →open image file,打开3-几何校正\地形图\G-48-34-a.JPG。

(2)定义坐标从ENVI主菜单栏中,选择Map →Registration →Select GCPs:Image to map。

在image to Map Registration对话框中,点击并选择New,定义一个坐标系从ENVI主菜单栏中,选择Map →Registration →Select GCPs: Image to Map。

如何进行遥感图像的几何校正与分类处理

如何进行遥感图像的几何校正与分类处理

如何进行遥感图像的几何校正与分类处理遥感图像是通过人造卫星、航空器或遥感器获取的地球表面的图像信息。

在进行遥感图像的处理和分析时,几何校正和分类处理是其中重要的步骤。

本文将重点探讨如何进行遥感图像的几何校正和分类处理,并介绍相关的方法和技术。

一、遥感图像的几何校正遥感图像的几何校正是指将图像中的像素点与地球表面上真实位置进行对应,以消除因成像过程中的非完美性而引入的误差。

几何校正的目的是提高图像的空间分辨率和地理位置精度,从而能够更准确地用于地表特征的分析和监测。

1. 预处理在进行几何校正之前,需要先对遥感图像进行预处理,包括去除大气影响、辐射校正和减噪等。

这些预处理步骤有助于提高图像的质量和准确性。

2. 控制点的选择几何校正过程中需要选择一些已知地理位置的控制点,用于图像与地理坐标系统的对应。

这些控制点可以是地面标志物、地理信息系统(GIS)数据或其他已知位置的遥感图像。

控制点的选择应均匀分布在图像中,并要尽量选择在不同地貌和地物类型上的点,以提高校正的准确性。

3. 变换模型的选择几何校正过程中需要选择适合图像特性和误差来源的变换模型。

常用的变换模型包括线性变换模型、多项式模型和地面控制点法等。

选择合适的变换模型可以提高校正的准确性和效率。

4. 校正方法和工具进行几何校正时,可以使用遥感软件如ENVI、ERDAS等提供的功能和工具。

这些软件提供了多种校正方法和算法,如影像配准、几何校正、快速校正等。

根据具体需求和图像特性选择合适的校正方法和工具,并进行参数设置和调整。

二、遥感图像的分类处理遥感图像的分类处理是指将图像中的像素按照其所代表的地物类型进行分类和划分。

分类处理的目的是将图像中的信息有效地提取出来,并用于地表特征的研究、资源调查和环境监测等。

1. 数据预处理在进行分类处理之前,需要对遥感图像进行数据预处理,包括辐射校正、几何校正、噪声抑制等。

这些预处理步骤可以提高分类的准确性和可靠性。

第六章 遥感图像几何处理

第六章 遥感图像几何处理

其中,
A R R R cos 0 1 0 sin 0 a11 a12 a a 21 22 a31 a32 sin 1 0 0 cos 0 cos sin sin 0 cos 0 sin cos 0 a13 a23 a33 sin cos 0 0 0 1
所谓直接法方案是从原始图像阵列出发按行列的顺序依次对每个原始像素点位求其在地面坐标系也是输出图像坐3数字图像亮度或灰度值的重采样以间接法纠正方案为例假如输出图像阵列中的任一像素在原始图像中的投影点位坐标值为整数时便可简单地将整数点位上的原始图像的已有亮度值直接取出填入输出图像
第六章 遥感图像的几何处理
构像方程:
X X Y Y A R t Z P Z St
0
x 0 f
式中:
sin cos (X ) (Z ) (Y ) ( y ) f tan f (Z )
则共线方程可以简写为:
(X ) xf (Z ) (Y ) yf (Z )
共线方程的几何意义:当 地物点P、对应像点p和投 影中心S位于同一条直线上 时,上式成立。
像点P
6.1.3 全景摄影机的构像方程
全景摄影机影像是由一条曝光缝隙沿旁向扫描而成,对 于每条缝隙图像的形成,其几何关系等效于中心投影沿旁向 倾斜一个扫描角θ后,以中心线成像的情况。
由像点坐标可以解算大地(平面)坐标,称为正算公式:
X P X S (Z P Z S ) a11 x a12 y a13 f a31 x a32 y a33 f a x a22 y a23 f YP YS ( Z P Z S ) 21 a31 x a32 y a33 f

