2017年河南省郑州市中考数学一模试卷

合集下载

2017年河南省中考数学试卷(含答案解析版),推荐文档

2017年河南省中考数学试卷(含答案解析版),推荐文档

2017 年河南省中考数学试卷一、选择题(每小题3 分,共30 分)1.(3 分)下列各数中比1 大的数是()A.2 B.0 C.﹣1 D.﹣32.(3 分)2016 年,我国国内生产总值达到74.4 万亿元,数据“74.4 万亿”用科学记数法表示()A.74.4×1012 B.7.44×1013 C.74.4×1013D.7.44×10153.(3 分)某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.1 34.(3 分)解分式方程x‒ 1﹣2=1 ‒x,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3 5.(3 分)八年级某同学6 次数学小测验的成绩分别为:80 分,85 分,95 分,95 分,95 分,100 分,则该同学这6 次成绩的众数和中位数分别是()A.95 分,95 分B.95 分,90 分C.90 分,95 分D.95 分,85 分6.(3 分)一元二次方程2x2﹣5x﹣2=0 的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根7.(3 分)如图,在▱ABCD 中,对角线AC,BD 相交于点O,添加下列条件不能判定▱ABCD 是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠28.(3 分)如图是一次数学活动可制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()1 A.81B.61C.41D.29.(3 分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2 的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D′处,则点C 的对应点C′的坐标为()A.(3,1)B.(2,1)C.(1,3)D.(2,3)10.(3 分)如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O,B 的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()3﹣32 2A.3 B.2 C.22D.4二、填空题(每小题3 分,共15 分)11.(3 分)计算:23﹣4=.{x x‒‒21<≤ 012.(3 分)不等式组 2的解集是.213.(3 分)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m 与n 的大小关系为.14.(3 分)如图1,点P 从△ABC 的顶点B 出发,沿B→C→A 匀速运动到点A,图2 是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是.15.(3 分)如图,在Rt△ABC 中,∠A=90°,AB=AC,BC= 2+1,点M,N 分别是边BC,AB 上的动点,沿MN 所在的直线折叠∠B,使点B 的对应点B′始终落在边AC 上,若△MB′C为直角三角形,则BM 的长为.3﹣3﹣三、解答题(本题共8 个小题,满分75 分)16.(8 分)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x= 2+1,y= 2﹣1.17.(9 分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A40≤x<3016B30≤x<60aC60≤x<90Db90≤x<120E2x≥120请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有人,a+b= ,m= ;(2)求扇形统计图中扇形C 的圆心角度数;(3)该校共有学生1000 人,请估计每月零花钱的数额x 在60≤x<120 范围的人数.18.(9 分)如图,在△ABC 中,AB=AC,以AB 为直径的⊙O 交AC 边于点D,过点C 作CF∥AB,与过点B 的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC 的长.19.(9 分)如图所示,我国两艘海监船A,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B 船在A 船的正南方向5 海里处,A 船测得渔船C 在其南偏东45°方向,B 船测得渔船C 在其南偏东53°方向,已知A 船的航速为30 海里/小时,B 船的航速为25 海里/小时,问4C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈5,cos53°3 4≈5,tan53°≈3,2≈1.41)20.(9 分)如图,一次函数y=﹣x+b 与反比例函数y= (x>0)的图象交于点A(m,3)和B(3,1).(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P 是线段AB 上一点,过点P 作PD⊥x 轴于点D,连接OP,若△POD 的面积为S,求S 的取值范围.21.(10 分)学校“百变魔方”社团准备购买A,B 两种魔方,已知购买2 个A 种魔方和6 个B 种魔方共需130 元,购买3 个A 种魔方和4 个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B 两种魔方共100 个(其中A 种魔方不超过50 个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.(10 分)如图1,在Rt△ABC 中,∠A=90°,AB=AC,点D,E 分别在边AB,AC 上,AD=AE,连接DC,点M,P,N 分别为DE,DC,BC 的中点.(1)观察猜想图1 中,线段PM 与PN 的数量关系是,位置关系是;(2)探究证明把△ADE 绕点A 逆时针方向旋转到图2 的位置,连接MN,BD,CE,判断△PMN 的形状,并说明理由;(3)拓展延伸把△ADE 绕点 A 在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN 面积的最大值.223.(11 分)如图,直线y=﹣3x+c 与x 轴交于点A(3,0),与y 轴交于点B,抛4物线y=﹣3x2+bx+c 经过点A,B.(1)求点 B 的坐标和抛物线的解析式;(2)M(m,0)为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P,N.①点M 在线段OA 上运动,若以B,P,N 为顶点的三角形与△APM 相似,求点M 的坐标;②点M 在x 轴上自由运动,若三个点M,P,N 中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N 三点为“共谐点”.请直接写出使得M,P,N 三点成为“共谐点”的m 的值.2017 年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3 分,共30 分)1.(3 分)(2017•河南)下列各数中比1 大的数是()A.2 B.0 C.﹣1 D.﹣3【考点】18:有理数大小比较.【分析】根据正数大于零、零大于负数,可得答案.【解答】解:2>0>﹣1>﹣3,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零、零大于负数是解题关键.2.(3 分)(2017•河南)2016 年,我国国内生产总值达到74.4 万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×1015【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.【解答】解:将74.4 万亿用科学记数法表示为:7.44×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.(3 分)(2017•河南)某几何体的左视图如图所示,则该几何体不可能是(A.B.C.D.【考点】U3:由三视图判断几何体.【分析】左视图是从左边看到的,据此求解.【解答】解:从左视图可以发现:该几何体共有两列,正方体的个数分别为2,1,D 不符合,故选D.【点评】考查了由三视图判断几何体的知识,解题的关键是了解该几何体的构成,难度不大.1 34.(3 分)(2017•河南)解分式方程x‒ 1﹣2=1 ‒x,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3 【考点】B3:解分式方程.【专题】11 :计算题;522:分式方程及应用.【分析】分式方程变形后,两边乘以最简公分母x﹣1 得到结果,即可作出判断.1 3【解答】解:分式方程整理得:x‒ 1﹣2=﹣x‒ 1,去分母得:1﹣2(x﹣1)=﹣3,故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检5.(3 分)(2017•河南)八年级某同学6 次数学小测验的成绩分别为:80 分,85 分,95 分,95 分,95 分,100 分,则该同学这6 次成绩的众数和中位数分别是()A.95 分,95 分B.95 分,90 分C.90 分,95 分D.95 分,85 分【考点】W5:众数;W4:中位数.【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:位于中间位置的两数分别是95 分和95 分,故中位数为95 分,数据95 出现了 3 次,最多,故这组数据的众数是95 分,故选A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.6.(3 分)(2017•河南)一元二次方程2x2﹣5x﹣2=0 的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根【考点】AA:根的判别式.【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣5)2﹣4×2×(﹣2)=41>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0 时,方程有两个不相等的实数根;当△=0 时,方程有两个相等的实数根;当△<0 时,方程无实数根.7.(3 分)(2017•河南)如图,在▱ABCD 中,对角线AC,BD 相交于点O,添加下列条件不能判定▱ABCD 是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2【考点】L9:菱形的判定;L5:平行四边形的性质.【分析】根据平行四边形的性质.菱形的判定方法即可一一判断.【解答】解:A、正确.对角线相等是平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD 的邻边相等,即可判定是菱形.故选C.【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.8.(3 分)(2017•河南)如图是一次数学活动可制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()1 A.81B.61C.41D.2【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个数字都是正数的情况数,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有16 种等可能的结果,两个数字都是正数的有 4 种情况,4 1∴两个数字都是正数的概率是:16=4.故选:C.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时注意:概率=所求情况数与总情况数之比.9.(3 分)(2017•河南)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2 的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D′处,则点C 的对应点C′的坐标为()A.(3,1)B.(2,1)C.(1,3)D.(2,3)【考点】LE:正方形的性质;D5:坐标与图形性质;L1:多边形.1【分析】由已知条件得到AD′=AD=2,AO=2AB=1,根据勾股定理得到OD′=AD'2 ‒OA2= 3,于是得到结论.【解答】解:∵AD′=AD=2,3 ﹣31AO=2AB=1,∴OD′= AD '2 ‒ OA 2= 3,∵C′D′=2,C′D′∥AB , ∴C (2, 3),故选 D .【点评】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识 别图形是解题的关键.10.(3 分)(2017•河南)如图,将半径为 2,圆心角为 120°的扇形 OAB 绕点 A 逆时针旋转 60°,点 O ,B 的对应点分别为 O′,B′,连接 BB′,则图中阴影部分的面积是()22A . 3B .2C .2 2D .4【考点】MO :扇形面积的计算;R2:旋转的性质.【分析】连接 OO′,BO′,根据旋转的想知道的∠OAO′=60°,推出△OAO′是等边三角形,得到∠AOO′=60°,推出△OO′B 是等边三角形,得到∠AO′B=120°,得到∠O′B′B=∠O′BB′=30°,根据图形的面积公式即可得到结论. 【解答】解:连接 OO′,BO′,∵将半径为 2,圆心角为 120°的扇形 OAB 绕点 A 逆时针旋转 60°,∴∠OAO′=60°,∴△OAO′是等边三角形,∴∠AOO′=60°,3﹣ 3﹣3﹣∵∠AOB=120°,∴∠O′OB=60°,∴△OO′B 是等边三角形,∴∠AO′B=120°,∵∠AO′B′=120°,∴∠B′O′B=120°,∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S △B′O′B ﹣(S 扇形O′OB ﹣S △OO′B )160 ⋅ π × 22 12=2×1×2 3﹣(故选 C .360﹣2×2 ×3)=2 .【点评】本题考查了扇形面积的计算,等边三角形的判定和性质,旋转的性质, 正确的作出辅助线是解题的关键.二、填空题(每小题 3 分,共 15 分)11.(3 分)(2017•河南)计算:23﹣ 4= 6 . 【考点】22:算术平方根;1E :有理数的乘方. 【分析】明确 4表示 4 的算术平方根,值为 2. 【解答】解: 23﹣ 故答案为: 6.4=8﹣2=6,【点评】本题主要考查了算术平方根和有理数的乘方的定义,是一个基础题目,{x x ‒‒21≤0① 比较简单.12.(3 分)(2017•河南)不等式组x x ‒‒21≤ 0<2 的解集是 ﹣1<x ≤2 . 【考点】CB :解一元一次不等式组.【分析】先求出不等式的解集,再求出不等式组的公共部分,【解答】解: 2 < x ②解不等式①0 得:x ≤2,解不等式②得:x >﹣1, ∴不等式组的解集是 ﹣1<x ≤2, 故答案为 ﹣1<x ≤2.【点评】题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.213.(3 分)(2017•河南)已知点 A (1,m ),B (2,n )在反比例函数 y=﹣x 的图象上,则 m 与 n 的大小关系为 m <n .【考点】G6:反比例函数图象上点的坐标特征.2【分析】由反比例函数 y=﹣ 可知函数的图象在第二、第四象限内,可以知道在每个象限内,y 随 x 的增大而增大,根据这个判定则可.2【解答】解:∵反比例函数 y=﹣x 中 k=﹣2<0,∴此函数的图象在二、四象限内,在每个象限内,y 随 x 的增大而增大,∵0<1<2,∴A 、B 两点均在第四象限,∴m <n .{故答案为m<n.【点评】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数图象所在的象限是解答此题的关键.14.(3 分)(2017•河南)如图1,点P 从△ABC 的顶点B 出发,沿B→C→A 匀速运动到点A,图2 是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是12 .【考点】E7:动点问题的函数图象.【分析】根据图象可知点P 在BC 上运动时,此时BP 不断增大,而从C 向A 运动时,BP 先变小后变大,从而可求出BC 与AC 的长度.【解答】解:根据图象可知点P 在BC 上运动时,此时BP 不断增大,由图象可知:点P 从B 先A 运动时,BP 的最大值为5,即BC=5,由于M 是曲线部分的最低点,∴此时BP 最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,1∴△ABC 的面积为:2×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC 的长度,本题属于中等题型.15.(3 分)(2017•河南)如图,在Rt△ABC 中,∠A=90°,AB=AC,BC= 2+1,点M,N 分别是边BC,AB 上的动点,沿MN 所在的直线折叠∠B,使点B 的对1 应点B′始终落在边AC 上,若△MB′C 为直角三角形,则BM 的长为22 1+2 或 1.【考点】PB:翻折变换(折叠问题);KW:等腰直角三角形.【分析】①如图1,当∠B′MC=90°,B′与A 重合,M 是BC 的中点,于是得到结论;②如图2,当∠MB′C=90°,推出△CMB′是等腰直角三角形,得到CM= 2MB′,列方程即可得到结论.【解答】解:①如图1,当∠B′MC=90°,B′与 A 重合,M 是BC 的中点,1 12 1∴BM=2BC=2 +2;②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC,∴∠C=45°,∴△CMB′是等腰直角三角形,∴CM=2MB′,∵沿MN 所在的直线折叠∠B,使点 B 的对应点B′,∴BM=B′M,∴CM= ∵BC=2BM,2+1,∴CM+BM=2BM+BM= 2+1,∴BM=1,121综上所述,若△MB′C为直角三角形,则BM 的长为2 +2或1,1 故答案为:22 1+2 或1.【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.三、解答题(本题共8 个小题,满分75 分)16.(8 分)(2017•河南)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x= 2+1,y= 2﹣1.【考点】4J:整式的混合运算—化简求值.【专题】11 :计算题.【分析】首先化简(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),然后把x=代入化简后的算式,求出算式的值是多少即可.【解答】解:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y)=4x2+4xy+y2+x2﹣y2﹣5x2+5xy2+1,y= 2﹣1=9xy当x= 2+1,y= 2﹣1 时,原式=9(2+1)(2﹣1)=9×(2﹣1)=9×1=9【点评】此题主要考查了整式的混合运算﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.17.(9 分)(2017•河南)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数4A0≤x<3016B30≤x<60Ca60≤x<90bD90≤x<120E2x≥120请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有50 人,a+b= 28 ,m= 8 ;(2)求扇形统计图中扇形C 的圆心角度数;(3)该校共有学生1000 人,请估计每月零花钱的数额x 在60≤x<120 范围的人数.【考点】VB:扇形统计图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据B 组的频数是16,对应的百分比是32%,据此求得调查的总人数,利用百分比的意义求得b,然后求得a 的值,m 的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数1000 乘以对应的比例即可求解.【解答】解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,4A 组所占的百分比是50=8%,则m=8.a+b=8+20=28.故答案是:50,28,8;20(2)扇形统计图中扇形 C 的圆心角度数是360°×50=144°;28(3)每月零花钱的数额x 在60≤x<120 范围的人数是1000×50=560(人).【点评】本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小.18.(9 分)(2017•河南)如图,在△ABC 中,AB=AC,以AB 为直径的⊙O 交AC 边于点D,过点C 作CF∥AB,与过点B 的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC 的长.【考点】MC:切线的性质;KH:等腰三角形的性质.【分析】(1)根据圆周角定理求出BD⊥AC,∠BDC=90°,根据切线的性质得出AB⊥BF,求出∠ACB=∠FCB,根据角平分线性质得出即可;(2)求出AC=10,AD=6,根据勾股定理求出BD,再根据勾股定理求出BC 即可.【解答】(1)证明:∵AB 是⊙O 的直径,∴∠BDA=90°,∴BD⊥AC,∠BDC=90°,∵BF 切⊙O 于B,∴AB⊥BF,∵CF∥AB,∴CF⊥BF,∠FCB=∠ABC,∵AB=AC,∴∠ACB=∠ABC,∴∠ACB=∠FCB,∵BD⊥AC,BF⊥CF,∴BD=BF;(2)解:∵AB=10,AB=AC,82 +42 ∴AC=10,∵CD=4,∴AD=10﹣4=6,在 Rt △ADB 中,由勾股定理得:BD= 102 ‒ 62=8,5.在 Rt △BDC 中,由勾股定理得:BC==4 【点评】本题考查了切线的性质,勾股定理,角平分线性质,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.19.(9 分)(2017•河南)如图所示,我国两艘海监船 A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船 C ,此时,B 船在A 船的正南方向 5 海里处,A 船测得渔船 C 在其南偏东 45°方向,B 船测得渔船C 在其南偏东 53°方向,已知 A 船的航速为 30 海里/小时,B 船的航速为 25 海里 /小时,问 C 船至少要等待多长时间才能得到救援?(参考数据:sin53° 4 3 4≈5,cos53°≈5,tan53°≈3, 2≈1.41)【考点】TB :解直角三角形的应用﹣方向角问题.【分析】如图作 CE ⊥AB 于 E .设 AE=EC=x ,则 BE=x ﹣5,在 Rt △BCE 中,根据E 4tan53°=B E ,可得3=x ‒ 5,求出 x ,再求出 BC 、AC ,分别求出 A 、B 两船到 C 的时间,即可解决问题.【解答】解:如图作 CE ⊥AB 于 E .在Rt△ACE 中,∵∠A=45°,∴AE=EC,设AE=EC=x,则BE=x﹣5,在Rt△BCE 中,E∵tan53°=B E,4∴3=x‒ 5,解得x=20,∴AE=EC=20,2=28.2,∴AC=20EBC=sin53°=25,28.2 25∴A 船到C 的时间≈ 30 =0.94 小时,B 船到C 的时间=25=1 小时,∴C 船至少要等待0.94 小时才能得到救援.【点评】本题考查解直角三角形的应用﹣方向角问题、锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.20.(9 分)(2017•河南)如图,一次函数y=﹣x+b 与反比例函数y=x(x>0)的图象交于点A(m,3)和B(3,1).3 (1)填空:一次函数的解析式为y=﹣x+4 ,反比例函数的解析式为y= ;(2)点P 是线段AB 上一点,过点P 作PD⊥x 轴于点D,连接OP,若△POD 的面积为S,求S 的取值范围.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)先将B(3,1)代入反比例函数即可求出k 的值,然后将A 代入反比例函数即可求出m 的,再根据B 两点的坐标即可求出一次函数的解析式.(2)设P 的坐标为(x,y),由于点P 在直线AB 上,从而可知PD=y,OD=x,由题意可知:1≤x≤3,从而可求出S 的范围【解答】解:(1)将B(3,1)代入y= ,∴k=3,3将A(m,3)代入y= ,∴m=1,∴A(1,3),将A(1,3)代入代入y=﹣x+b,∴b=4,∴y=﹣x+4(2)设P(x,y),由(1)可知:1≤x≤3,∴PD=y=﹣x+4,OD=x,1∴S=2x(﹣x+4),∴由二次函数的图象可知:3S 的取值范围为:2≤S≤23故答案为:(1)y=﹣x+4;y= .【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是求出一次函数与反比例函数的解析式,本题属于中等题型.21.(10 分)(2017•河南)学校“百变魔方”社团准备购买A,B 两种魔方,已知购买2 个A 种魔方和6 个B 种魔方共需130 元,购买3 个A 种魔方和4 个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B 两种魔方共100 个(其中A 种魔方不超过50 个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.【考点】9A:二元一次方程组的应用.【分析】(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,根据“购买2 个A 种魔方和6 个B 种魔方共需130 元,购买3 个A 种魔方和4 个B 种魔方所需款数相同”,即可得出关于x、y 的二元一次方程组,解之即可得出结论;(2)设购进A 种魔方m 个(0≤m≤50),总价格为w 元,则购进B 种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再=w 活动二和w 活动一>w 活动二,解出m 的取值范围,分别令w 活动一<w 活动二、w 活动一此题得解.【解答】解:(1)设 A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,{2 + 6 = 130根据题意得: 3 = 4 ,{ = 20解得:=15.答:A 种魔方的单价为20 元/个,B 种魔方的单价为15 元/个.(2)设购进A 种魔方m 个(0≤m≤50),总价格为w 元,则购进B 种魔方(100﹣m)个,=20m×0.8+15(100﹣m)×0.4=10m+600;根据题意得:w活动一w 活动二=20m+15(100﹣m﹣m)=﹣10m+1500.当w 活动一<w 活动二时,有10m+600<﹣10m+1500,解得:m<45;当w 活动一=w 活动二时,有10m+600=﹣10m+1500,解得:m=45;当w 活动一>w 活动二时,有10m+600>﹣10m+1500,解得:45<m≤50.综上所述:当m<45 时,选择活动一购买魔方更实惠;当m=45 时,选择两种活动费用相同;当m>45 时,选择活动二购买魔方更实惠.【点评】本题考查了二元一次方程组的应用、一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)找准等量关系,列出关于x、y 的二元一次方程组;(2)根据两种活动方案找出w 活动一、w活动二关于m 的函数关系式.22.(10 分)(2017•河南)如图1,在Rt△ABC 中,∠A=90°,AB=AC,点D,E分别在边AB,AC 上,AD=AE,连接DC,点M,P,N 分别为DE,DC,BC 的中点.(1)观察猜想图1 中,线段PM 与PN 的数量关系是PM=PN ,位置关系是PM⊥PN ;(2)探究证明把△ADE 绕点A 逆时针方向旋转到图2 的位置,连接MN,BD,CE,判断△PMN 的形状,并说明理由;(3)拓展延伸把△ADE 绕点A 在平面内自由旋转,若AD=4,AB=10,请直接写出△ PMN 面积的最大值.【考点】RB:几何变换综合题.1 1【分析】(1)利用三角形的中位线得出PM=2CE,PN=2BD,进而判断出BD=CE,即可得出结论,另为利用三角形的中位线得出平行线即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出1 1PM=2BD,PN=2BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)先判断出MN 最大时,△PMN 的面积最大,进而求出AN,AM,即可得出MN 最大=AM+AN,最后用面积公式即可得出结论.【解答】解:(1)∵点P,N 是BC,CD 的中点,1∴PN∥BD,PN=2BD,∵点P,M 是CD,DE 的中点,1∴PM∥CE,PM=2CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,1 1同(1)的方法,利用三角形的中位线得,PN=2BD,PM=2CE,∴PM=PN,∴△PMN 是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN 是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN 是等腰直角三角形,∴MN 最大时,△PMN 的面积最大,∴DE∥BC 且DE 在顶点 A 上面,∴MN 最大=AM+AN,连接AM,AN,在△ADE 中,AD=AE=4,∠DAE=90°,∴AM=2 2,在Rt△ABC 中,AB=AC=10,AN=5 2,2+5 2=7 2,∴MN最大=21 1 1 1 49=2PM2=2×2MN2=4×(7 2)2= 2 .∴S△PMN最大【点评】此题是几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质,解(1)1 1的关键是判断出PM=2CE,PN=2BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN 最大时,△PMN 的面积最大,是一道基础题目.223.(11 分)(2017•河南)如图,直线y=﹣3x+c 与x 轴交于点A(3,0),与y 轴4交于点B,抛物线y=﹣3x2+bx+c 经过点A,B.(1)求点B 的坐标和抛物线的解析式;(2)M(m,0)为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P,N.①点M 在线段OA 上运动,若以B,P,N 为顶点的三角形与△APM 相似,求点M 的坐标;②点M 在x 轴上自由运动,若三个点M,P,N 中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N 三点为“共谐点”.请直接写出使得M,P,N 三点成为“共谐点”的m 的值.{ {【考点】HF :二次函数综合题.【分析】(1)把 A 点坐标代入直线解析式可求得 c ,则可求得 B 点坐标,由A 、B 的坐标,利用待定系数法可求得抛物线解析式;(2) ①由 M 点坐标可表示 P 、N 的坐标,从而可表示出 MA 、MP 、PN 、PB 的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于 m 的方程,可求得 m 的值;②用 m 可表示出 M 、P 、N 的坐标,由题意可知有 P 为线段 MN 的中点、M 为线段 PN 的中点或 N 为线段 PM 的中点,可分别得到关于 m 的方程,可求得 m 的值. 【解答】解:2 (1) ∵y=﹣3x +c 与 x 轴交于点 A (3,0),与 y 轴交于点 B ,∴0=﹣2+c ,解得 c=2,∴B (0,2),4∵抛物线 y=﹣3x 2+bx +c 经过点 A ,B ,‒ 12 + 3b + c = 0 3∴c = 2,解得 == 2,410∴抛物线解析式为 y=﹣3x 2+ 3 x +2;13(3 ‒ m )332(2) ①由(1)可知直线解析式为 y=﹣3x +2,∵M (m ,0)为 x 轴上一动点,过点 M 且垂直于 x 轴的直线与直线 AB 及抛物线分别交于点 P ,N ,2 4 10∴P (m ,﹣3m +2),N (m ,﹣3m 2+ 3 m +2),2410 2 4∴PM=﹣3m +2,PA=3﹣m ,PN=﹣3m 2+ 3 m +2﹣(﹣3m +2)=﹣3m 2+4m ,∵△BPN 和△APM 相似,且∠BPN=∠APM ,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°, 当∠BNP=90°时,则有 BN ⊥MN ,∴BN=OM=m ,N PN A M PM3 ‒‒ 4m 2 + 4m3‒ 2m + 2∴ =,即= 3,解得 m=0(舍去)或 m=2,∴M (2,0);PN P当∠NBP=90°时,则有P A =MP ,2∵A (3,0),B (0,2),P (m ,﹣3m +2),222 13∴BP=+ ( ‒ m + 2 ‒ 2)3= 3 m ,AP== 3 (3﹣m ), ‒ 4m 2 + 4m1311‒ 2m + 28∴ 3=311∴M ( 8 ,0);,解得 m=0(舍去)或 m= ,综上可知当以 B ,P ,N 为顶点的三角形与△APM 相似时,点 M 的坐标为(m ‒ 3)2 + ( ‒ 223+ 2)1311(2,0)或(8 ,0);2 4 10②由①可知M(m,0),P(m,﹣3m+2),N(m,﹣3m2+ 3 m+2),∵M,P,N 三点为“共谐点”,∴有P 为线段MN 的中点、M 为线段PN 的中点或N 为线段PM 的中点,2 4 10当P 为线段MN 的中点时,则有2(﹣3m+2)=﹣3m2+ 3 m+2,解得m=3(三点重1合,舍去)或m=2;2 4 10当M 为线段PN 的中点时,则有﹣3m+2+(﹣3m2+ 3 m+2)=0,解得m=3(舍去)或m=﹣1;2 4 10当N 为线段PM 的中点时,则有﹣3m+2=2(﹣3m2+ 3 m+2),解得m=3(舍去)或1m=﹣4;1 1综上可知当M,P,N 三点成为“共谐点”时m 的值为2或﹣1 或﹣4.【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中利用相似三角形的性质得到关于m 的方程是解题的关键,注意分两种情况,在(2)②中利用“共谐点”的定义得到m 的方程是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.。