如何进行遥感影像的几何校正与处理

如何进行遥感影像的几何校正与处理

如何进行遥感影像的几何校正与处理遥感影像的几何校正与处理是遥感技术中非常重要的环节,它涉及到遥感影像数据的准确性与可靠性。

本文将从几何校正的意义、校正方法和影像处理方面展开论述。

一、几何校正的意义几何校正是指将遥感影像与地球表面几何特征进行匹配,消除影像的位置偏移、旋转和尺度变化等因素,以实现影像在地球表面的精确准位。

几何校正的意义在于:1. 提高遥感影像的空间准确性:经过几何校正的影像能够准确反映地球表面目标的位置和形状,使得遥感分析结果具有更高的可信度。

2. 为后续影像处理提供基础:几何校正是影像处理的基础,只有经过几何校正的影像才能进行后续的影像处理,如图像拼接、变化检测等。

3. 便于地理信息的提取和分析:几何校正后的影像与地理坐标系相一致,可以方便地与其他地理信息数据进行集成,进行地理信息的提取和分析。

二、几何校正的方法目前常用的几何校正方法主要包括控制点法、全自动匹配法和传感器模型方法。

其中,控制点法是最常用的方法,具体步骤如下:1. 选择控制点:在影像上选择一些地面特征明显、位置准确的点,并测量其地理坐标。

2. 特征提取与匹配:通过图像处理技术提取影像和地面控制点的特征,并进行特征匹配。

3. 几何变换:根据控制点的匹配关系,运用几何变换模型(如多项式变换或仿射变换)进行影像的几何变换。

4. 前后视觉精度检查:经过几何校正后,通过前后视觉精度检查来评估影像的校正效果,并及时调整参数以提高校正精度。

除了控制点法,全自动匹配法和传感器模型方法也在一些特定情况下得到应用。

全自动匹配法基于图像匹配算法实现几何校正,传感器模型方法则通过利用传感器系统的几何模型进行影像校正,适用于高精度的几何校正需求。

三、影像处理方面几何校正完成后,还需要进行一系列的影像处理操作,以进一步提取有用的信息。

1. 影像增强:通过图像增强技术,改善影像的对比度、清晰度和色彩等,以提高影像的可视化效果。

2. 影像拼接:在几何校正的基础上,将多个遥感影像进行拼接,生成大尺度的影像,以满足大范围的遥感监测需求。

遥感图像的几何校正56页PPT

遥感图像的几何校正56页PPT
如果同一地区的不同时间的影像,不能把它们归 纳到同一个坐标系中去,图像中还存在变形,这 样的图像是不能进行融合、镶嵌和比较的,是没 有用的
遥感图像的精加工处理
在粗加工处理的基础上,采用地面控制点(GCP) 的方法进一步提高影像的几何精度
几何处理的两个环节
1. 像素坐标的变换——解决位置问题 ➢ 多项式模型 2. 灰度重采样——解决亮度问题 ➢ 最邻近像元采样法 ➢ 双线性内插法 ➢ 双三次卷积重采样法
全景畸变
左图是中心投影方式得到的(比例尺基本一致) 右边是逐点扫描成像得到的影像。横轴是飞行方向,纵轴是
扫描方向。在星下点的扫描线,分辨率最高,两边都在对称 的发生变化 直线在逐点扫描成像图中,变成曲线;圆形变成了椭圆形
不同成像方式引起的影像变形
中心投影方式
➢地形起伏引起的投影差
多中心投影方式
行于航线方向为a θ,垂直于 航线方向为a θ’
aHcosH asec
aasecasec2
逐点扫描成像——全景畸变
当观测视线垂直于地面或者倾斜 了θ角之后,地面分辨率的值发生 变化
随着扫描镜的转动,地面扫描范 围的直径在发生变化,这样的变 化对图像是有影响的,称为全景 畸变
全景畸变的原因:焦距是不变的, 物距在发生变化。导致分辨率发 生变化,也导致比例尺发生变化
地球曲率、大气折光和地形起伏引 起的误差
地球自传引起的变形
当卫星由北向南运行 的同时,地球表面也 在由西向东自转
由于卫星图像每条扫 描线的成像时间不同 ,因而造成扫描线在 地面上的投影依次向 西平移,最终使得图 像发生扭曲
遥感图像的几何变形
遥感图像通常包含严重的几何变形,一般 分为系统性和非系统性两大类
➢由于比例尺变化造成的全景畸变 ➢地形起伏引起的投影差

遥感图像处理—几何校正

遥感图像处理—几何校正

遥感图像处理—⼏何校正 本节将从原理和代码两个⽅⾯讲解遥感图像的⼏何校正。

原理 ⾸先介绍⼏何校正的概念:在遥感成像过程中,传感器⽣成的图像像元相对于地⾯⽬标物的实际位置发⽣了挤压、扭曲、拉伸和偏移等问题,这⼀现象叫做⼏何畸变。

⼏何畸变会给遥感图像的定量分析、变化检测、图像融合、地图测量或更新等处理带来的很⼤误差,所以需要针对图像的⼏何畸变进⾏校正,即⼏何校正。

⼏何校正分为⼏何粗校正和⼏何精校正。

粗校正是利⽤空间位置变化关系,采⽤计算公式和辅助参数进⾏的校正,叫做系统⼏何校正;精校正是在此基础上,使图像的⼏何位置符合某种地理坐标系统,与地图配准,调整亮度值,即利⽤地⾯控制点(GCP)做的⼏何精校正。

⼏何校正步骤:1.空间位置的变换(像元坐标)2.像元灰度值的重新计算,即重采样。

1. 坐标变换 坐标变换分为直接法和间接法。

1)直接法:从原始图像阵列出发,依次计算每个像元在输出图像中的坐标。

直接法输出的像元值⼤⼩不会发⽣变化,但输出图像中的像元分布不均匀。

2)间接法:从输出图像阵列出发,依次计算每个像元在原始图像中的位置,然后计算原始图像在该位置的像元值,再将计算的像元值赋予输出图像像元。

此⽅法保证校正后的图像的像元在空间上均匀分布,但需要进⾏灰度重采样。

该⽅法是最常⽤的⼏何校正⽅法。

由上图可见,直接法直接以原始图像的坐标为基准点,坐标偏移到校正后的图像,坐标的位置有很多出现在了像元的中间位置,所以直接输出像元值⼤⼩导致像元分布不均匀。

⽽对于间接法。

以输出图像的坐标为基准点,已经定义在了格点的位置上,此时反算出该点在原始图像上对应的图像坐标,坐标多数落在像元的中间位置。

这⾥采⽤最邻近法、双线性内插和三次卷积法来计算该点的灰度值,达成重采样的⽬的。

2. 重采样 图像数据经过坐标变换之后,像元中⼼的位置发⽣改变,其在原始图像的位置不⼀定是整数⾏\列,需要根据输出图像各像元在原始图像中对应的位置,对原始图像重采样,建⽴新的栅格矩阵。

遥感数字图像处理-第6章 几何校正

遥感数字图像处理-第6章 几何校正
3
二、几何校正原理
几何校正涉及两个过程: ➢ 一是空间位置(像元坐标)的变换 ➢ 二是像元灰度值的重新计算(重采样)
4
二、几何校正原理
坐标转换 (a)直接法;(b)间接法
5
三、几何校正步骤
几何精校正不需要空间位置变化数据,回避了成像的空间 几何过程,主要借助地面控制点实现校正。其主要校正步 骤为:
第6章
几何校正
几何校正
一、几何校正原理 二、几何校正步骤 三、几何校正类型 四、图像匹配 五、投影转换
难点:图像匹配 重点:几何校正方法
2
一、几何校正原理
几何校正和几何配准
➢ 几何配准是指将不同时间、不同波段、不同传感器系统所获得的同一 地区的图像(数据),经几何变换使同名像点在位置上和方位上完全 叠合的操作。
➢ 对畸变图像和基准图像建立统一的坐标系和地图投影。 ➢ 选择地面控制点(GCP),按照GCP选择原则,在畸变图像
和基准图像上寻找相同位置的地面控制点对。 ➢ 选择校正模型,利用选择的GCP数据求取校正模型的参数,
然后利用校正模型实现畸变图像和基准图像之间的像元坐 标变换。 ➢ 选择合适的重采样方法对畸变图像的输出图像像元进行灰 度赋值。 ➢ 几何校正的精度分析。
9
四、图像匹配
3.图像匹配方法 根据图像特征的选择,图像匹配方法一般可以分为基于灰
度的图像匹配和基于特征的图像匹配。
10
➢ 几何配准与几何校正的原理是完全相同的,即都涉及到空间位置(像 元坐标)变换和像元灰度值重采样处理两个过程。
➢ 二者的区别主要在于其侧重点不相同:几何校正注重的是数据 本身的处理,目的是为了对数据的一种真实性还原。而几何配 准注重的是图和图(数据)之间的一种几何关系,其目的是为 了和参考数据达成一致,而不考虑参考数据的坐标是否标准、 是否正确。也就是说几何校正和几何配准最本质的差异在于参 考的标准。另外,几何校正更像前期数据处理,几何配准更像 后期处理。

遥感数据图像处理实验三、遥感图像的几何校正与裁剪.

遥感数据图像处理实验三、遥感图像的几何校正与裁剪.

实验三、遥感图像的几何校正与裁剪实验内容:1.图像分幅裁剪(Subset Image2.图像几何校正(Geometric Correction3.图像拼接处理(Mosaic Imgaes4.生成三维地形表面(3D Surfacing1.图像分幅裁剪在实际工作中,经常需要根据研究工作范围对图像进行分幅裁剪,按照ERDAS IMAGINE 8.4实现图像分幅裁剪的过程,可以将图像分幅裁剪为两类型:规则分幅裁剪,不规则分幅裁剪。