河南省2017年中考数学真题试题(含扫描答案)

河南省2017年中考数学真题试题(含扫描答案)

2017年河南省普通高中招生考试试卷数学一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.下列各数中比1大的数是( )A .2B .0C .-1D .-32.2016年,我国国内生产总值达到74.4万亿元.数据“74.4万亿”用科学计数法表示为( )A .1274.410⨯B .137.4410⨯C .1374.410⨯D .147.4410⨯3.某几何体的左视图如下图所示,则该几何体不可能是( )A .B .C .D .4.解分式方程13211x x−=−−,去分母得( ) A .12(1)3x −−=− B .12(1)3x −−= C.1223x −−=− D .1223x −+=5.八年级某同学6此数学小测验的成绩分别为:80分,85分,95分,100分,则该同学这6次成绩的众数和中位数分别是( )A .95分,95分B .95分,90分 C. 90分,95分 D .95分,85分6.一元二次方程22520x x −−=的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C. 只有一个实数根 D .没有实数根7.如图,在ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能..判定ABCD 是菱形的只有( )A .AC BD ⊥B .AB BC = C.AC BD = D .12∠=∠8.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )A .18B .16 C.14 D .129.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O 固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点'D 处,则点C 的对应点'C 的坐标为( )A .(3,1)B .(2,1) C.(13) D .3)10.如图,将半径为2,圆心角为120︒的扇形OAB 绕点A 逆时针旋转60︒,点O ,B 的对应点分别为'O ,'B ,连接'BB ,则图中阴影部分的面积是( )A .23πB .233π− C.2233π− D .2433π− 11.二、填空题(每小题3分,共15分)11.计算:324−= . 12.不等式组20,12x x x −≤⎧⎪⎨−<⎪⎩的解集是 . 13.已知点(1,)A m ,(2,)B n 在反比例函数2y x=−的图象上,则m 与n 的大小关系为 . 14.如图1,点P 从ABC ∆的顶点B 出发,沿B C A →→匀速运动到点A .图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则ABC ∆的面积是 .15.如图,在Rt ABC ∆中,90A ∠=︒,AB AC =,21BC =,点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠B ∠,使点B 的对应点'B 始终落在边AC 上.若'MBC ∆为直角三角形,则BM 的长为 .三、解答题 (本大题共8个小题,满分75分)16.先化简,再求值:2(2)()()5()x y x y x y x x y ++−+−−,其中21x =+,21y =−.17.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有 人,a b += ,m = ;(2)求扇形统计图中扇形C 的圆心角度数;(3)该校共有1000人,请估计每月零花钱的数额x 在60120x ≤<范围的人数.18.如图,在ABC ∆中, AB AC =,以AB 为直径的⊙O 交AC 边于点D ,过点C 作//CF AB ,与过点B 的切线交于点F ,连接BD .(1)求证:BD BF =;(2)若10AB =,4CD =,求BC 的长.19.如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C .此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45︒方向,B 船测得渔船C 在其南偏东53︒方向.已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:4sin 535︒≈,3cos535︒≈,4tan 533︒≈,2 1.41≈)20. 如图,一次函数y x b =−+与反比例函数(0)k y x x=>的图象交于点(,3)A m 和(3,1)B .(1)填空:一次函数的解析式为 ,反比例函数的解析式为 ;(2)点P 是线段AB 上一点,过点P 作PD x ⊥轴于点D ,连接OP ,若POD ∆的面积为S ,求S 的取值范围.21.学校“百变魔方”社团准备购买A ,B 两种魔方.已知购买2个 A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个(其中A 种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.如图1,在Rt ABC ∆中,90A ∠=︒,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;(2)探究证明把ADE ∆绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN ∆的形状,并说明理由;(3)拓展延伸把ADE ∆绕点A 在平面内自由旋转,若4AD =,10AB =,请直接写出PMN ∆面积的最大值.23.如图,直线32y x e =−+与x 轴交于点(3,0)A ,与y 轴交于点B ,抛物线243y x bx c =−++经过点A ,B .①点M 在线段OA 上运动,若以B ,P ,N 为顶点的三角形与APM ∆相似,求点M 的坐标;②点M 在x 轴上自由运动,若三个点M ,P ,N 中恰有一点是其它两点所连线段的中点(三点重合除外),则称M ,P ,N 三点为“共谐点”.请直接写出使得M ,P ,N 三点成为“共谐点”的m 的值.。

2017年河南省中考数学试卷及解析

2017年河南省中考数学试卷及解析

2017年河南省中考数学试卷一、选择题(每小题 分,共 分).( 分)下列各数中比 大的数是()✌. . .﹣ .﹣.( 分) 年,我国国内生产总值达到 万亿元,数据❽万亿❾用科学记数法表示()✌. ×   . ×   . ×   . ×  .( 分)某几何体的左视图如图所示,则该几何体不可能是()✌. . . ..( 分)解分式方程﹣ ,去分母得()✌. ﹣ (⌧﹣ ) ﹣ . ﹣ (⌧﹣ )  . ﹣ ⌧﹣ ﹣ . ﹣ ⌧.( 分)八年级某同学 次数学小测验的成绩分别为: 分, 分, 分, 分, 分, 分,则该同学这 次成绩的众数和中位数分别是()✌. 分, 分 . 分, 分 . 分, 分 . 分, 分 .( 分)一元二次方程 ⌧ ﹣ ⌧﹣ 的根的情况是()✌.有两个相等的实数根 .有两个不相等的实数根.只有一个实数根 .没有实数根.( 分)如图,在 ✌中,对角线✌, 相交于点 ,添加下列条件不能判定 ✌是菱形的只有()✌.✌⊥  .✌ .✌ .∠ ∠.( 分)如图是一次数学活动可制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣ , , , .若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()✌. . . ..( 分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为 的正方形✌的边✌在⌧轴上,✌的中点是坐标原点 ,固定点✌, ,把正方形沿箭头方向推,使点 落在⍓轴正半轴上点 处,则点 的对应点 的坐标为()✌.(, ) .( , ) .( ,) .( ,)10.(3分)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B 的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A.B.2﹣C.2﹣D.4﹣二、填空题(每小题3分,共15分)11.(3分)计算:23﹣=.12.(3分)不等式组的解集是.13.(3分)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n的大小关系为.14.(3分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P 运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC 的面积是.15.(3分)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB 上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为.三、解答题(本题共8个小题,满分75分)16.(8分)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.17.(9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A 0≤x<30 4B 30≤x<60 16C 60≤x<90 aD 90≤x<120 bE x≥120 2请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有人,a+b=,m=;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.18.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF ∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.19.(9分)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)20.(9分)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.21.(10分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.(10分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.23.(11分)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2017年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)【考点】18:有理数大小比较.【分析】根据正数大于零、零大于负数,可得答案.【解答】解:2>0>﹣1>﹣3,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零、零大于负数是解题关键.2.(3分)【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将74.4万亿用科学记数法表示为:7.44×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)【考点】U3:由三视图判断几何体.【分析】左视图是从左边看到的,据此求解.【解答】解:从左视图可以发现:该几何体共有两列,正方体的个数分别为2,1,D不符合,故选D.【点评】考查了由三视图判断几何体的知识,解题的关键是了解该几何体的构成,难度不大.4.(3分)【考点】B3:解分式方程.【专题】11 :计算题;522:分式方程及应用.【分析】分式方程变形后,两边乘以最简公分母x﹣1得到结果,即可作出判断.【解答】解:分式方程整理得:﹣2=﹣,去分母得:1﹣2(x﹣1)=﹣3,故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.5.(3分)【考点】W5:众数;W4:中位数.【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:位于中间位置的两数分别是95分和95分,故中位数为95分,数据95出现了3次,最多,故这组数据的众数是95分,故选A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.6.(3分)【考点】AA:根的判别式.【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣5)2﹣4×2×(﹣2)=41>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(3分)【考点】L9:菱形的判定;L5:平行四边形的性质.【分析】根据平行四边形的性质.菱形的判定方法即可一一判断.【解答】解:A、正确.对角线相等是平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选C.【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.8.(3分)【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个数字都是正数的情况数,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两个数字都是正数的有4种情况,∴两个数字都是正数的概率是:=.故选:C.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时注意:概率=所求情况数与总情况数之比.9.(3分)【考点】LE:正方形的性质;D5:坐标与图形性质;L1:多边形.【分析】由已知条件得到AD′=AD=2,AO=AB=1,根据勾股定理得到OD′==,于是得到结论.【解答】解:∵AD′=AD=2,AO=AB=1,∴OD′==,∵C′D′=2,C′D′∥AB,∴C(2,),故选D.【点评】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.10.(3分)【考点】MO:扇形面积的计算;R2:旋转的性质.【分析】连接OO′,BO′,根据旋转的想知道的∠OAO′=60°,推出△OAO′是等边三角形,得到∠AOO′=60°,推出△OO′B是等边三角形,得到∠AO′B=120°,得到∠O′B′B=∠O′BB′=30°,根据图形的面积公式即可得到结论.【解答】解:连接OO′,BO′,∵将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,∴∠OAO′=60°,∴△OAO′是等边三角形,∴∠AOO′=60°,∵∠AOB=120°,∴∠O′OB=60°,∴△OO′B是等边三角形,∴∠AO′B=120°,∵∠AO′B′=120°,∴∠B′O′B=120°,∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S△B′O′B﹣(S扇形O′OB﹣S△OO′B)=×1×2﹣(﹣×2×)=2﹣.故选C.【点评】本题考查了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.二、填空题(每小题3分,共15分)11.(3分)【考点】22:算术平方根;1E:有理数的乘方.【分析】明确表示4的算术平方根,值为2.【解答】解:23﹣=8﹣2=6,故答案为:6.【点评】本题主要考查了算术平方根和有理数的乘方的定义,是一个基础题目,比较简单.12.(3分)【考点】CB:解一元一次不等式组.【分析】先求出不等式的解集,再求出不等式组的公共部分,【解答】解:解不等式①0得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集是﹣1<x≤2,故答案为﹣1<x≤2.【点评】题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.13.(3分)【考点】G6:反比例函数图象上点的坐标特征.【分析】由反比例函数y=﹣可知函数的图象在第二、第四象限内,可以知道在每个象限内,y随x的增大而增大,根据这个判定则可.【解答】解:∵反比例函数y=﹣中k=﹣2<0,∴此函数的图象在二、四象限内,在每个象限内,y随x的增大而增大,∵0<1<2,∴A、B两点均在第四象限,∴m<n.故答案为m<n.【点评】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数图象所在的象限是解答此题的关键.14.(3分)【考点】E7:动点问题的函数图象.【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B先A运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型.15.(3分)【考点】PB:翻折变换(折叠问题);KW:等腰直角三角形.【分析】①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,于是得到结论;②如图2,当∠MB′C=90°,推出△CMB′是等腰直角三角形,得到CM=MB′,列方程即可得到结论.【解答】解:①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,∴BM=BC=+;②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC,∴∠C=45°,∴△CMB′是等腰直角三角形,∴CM=MB′,∵沿MN所在的直线折叠∠B,使点B的对应点B′,∴BM=B′M,∴CM=BM,∵BC=+1,∴CM+BM=BM+BM=+1,∴BM=1,综上所述,若△MB′C为直角三角形,则BM的长为+或1,故答案为:+或1.【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.三、解答题(本题共8个小题,满分75分)16.(8分)【考点】4J:整式的混合运算—化简求值.【专题】11 :计算题.【分析】首先化简(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),然后把x=+1,y=﹣1代入化简后的算式,求出算式的值是多少即可.【解答】解:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y)=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy当x=+1,y=﹣1时,原式=9(+1)(﹣1)=9×(2﹣1)=9×1=9【点评】此题主要考查了整式的混合运算﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.17.(9分)【考点】VB:扇形统计图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据B组的频数是16,对应的百分比是32%,据此求得调查的总人数,利用百分比的意义求得b,然后求得a的值,m的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数1000乘以对应的比例即可求解.【解答】解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,A组所占的百分比是=8%,则m=8.a+b=8+20=28.故答案是:50,28,8;(2)扇形统计图中扇形C的圆心角度数是360°×=144°;(3)每月零花钱的数额x在60≤x<120范围的人数是1000×=560(人).【点评】本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小.18.(9分)【考点】MC:切线的性质;KH:等腰三角形的性质.【分析】(1)根据圆周角定理求出BD⊥AC,∠BDC=90°,根据切线的性质得出AB⊥BF,求出∠ACB=∠FCB,根据角平分线性质得出即可;(2)求出AC=10,AD=6,根据勾股定理求出BD,再根据勾股定理求出BC即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠BDA=90°,∴BD⊥AC,∠BDC=90°,∵BF切⊙O于B,∴AB⊥BF,∵CF∥AB,∴CF⊥BF,∠FCB=∠ABC,∵AB=AC,∴∠ACB=∠ABC,∴∠ACB=∠FCB,∵BD⊥AC,BF⊥CF,∴BD=BF;(2)解:∵AB=10,AB=AC,∴AC=10,∵CD=4,∴AD=10﹣4=6,在Rt△ADB中,由勾股定理得:BD==8,在Rt△BDC中,由勾股定理得:BC==4.【点评】本题考查了切线的性质,勾股定理,角平分线性质,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.19.(9分)【考点】TB:解直角三角形的应用﹣方向角问题.【分析】如图作CE⊥AB于E.设AE=EC=x,则BE=x﹣5,在Rt△BCE中,根据tan53°=,可得=,求出x,再求出BC、AC,分别求出A、B两船到C的时间,即可解决问题.【解答】解:如图作CE⊥AB于E.在Rt△ACE中,∵∠A=45°,∴AE=EC,设AE=EC=x,则BE=x﹣5,在Rt△BCE中,∵tan53°=,∴=,解得x=20,∴AE=EC=20,∴AC=20=28.2,BC==25,∴A船到C的时间≈=0.94小时,B船到C的时间==1小时,∴C船至少要等待0.94小时才能得到救援.【点评】本题考查解直角三角形的应用﹣方向角问题、锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.20.(9分)【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)先将B(3,1)代入反比例函数即可求出k的值,然后将A代入反比例函数即可求出m的,再根据B两点的坐标即可求出一次函数的解析式.(2)设P的坐标为(x,y),由于点P在直线AB上,从而可知PD=y,OD=x,由题意可知:1≤x≤3,从而可求出S的范围【解答】解:(1)将B(3,1)代入y=,∴k=3,将A(m,3)代入y=,∴m=1,∴A(1,3),将A(1,3)代入代入y=﹣x+b,∴b=4,∴y=﹣x+4(2)设P(x,y),由(1)可知:1≤x≤3,∴PD=y=﹣x+4,OD=x,∴S=x(﹣x+4),∴由二次函数的图象可知:S的取值范围为:≤S≤2故答案为:(1)y=﹣x+4;y=.【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是求出一次函数与反比例函数的解析式,本题属于中等题型.21.(10分)(【考点】9A:二元一次方程组的应用.【分析】(按买3个A种魔方和买4个B种魔方钱数相同解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.(按购买3个A种魔方和4个B种魔方需要130元解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.【解答】(按买3个A种魔方和买4个B种魔方钱数相同解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为20元/个,B种魔方的单价为15元/个.(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=20m×0.8+15(100﹣m)×0.4=10m+600;w活动二=20m+15(100﹣m﹣m)=﹣10m+1500.当w活动一<w活动二时,有10m+600<﹣10m+1500,解得:m<45;当w活动一=w活动二时,有10m+600=﹣10m+1500,解得:m=45;当w活动一>w活动二时,有10m+600>﹣10m+1500,解得:45<m≤50.综上所述:当m<45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m>45时,选择活动二购买魔方更实惠.(按购买3个A种魔方和4个B种魔方需要130元解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为26元/个,B种魔方的单价为13元/个.(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=26m×0.8+13(100﹣m)×0.4=15.6m+520;w活动二=26m+13(100﹣m﹣m)=1300.当w活动一<w活动二时,有15.6m+520<1300,解得:m<50;当w活动一=w活动二时,有15.6m+520=1300,解得:m=50;当w活动一>w活动二时,有15.6m+520>1300,不等式无解.综上所述:当m<50时,选择活动一购买魔方更实惠;当m=50时,选择两种活动费用相同.【点评】本题考查了二元一次方程组的应用、一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)找准等量关系,列出关于x、y的二元一次方程组;(2)根据两种活动方案找出w活动一、w活动二关于m的函数关系式.22.(10分)【考点】RB:几何变换综合题.【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,另为利用三角形的中位线得出平行线即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=2+5=7,∴S△PMN最大=PM2=×MN2=×(7)2=.【点评】此题是几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN最大时,△PMN的面积最大,是一道基础题目.23.(11分)【考点】HF:二次函数综合题.【分析】(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)①由M点坐标可表示P、N的坐标,从而可表示出MA、MP、PN、PB的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m的方程,可求得m的值;②用m可表示出M、P、N的坐标,由题意可知有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,可分别得到关于m的方程,可求得m的值.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,PA=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴BN=OM=m,∴=,即=,解得m=0(舍去)或m=2,∴M(2,0);当∠NBP=90°时,则有=,∵A(3,0),B(0,2),P(m,﹣m+2),∴BP==m,AP==(3﹣m),∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(2,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(三点重合,舍去)或m=;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为或﹣1或﹣.【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中利用相似三角形的性质得到关于m的方程是解题的关键,注意分两种情况,在(2)②中利用“共谐点”的定义得到m的方程是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.。