1.1规则分幅裁剪(以c:\Program File\ IMAGINE 8.4\examples\lanier.img为例规则分幅裁剪是指裁剪图像的范围是一个矩形,通过左上角和右上角两点的坐标可以确定图像的裁剪位置,过程如下:方法一:→ERDAS IMAGINE 8.4 图标面板菜单条:Main→Data Preparation(或单击ERDAS IMAGINE 8.4 图标面板工具条“DataPrep”图标→打开Data Preparation 对话框→单击Subset Image按钮,打开Subset对话框在Subset对话框中需要设置下列参数:→输入文件名(Input File:lanier.img→输出文件名(Output File:lanier_sub.img→坐标类型(Coordinate Type:Map→裁剪范围(Subset Definition:ULX、ULY、LRX、LRY(注:ULX,ULY是指左上角的坐标,LRX,LRY是指右上角的坐标,缺省状态为整个图像范围→输出数据类型(Output Data Type:Unsigned 8 Bit→输出文件类型(Output Layer Type:Continuous→输出统计忽略零值:Ignore Zero In Output Stats→输出像元波段(Select Layers:2,3,4→OK(关闭Subset对话框,执行图像裁剪方法二:→ERDAS IMAGINE 8.4图标面板菜单条:Main→Start IMAGINE Viewer(或单击RDAS IMAGINE 8.4图标面板工具条“Viewer”图标→打开一个二维视窗→单击视窗工具条最左端的“打开文件”图标→打开Select Layer To Add对话框在Select Layer To Add对话框完成以下设置:→Look In:examples→File Name:lanier.img→Files of type:IMAGINE Image→双击OK按钮→在二维视窗中打开lanier.img文件→单击ERDAS IMAGINE 8.4 图标面板工具条“DataPrep”图标→打开Data Preparation对话框→单击Subset Image按钮→打开Subset对话框在Subset对话框中需要设置下列参数:→输入文件名(Input File:lanier.img→输出文件名(Output File:lanier_sub.img→坐标类型(Coordinate Type:Map→输出数据类型(Output Data Type:Unsigned 8 Bit →输出文件类型(Output Layer Type:Continuous→输出统计忽略零值:Ignore Zero In Output Stats→输出像元波段(Select Layers:2,3,4→单击From Inquire Box按钮→打开Invalid Coordinate Type对话框→单击Continue→在显示图像文件lanier.img视窗中单击工具条的“+”按钮,打开Inquire Cursor 对话框,在视窗中移动十字光标,确定裁剪范围左上角和右下角,读取其坐标分别填入Subset Image对话框的ULX,ULY中和LRX,LRY中→单击OK按钮(关闭Subset对话框,执行图像裁剪方法三:首先在视窗中打开lanier.img文件→AOI→Tools打开AOI工具面板→单击矩形框确定裁剪范围→File→Save→AOI Layer As→打开Save AOI As对话框,输入文件名:2→单击OK(退出Save AOI As对话框→单击ERDAS IMAGINE 8.4 图标面板工具条“DataPrep”图标→打开Data Preparation对话框→单击Subset Image按钮→打开Subset对话框在Subset对话框中需要设置下列参数: →输入文件名(Input File:lanier.img→输出文件名(Output File:lanier_sub.img→坐标类型(Coordinate Type:Map→输出数据类型(Output Data Type:Unsigned 8 Bit→输出文件类型(Output Layer Type:Continuous →输出统计忽略零值:Ignore Zero In Output Stats →输出像元波段(Select Layers:2,3,4→单击AOI按钮→打开Choose AOI对话框→在Choose AOI对话框作如下设置: →AOI Source:File→AOI File:2→单击OK(退出Choose AOI对话框→单击OK(退出Subset对话框,执行图像裁剪→单击OK(退出Modeler对话框,完成图像裁剪1.2不规则分幅裁剪不规则分幅裁剪是指裁剪图像的边界范围是个任意多边形,无法通过左上角和右下角两点的坐标确定图像的裁剪位置,而必须事先生成一个完整的闭合多边形区域,可以是一个AOI多边形,也可以是ArcInfo的一个Polygon Coverage,针对不同的情况采用不同的裁剪过程。

1 遥感图像处理--几何校正

1 遥感图像处理--几何校正

北京54坐标系和西安80坐标系 采用的主要参数
坐标名称 北京54 西安80
投影类型 Transverse Mercator Transverse Mercator
椭球体 Krasovsky IAG-75
基准面 北京54 西安80
知识介绍—建立自定义坐标系
ENVI中坐标定义文件存放在安装目录下的 IDL??\products\envi??\map_proj文件夹下, 三个文件记录了坐标信息:
知识介绍—图像投影转换
投影转换 1)选择主菜单->Map->Convert Map Projection。 2)在Convert Map Projection对话框中,单击Change Proj按钮。 3)在Projection Selection对话框中,选择New按钮。 4)在Customized Map Projection Definition对话框中填写投影名
ENVI中的几何校正
重采样方法(ENVI提供的内插方法)
1)最近邻法
取与所计算点(x,y)周围相邻的4个点,比较它们 与被计算点的距离,哪个点距离最近,就取哪个亮 度值作为(x,y)点的亮度值。
2)双线性内插法
取(x,y)点周围的4个邻点,在y方向内插二次, 再在x方向上内插一次,得到(x,y)点的亮度值f(x,y)。
ellipse.txt 椭球体参数文件 datum.txt 基准面参数文件 map_proj.txt 坐标系参数文件
知识介绍—建立自定义坐标系
ENVI中自定义坐标系分三步:定义椭球体、基准面 和定义坐标参数。
第一步:添加椭球体
椭球体描述语法:<椭球体名称>, <长半轴>, <短半 轴>

遥感图像的几何校正原理

遥感图像的几何校正原理

遥感图像的几何校正原理遥感图像的几何校正是指通过对图像进行空间几何变换,将其投影到地球表面,使得图像中的每一点对应到地球表面上的一个准确位置。

这样做的目的是为了消除图像中由于遥感器在获取图像时的姿态、高度、地球自转等因素造成的图像畸变,并且使得图像能够与地理信息系统中的地图数据进行精确叠加,从而实现对地理空间信息的准确提取和分析。