[真卷]2017年河南省普通高中中考数学模拟试卷(一)含参考答案

[真卷]2017年河南省普通高中中考数学模拟试卷(一)含参考答案

2017年河南省普通高中中考数学模拟试卷(一)一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)在下面的四个有理数中,最小的数是()A.﹣1 B.0 C.﹣2 D.﹣1.92.(3分)我国质检总局规定,针织内衣等直接接触皮肤的制品,每千克的衣物上甲醛含量应在0.000075千克以下.将0.000075用科学记数法表示为()A.7.5×105B.7.5×10﹣5C.0.75×10﹣4D.75×10﹣63.(3分)如图,已知∠1=∠2=∠3=62°,则∠4=()A.62°B.118°C.128° D.38°4.(3分)不等式组的最小整数解为()A.﹣1 B.0 C.1 D.45.(3分)下列调查中,适宜采用全面调查方式的是()A.了解商丘市的空气质量情况B.了解包河的水污染情况C.了解商丘市居民的环保意识D.了解全班同学每周体育锻炼的时间6.(3分)如图是一个由7个同样的立方体叠成的几何体.请问下列选项中,既是中心对称图形,又是这个几何体的三视图之一的是()A.B.C.D.7.(3分)如图,△ABC与△DEF是位似图形,位似比为2:3,已知AB=4,则DE的长等于()A.6 B.5 C.9 D.8.(3分)在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色,…如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%,②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是()A.①②③B.①②C.①③D.②③9.(3分)抛物线y=kx2﹣7x﹣7的图象和x轴有交点,则k的取值范围是()A.k>﹣B.k≥﹣且k≠0 C.k≥﹣D.k>﹣且k≠010.(3分)如图,边长为4的正方形ABCD的边BC与直角边分别是2和4的Rt △GEF的边GF重合,正方形ABCD以每秒1个单位长度的速度沿GE向右匀速运动,当点A和点E重合时正方形停止运动.设正方形的运动时间为t秒,正方形ABCD与Rt△GEF重叠部分面积为S,则S关于t的函数图象为()A.B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)计算:+(﹣1)0=.12.(3分)如图,▱ABCD,E是BA延长线上一点,AB=AE,连接CE交AD于点F,若CF平分∠BCD,AB=3,则BC的长为.13.(3分)已知双曲线和的部分图象如图所示,点C是y轴正半轴上一点,过点C作AB∥x轴分别交两个图象于点A、B.若CB=2CA,则k=.14.(3分)如图,以AD为直径的半圆O经过Rt△ABC的斜边AB的两个端点,交直角边AC于点E.B、E是半圆弧的三等分点,弧BE的长为,则图中阴影部分的面积为.15.(3分)如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD 上,折痕的一端E点在边BC上,BE=10.则折痕的长为.三、解答题(本大题共8小题,共75分)16.(8分)先化简,再求值:,其中﹣2<a≤2,请选择一个a的合适整数代入求值.17.(9分)某校260名学生参加植树活动,要求每人植4﹣7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵,将各类的人数绘制成扇形图(如图(1))和条形图(如图(2)),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:第一步:求平均数的公式是=;第二步:在该问题中,n=4,x1=4,x2=5,x3=6,x4=7;第三步:==5.5(份)①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.18.(9分)如图,⊙O 半径为4cm ,其内接正六边形ABCDEF ,点P ,Q 同时分别从A ,D 两点出发,以1cm/s 速度沿AF ,DC 向终点F ,C 运动,连接PB ,QE ,PE ,BQ .设运动时间为t (s ).(1)求证:四边形PEQB 为平行四边形;(2)填空:①当t= s 时,四边形PBQE 为菱形;②当t= s 时,四边形PBQE 为矩形.19.(9分)如图,商丘市睢阳区南湖中有一小岛,湖边有一条笔直的观光小道,现决定从小岛架一座与观光小道垂直的小桥PD ,小坤在小道上测得如下数据:AB=200.0米,∠PAB=38.5°,∠PBA=26.5°.请帮助小坤求出小桥PD 的长.(结果精确到0.1米)(参考数据:sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80,sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50)20.(9分)重阳节期间,某单位组织本单位退休职工前去距离商丘480千米的信阳鸡公山登高旅游,由于人数较多,共租用甲、乙两辆长途汽车沿同一路线赶赴景点.图中的折线、线段分别表示甲、乙两车所走的路程y 甲(千米),y 乙(千米)与时间x(小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:(1)由于汽车发生故障,甲车在途中停留了小时;(2)甲车排除故障后,立即提速赶往景点.请问甲车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙车在第一次相遇时约定此后两车之间的路程不超过35千米,请通过计算说明,按图象所表示的走法是否符合约定.21.(10分)我市计划购买甲、乙两种树苗共8000株用于城市绿化,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若购买这两种树苗共用去210000元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.22.(10分)已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与B,C重合).以AD为边作菱形ADEF,使∠DAF=60°,连接CF.初步感知:(1)如图1,当点D在边BC上时,①求证:∠ADB=∠AFC;②请直接判断结论∠AFC=∠ACB+∠DAC是否成立;问题探究:(2)如图2,当点D在边BC的延长线上时,其他条件不变,结论∠AFC=∠ACB+∠DAC是否成立?请写出∠AFC、∠ACB、∠DAC之间存在的数量关系,并写出证明过程;类比分析:(3)如图3,当点D在边CB的延长线上时,且点A、F分别在直线BC的异侧,其他条件不变,请补全图形,并直接写出∠AFC、∠ACB、∠DAC之间存在的等量关系.23.(11分)将直角边长为6的等腰Rt△AOC放在如图所示的平面直角坐标系中,点O为坐标原点,点C、A分别在x、y轴的正半轴上,一条抛物线经过点A、C 及点B(﹣3,0).(1)求该抛物线的解析式;(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当△APE的面积最大时,求点P的坐标;(3)在第一象限内的该抛物线上是否存在点G,使△AGC的面积与(2)中△APE 的最大面积相等?若存在,请求出点G的坐标;若不存在,请说明理由.2017年河南省普通高中中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)在下面的四个有理数中,最小的数是()A.﹣1 B.0 C.﹣2 D.﹣1.9【解答】解:∵负数都小于0,∴四个选项中0最大.排除B.又∵|﹣1|=1,|﹣2|=2,|﹣1.9|=1.9,2>1.9>1,∴﹣2<﹣1.9<﹣1.故选C.2.(3分)我国质检总局规定,针织内衣等直接接触皮肤的制品,每千克的衣物上甲醛含量应在0.000075千克以下.将0.000075用科学记数法表示为()A.7.5×105B.7.5×10﹣5C.0.75×10﹣4D.75×10﹣6【解答】解:将0.000075用科学记数法表示为:7.5×10﹣5.故选B.3.(3分)如图,已知∠1=∠2=∠3=62°,则∠4=()A.62°B.118°C.128° D.38°【解答】解:∵∠1=∠3,∴直线M∥直线N,∴∠5=∠2=62°,∴∠4=180°﹣∠5=180°﹣62°=118°.故选:B.4.(3分)不等式组的最小整数解为()A.﹣1 B.0 C.1 D.4【解答】解:由①得x>﹣;由②得3x≤12,即x≤4;由以上可得<x≤4.故这个不等式组的最小整数解是0.故选B5.(3分)下列调查中,适宜采用全面调查方式的是()A.了解商丘市的空气质量情况B.了解包河的水污染情况C.了解商丘市居民的环保意识D.了解全班同学每周体育锻炼的时间【解答】解:A、了解某市的空气质量情况适宜采用抽样的方式,此选项错误;B、了解包河的水污染情况适宜抽样调查,此选项错误;C、了解商丘市居民的环保意识适宜采用抽样的方式;D、了解全班同学每周体育锻炼的时间适宜采用全面调查的方式;故选:D.6.(3分)如图是一个由7个同样的立方体叠成的几何体.请问下列选项中,既是中心对称图形,又是这个几何体的三视图之一的是()A.B.C.D.【解答】解:A,这是主视图,它不是中心对称图形,故此选项错误;B,这是俯视图,它是中心对称图形,故此选项正确;C,这是左视图,它不是中心对称图形,故此选项错误;D,它不是由7个同样的立方体叠成的几何体的三视图,故此选项错误;故选:B.7.(3分)如图,△ABC与△DEF是位似图形,位似比为2:3,已知AB=4,则DE的长等于()A.6 B.5 C.9 D.【解答】解:根据题意,△ABC与△DEF位似,且AB:DE=2:3,AB=4∴DE=6故选A.8.(3分)在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色,…如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%,②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是()A.①②③B.①②C.①③D.②③【解答】解:∵在一个不透明的布袋中,红球、黑球、白球共有若干个,其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,∴①若进行大量摸球实验,摸出白球的频率稳定于:1﹣20%﹣50%=30%,故此选项正确;∵摸出黑球的频率稳定于50%,大于其它频率,∴②从布袋中任意摸出一个球,该球是黑球的概率最大,故此选项正确;③若再摸球100次,不一定有20次摸出的是红球,故此选项错误;故正确的有①②.故选:B.9.(3分)抛物线y=kx2﹣7x﹣7的图象和x轴有交点,则k的取值范围是()A.k>﹣B.k≥﹣且k≠0 C.k≥﹣D.k>﹣且k≠0【解答】解:∵抛物线y=kx2﹣7x﹣7的图象和x轴有交点,即y=0时方程kx2﹣7x﹣7=0有实数根,即△=b2﹣4ac≥0,即49+28k≥0,解得k≥﹣,且k≠0.故选B.10.(3分)如图,边长为4的正方形ABCD的边BC与直角边分别是2和4的Rt △GEF的边GF重合,正方形ABCD以每秒1个单位长度的速度沿GE向右匀速运动,当点A和点E重合时正方形停止运动.设正方形的运动时间为t秒,正方形ABCD与Rt△GEF重叠部分面积为S,则S关于t的函数图象为()A.B.C.D.【解答】解:当0≤t≤2时,如图,BG=t,BE=2﹣t,∵PB∥GF,∴△EBP∽△EGF,∴=,即=,∴PB=4﹣2t,∴S=(PB+FG)•GB=(4﹣2t+4)•t=﹣t2+4t;当2<t≤4时,S=FG•GE=4;当4<t≤6时,如图,GA=t﹣4,AE=6﹣t,∵PA∥GF,∴△EAP∽△EGF,∴=,即=,∴PA=2(6﹣t),∴S=PA•AE=×2×(6﹣t)(6﹣t)=(t﹣6)2,综上所述,当0≤t≤2时,s关于t的函数图象为开口向下的抛物线的一部分;当2<t≤4时,s关于t的函数图象为平行于x轴的一条线段;当4<t≤6时,s 关于t的函数图象为开口向上的抛物线的一部分.故选B.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)计算:+(﹣1)0=3.【解答】解:原式=2+1=3.故答案为:3.12.(3分)如图,▱ABCD,E是BA延长线上一点,AB=AE,连接CE交AD于点F,若CF平分∠BCD,AB=3,则BC的长为6.【解答】解:∵CF平分∠BCD,∴∠BCE=∠DCF,∵AD∥BC,∴∠BCE=∠DFC,∴∠BCE=∠EFA,∵BE∥CD,∴∠E=∠DCF,∴∠E=∠BCE,∵AD∥BC,∴∠BCE=∠EFA,∴∠E=∠EFA,∴AE=AF=AB=3,∵AB=AE,AF∥BC,∴△AEF∽△BEC,∴===,∴BC=2AF=6.故答案为:6.13.(3分)已知双曲线和的部分图象如图所示,点C是y轴正半轴上一点,过点C作AB∥x轴分别交两个图象于点A、B.若CB=2CA,则k=﹣6.【解答】解:连结OA、OB,如图,∵AB∥x轴,即OC⊥AB,而CB=2CA,=2S△OAC,∴S△OBC∵点A在图象上,=×3=,∴S△OAC∴S=2S△OAC=3,△OBC∵|k|=3,而k<0,∴k=﹣6.故答案为﹣6.14.(3分)如图,以AD为直径的半圆O经过Rt△ABC的斜边AB的两个端点,交直角边AC于点E.B、E是半圆弧的三等分点,弧BE的长为,则图中阴影部分的面积为.【解答】解:连接BD,BE,BO,EO,∵B,E是半圆弧的三等分点,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAC=∠EBA=30°,∴BE∥AD,∵的长为,∴=,解得:R=2,∴AB=ADcos30°=2,∴BC=AB=,∴AC===3,∴S=×BC×AC=××3=,△ABC∵△BOE和△ABE同底等高,∴△BOE和△ABE面积相等,∴图中阴影部分的面积为:S△ABC ﹣S扇形BOE=﹣=﹣.故答案为:.15.(3分)如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD 上,折痕的一端E点在边BC上,BE=10.则折痕的长为5或4.【解答】解:(1)如图(1)所示:过点E作EH⊥AD于点H,则AH=BE=10,HE=AB=8,∵△GFE由△BFE翻折而成,∴GE=BE=10,在Rt△EGH中,∵GH===6,∴AG=AH﹣GH=10﹣6=4,设AF=x,则BF=GF=8﹣x,在Rt△AGF中,∵AG2+AF2=GF2,即42+x2=(8﹣x)2,解得x=3,∴BF=8﹣3=5,在Rt△BEF中,EF===5.(2)连接BF、BG与折痕EF交于O,过点F作FL⊥BC于点L,如图(2),由于折叠,∴BG⊥EF,BO=OG,BE=GE,四边形ABCD为长方形,∴AD∥BC∴∠FGO=∠OBE,∴△BOE≌△GOF(ASA),∴OF=OE,又OB=OG,BG⊥EF∴四边形BEGF是菱形,∴BF=BE=10;Rt△ABF中,AF2+AB2=BF2,AF2=102﹣82,解得AF=6.则有BL=6,LE=10﹣6=4,在Rt△FLE中,由勾股定理得:FE==4.故答案为:5或4.三、解答题(本大题共8小题,共75分)16.(8分)先化简,再求值:,其中﹣2<a≤2,请选择一个a的合适整数代入求值.【解答】解:===,当a=﹣1时,原式=.17.(9分)某校260名学生参加植树活动,要求每人植4﹣7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵,将各类的人数绘制成扇形图(如图(1))和条形图(如图(2)),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:第一步:求平均数的公式是=;第二步:在该问题中,n=4,x1=4,x2=5,x3=6,x4=7;第三步:==5.5(份)①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.【解答】解:(1)D错误,理由为:20×10%=2≠3;(2)众数为5,中位数为5;(3)①第二步;②==5.3(棵),估计这260名学生共植树5.3×260=1378(棵).18.(9分)如图,⊙O半径为4cm,其内接正六边形ABCDEF,点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,连接PB,QE,PE,BQ.设运动时间为t(s).(1)求证:四边形PEQB为平行四边形;(2)填空:①当t=2s时,四边形PBQE为菱形;②当t=0或4s时,四边形PBQE为矩形.【解答】(1)证明:∵正六边形ABCDEF内接于⊙O,∴AB=BC=CD=DE=EF=FA,∠A=∠ABC=∠C=∠D=∠DEF=∠F,∵点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,∴AP=DQ=t,PF=QC=4﹣t,在△ABP和△DEQ中,,∴△ABP≌△DEQ(SAS),∴BP=EQ,同理可证PE=QB,∴四边形PEQB是平行四边形.(2)解:①当PA=PF,QC=QD时,四边形PBEQ是菱形时,此时t=2s.②当t=0时,∠EPF=∠PEF=30°,∴∠BPE=120°﹣30°=90°,∴此时四边形PBQE是矩形.当t=4时,同法可知∠BPE=90°,此时四边形PBQE是矩形.综上所述,t=0s或4s时,四边形PBQE是矩形.故答案为2s,0s或4s.19.(9分)如图,商丘市睢阳区南湖中有一小岛,湖边有一条笔直的观光小道,现决定从小岛架一座与观光小道垂直的小桥PD,小坤在小道上测得如下数据:AB=200.0米,∠PAB=38.5°,∠PBA=26.5°.请帮助小坤求出小桥PD的长.(结果精确到0.1米)(参考数据:sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80,sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50)【解答】解:设PD=x米,∵PD⊥AB,∴∠ADP=∠BDP=90°,在Rt△PAD中,tan∠PAD=,∴AD=≈=x,在Rt△PBD中,tan∠PBD=,∴DB=≈=2x,又∵AB=80.0米,∴x +2x=200.0,解得:x ≈61.5,即PD ≈61.5(米), ∴DB=123.0(米).答:小桥PD 的长度约为61.5米,位于AB 之间距B 点约123.0米.20.(9分)重阳节期间,某单位组织本单位退休职工前去距离商丘480千米的信阳鸡公山登高旅游,由于人数较多,共租用甲、乙两辆长途汽车沿同一路线赶赴景点.图中的折线、线段分别表示甲、乙两车所走的路程y 甲(千米),y 乙(千米)与时间x (小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:(1)由于汽车发生故障,甲车在途中停留了 2 小时;(2)甲车排除故障后,立即提速赶往景点.请问甲车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙车在第一次相遇时约定此后两车之间的路程不超过35千米,请通过计算说明,按图象所表示的走法是否符合约定.【解答】解:(1)观察图象可知,甲车在途中停留了6.6﹣4.5=2小时, 故答案为2.(2)由题意直线OD 的解析式为y=60x ,设直线BC 的解析式为y=kx +b , ∵E (7.25,435),C (7.7,480), 则有,解得,∴y=100x ﹣290, x=6.5时,y=360,∴甲车在排除故障时,距出发点的路程是360千米(3)符合约定.由图象可知:甲乙两个家庭第一次相遇后在B和C相距最远.在点B处有y乙﹣y甲=60×6.5﹣360=30千米<35千米;在点C处有y甲﹣y乙=100×7.7﹣290﹣(60×7.7)=18千米<35千米.∴按图象所表示的走法符合约定.21.(10分)我市计划购买甲、乙两种树苗共8000株用于城市绿化,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若购买这两种树苗共用去210000元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.【解答】解:(1)设购买甲种树苗x株,则购买乙种树苗(8000﹣x)株,由题意,得:24x+30(8000﹣x)=210000,解得:x=5000,故8000﹣x=3000(株)答:购买甲种树苗5000株,则购买乙种树苗3000株;(2)设购买甲种树苗x株,则购买乙种树苗(800﹣x)株,由题意,得85% x+90%(8000﹣x)≥8000×88%,解得:x≤32000,答:甲种树苗至多购买3200株;(3)设总费用为:y,故y=24x+30(8000﹣x)=﹣6x+240000,∵k=﹣6,则y随x的增大而减小,∴x=3200时,y最小=220800元,答:当甲种树苗购进3200株,乙种树苗购进4800株时,总费用最低为220800元.22.(10分)已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与B,C重合).以AD为边作菱形ADEF,使∠DAF=60°,连接CF.初步感知:(1)如图1,当点D在边BC上时,①求证:∠ADB=∠AFC;②请直接判断结论∠AFC=∠ACB+∠DAC是否成立;问题探究:(2)如图2,当点D在边BC的延长线上时,其他条件不变,结论∠AFC=∠ACB+∠DAC是否成立?请写出∠AFC、∠ACB、∠DAC之间存在的数量关系,并写出证明过程;类比分析:(3)如图3,当点D在边CB的延长线上时,且点A、F分别在直线BC的异侧,其他条件不变,请补全图形,并直接写出∠AFC、∠ACB、∠DAC之间存在的等量关系.【解答】(1)①证明:∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∵∠DAF=60°,∴∠BAC=∠DAF,∴∠BAD=∠CAF,∵四边形ADEF是菱形,∴AD=AF,在△ABD和△ACF中,,∴△ABD≌△ACF(SAS),∴∠ADB=∠AFC,②解:∠AFC=∠ACB+∠DAC成立.理由如下:∵△ABD≌△ACF,∴∠ADB=∠AFC,∵∠ADB=∠ACB+∠DAC,∴∠AFC=∠ACB+∠DAC;(2)解:∠AFC=∠ACB+∠DAC不成立.∠AFC、∠ACB、∠DAC之间的等量关系是∠AFC=∠ACB﹣∠DAC.理由如下:∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∵∠BAC=∠DAF,∴∠BAD=∠CAF,∵四边形ADEF是菱形,∴AD=AF.在△ABD和△ACF中,,∴△ABD≌△ACF(SAS).∴∠ADB=∠AFC.又∵∠ACB=∠ADC+∠DAC,∴∠AFC=∠ACB﹣∠DAC.(3)解:补全图形如图所示:∠AFC、∠ACB、∠DAC之间的等量关系是:∠AFC+∠DAC+∠ACB=180°;理由如下:同(2)得:△ABD≌△ACF,∴∠ADC=∠AFC,∵∠ADC+∠ACB+∠DAC=180°,∴∠AFC+∠DAC+∠ACB=180°.23.(11分)将直角边长为6的等腰Rt△AOC放在如图所示的平面直角坐标系中,点O为坐标原点,点C、A分别在x、y轴的正半轴上,一条抛物线经过点A、C 及点B(﹣3,0).(1)求该抛物线的解析式;(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当△APE的面积最大时,求点P的坐标;(3)在第一象限内的该抛物线上是否存在点G,使△AGC的面积与(2)中△APE 的最大面积相等?若存在,请求出点G的坐标;若不存在,请说明理由.【解答】解:(1)如图,∵抛物线y=ax2+bx+c(a≠0)的图象经过点A(0,6),∴c=6.∵抛物线的图象又经过点(﹣3,0)和(6,0),∴,解之得,故此抛物线的解析式为:y=﹣x2+x+6.(2)设点P的坐标为(m,0),则PC=6﹣m,S=BC•AO=×9×6=27;△ABC∵PE∥AB,∴△CEP∽△CAB;∴,即=()2,=(6﹣m)2,∴S△CEP∵S=PC•AO=(6﹣m)×6=3(6﹣m),△APC=S△APC﹣S△CEP=3(6﹣m)﹣(6﹣m)2=﹣(m﹣)2+;∴S△APE有最大面积为;当m=时,S△APE此时,点P的坐标为(,0).(3)如图,过G作GH⊥BC于点H,设点G的坐标为G(a,b),连接AG、GC,=a(b+6),∵S梯形AOHGS△CHG=(6﹣a)b,∴S=a(b+6)+(6﹣a)b=3(a+b).四边形AOCG=S四边形AOCG﹣S△AOC,∵S△AGC∴=3(a+b)﹣18,∵点G(a,b)在抛物线y=﹣x2+x+6的图象上,∴b=﹣a2+a+6,∴=3(a﹣a2+a+6)﹣18,化简,得4a2﹣24a+27=0,解之得a1=,a2=;故点G的坐标为(,)或(,).。