在遥感图像处理中,几何校正是非常重要的一环,对于后续的遥感信息提取、地图制图和空间分析等应用具有重要的意义。

遥感图像的几何校正原理主要包括以下几个方面:1. 姿态校正:遥感器在获取图像时往往会受到外部因素的影响,导致姿态不稳定,从而引起图像中的位置畸变。

因此,需要对图像进行姿态校正,使得图像中的每一个像素能够按照准确的空间位置进行定位。

姿态校正的主要方法包括使用姿态角信息进行校正、使用GPS/惯导等辅助信息进行姿态测量以及使用地面控制点进行姿态精确校正。

2. 像元定位:在遥感图像中,像元是指图像中的一个最小单元,通常对应于地面上的一个小区域。

在进行几何校正时,需要将图像中的像元与地球表面上的实际位置进行对应,这就需要确定每个像元的准确位置,即像元的定位。

像元定位的主要方法包括使用地面控制点进行像元定位、通过建立像元坐标系系统进行像元定位以及通过地形起伏对像元进行补偿。

3. 系统误差校正:在遥感图像获取过程中,会受到一些系统误差的影响,例如大气、地形或者地面表面的变化等因素会导致图像中的位置畸变。

因此,需要进行系统误差校正,以消除这些系统误差对图像的影响,从而提高图像的精度和准确度。

系统误差校正的主要方法包括对图像进行大气校正、进行地形效应校正以及通过地面控制点进行系统误差校正。

4. 投影变换:在进行几何校正时,需要对图像进行投影变换,将其投影到地球表面上的准确位置。

投影变换的最常用方法是采用地图投影方法,将图像投影到地图数据的坐标系上,从而实现图像与地图数据的叠加和精确对应。

遥感图像解译中的几何纠正方法

遥感图像解译中的几何纠正方法

遥感图像解译中的几何纠正方法随着遥感技术的不断发展,遥感图像的获取和应用越来越普遍。

然而,由于拍摄角度、地面形态等因素的影响,遥感图像存在几何形变的问题。

为了解决这个问题,人们提出了许多几何纠正方法。

本文将介绍几种常见的遥感图像几何纠正方法,并探讨它们的优劣势。

一、多项式拟合法多项式拟合法是一种常用的几何纠正方法。

它通过将原始图像中的像素位置与现实世界中的地理位置进行对应,建立像素坐标与地理坐标之间的映射关系。

随后,利用多项式拟合的方法,根据已知的像素位置和地理位置对应关系,推导出一个几何变换模型,从而对图像进行几何纠正。

多项式拟合法的优点是简单易行,适用于各种图像,并且能够有效地减小几何变形。

然而,它也存在一定的局限性,例如对于大范围的图像,多项式拟合法在极端情况下可能会引入较大的误差。

二、控制点法控制点法是一种基于已知控制点坐标的几何纠正方法。

首先,需要在原始图像和现实世界中选取一些已知位置的控制点。

然后,根据这些已知控制点的像素坐标和地理坐标,建立起坐标之间的对应关系。

最后,通过将图像中的像素位置与地理位置对应起来,根据已知控制点的坐标对图像进行几何纠正。

控制点法的优点是准确性高,适用于各种尺度的图像。

然而,它的缺点是需要大量的已知控制点,并且对于图像中没有控制点的区域,无法进行几何纠正。

三、地形校正法地形校正法是一种考虑地面形态的几何纠正方法。

遥感图像的获取往往会受到地面形态的影响,导致图像中的距离和角度存在失真。

地形校正法通过获取地面高程数据,并将其与遥感图像相结合,对图像进行几何纠正。

地形校正法的优点是能够考虑地面形态,提高几何纠正的精度。

然而,它的缺点是需要获取地面高程数据,成本较高且工作量较大。

同时,在平坦地区或缺乏高程数据的地区,地形校正法可能不能有效实施。

综上所述,遥感图像解译中的几何纠正方法有多种选择。

每种方法都有其独特的优劣势,适用于不同的情况。

在实际应用中,可以根据需求和条件选取合适的几何纠正方法,以提高图像的几何精度和应用效果。

第四章 遥感图像处理――几何校正PPT课件

第四章 遥感图像处理――几何校正PPT课件
22
三种内插方法比较
方法 1
优点 简单易用,计算量小
缺点
处理后的影像亮度具有不连 续性,影响精确度
精度明显提高,特别是对亮度 计算量增加,且对影像起到
2
不连续现象或线状特征的块状 平滑作用,从而使对比度明
化现象有明显的改善。
显的分界线变得模糊。
3
更好的影像质量,细节表现更 为清楚。
工作量很大。
23
18
像元灰度值重采样
校正前后图像的分辨率变化、像元点位置相对变化引 起输出图像阵列中的同名点灰度值变化。
x X
P(X,Y) Y
纠正后影像
p(x,y) y
纠正前影像
19
最近邻法
—以距内插点最近的观测点的像元值为所求的像元值。
影像中两相邻点的距离为1,即 行间距△x=1,列间距△y=1,取与 所计算点(x,y)周围相邻的4个点,比 较它们与被计算点的距离,哪个点距 离最近,就取哪个的亮度值作为 (x,y)点的亮度值f(x,y)。设该 最近邻点的坐标为(k,l),则
一是指平台在运行过程中,由于姿态、地球曲 率、地形起伏、地球旋转、大气折射、以及传 感器自身性能所引起的几何位置偏差。
二是指图像上像元的坐标与地图坐标系统中相 应坐标之间的差异。
3
引起遥感图像几何变形的因素
一、遥感平台位置和运动状态变化的影响
旁向位移的影响 速度变化即航向位移的影响
高度变化的影响—地面分辨率不均匀 俯仰变化的影响
21
三次卷积内插法
取与计算点(x,y)周 围 相 邻 的 16 个 点 , 与 双 向 线 性内插类似,可先在某一方 向上内插,每4个值依次内插 4次,求出f(x,j-1),f(x, j ) , f(x,j+1) , f(x,j+2) , 再根据这四个计算结果在另 一 方 向 上 内 插 , 得 到 f(x , y)。

如何进行遥感图像的几何校正与纠正

如何进行遥感图像的几何校正与纠正

如何进行遥感图像的几何校正与纠正遥感图像是通过无人机、卫星等远距离设备获取的地球表面的影像数据。

这些图像在应用于地理信息系统(GIS)、自然资源管理、城市规划等领域时,需要进行几何校正与纠正。

本文将介绍什么是遥感图像的几何校正与纠正,以及如何进行这一过程。

一、什么是遥感图像的几何校正与纠正遥感图像的几何校正与纠正是指将采集到的图像数据与真实地理空间进行对应,消除由于图像采集时摄像设备、地球曲率等因素引起的形变、偏移等问题,使图像具备准确的地理位置信息。

这项工作是遥感技术应用的重要环节,对于后续的数据分析和信息提取至关重要。

二、遥感图像的几何校正与纠正方法1. 外方位元素法外方位元素法是利用航片或图像外方位元素(像空间坐标与地面坐标之间的变换参数)进行几何校正与纠正的方法。

在这种方法中,需要准确确定图像的摄影中心、摄影距离以及摄影方位角等相关参数,通过计算来修正图像的几何形变。

外方位元素法准确性较高,适用于相对高精度的项目。

2. 控制点法控制点法是通过在图像上选择一系列已知地理位置的控制点,在地面实地测量其坐标,然后通过像点与地理坐标的对应关系,进行几何校正与纠正的方法。

该方法的关键在于控制点的选择与测量精度,控制点越多、分布更均匀,纠正效果越好。

3. 数字高程模型(DEM)法数字高程模型法是通过使用数字高程模型数据,将遥感图像与地面实际高程进行对照校正的方法。

通过图像与DEM之间的高差计算,对图像进行几何校正与纠正。

这种方法适用于大范围的地形起伏、高程变化较大的区域。

三、遥感图像的几何校正与纠正注意事项1. 数据预处理在进行几何校正与纠正之前,需要对采集到的遥感图像进行预处理。

预处理包括影像增强、去噪、边缘检测等步骤,以提高图像质量和准确性。

2. 参考数据选择在进行校正与纠正时,需要选择适当的参考数据,以确保纠正结果的准确性。

参考数据可以包括航片、已经准确校正的图像、已知地理坐标点等。

3. 校正模型选择校正模型选择是几何校正与纠正的关键步骤之一。

遥感教案-5第五章-遥感图像的几何处理

遥感教案-5第五章-遥感图像的几何处理

使其值最大的坐标位置就是两个图像相匹配的位置
2绝对差值法 该方法是用模块在搜索图像的搜索区内逐个像元地移动并运用下式进行计算
在搜索区内,使d(m,n)为最小值的坐标位置(m,n)就是Ti和Si匹配最好的位置。
二 数字图像的镶嵌 当你感兴趣的研究区域在不同的图像文件时,需要对不同的图像文件合在一起形成一幅完整的包含感兴趣区域的图像,这就是图像镶嵌。通过图像镶嵌处理,可以获得更大范围的地面图像。参与镶嵌的图像可以是不同时间同一传感器获得,也可以是不同时间不同传感器获得,但要求镶嵌的图像之间要有一定的重叠度。
四 地球曲率引起的图像变形
地球曲率引起的像点位移与地形起伏引起的像点位移类似。只要把地球表面(把地球表面看成球面)上的点到地球切平面的正射投影距·离看做是一种系统的地形起伏,就可以利用前面介绍的像点位移公式来估计地球曲率所引起的像点位移,如图所示。
五 大气折射引起的图像变形
六 地球自转的影响
一 遥感图像的精加工处理 遥感图像的精校正是指消除图像中的几何变形,产生一幅符合某种地图投影或图形表达要求的新图像的过程。它包括两个环节:一是像素坐标的变换;二是对坐标变换后的像素亮度值进行重采样。常用的纠正方法有多项式法,共线方程法,
多 项 式 法
1 基本思路 校正前的图像看起来是由行列整齐的等间距像元点组成的,但是实际上,由于某种几何畸变,图像中像元点对应的地面距离并不相等。校正后的图像也是由等间距的网格点组成的,且以地面为标准,符合某种投影的均匀分布。
).当外方位元素偏离标准位置而出现变动时,就会使图像产生变形.这种变形一般 由地物点图像的坐标误差来表达,并可以通过传感器的构像方程推出.
二 传感器外方位元素变化的影响
三 地形起伏引起的像点位移

遥感图像的几何处理

遥感图像的几何处理
△x =bb′ sinɑ λ x △y =bb′cosɑ λ y θ= △y /l
令l=x(或y),则得到由地球自转引 起的图像变形误差公式:
§5-3 遥感图像的几何处理
1几何处理的重要性: 1 各种专题图的生产,要求改正影像的几何
变形
2 处理、分析和综合利用多尺度的遥感数 据、多源遥感信息的表示、融合及混合像元 的分解时,必须保证各不同数据源之间几何 的一致性
(1) 中心投影情形时
在垂直摄影的条件下, φ = ω =κ ≈0 , 地形起伏引起的像点位移为: δh=rh/H
δxh=xh/H δyh=yh/H
其中x、y为地面点对应的像点坐标,
δx 、δy 为由地形起伏引起的在x、y方向上的像点位移
(2) 推扫式成像情形时 由于x=0, δxh=xh/H=0 而在y上方有: δyh=yh/H 即投影差只发生在y方向(扫描方向)
地球自 转的影响
图像底边中点的坐标位 移产生了图像底边中点 的坐标位移△x和△y, 以及平均航偏角θ。
△x =bb′ sinɑ λ x △y =bb′cosɑ λ y θ= △y /l
α是卫星运行到图像中心点位置时的 航向角;
l是图像x方向边长; λx和λy是图像x和y方向的比例尺。
bb′=WLt
竖直摄影条件下 φ = ω =κ ≈0
1 -κ -φ
At ≈ κ 1 -ω
φ ω1
可以得到外方位元素变化所产生的像点位移为:
dx= -(f/H)dXS-(x/H)dZS-[f(1+x2/f2)]dφ -(xy/f)dω +ydκ dy= -(f/H)dYS-(y/H)dZS -(xy/f)dφ -[f(1+x2/f2)] dω -xdκ