2017年河南省郑州市中考数学一模

2017年河南省郑州市中考数学一模

一、选择题(每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列各数中,最小的数是()A.﹣2018B.2018C.﹣D .2.(3分)下列计算正确的是()A.2a•a2=2a2B.a8÷a2=a4C.(﹣2a)2=4a2D.(a3)2=a5 3.(3分)将一副三角板的直角顶点重合按如图所示方式放置,其中BC∥AE,则∠ACD的度数为()A.20°B.25°C.30°D.35°4.(3分)第十一届中国(郑州)国际园林博览会于2017年9月29日在郑州航空港经济综合实验区开幕,共有园博园、双鹤湖中央公园、苑陵故城遗址公园三个园区,“三园”作为我市新的热门旅游胜地,吸引了众多游客的目光.据统计,开园后的首个“十一”黄金周期间,园博园入园人数累计约280000人次,把280000用科学记数法表示为()A.2.8×104B.2.8×105C.0.28×108D.28×104 5.(3分)如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC.则下列四种不同方法的作图中准确的是()A .2017年河南省郑州市中考数学一模试卷B.C.D.6.(3分)若干盒奶粉放在桌子上,如图是一盒奶粉的实物以及这若干盒奶粉所组成的几何体从正面、左面、上面所看到的图形,则这些奶粉共有()盒.A.3B.4C.5D.不能确定7.(3分)班级元旦晚会上,主持人给大家带来了一个有奖竞猜题,他在一个不透明的袋子中放了若干个形状大小完全相同的白球,想请大家想办法估计出袋中白球的个数.数学课代表小明是这样来估计的:他先往袋中放入10个形状大小与白球相同的红球,混匀后再从袋子中随机摸出20个球,发现其中有4个红球.如果设袋中有白球x个,根据小明的方法用来估计袋中白球个数的方程是()A.=B.=C.=D.=8.(3分)如图,已知一次函数y=kx+b(k,b为常数,且k≠0)的图象与x轴交于点A(3,0),若正比例函数y=mx(m为常数,且m≠0)的图象与一次函数的图象相交于点P,且点P的横坐标为1,则关于x的不等式(k﹣m)x+b<0的解集为()A.x<1B.x>1C.x<3D.x>39.(3分)若关于x的一元二次方程(k+1)x2+2(k+1)x+k﹣2=0有实数根,则k的取值范围在数轴上表示正确的是()A.B.C.D.10.(3分)如图一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交于点O和A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x 轴于A3,如此进行下去,直至得到C10,若点P(28,m)在第10段抛物线C10上,则m 的值为()A.1B.﹣1C.2D.﹣2二、填空题(每小题3分,共15分)11.(3分)计算(π﹣1)0+=.12.(3分)2017年12月31日晚,郑东新区如意湖文化广场举行了“文化跨年夜、出彩郑州人”的跨年庆祝活动,大学生小明和小刚都各自前往观看了演出,而且他们两人前往时选择了以下三种交通工具中的一种:共享单车、公交、地铁,则他们两人选择同一种交通工具前往观看演出的概率为.13.(3分)已知三个边长分别为1,2,3的正三角形从左到右如图排列,则图中阴影部分面积为.14.(3分)某果园有100棵橘子树,平均每一棵树结600个橘子.根据经验估计,每多种一棵树,平均每棵树就会少结5个橘子.设果园增种x棵橘子树,果园橘子总个数为y 个,则果园里增种棵橘子树,橘子总个数最多.15.(3分)如图,BC⊥y轴,BC<OA,点A,点C分别在x轴、y轴的正半轴上,D是线段BC上一点,BD=OA=,AB=3,∠OAB=45°,E,F分别是线段OA,AB上的两动点,且始终保持∠DEF=45°.将△AEF沿一条边翻折,翻折前后两个三角形组成的四边形为菱形,则线段OE的值为.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:(+)÷.其中x的值从不等式组的整数解中选取.17.(9分)郑州市大力发展绿色交通,构建公共绿色交通体系,“共享单车”的投入使用给人们的出行带来便利.小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如图统计图,请根据图中信息,解答下列问题:(1)这次被调查的总人数是;(2)补全条形统计图;(3)在扇形统计图中,求表示A组(t≤10分)的扇形圆心角的度数;(4)如果骑共享单车的平均速度为12km/h,请估算,在租用共享单车的市民中,骑车路程不超过6km的人数所占的百分比.18.(9分)如图,在▱ABCD中,点O是边BC的中点,连接DO并延长,交AB的延长线于点E,连接BD,EC.(1)求证:四边形BECD是平行四边形;(2)当∠BOD=°时,四边形BECD是菱形;(3)当∠A=50°,则当∠BOD=°时,四边形BECD是矩形.19.(9分)如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时办公楼在建筑物的墙上留下高1米的影子CE,而当光线与地面夹角是45°时,办公楼顶A 在地面上的影子F与墙角C有20米的距离(B,F,C在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(精确到1米)(参考数据:sin22°≈,cos22°≈,tan22°≈)20.(9分)直线y=kx+b与反比例函数y=(x>0)的图象分别交于点A(m,3)和点B (6,n),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.21.(10分)小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分钟)10103503020850信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?22.(10分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P顺时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=15°,BP=4,请求出BQ的长23.(11分)如图,已知抛物线y=ax2+bx+3过点A(﹣1,0),B(3,0),点M,N为抛物线上的动点,过点M作MD∥y轴,交直线BC于点D,交x轴于点E.(1)求抛物线的表达式;(2)过点N作NF⊥x轴,垂足为点F,若四边形MNFE为正方形(此处限定点M在对称轴的右侧),求该正方形的面积;(3)若∠DMN=90°,MD=MN,直接写出点M的坐标.2017-2018学年河南省郑州市九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.【分析】利用正数大于一切负数和两个负数,绝对值大的其值反而小可得到四个数的大小关系.【解答】解:﹣2018<﹣<<2018.故选:A.2.【分析】直接利用单项式乘以单项式以及同底数幂的乘除运算法则和积的乘方运算法则分别计算得出答案.【解答】解:A、2a•a2=2a3,故此选项错误;B、a8÷a2=a6,故此选项错误;C、(﹣2a)2=4a2,正确D、(a3)2=a6,故此选项错误;故选:C.3.【分析】依据平行线的性质,即可得到∠BCE=∠E=30°,再根据∠BCD=90°=∠ACE,即可得出∠ACD=∠BCE=30°.【解答】解:∵BC∥AE,∴∠BCE=∠E=30°,又∵∠BCD=90°=∠ACE,∴∠ACD=∠BCE=30°,故选:C.4.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将280000用科学记数法表示为:2.8×105.故选:B.5.【分析】利用线段垂直平分线的性质以及圆的性质分别分得出即可.【解答】解:A、如图所示:此时BA=BP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;B、如图所示:此时PA=PC,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;C、如图所示:此时CA=CP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;D、如图所示:此时BP=AP,故能得出PA+PC=BC,故此选项正确;故选:D.6.【分析】结合三视图知第1列的后面一行有2个盒子、前面一行有1个盒子,第2列只有后面一行,有1个盒子,据此可得.【解答】解:如图所示,这些奶粉盒的分布情况如下:共有4盒,故选:B.7.【分析】混匀后再从袋子中随机摸出20个球,发现其中有4个红球,即红球所占的比例是,则放入的10个球所占的总球数的,列方程即可求解.【解答】解:混匀后从口袋中随机摸出40个球,发现其中有3个红球,即红球所占的比例是,则方程为:=.故选:D.8.【分析】写出直线y=mx在直线y=kx+b上方所对应的自变量的范围即可.【解答】解:当x>1时,kx+b<mx,所以关于x的不等式(k﹣m)x+b<0的解集为x>1.故选:B.9.【分析】根据一元二次方程的定义结合根的判别式,即可得出关于k的一元一次不等式组,解之即可得出k的取值范围,将其表示在数轴上即可得出结论.【解答】解:∵关于x的一元二次方程(k+1)x2+2(k+1)x+k﹣2=0有实数根,∴,解得:k>﹣1.故选:A.10.【分析】求出抛物线C1与x轴的交点坐标,观察图形可知第偶数号抛物线都在x轴下方,然后求出到抛物线平移的距离,再根据向右平移以及沿x轴翻折,表示出抛物线C10的解析式,然后把点P的坐标代入计算即可得解.【解答】解:令y=0,则﹣x(x﹣3)=0,解得x1=0,x2=3,∴A1(3,0),由图可知,抛物线C10在x轴下方,相当于抛物线C1向右平移3×9=27个单位,再沿x轴翻折得到,∴抛物线C10的解析式为y=(x﹣27)(x﹣27﹣3)=(x﹣27)(x﹣30),∵P(28,m)在第10段抛物线C10上,∴m=(28﹣27)(28﹣30)=﹣2.故选:D.二、填空题(每小题3分,共15分)11.【分析】根据非零数的零次幂都等于1和算式平方根计算可得.【解答】解:原式=1+3=4,故答案为:4.12.【分析】首先根据题意画树状图,然后根据树状图即可求得所有等可能的结果,最后用概率公式求解即可求得答案.【解答】解:树状图如图所示,∴一共有9种等可能的结果;根据树状图知,两人选择同一种交通工具前往观看演出的有3种情况,∴选择同一种交通工具前往观看演出的概率:=,故答案为:.13.【分析】先证明△ACE为等腰三角形,然后再证明△BHG和△FCE为含30°的直角三角形,从而可得到两个三角形的底边长和高长,最后,依据三角形的面积公式求解即可.【解答】解:如图所示:由题意得:AC=CE=3,∴∠EAC=∠AEC=30°.∴∠HGB=30°.又∵∠HBG=∠FCE=60°,∴∠BHG=∠CFE=90°.∴HB=AB=,GH=BH=,FE=CE=,FC=CE=.=×=,S△CFE=××=.∴S△HGB∴阴影部分的面积=.14.【分析】根据题意设多种x棵树,就可求出每棵树的产量,然后求出总产量y与x之间的关系式,进而求出x=﹣时,y最大.【解答】解:假设果园增种x棵橘子树,那么果园共有(x+100)棵橘子树,∵每多种一棵树,平均每棵树就会少结5个橘子,∴这时平均每棵树就会少结5x个橘子,则平均每棵树结(600﹣5x)个橘子.∵果园橘子的总产量为y,∴则y=(x+100)(600﹣5x)=﹣5x2+100x+60000,∴当x=﹣=﹣=10(棵)时,橘子总个数最多.故答案为:10.15.【分析】依据BD=OA=,AB=3,∠OAB=45°,得到∠DOE=∠EAF,∠OED =∠AFE,即可判定△DOE∽△EAF,分情况进行讨论:①当EF=AF时,△AEF沿AE 翻折,所得四边形为菱形,进而得到OE的长;②当AE=AF时,△AEF沿EF翻折,所得四边形为菱形,进而得到OE的长;③当AE=EF时,△AEF沿AF翻折,所得四边形为菱形,进而得到OE的长.【解答】解:∵∠DEF=45°,∠OAB=45°,∴∠OED=∠AFE,∵BD=OA=,AB=3,∴AO=4,BC=4﹣cos45°×AB=,∴CD=﹣=,又∵OC=sin45°×AB=,∴△OCD是等腰直角三角形,OD==3,∴∠DOE=90°﹣45°=45°,∴∠DOE=∠EAF,∴△DOE∽△EAF,分三种情况:①如图所示,当EF=AF时,△AEF沿AE翻折,所得四边形为菱形,此时,∠FEA=45°,即△AEF是等腰直角三角形,∴△DOE是等腰直角三角形,∴∠DEO=90°,∴OE=CD=;②如图所示,当AE=AF时,△AEF沿EF翻折,所得四边形为菱形,此时,△AEF为顶角为45°的等腰三角形,∴△ODE为顶角为45°的等腰三角形,∴OE=OD=3;③如图所示,当AE=EF时,△AEF沿AF翻折,所得四边形为菱形,此时,∠AFE=45°,即△AEF是等腰直角三角形,∴△ODE是以OE为底边的等腰直角三角形,∴OE=OD=×3=3;故答案为:或3或3.三、解答题(本大题共8个小题,满分75分)16.【分析】根据分式的运算法则即可求出答案.【解答】解:由不等式组可解得:﹣1<x≤2∵x是整数,∴x=0或1或2∴原式=÷=(x+2)•=当x=1时,原式=17.【分析】(1)根据B类人数是19,所占的百分比是38%,据此即可求得调查的总人数;(2)总人数减去A、B、D三组人数求得C组的人数,据此可补全条形图;(3)利用360°乘以对应的百分比即可求解;(4)求得路程是6km时所用的时间,根据百分比的意义可求得路程不超过6km的人数所占的百分比.【解答】解:(1)这次被调查的总人数是19÷38%=50(人),故答案为:50;(2)C组人数为50﹣(15+19+4)=12(人),补全条形图如下:(3)表示A组的扇形圆心角的度数为360°×=108°;(4)路程是6km时所用的时间是:6÷12=0.5(小时)=30(分钟),则骑车路程不超过6km的人数所占的百分比是:×100%=92%.18.【分析】(1)由AAS证明△BOE≌△COD,得出OE=OD,即可得出结论;(2)对角线互相垂直平分的平行四边形是菱形;(3)由平行四边形的性质得出∠BCD=∠A=50°,由三角形的外角性质求出∠ODC=∠BCD,得出OC=OD,证出DE=BC,即可得出结论.【解答】(1)证明:∵四边形ABCD为平行四边形,∴AB∥DC,AB=CD,∴∠OEB=∠ODC,又∵O为BC的中点,∴BO=CO,在△BOE和△COD中,,∴△BOE≌△COD(AAS);∴OE=OD,∴四边形BECD是平行四边形;(2)解:当∠BOD=90°时,四边形BECD是菱形;理由:∵四边形BECD是平行四边形,∴当∠BOD=90°时,四边形BECD是菱形;(3)解:若∠A=50°,则当∠BOD=100°时,四边形BECD是矩形.理由如下:∵四边形ABCD是平行四边形,∴∠BCD=∠A=50°,∵∠BOD=∠BCD+∠ODC,∴∠ODC=100°﹣50°=50°=∠BCD,∴OC=OD,∵BO=CO,OD=OE,∴DE=BC,∵四边形BECD是平行四边形,∴四边形BECD是矩形;故答案是:(2)90°;(3)100°.19.【分析】(1)过点E作EM⊥AB于点M,设AB=x,在Rt△ABF中,由∠AFB=45°可知BF=AB=x,在Rt△AEM中,利用锐角三角函数的定义求出x的值即可;(2)在Rt△AME中,根据cos22°=可得出结论.【解答】解:(1)过点E作EM⊥AB于点M,设AB=x,在Rt△ABF中,∵∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+20.在Rt△AEM中,∵∠AEM=22°,AM=AB﹣CE=x﹣1,tan22°=,即=,解得,x=15.∴办公楼AB的高度为15米;(2)在Rt△AME中,∵cos22°=,∴AE==37米.∴A,E之间的距离为37米.20.【分析】(1)首先确定A、B两点坐标,再利用待定系数法即可解决问题;(2)分两种情形讨论求解即可.【解答】解:(1)∵y=kx+b与反比例函数y=(x>0)的图象分别交于点A(m,3)和点B(6,n),∴m=2,n=1,∴A(2,3),B(6,1),则有,解得,∴直线AB的解析式为y=﹣x+4(2)如图①当PA⊥OD时,∵PA∥OC,∴△ADP∽△CDO,此时p(2,0).②当AP′⊥CD时,易知△P′DA∽△CDO,∵直线AB的解析式为y=﹣x+4,∴直线P′A的解析式为y=2x﹣1,令y=0,解得x=,∴P′(,0),综上所述,满足条件的点P坐标为(2,0)或(,0).21.【分析】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x,y的值.(2)设生产甲种产品用x分,则生产乙种产品用(25×8×60﹣x)分,分别求出甲乙两种生产多少件产品.【解答】解:(1)设生产一件甲种产品需x分,生产一件乙种产品需y分.由题意得:,解这个方程组得:,答:生产一件甲产品需要15分,生产一件乙产品需要20分.(2)设生产甲种产品共用x分,则生产乙种产品用(25×8×60﹣x)分.则生产甲种产品件,生产乙种产品件.∴w=1.5×+2.8×总额=0.1x+×2.8=0.1x+1680﹣0.14x=﹣0.04x+1680,又≥60,得x≥900,由一次函数的增减性,当x=900时w取得最大值,此时w=﹣0.04×900+1680=1644(元),则小王该月收入最多是1644+1900=3544(元),此时甲有=60(件),乙有:=555(件),答:小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.22.【分析】(1)结论:BQ=CP.如图1中,作PH∥AB交CO于H,可得△PCH是等边三角形,只要证明△POH≌△QPB即可;(2)成立:PC=BQ.作PH∥AB交CO的延长线于H.证明方法类似(1);(3)如图3中,作CE⊥OP于E,在PE上取一点F,使得FP=FC,连接CF.设CE=EO=a,则FC=FP=2a,EF=a,在Rt△PCE中,PC===(+)a,根据PC+CB=4,可得方程(+)a+a=4,求出a即可解决问题;【解答】解:(1)结论:BQ=CP.理由:如图1中,作PH∥AB交CO于H.在Rt△ABC中,∵∠ACB=90°,∠A=30°,点O为AB中点,∴CO=AO=BO,∠CBO=60°,∴△CBO是等边三角形,∴∠CHP=∠COB=60°,∠CPH=∠CBO=60°,∴∠CHP=∠CPH=60°,∴△CPH是等边三角形,∴PC=PH=CH,∴OH=PB,∵∠OPB=∠OPQ+∠QPB=∠OCB+∠COP,∵∠OPQ=∠OCP=60°,∴∠POH=∠QPB,∵PO=PQ,∴△POH≌△QPB,∴PH=QB,∴PC=BQ.(2)成立:PC=BQ.理由:作PH∥AB交CO的延长线于H.在Rt△ABC中,∵∠ACB=90°,∠A=30°,点O为AB中点,∴CO=AO=BO,∠CBO=60°,∴△CBO是等边三角形,∴∠CHP=∠COB=60°,∠CPH=∠CBO=60°,∴∠CHP=∠CPH=60°,∴△CPH是等边三角形,∴PC=PH=CH,∴OH=PB,∵∠POH=60°+∠CPO,∠QPO=60°+∠CPO,∴∠POH=∠QPB,∵PO=PQ,∴△POH≌△QPB,∴PH=QB,∴PC=BQ.(3)如图3中,作CE⊥OP于E,在PE上取一点F,使得FP=FC,连接CF.∵∠OPC=15°,∠OCB=∠OCP+∠POC,∴∠POC=45°,∴CE=EO,设CE=EO=a,则FC=FP=2a,EF=a,在Rt△PCE中,PC===(+)a,∵PC+CB=4,∴(+)a+a=4,解得a=4﹣2,∴PC=4﹣4,由(2)可知BQ=PC,∴BQ=4﹣4.23.【分析】(1)利用待定系数法求解可得抛物线的表达式;(2)设点M坐标为(m,﹣m2+2m+3),分别表示出ME=|﹣m2+2m+3|、MN=2m﹣2,由四边形MNFE为正方形知ME=MN,据此列出方程,分类讨论求解可得;(3)先求出直线BC解析式,设点M的坐标为(a,﹣a2+2a+3),则点N(2﹣a,﹣a2+2a+3)、点D(a,﹣a+3),由MD=MN列出方程,根据点M的位置分类讨论求解可得.【解答】解:(1)∵抛物线y=ax2+bx+3过点A(﹣1,0),B(3,0),∴,解得:,∴抛物线解析式为y=﹣x2+2x+3;(2)由(1)知,抛物线的对称轴为x=﹣=1,如图,设点M坐标为(m,﹣m2+2m+3),∴ME=|﹣m2+2m+3|,∵M、N关于x=1对称,且点M在对称轴右侧,∴点N的横坐标为2﹣m,∴MN=2m﹣2,∵四边形MNFE为正方形,∴ME=MN,∴|﹣m2+2m+3|=2m﹣2,分两种情况:①当﹣m2+2m+3=2m﹣2时,解得:m1=、m2=﹣(不符合题意,舍去),当m=时,正方形的面积为(2﹣2)2=24﹣8;②当﹣m2+2m+3=2﹣2m时,解得:m3=2+,m4=2﹣(不符合题意,舍去),当m=2+时,正方形的面积为[2(2+)﹣2]2=24+8;综上所述,正方形的面积为24+8或24﹣8.(3)设BC所在直线解析式为y=kx+b,把点B(3,0)、C(0,3)代入表达式,得:,解得:,∴直线BC的函数表达式为y=﹣x+3,设点M的坐标为(a,﹣a2+2a+3),则点N(2﹣a,﹣a2+2a+3),点D(a,﹣a+3),①点M在对称轴右侧,即a>1,则|﹣a+3﹣(﹣a2+2a+3)|=a﹣(2﹣a),即|a2﹣3a|=2a﹣2,若a2﹣3a≥0,即a≤0或a≥3,a2﹣3a=2a﹣2,解得:a=或a=<1(舍去);若a2﹣3a<0,即0<a<3,a2﹣3a=2﹣2a,解得:a=﹣1(舍去)或a=2;②点M在对称轴左侧,即a<1,则|﹣a+3﹣(﹣a2+2a+3)|=2﹣a﹣a,即|a2﹣3a|=2﹣2a,若a2﹣3a≥0,即a≤0或a≥3,a2﹣3a=2﹣2a,解得:a=﹣1或a=2(舍);若a2﹣3a<0,即0<a<3,a2﹣3a=2a﹣2,解得:a=(舍去)或a=;综上,点M的坐标为(,)或(2,3)或(﹣1,0)或(,).。