遥感图像影像几何校正方法与精度评价

遥感图像影像几何校正方法与精度评价

遥感图像影像几何校正方法与精度评价遥感技术是一种通过航空器或卫星获取地球表面信息的技术手段。

为了获得准确的地理空间信息,遥感图像需要经过几何校正。

本文将介绍几种常用的遥感图像影像几何校正方法,并探讨它们的精度评价。

一、几何校正方法1. 多点校正法多点校正法是一种常用的几何校正方法。

它通过在图像中选择多个控制点,然后根据这些控制点在现实地面上的坐标,使用几何变换公式进行图像的几何校正。

这种方法简单易行,适用于中等分辨率的图像。

2. 数字高程模型校正法数字高程模型校正法是一种基于数字高程模型的几何校正方法。

首先,通过获取地面的数字高程模型,然后将图像与数字高程模型进行配准,最后进行几何校正。

这种方法的优点是精度较高,适用于高分辨率的图像。

3. 惯导校正法惯导校正法是一种利用航空器或卫星的惯性导航系统进行几何校正的方法。

惯性导航系统可以测量航空器或卫星的姿态和位置信息,根据这些信息对图像进行几何校正。

这种方法的精度较高,适用于航空器或卫星上配备有惯性导航系统的情况。

二、精度评价几何校正的精度评价是衡量几何校正过程中误差大小的方法。

常用的评价指标有均方根误差(RMSE)和控制点定位精度。

1. 均方根误差(RMSE)均方根误差是通过对校正前后的像素位置误差进行统计分析得到的一个指标。

它是校正后图像中所有像素位置误差的平方和的开方。

均方根误差越小,表示几何校正的精度越高。

2. 控制点定位精度控制点定位精度是通过选取一组已知坐标的控制点,然后对校正后图像中的相应像素进行位置测量,计算其与控制点的位置误差。

控制点定位精度越小,表示几何校正的精度越高。

三、案例分析以一幅航拍图像为例,使用多点校正法、数字高程模型校正法和惯导校正法进行几何校正,并对校正后的图像进行精度评价。

多点校正法得到的校正图像的RMSE为0.5个像素,控制点定位精度为2米。

数字高程模型校正法得到的校正图像的RMSE为0.2个像素,控制点定位精度为0.5米。

遥感图像处理2(几何校正)_OK

遥感图像处理2(几何校正)_OK
第四章
遥感图像处理
(几何校正)
2021/8/5
1
1 数字图象的辐射纠正
• 进入传感器的辐射强度反映在图像上就是亮度值(灰 度值)。辐射强度大,亮度值越大。理论上该值由两 个物理量决定,一是太阳辐射照射到地面的辐射强度; 二是地物的光谱反射率。但实际测量时,辐射强度值 还受到其它因素的影响而发生改变,这一改变的部分 就是需要校正的部分,称为辐射畸变。
地形图)和原始图像上分别采集对应点的坐标(至少采集六
对坐标,这些点叫做“控制点”),将这六对坐标对代入二
元二次多项式计算函数关系式的系数,得出图像坐标与地面
真实坐标之间的函数关系式。然后即可根据该函数关系式一
一求算图像上各个像元点的正确坐标值,从而得出校正图像。
最后是求算校正后各个像元的亮度值,可以采用最邻近法、
23
2.3.1 坐标关系的建立
(xp ,yp)(XP,YP)分别是任意一个像元在原
始图像和纠正后图像中的坐标。
Xp FX (xp, yp) Yp FY(xp, yp)
从理论上分析,我们应该利用原始图像上任意点的坐标来求 纠正后图像上的对应点的坐标,从而得出纠正图像。
而函数关系式的确定就需要采集控制点来得出。可以在已知 控制点理论坐标的基础上,从原始图像上读取控制点的图上真实 坐标,带入函数关系式求出函数系数,得到函数关系式。
o-xyf x y f 分别平行于UVW轴
10
2.2 遥感图像几何畸变
• 几何畸变:遥感图像在几何位置上发生的变化,诸如 行列不均匀、像元大小与地面大小对应不准确,地物 形状不规则变化等畸变时。
– 遥感器本身引起的畸变 – 外部因素引起的畸变 – 处理过程中引起的畸变
2021/8/5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A是传感器坐标系相对地面坐标系的旋转矩阵,是传感器三个姿态角的函数。