2017年河南省中招数学试题与答案(1)

2017年河南省中招数学试题与答案(1)

2017年河南省中招数学试题与答案(1)2017年河南省中招数学试题与答案 谷瑞林一、选择题(每小题3分,共30分) 1.下列各数中比1大的数是(A ) A. 2 B.0 C.-1 D.-32.2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示为(B )A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×1014 3.某几何体的左视图如下图所示,则该几何体不可能是(D)(A ) (B ) (C ) (D ) 4.解分式方程132x 11x-=--,去分母的(A ) A.1-2(x-1)=-3 B. 1-2(x-1)=3 C . 1-2x-2=-3 D. 1-2x+2=3 5.八年级某同学6次数学测验的成绩分别是:80分,85分,95分,95分,95分,100分,该图同学这6次成绩的众数和中位数分别是(A )A.95分,95分B. 95分,90分C. 90分,95分D. 95分,85分 6.一元二次方程2x 2-5x-2=0的根的情况是( B ) A.有两个相等的实数根 B. 有两个不相等的实数根 C .只有一个实数根 D.没有实数根7.如图,在平行四边形ABCD 中,对角线AC 、BD 相交于O ,添加下列条件不能判定平行四边形ABCD 是菱形的只有(C ) A.AC ⊥BD B.AB=BC C.AC=BD D.∠1=∠28.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘2次,每次转盘停止后记录指针所指区域的数字(当指针正好直在分界线上是,不计,重转),则记录的两个数字都是正数的概率是(C )第7题21O BAD第8题-1210A.18B.16C.14D.129.我们知道:四边形具有不稳定性。

如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D /处,则点C 的对应点C /点的坐标是(D )A.,1)B.(2,1) C.(1D.(2)10.如图,将半径为2,圆心角为1200的扇形OAB 绕点A 逆时针旋转600,点O,B 的对应点分别是O /,B /,连接BB /,则图中阴影部分的面积是(C )A.23πB.3πC. 32πD. 32π 二、填空题(每小题3分,共15分) 11.计算:23= 612.不等式组x 20x 1x 2-≤⎧⎪⎨-⎪⎩<的解集是 -1≤x ≤213.已知点A (1,m ),B (2,n )在反比例函数y=-2x的图像上,则m 与n 的大小关系为m <n14.如图1,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A.图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图像,其中M 为曲线部分的最低点,则△ABC 的面积是 12 。

2017郑州一模数学试卷含答案(word高清版)

2017郑州一模数学试卷含答案(word高清版)

CBA俯视图左视图主视图河南省郑州市2016-2017学年九年级一模数学试题一、选择题(每小题3分,共30分)1. 在-2 017,0,-3,2 017这四个数中,最小的数是( )A .-2 017B .0C .-3D .2 017 2. 如图是几何体的三视图,该几何体是( )A .圆锥B .圆柱C .三棱柱D .三棱锥 3. 我国一次性建成最长的万吨重载铁路——晋豫鲁重载铁路,铁路全线长1 260公里,横跨山西、河南、山东三省,总投资941亿元,941亿用 科学记数法表示为( )A .994110⨯B .109.4110⨯C .1194.110⨯D .129.4110⨯ 4. 如图所示,一艘船在海上从A 点出发,沿东北方向航行至点B ,再从B 点出发沿南偏东20°方向行至点C ,则∠ABC 的度数是( ) A .45° B .65° C .75°D .90° 5. 下列说法中,正确的是( )A .为检测市场上正在销售的酸奶质量,应该采用全面调查的方式B .在连续5次的数学测试中,两名同学的平均分相同,方差较大的同学数学成绩更稳定C .小强班上有3个同学都是16岁,因此小强认为他们班学生年龄的众数是16岁D .给定一组数据,则这组数据的中位数一定只有一个6. 如图,已知△ABC ,∠ACB =90°,BC =3,AC =4,小红按如下步骤作图:①分别以A ,C 为圆心,以大于12AC 的长为半径在AC 两边作弧,交于两点M ,N ;②连接MN ,分别交AB ,AC 于点D ,O ;③过C 作CE ∥AB 交MN 于点E ,连接AE ,CD .则四边形ADCE 的周长为( ) A .10B .20C .12D .24NM EO DCBA(35kg ) 乙甲甲(45kg ) 丙7. 如图是甲、乙、丙三人玩跷跷板的示意图(支点在中点处),则甲的体重的取值范围在数轴上表示正确的是( )A.B.C.D.8. 从九年级一班3名优秀班干部和九二班2名优秀班干部中随机抽取两名学生担任升旗手,则抽取的两名学生刚好一个班的概率为( ) A .15B .25C .35D .459. 某校团委准备举办学生绘画展览,为美化画面,在长8 dm ,宽为5 dm的矩形内画面四周镶上宽度相等的彩纸,并使彩纸的面积等于22 dm 2 (如图),若设彩纸的宽度为x 分米,则可得方程为( ) A .40-10x -16x =18 B .(8-x )(5-x )=18 C .(8-2x )(5-2x )=18 D .40-5x -8x +4x 2=22QPDCBA 10. 如图,矩形ABCD 中,AB =2AD =4 cm ,动点P 从点A 出发,以1 cm/s 的速度沿线段AB 向点B 运动,动点Q 同时从点A 出发,以2 cm/s 的速度沿折线AD→DC→CB 向点B 运动, 当一个点停止时另一个点也随之停止.设点P 的运动时间是 x (s )时,△APQ 的面积是y (cm 2),则能够反映y 与x 之间 函数关系的图象大致是( )A.B.C.D.二、填空题(每小题3分,共15分) 11. 计算:03=__________.12. 如图,在△ABC 中,D ,E 分别在是AB 和AC 上且DE ∥BC ,若AB =12 cm ,AD =9 cm ,AC =8 cm ,则AE 的长是______.CE BAD第12题图 13. 当k =__________时,双曲线ky x=过点. 14. 如图,把抛物线212y x =平移得到抛物线m ,抛物线m 经过点(80)A -,和原点O (0,0),它的顶点为P ,它的对称轴与抛物线212y x =交于点Q ,则图中阴影部分的面积为__________.15. 如图,在矩形ABCD 中,AB =6,BC =4,点E 是边BC 上一动点,把△DCE 沿DE 折叠得△DFE ,射线DF 交直线CB 于点P ,当△AFD 为等腰三角形时,DP 的长为_________.三、解答题(本大题共8个小题,满分75分)16. (8分)先化简,再求值:22113()263x x xx x x ++-÷---,其中x 为方程(6)(3)0x x --=的实数根.PAB F EDC17. (9分)如图,在菱形ABCD 中,AB =20,∠DAB =60°,点E 是AD 边的中点,点M 是AB 边上一动点(不与点A 重合),延长ME 交射线CD 于点N ,连拉MD ,AN . (1)求证:四边形AMDN 是平行四边形.(2)填空:①当AM 的值为_________时,四边形AMDN 是矩形; ②当AM 的值为_________时,四边形AMDN 是菱形.NM E D CBA18. (9分)全民学习、终身学习是学习型社会的核心内容,努力建设学习型家庭也是一个重要组成部分.为了解“学习型家庭”情况,对部分家庭五月份的平均每天看书学习时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图.请根据图中提供的信息,解答下列问题:图1时间/小时图254°108° 1.5~2小时2~2.5小时1~1.5小时0.5~1小时(1)本次抽样调查了_________个家庭; (2)将图1中的条形图补充完整;(3)学习时间在2~2.5小时的部分对应的扇形圆心角的度数是______度;(4)若该社区有家庭共3 000个,请你估计该社区学习时间不少于1小时的约有多少个家庭?19. (9分)已知关于x 的一元二次方程22(2)0x x m +--=有实数根.(1)求m 的取值范围;(2)若方程有一个根为x =1,求m 的值及另一个根.20. (9分)郑州市农业路高架桥二层的开通,较大程度缓解了市内交通的压力,最初设计南阳路口上桥匝道时,其坡角为15°,后来从安全角度考虑将匝道坡角改为5°(见示意图),如果高架桥高CD =6米,匝道BD 和AD 每米造价均为4 000元,那么设计优化后修建匝道AD 的投资将增加多少元?(参考数据:sin5°≈0.08,sin15°≈0.25,tan5°≈0.09,tan15°≈0.27,结果保留整数)21. (10分)雾霾天气持续笼罩我国大部分地区,困扰着广大市民的生活,口罩市场出现热销,小明的爸爸用12 000元购进甲、乙两种型号的口罩在自家商店销售,销售完后共获利2 700元,进价和售价如下表:(2)该商店第二次以原价购进甲、乙两种型号口罩,购进甲种型号口罩袋数不变,而购进乙种型号口罩袋数是第一次的2倍.甲种口罩按原售价出售,而效果更好的乙种口罩打折让利销售.若两种型号的口罩全部售完,要使第二次销售活动获利不少于2 460元,每袋乙种型号的口罩最多打几折?ABCDP FG E22. (10分)如图,长方形ABCD 中,P 是AD 上一动点,连接BP ,过点A 作BP 的垂线,垂足为F ,交BD 于点E ,交CD 于点G .(1)当AB =AD ,且P 是AD 的中点时,求证:AG =BP ; (2)在(1)的条件下,求DEBE的值; (3)类比探究:若AB =3AD ,AD =2AP ,DEBE的值为_______.(直接填答案)23. (11分)如图1,若直线l :y =-2x +4交x 轴于点A ,交y 轴于点B ,将△AOB 绕点O 逆时针旋转90°得到△COD .过点A ,B ,D 的抛物线h :y =ax 2+bx +4. (1)求抛物线h 的表达式;(2)若与y 轴平行的直线m 以1秒钟一个单位长度的速度从y 轴向左平移,交线段CD 于点M ,交抛物线h 于点N ,求线段MN 的最大值;(3)如图2,点E 为抛物线h 的顶点,点P 是抛物线h 在第二象限上的一动点(不与点D ,B 重合),连接PE ,以PE 为边作图示一侧的正方形PEFG ,随着点P 的运动,正方形的大小、位置也随之改变.当顶点F 或G 恰好落在y 轴上时,直接写出对应的点P 的坐标.图1 图2 备用图参考答案。

2017河南省初中中考数学试卷习题及含答案

2017河南省初中中考数学试卷习题及含答案

2017 年河南省中招数学试卷及答案2017 年河南省一般高中招生考试一试卷数学注意事项:1. 本试卷共 6 页,三个大题,满分120 分,考试时间 100 分钟 .2. 本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效.一、选择题(每题 3 分,共 30 分)以下各小题均有四个答案,其中只有一个是正确的.1. 以下各数中比 1 大的数是()A. 2B. 0C. -1年,我国国内生产总值达到74.4 万亿元,用科学计数法表示为()× 1012 × 1013 C. 74.4 ×1013 × 10143. 某几何体的左视图以以下列图所示,则该几何体不能能是()123()4. 解分式方程,去分母得x 1 1 xA.1-2 ( x-1 )( x-1 ) =3 C.1-2x-2=-3 D.1-2x+2=35. 八年级某同学 6 次数学小测试的成绩分别为80 分, 85 分, 95 分, 95 分, 95 分, 100 分,则该同学这众数和中位数分别是()A.95 分, 95 分B. 95 分, 90 分C. 90 分, 95 分D. 95分,85分6. 一元二次方程 2x2-5x-2=0 根的情况是()A. 有两个相等的实数根B.有两个不相等的实数根C. 只有一个实数根D.没有实数根7.如图,在□ABCD中,对角线 AC、 BD订交于点 O,增加以下条件不能够判断□ABCD是菱形的只有(..⊥ BD B.AB=BC C.AC=BD D.∠1=∠ 26次成绩的)8. 如图是一次数学活动课制作的一个转盘,盘面被均分成四个扇形地域,并分别标有数字-1 , 0,1,2 ,若转动转盘两次,每次转盘停止后记录指针所指地域数字(当指针恰好指在分界线上时,不记,重转)则记录两个数字都是正数的概率为()1 1C. 1 1A. B. D.28 6 49. 我们知道:四边形拥有不牢固性,如图,在平面直角坐标系中,边长为 2 的正方形 ABCD边 AB在 x 轴上, AB的中点是坐标原点 O。

2017年河南省中考数学试卷(后附答案解析)

2017年河南省中考数学试卷(后附答案解析)

2017年河南省中考数学试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣32.(3分)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×10153.(3分)某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.4.(3分)解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=35.(3分)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分6.(3分)一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根7.(3分)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠28.(3分)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.9.(3分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1)B.(2,1) C.(1,)D.(2,)10.(3分)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B 的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A. B.2﹣C.2﹣D.4﹣二、填空题(每小题3分,共15分)11.(3分)计算:23﹣=.12.(3分)不等式组的解集是.13.(3分)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n的大小关系为.14.(3分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC 的面积是.15.(3分)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB 上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为.三、解答题(本题共8个小题,满分75分)16.(8分)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.17.(9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bE x≥1202请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有人,a+b=,m=;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.18.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.19.(9分)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)20.(9分)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.21.(10分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B 种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.(10分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.23.(11分)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c 经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2017年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2017•河南)下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣3【分析】根据正数大于零、零大于负数,可得答案.【解答】解:2>0>﹣1>﹣3,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零、零大于负数是解题关键.2.(3分)(2017•河南)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×1015【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将74.4万亿用科学记数法表示为:7.44×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•河南)某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.【分析】左视图是从左边看到的,据此求解.【解答】解:从左视图可以发现:该几何体共有两列,正方体的个数分别为2,1,D不符合,故选D.【点评】考查了由三视图判断几何体的知识,解题的关键是了解该几何体的构成,难度不大.4.(3分)(2017•河南)解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3【分析】分式方程变形后,两边乘以最简公分母x﹣1得到结果,即可作出判断.【解答】解:分式方程整理得:﹣2=﹣,去分母得:1﹣2(x﹣1)=﹣3,故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.5.(3分)(2017•河南)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:位于中间位置的两数分别是95分和95分,故中位数为95分,数据95出现了3次,最多,故这组数据的众数是95分,故选A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.6.(3分)(2017•河南)一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣5)2﹣4×2×(﹣2)=41>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(3分)(2017•河南)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2【分析】根据平行四边形的性质.菱形的判定方法即可一一判断.【解答】解:A、正确.对角线垂直的平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选C.【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.8.(3分)(2017•河南)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个数字都是正数的情况数,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两个数字都是正数的有4种情况,∴两个数字都是正数的概率是:=.故选:C.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时注意:概率=所求情况数与总情况数之比.9.(3分)(2017•河南)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1)B.(2,1) C.(1,)D.(2,)【分析】由已知条件得到AD′=AD=2,AO=AB=1,根据勾股定理得到OD′==,于是得到结论.【解答】解:∵AD′=AD=2,AO=AB=1,∴OD′==,∵C′D′=2,C′D′∥AB,∴C′(2,),故选D.【点评】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.10.(3分)(2017•河南)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A .B .2﹣C .2﹣D .4﹣【分析】连接OO′,BO′,根据旋转的性质得到∠OAO′=60°,推出△OAO′是等边三角形,得到∠AOO′=60°,推出△OO′B 是等边三角形,得到∠AO′B=120°,得到∠O′B′B=∠O′BB′=30°,根据图形的面积公式即可得到结论. 【解答】解:连接OO′,BO′,∵将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°, ∴∠OAO′=60°,∴△OAO′是等边三角形, ∴∠AOO′=60°, ∵∠AOB=120°, ∴∠O′OB=60°,∴△OO′B 是等边三角形, ∴∠AO′B=120°, ∵∠AO′B′=120°, ∴∠B′O′B=120°, ∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S △B′O′B ﹣(S 扇形O′OB ﹣S △OO′B )=×1×2﹣(﹣×2×)=2﹣.故选C .【点评】本题考查了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.二、填空题(每小题3分,共15分)11.(3分)(2017•河南)计算:23﹣=6.【分析】明确表示4的算术平方根,值为2.【解答】解:23﹣=8﹣2=6,故答案为:6.【点评】本题主要考查了算术平方根和有理数的乘方的定义,是一个基础题目,比较简单.12.(3分)(2017•河南)不等式组的解集是﹣1<x≤2.【分析】先求出不等式的解集,再求出不等式解集的公共部分.【解答】解:解不等式①得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集是﹣1<x≤2,故答案为﹣1<x≤2.【点评】题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.13.(3分)(2017•河南)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m 与n的大小关系为m<n.【分析】由反比例函数y=﹣可知函数的图象在第二、第四象限内,可以知道在每个象限内,y随x的增大而增大,根据这个判定则可.【解答】解:∵反比例函数y=﹣中k=﹣2<0,∴此函数的图象在二、四象限内,在每个象限内,y随x的增大而增大,∵0<1<2,∴A、B两点均在第四象限,∴m<n.故答案为m<n.【点评】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数图象所在的象限是解答此题的关键.14.(3分)(2017•河南)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是12.【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型.15.(3分)(2017•河南)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为+或1.【分析】①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,于是得到结论;②如图2,当∠MB′C=90°,推出△CMB′是等腰直角三角形,得到CM=MB′,列方程即可得到结论.【解答】解:①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,∴BM=BC=+;②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC,∴∠C=45°,∴△CMB′是等腰直角三角形,∴CM=MB′,∵沿MN所在的直线折叠∠B,使点B的对应点B′,∴BM=B′M,∴CM=BM,∵BC=+1,∴CM+BM=BM+BM=+1,∴BM=1,综上所述,若△MB′C为直角三角形,则BM的长为+或1,故答案为:+或1.【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.三、解答题(本题共8个小题,满分75分)16.(8分)(2017•河南)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.【分析】首先化简(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),然后把x=+1,y=﹣1代入化简后的算式,求出算式的值是多少即可.【解答】解:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y)=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy当x=+1,y=﹣1时,原式=9(+1)(﹣1)=9×(2﹣1)=9×1=9【点评】此题主要考查了整式的混合运算﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.17.(9分)(2017•河南)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bE x≥1202请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有50人,a+b=28,m=8;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.【分析】(1)根据B组的频数是16,对应的百分比是32%,据此求得调查的总人数,利用百分比的意义求得b,然后求得a的值,m的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数1000乘以对应的比例即可求解.【解答】解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,A组所占的百分比是=8%,则m=8.a+b=8+20=28.故答案是:50,28,8;(2)扇形统计图中扇形C的圆心角度数是360°×=144°;(3)每月零花钱的数额x在60≤x<120范围的人数是1000×=560(人).【点评】本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小.18.(9分)(2017•河南)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.【分析】(1)根据圆周角定理求出BD⊥AC,∠BDC=90°,根据切线的性质得出AB⊥BF,求出∠ACB=∠FCB,根据角平分线性质得出即可;(2)求出AC=10,AD=6,根据勾股定理求出BD,再根据勾股定理求出BC即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠BDA=90°,∴BD⊥AC,∠BDC=90°,∵BF切⊙O于B,∴AB⊥BF,∵CF∥AB,∴CF⊥BF,∠FCB=∠ABC,∵AB=AC,∴∠ACB=∠ABC,∴∠ACB=∠FCB,∵BD⊥AC,BF⊥CF,∴BD=BF;(2)解:∵AB=10,AB=AC,∴AC=10,∵CD=4,∴AD=10﹣4=6,在Rt△ADB中,由勾股定理得:BD==8,在Rt△BDC中,由勾股定理得:BC==4.【点评】本题考查了切线的性质,勾股定理,角平分线性质,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.19.(9分)(2017•河南)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)【分析】如图作CE⊥AB于E.设AE=EC=x,则BE=x﹣5,在Rt△BCE中,根据tan53°=,可得=,求出x,再求出BC、AC,分别求出A、B两船到C的时间,即可解决问题.【解答】解:如图作CE⊥AB于E.在Rt△ACE中,∵∠A=45°,∴AE=EC,设AE=EC=x,则BE=x﹣5,在Rt△BCE中,∵tan53°=,∴=,解得x=20,∴AE=EC=20,∴AC=20=28.2,BC==25,∴A船到C的时间≈=0.94小时,B船到C的时间==1小时,∴C船至少要等待0.94小时才能得到救援.【点评】本题考查解直角三角形的应用﹣方向角问题、锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.20.(9分)(2017•河南)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).(1)填空:一次函数的解析式为y=﹣x+4,反比例函数的解析式为y=;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.【分析】(1)先将B(3,1)代入反比例函数即可求出k的值,然后将A代入反比例函数即可求出m的,再根据B两点的坐标即可求出一次函数的解析式.(2)设P的坐标为(x,y),由于点P在直线AB上,从而可知PD=y,OD=x,由题意可知:1≤x≤3,从而可求出S的范围【解答】解:(1)将B(3,1)代入y=,∴k=3,将A(m,3)代入y=,∴m=1,∴A(1,3),将A(1,3)代入代入y=﹣x+b,∴b=4,∴y=﹣x+4(2)设P(x,y),由(1)可知:1≤x≤3,∴PD=y=﹣x+4,OD=x,∴S=x(﹣x+4),∴由二次函数的图象可知:S的取值范围为:≤S≤2故答案为:(1)y=﹣x+4;y=.【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是求出一次函数与反比例函数的解析式,本题属于中等题型.21.(10分)(2017•河南)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.【分析】(按买3个A种魔方和买4个B种魔方钱数相同解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.(按购买3个A种魔方和4个B种魔方需要130元解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.【解答】(按买3个A 种魔方和买4个B 种魔方钱数相同解答)解:(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个, 根据题意得:, 解得:. 答:A 种魔方的单价为20元/个,B 种魔方的单价为15元/个.(2)设购进A 种魔方m 个(0<m ≤50),总价格为w 元,则购进B 种魔方(100﹣m )个, 根据题意得:w 活动一=20m ×0.8+15(100﹣m )×0.4=10m +600;w 活动二=20m +15(100﹣m ﹣m )=﹣10m +1500.当w 活动一<w 活动二时,有10m +600<﹣10m +1500,解得:m <45;当w 活动一=w 活动二时,有10m +600=﹣10m +1500,解得:m=45;当w 活动一>w 活动二时,有10m +600>﹣10m +1500,解得:45<m ≤50.综上所述:当m <45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m >45时,选择活动二购买魔方更实惠.(按购买3个A 种魔方和4个B 种魔方需要130元解答)解:(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个, 根据题意得:, 解得:. 答:A 种魔方的单价为26元/个,B 种魔方的单价为13元/个.(2)设购进A 种魔方m 个(0<m ≤50),总价格为w 元,则购进B 种魔方(100﹣m )个, 根据题意得:w 活动一=26m ×0.8+13(100﹣m )×0.4=15.6m +520;w 活动二=26m +13(100﹣m ﹣m )=1300.当w 活动一<w 活动二时,有15.6m +520<1300,解得:m <50;当w 活动一=w 活动二时,有15.6m +520=1300,解得:m=50;当w 活动一>w 活动二时,有15.6m +520>1300,不等式无解.综上所述:当0<m<50时,选择活动一购买魔方更实惠;当m=50时,选择两种活动费用相同.【点评】本题考查了二元一次方程组的应用、一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)找准等量关系,列出关于x、y的二元一次方程组;(2)根据两种活动方案找出w活动一、w活动二关于m的函数关系式.22.(10分)(2017•河南)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是PM=PN,位置关系是PM⊥PN;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)方法1、先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN 最大=AM+AN,最后用面积公式即可得出结论.方法2、先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,=2+5=7,∴MN最大=PM2=×MN2=×(7)2=.∴S△PMN最大方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在AB的延长线上,∴BD=AB+AD=14,∴PM=7,=PM2=×72=∴S△PMN最大【点评】此题是几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN最大时,△PMN的面积最大,是一道中考常考题.23.(11分)(2017•河南)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.【分析】(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)①由M点坐标可表示P、N的坐标,从而可表示出MA、MP、PN、PB的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m的方程,可求得m的值;②用m可表示出M、P、N的坐标,由题意可知有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,可分别得到关于m的方程,可求得m的值.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,AM=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴BN=OM=m,∴=,即=,解得m=0(舍去)或m=2.5,∴M(2.5,0);当∠NBP=90°时,则有=,∵A(3,0),B(0,2),P(m,﹣m+2),∴BP==m,AP==(3﹣m),∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(2.5,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(三点重合,舍去)或m=;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为或﹣1或﹣.【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中利用相似三角形的性质得到关于m的方程是解题的关键,注意分两种情况,在(2)②中利用“共谐点”的定义得到m的方程是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.。

2017年河南省数学中招考试试题及解析

2017年河南省数学中招考试试题及解析

2017年中招考试数学试卷一.选择题(共10小题)1.下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣32.2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×10153.某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.4.解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3 5.八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分6.一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根7.如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD 是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠28.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.9.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1)B.(2,1) C.(1,)D.(2,)10.如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A. B.2﹣C.2﹣D.4﹣二.填空题(共5小题)11.计算:23﹣=.12.不等式组的解集是.13.已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n的大小关系为.14.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是.15.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为.三.解答题(共8小题)16.先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.17.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bE x≥1202请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有人,a+b=,m=;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.18.如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.19.如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)20.如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.21.学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.23.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2017年中招考试数学试卷参考答案与解析一.选择题(共10小题)1.A2.B3.D4. A5. A6.B7.C8.C9.D 10.C二.填空题(共5小题)11.解:23﹣=8﹣2=6,故答案为:6.12.解:解不等式①0得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集是﹣1<x≤2,故答案为﹣1<x≤2.13.解:∵反比例函数y=﹣中k=﹣2<0,∴此函数的图象在二、四象限内,在每个象限内,y随x的增大而增大,∵0<1<2,∴A、B两点均在第四象限,∴m<n.故答案为m<n.14.解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:1215.解:①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,∴BM=BC=+;②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC,∴∠C=45°,∴△CMB′是等腰直角三角形,∴CM=MB′,∵沿MN所在的直线折叠∠B,使点B的对应点B′,∴BM=B′M,∴CM=BM,∵BC=+1,∴CM+BM=BM+BM=+1,∴BM=1,综上所述,若△MB′C为直角三角形,则BM的长为+或1,故答案为:+或1.三.解答题(共8小题)16.解:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y)=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy当x=+1,y=﹣1时,原式=9(+1)(﹣1)=9×(2﹣1)=9×1=917.解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,A组所占的百分比是=8%,则m=8.a+b=8+20=28.故答案是:50,28,8;(2)扇形统计图中扇形C的圆心角度数是360°×=144°;(3)每月零花钱的数额x在60≤x<120范围的人数是1000×=560(人).18.(1)证明:∵AB是⊙O的直径,∴∠BDA=90°,∴BD⊥AC,∠BDC=90°,∵BF切⊙O于B,∴AB⊥BF,∵CF∥AB,∴CF⊥BF,∠FCB=∠ABC,∵AB=AC,∴∠ACB=∠ABC,∴∠ACB=∠FCB,∵BD⊥AC,BF⊥CF,∴BD=BF;(2)解:∵AB=10,AB=AC,∴AC=10,∵CD=4,∴AD=10﹣4=6,在Rt△ADB中,由勾股定理得:BD==8,在Rt△BDC中,由勾股定理得:BC==4.19.解:如图作CE⊥AB于E.在Rt△ACE中,∵∠A=45°,∴AE=EC,设AE=EC=x,则BE=x﹣5,在Rt△BCE中,∵tan53°=,∴=,解得x=20,∴AE=EC=20,∴AC=20=28.2,BC==25,∴A船到C的时间≈=0.94小时,B船到C的时间==1小时,∴C船至少要等待0.94小时才能得到救援.20.解:(1)将B(3,1)代入y=,∴k=3,将A(m,3)代入y=,∴m=1,∴A(1,3),将A(1,3)代入代入y=﹣x+b,∴b=4,∴y=﹣x+4(2)设P(x,y),由(1)可知:1≤x≤3,∴PD=y=﹣x+4,OD=x,∴S=x(﹣x+4),∴由二次函数的图象可知:S的取值范围为:≤S≤2故答案为:(1)y=﹣x+4;y=.21.解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为20元/个,B种魔方的单价为15元/个.(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=20m×0.8+15(100﹣m)×0.4=10m+600;w活动二=20m+15(100﹣m﹣m)=﹣10m+1500.当w活动一<w活动二时,有10m+600<﹣10m+1500,解得:m<45;当w活动一=w活动二时,有10m+600=﹣10m+1500,解得:m=45;当w活动一>w活动二时,有10m+600>﹣10m+1500,解得:45<m≤50.综上所述:当m<45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m>45时,选择活动二购买魔方更实惠.(按购买3个A种魔方和4个B种魔方需要130元解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为26元/个,B种魔方的单价为13元/个.(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=26m×0.8+13(100﹣m)×0.4=15.6m+520;w活动二=26m+13(100﹣m﹣m)=1300.当w活动一<w活动二时,有15.6m+520<1300,解得:m<50;当w活动一=w活动二时,有15.6m+520=1300,解得:m=50;当w活动一>w活动二时,有15.6m+520>1300,不等式无解.综上所述:当m<50时,选择活动一购买魔方更实惠;当m=50时,选择两种活动费用相同.22.解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,=2+5=7,∴MN最大∴S=PM2=×MN2=×(7)2=.△PMN最大23.解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,PA=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴BN=OM=m,∴=,即=,解得m=0(舍去)或m=2.5,∴M(2.5,0);当∠NBP=90°时,则有=,∵A(3,0),B(0,2),P(m,﹣m+2),∴BP==m,AP==(3﹣m),∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(2.5,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(三点重合,舍去)或m=;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为或﹣1或﹣.。