从通用构像方程出发,可写出各种类型传感器的构像方程。
5
几何处理两个层次
粗纠正:仅对图像上的系统几何误差进 行改正。对传感器内部畸变的改正很有效, 但处理后图像仍有较大的残差。 精纠正:消除图像中的几何变形,得到 符合某种地图投影或图形表达要求的新图 像。
7
MSS图像的粗纠正,需要得到:
成像时投影中心的坐标 卫星姿态角 扫描角
8
精纠正
两个环节:


像素坐标的变换(将图像坐标转变为地图或地面坐标) 对坐标变换步骤:

根据图像的成像方式确定影像坐标和地面坐标之间的数学 模型; 根据所采用的数学模型确定纠正公式; 根据地面控制点和对应像点坐标进行平差计算变换参数, 评定精度。 对原始图像进行变换计算,像素亮度值重采样。
4
构像方程:地物点在图像上的图像坐标 ( x, y ) 和其在地
面对应点的大地坐标 ( X , Y , Z ) 之间的数学关系。 地面坐标系传感器坐标系图像坐标系
( X ,Y , Z )
的数学关系。
(U ,V ,W )
( x, y )
通用构像方程:地物点在地面坐标系与传感器坐标系之间
X X U Y Y A V Z P Z S W P
6
粗纠正
——基于图像的构像方程来进行。 MSS的构像方程: (任一像元的构像,都等效于中心投影朝旁向旋转了 一个扫描角后,以像幅中心成像的几何关系。)
X X 0 Y Y A R 0 t Z P Z S f

数字图像镶嵌
18
图像间的自动配准


图像配准是多源数据进行比较和分析的基本保证 图像配准的两种方式:

相对配准 绝对配准

图像配准通常采用多项式纠正法,分两步
确定足够数量的图像间同名点 通过所选同名点解算多项式系数,通过纠正完成一幅
图像对另一幅图像的几何纠正
19
图像配准的关键问题 ——同名点的选取

差分测度
S (c, r ) Ti , j Si r , j c


勒让德多项式 双变量分区插值多项式
11
多项式纠正中的几个重要的问题
问题一:利用已知地面控制点求解多项式系数

利用已知控制点的坐标值按最小二乘原理求解。 地面控制点要求:

在影像上为明显的地物点,易于判读; 在影像上均匀分布。

地面控制点个数要求:
1 n (t 1)( t 2) 2
方法之一:利用图像相关法自动获取
20
相关性测度

相关系数
(c, r )
( f
i 1 j 1
m
m
i, j
f i , j )(g i r , j c g r ,c )
1 2
m m m m 2 2 ( f i , j f i , j ) ( g i r , j c g r ,c ) i 1 j 1 i 1 j 1

双线性内插法
(实践中常采用)

双三次卷积重采样法
(内插精度较高,但计算量大)
15
双线性内插法
I p Wx I Wy Wx1
T
I11 Wx 2 I 21
I12 Wy1 W I 22 y2
Wx1 1 x Wx 2 x
W y1 1 y W y 2 y
16
方法二:共线方程纠正
建立在图像坐标与地面坐标严格数学变换 关系的基础上,是对成像时空间几何形态 的直接描述。 纠正过程中需要有地面高程信息。 虽有严密的理论基础,但数学模型中参数 的确定有着很强的近似性,因此其精度并 不比多项式纠正的精度高。

17
遥感图象几何处理的应用

图像间的自动配准
9
方法一:多项式纠正
回避成像的空间几何过程,直接对图像变 形的本身进行数学模拟。 把遥感图像的总体变形看作是平移、缩放、 旋转、仿射、偏扭、弯曲以及更高次的基 本变形的综合作用结果。 用一个适当的多项式来描述图像相应点之 间的坐标关系。

10
常用的多项式

一般多项式
2 2 x a ( a X a Y ) ( a X a XY a Y ) 0 1 2 3 4 5 2 2 y b ( b X b Y ) ( b X b XY b Y ) 0 1 2 3 4 5
遥感图像几何处理
1
主要内容:
遥感图像几何变形 遥感图像的几何处理
遥感图像几何处理的应用
2
遥感图像的几何变形


遥感图像的几何变形是指原始图像上各地物的几 何位置、形状、尺寸、方位等特征与在参照系统 (切平面坐标系)中的表达要求不一致时产生的 变形。 变形误差

静态误差与动态误差 内部误差与外部误差
12
问题二:坐标纠正变换后数字图像的边界范围的确定
原则是:既包括了纠正后图像的全部内容,又使 空白图像空间尽可能地少。
13
问题三:坐标纠正变换两种方案

直接法(需进行像元的重新排列,要求存储空间大一倍,计算
时间也长)

间接法(常采用)
14
几个重要的问题
问题四:亮度值重采样

最邻近像元采样
(简单计算量小、辐射保真度好,但几何精度低)
传感器成像方式 传感器外方位元素的变化 地形起伏 地球曲率 大气折射 地球自转
3

引起变形误差的原因

遥感图像几何处理

概念:改正遥感图像中的几何变形,并将其投影到需要的地理坐标系中。 数学基础:
遥感制图: 地面实况 遥感图像 地图 地面坐标图像坐标地图坐标 地面坐标系传感器坐标系图像坐标系地图坐标系 几何处理: 图像坐标系(出发点)地图坐标系(归宿) 地面坐标地图坐标(地图投影) 地面坐标图像坐标(构像方程) 因此,几何处理的实质是将由构像方程建立的关系与由地图投影建立的关系相 统一,进一步满足制图的几何要求.
相关文档
最新文档