2017年河南省中招考试数学试卷

2017年河南省中招考试数学试卷

如果您喜欢这份文档,欢迎下载!祝您成绩进步,学习愉快!2017年河南省中招考试数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.下列各数中比1大的数是()A.2B.0C.-1D.-32.2016年,我国国内生产总值达到74.4万亿元.数据“74.4万亿”用科学计数法表示为()A.1274.410⨯B.137.4410⨯C.1374.410⨯D.147.4410⨯3.某几何体的左视图如下图所示,则该几何体不可能是()A.B.C.D.4.解分式方程13211x x-=--,去分母得()A.12(1)3x --=-B.12(1)3x --= C.1223x --=-D.1223x -+=5.八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分6.一元二次方程22520x x --=的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根7.如图,在ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能..判定ABCD 是菱形的只有()A.AC BD ⊥B.AB BC = C.AC BD =D.12∠=∠8.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.18B.16C.14D.129.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O 固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点'D 处,则点C 的对应点'C 的坐标为()A.B.(2,1) C.D.10.如图,将半径为2,圆心角为120︒的扇形OAB 绕点A 逆时针旋转60︒,点O ,B 的对应点分别为'O ,'B ,连接'BB ,则图中阴影部分的面积是()A.23πB.3π-C.23π-D.23π二、填空题(每小题3分,共15分)11.计算:32=.12.不等式组20,12x x x -≤⎧⎪⎨-<⎪⎩的解集是.13.已知点(1,)A m ,(2,)B n 在反比例函数2y x=-的图象上,则m 与n 的大小关系为.14.如图1,点P 从ABC ∆的顶点B 出发,沿B C A →→匀速运动到点A .图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则ABC ∆的面积是.15.如图,在Rt ABC ∆中,90A ∠=︒,AB AC =,1BC =,点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠B ∠,使点B 的对应点'B 始终落在边AC 上.若'MB C ∆为直角三角形,则BM 的长为.三、解答题(本大题共8个小题,满分75分)16.先化简,再求值:2(2)()()5()x y x y x y x x y ++-+--,其中1x =+,1y =-.17.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有人,a b +=,m =;(2)求扇形统计图中扇形C 的圆心角度数;(3)该校共有1000人,请估计每月零花钱的数额x 在60120x ≤<范围的人数.18.如图,在ABC ∆中,AB AC =,以AB 为直径的⊙O 交AC 边于点D ,过点C 作//CF AB ,与过点B 的切线交于点F ,连接BD .(1)求证:BD BF =;(2)若10AB =,4CD =,求BC 的长.19.如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C .此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45︒方向,B 船测得渔船C 在其南偏东53︒方向.已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:4sin 535︒≈,3cos535︒≈,4tan 533︒≈ 1.41≈)20.如图,一次函数y x b =-+与反比例函数(0)ky x x=>的图象交于点(,3)A m 和(3,1)B .(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P 是线段AB 上一点,过点P 作PD x ⊥轴于点D ,连接OP ,若POD ∆的面积为S ,求S 的取值范围.21.学校“百变魔方”社团准备购买A ,B 两种魔方.已知购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个(其中A 种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.如图1,在Rt ABC ∆中,90A ∠=︒,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想图1中,线段PM 与PN 的数量关系是,位置关系是;(2)探究证明把ADE ∆绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN ∆的形状,并说明理由;(3)拓展延伸把ADE ∆绕点A 在平面内自由旋转,若4AD =,10AB =,请直接写出PMN ∆面积的最大值.23.如图,直线23y x c =-+与x 轴交于点(3,0)A ,与y 轴交于点B ,抛物线243y x bx c =-++经过点A ,B .(1)求点B 的坐标和抛物线的解析式;(2)M(m,0)为x 轴上一个动点,过点M 垂直于x 轴的直线与直线AB 和抛物线分别交于点P、N,①点M 在线段OA 上运动,若以B ,P ,N 为顶点的三角形与APM ∆相似,求点M 的坐标;②点M 在x 轴上自由运动,若三个点M ,P ,N 中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2017年河南省中招考试数学试卷(解析)1:【答案】A,【解析】试题分析:根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.考点:有理数的大小比较.2:【答案】B.考点:科学记数法3:【答案】D.【解析】试题分析:几何体的左视图是从左面看几何体所得到的图形,选项A、B、C的左视图都为,选项D的左视图不是,故选D.考点:几何体的三视图4:【答案】A.考点:解分式方程.5:【答案】A.【解析】试题分析:这组数据中95出现了3次,次数最多,为众数;中位数为第3和第4两个数的平均数为95,故选A.考点:众数;中位数.6:【答案】B.【解析】试题分析:这里a=2,b=-5,c=-2,所以△=2(5)42(2)2516410--⨯⨯-=+= ,即可得方程22520x x --=有有两个不相等的实数根,故选B.考点:根的判别式.7:【答案】C.考点:菱形的判定.8:【答案】C.【解析】试题分析:列表得,120-11(1,1)(1,2)(1,0)(1,-1)2(2,1)(2,2)(2,0)(2,-1)0(0,1)(0,2)(0,0)(0,-1)-1(-1,1)(-1,2)(-1,0)(-1,-1)由表格可知,总共有16种结果,两个数都为正数的结果有4种,所以两个数都为正数的概率为41164=,故选C.考点:用列表法(或树形图法)求概率.9:【答案】D.考点:图形与坐标.10:【答案】C.【解析】试题分析:连接O 'O 、'O B,根据旋转的性质及已知条件易证四边形AOB 'O 为菱形,且∠'O OB=∠O 'O B=60°,又因∠A 'O 'B =∠A 'O B=120°,所以∠B 'O 'B =120°,因∠O 'O B+∠B 'O 'B =120°+60°=180°,即可得O、'O 、'B 三点共线,又因'O 'B ='O B,可得∠'O 'B B=∠'O B 'B ,再由∠O 'O B=∠'O 'B B+∠'O B 'B =60°,可得∠'O 'B B=∠'O B'B =30°,所以△OB 'B 为Rt 三角形,由锐角三角函数即可求得B 'B =,所以2''16022=S 223603OBB BOO S S ππ⨯-=⨯⨯= 阴影扇形,故选C.考点:扇形的面积计算.11:【答案】6.【解析】试题分析:原式=8-2=6.考点:实数的运算.12:【答案】-1<x≤2.考点:一元一次不等式组的解法.13:【答案】m<n.【解析】试题分析:把点(1,)A m ,(2,)B n 分别代入2y x=-可得m=-2,n=-1,所以m<n.考点:反比例函数图象上点的特征.14:【答案】12.考点:动点函数图象.15:【答案】1或212.【解析】试题分析:在Rt ABC ∆中,90A ∠=︒,AB AC =,可得∠B=∠C=45°,由折叠可知,BM='MB ,若使'MB C ∆为直角三角形,分两种情况:①0'90MB C ∠=,由∠C=45°可得'MB ='CB ,设BM=x,则'MB ='CB =x,,所以=1BC =+,解得x=1,即BM=1;②0'90B MC ∠=,此时点B 和点C 重合,BM=1122BC +=.所以BM 的长为1或12+.考点:折叠(翻折变换).16:【答案】原式=9xy ,当1x =,1y =时,原式=9.考点:整式的运算.17:【答案】(1)50,28,8;(2)144°;(3)560.【解析】试题分析:(1)用B 组的人数除以B 组人数所占的百分比,即可得这次被调查的同学的人数,利用A 组的人数除以这次被调查的同学的人数即可求得m 的值,用总人数减去A、B、E 的人数即可求得a+b 的值;(2)先求得C 组人数所占的百分比,乘以360°即可得扇形统计图中扇形C 的圆心角度数;(3)用总人数1000乘以每月零花钱的数额x 在60120x ≤<范围的人数的百分比即可求得答案.考点:统计图.18:【答案】(1)详见解析;(2).【解析】试题分析:(1)根据已知条件已知CB 平分∠DCF,再证得BD AC ⊥、BF CF ⊥,根据角平分线的性质定理即可证得结论;(2)已知AB AC ==10,4CD =,可求得AD =6,在Rt △ABD 中,根据勾股定理求得2BD 的值,在Rt△BDC 中,根据勾股定理即可求得BC 的长.试题解析:(1)∵AB AC=∴∠ABC=∠ACB∵//CF AB∴∠ABC=∠FCB∴∠ACB=∠FCB,即CB平分∠DCF∵AB为⊙O直径⊥∴∠ADB=90°,即BD AC∵BF为⊙O的切线⊥∴BF ABCF AB∵//⊥∴BF CF∴BD=BF考点:圆的综合题.19:【答案】C船至少要等待0.94小时才能得到救援.【解析】⊥交AB的延长线于点D,可得∠CDA=90°,根据题意可知∠试题分析:过点C作CD ABCDA=45°,设CD=x,则AD=CD=x,在Rt△BDC中,根据三角函数求得CD、BC的长,在Rt△ADC中,求得AC的长,再分别计算出B船到达C船处约需时间和A船到达C船处约需时间,比较即可求解.∴B 船到达C 船处约需时间:25÷25=1(小时)在Rt△ADC ≈1.41×20=28.2∴A 船到达C 船处约需时间:28.2÷30=0.94(小时)而0.94<1,所以C 船至少要等待0.94小时才能得到救援.考点:解直角三角形的应用.20:【答案】(1)4y x =-+,3y x =;(2)S 的取值范围是322S ≤≤.【解析】试题分析:(1)把(3,1)B 分别代入y x b =-+和(0)k y x x =>,即可求得b、k 的值,直接写出对应的解析式即可;(2)把点(,3)A m 代入3y x=求得m=1,即可得点A 的坐标设点P (n,-n+4),,因点P 是线段AB 上一点,可得1≤n≤3,根据三角形的面积公式,用n 表示出POD ∆的面积为S ,根据n 的取值范围即可求得S 的取值范围.而点P 是线段AB 上一点,设点P(n,-n+4),则1≤n≤3∴S=2111(4)(2)2222OD PD n n n ⋅=⨯⨯-+=--+∵102- 且1≤n≤3∴当n=2时,S 最大=2,当n=1或3时,=32S 最小,∴S 的取值范围是322S ≤≤.考点:一次函数与反比例函数的综合题.21:【答案】(1)A、B 两种魔方的单价分别为20元、15元;(2)当45<m≤50时,活动二更实惠;当m=45时,活动一、二同样实惠;当0≤m<45(或0<m<50)时,活动一更实惠.试题解析:(1)设A、B 两种魔方的单价分别为x 元、y 元,根据题意得2613034x y x y +=⎧⎨=⎩,解得2015x y =⎧⎨=⎩即A 、B 两种魔方的单价分别为20元、15元;(2)设购买A 魔方m 个,按活动一和活动二购买所需费用分别为1w 元、2w 元,依题意得1w =20m×0.8+15×0.4×(100-m)=10m+600,2w =20m+15(100-m-m)=-10m+1500,①1w >2w 时,10m+600>-10m+1500,所以m>45;②1w =2w 时,10m+600=-10m+1500,所以m=45;③1w <2w 时,10m+600<-10m+1500,所以m<45;∴当45<m≤50时,活动二更实惠;当m=45时,活动一、二同样实惠;当0≤m<45(或0<m<50)时,活动一更实惠.考点:二元一次方程组的应用;一次函数的应用.22:【答案】(1)PM=PN,PM PN ⊥;(2)等腰直角三角形,理由详见解析;(3)492.试题解析:(1)PM=PN,PM PN;∴PM=12CE,且//PM CE,同理可证PN=12BD,且//PN BD ∴PM=PN,∠MPD=∠ECD,∠PNC=∠DBC,∴∠MPD=∠ECD=∠ACD+∠ACE=∠ACD+∠ABD,∠DPN=∠PNC+∠PCN =∠DBC+∠PCN,∴∠MPN=∠MPD+∠DPN=∠ACD+∠ABD+∠DBC+∠PCN=∠ABC+∠ACB=90°,即△PMN 为等腰直角三角形.(3)492.考点:旋转和三角形的综合题.23:【答案】(1)B (0,2),2410233y x x =-++;(2)①点M 的坐标为(118,0)或M (52,0);②m=-1或m=14-或m=12.试题解析:(1)直线23y x c =-+与x 轴交于点(3,0)A ,∴2303c -⨯+=,解得c=2∴B(0,2),∵抛物线243y x bx c =-++经过点(3,0)A ,∴2433203b -⨯++=,∴b=103∴抛物线的解析式为2410233y x x =-++;(2)∵MN x ⊥轴,M(m,0),∴N(2410,233m m m -++)①有(1)知直线AB 的解析式为223y x =-+,OA=3,OB=2∵在△APM 中和△BPN 中,∠APM=∠BPN,∠AMP=90°,若使△APM 中和△BPN 相似,则必须∠NBP=90°或∠BNP =90°,分两种情况讨论如下:(I)当∠NBP=90°时,过点N 作NC y ⊥轴于点C,则∠NBC+∠BNC=90°,NC=m,BC=22410410223333m m m m -++-=-+∵∠NBP=90°,∴∠NBC+∠ABO=90°,∴∠BNC=∠ABO,∴Rt△NCB∽Rt△BOA ∴NC CB OB OA =,即24103323m m m -+=,解得m=0(舍去)或m=118∴M(118,0);考点:二次函数综合题.。

2017年河南省中招数学试题与答案(1)

2017年河南省中招数学试题与答案(1)

=9xy
当 x= 2 +1,y= 2 -1 时,
原式 =9×( 2 +1)×( 2 -1 )=9 17. ( 9 分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部 分学生,根据调查的结果,绘制出了如下两个尚步完整的统计图表:
.
.
..
.
调查结果统计表
.
.
调查结果扇形统计图
B C 32%
值。
A
D
ME
P
GU
N 图1
CB
A E
M
D P
N 图2
解:( 1) PM=PN,PM⊥PN,
(2)( 2)△ PMN是等腰直角三角形 ,
理由如下: ∵△ ABC和△ ADE都是等腰直角三角形, ∴AB=AC,AD=AE∠, BAC=∠ DAE=900,
∴∠ BAD+∠DAC=∠ DAC+∠ CAE,即∠ BAD=∠ DAE,
( 1)填空:一次函数解析式为
,反比例函数解析式

( 2)点 P 是线段 AB上一点,过点 P 作 PD⊥ x 轴于点 D.连接 OP,若△ POD的面
积为 S,求 S 的取值围。
解:( 1) y=-x+4 , y= 3 x
(2)( 2)由( 1)得 3m=3,∴ m=1,则 A( 1, 3)
设 P( a, -a+4 )( 1≤ a≤ 3)
3
3
3
3
二、填空题(每小题 3 分,共 15 分)
11. 计算: 23- 4 = 6
B/ O/
GU O 第10题 B
12. 不等式组
x20 x 1< x 的解集是
2
-1 ≤x≤2

2017年河南省数学中招考试试题及解析

2017年河南省数学中招考试试题及解析

2017年中招考试数学试卷一.选择题(共10小题)1.下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣32.2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7。

44×1013 C.74。

4×1013 D.7。

44×10153.某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.4.解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3 5.八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分6.一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根7.如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD 是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠28.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.9.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1) B.(2,1) C.(1,) D.(2,)10.如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A. B.2﹣C.2﹣D.4﹣二.填空题(共5小题)11.计算:23﹣=.12.不等式组的解集是.13.已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n的大小关系为.14.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是.15.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为.三.解答题(共8小题)16.先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.17.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bE x≥1202请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有人,a+b=,m=;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.18.如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.19.如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A 船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)20.如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.21.学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN 面积的最大值.23.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M 的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点"的m的值.2017年中招考试数学试卷参考答案与解析一.选择题(共10小题)1.A 2。

河南省2017年中考数学真题试题(含扫描答案)

河南省2017年中考数学真题试题(含扫描答案)

2017年河南省普通高中招生考试试卷数学一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.下列各数中比1大的数是( )A .2B .0C .-1D .-32.2016年,我国国内生产总值达到74.4万亿元.数据“74.4万亿”用科学计数法表示为( )A .1274.410⨯B .137.4410⨯C .1374.410⨯D .147.4410⨯3.某几何体的左视图如下图所示,则该几何体不可能是( )A .B .C .D .4.解分式方程13211x x-=--,去分母得( ) A .12(1)3x --=- B .12(1)3x --= C.1223x --=-D .1223x -+=5.八年级某同学6此数学小测验的成绩分别为:80分,85分,95分,100分,则该同学这6次成绩的众数和中位数分别是( )A .95分,95分B .95分,90分 C. 90分,95分 D .95分,85分6.一元二次方程22520x x --=的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C. 只有一个实数根 D .没有实数根7.如图,在ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能..判定ABCD 是菱形的只有( )A .AC BD ⊥B .AB BC = C.AC BD = D .12∠=∠8.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.18B.16C.14D.129.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB 在x轴上,AB的中点是坐标原点O固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点'D处,则点C的对应点'C的坐标为()A. B.(2,1)C. D.10.如图,将半径为2,圆心角为120︒的扇形OAB绕点A逆时针旋转60︒,点O,B的对应点分别为'O,'B,连接'BB,则图中阴影部分的面积是()A.23πB.3πC.23πD.23π11.二、填空题(每小题3分,共15分)11.计算:32-=.12.不等式组20,12xxx-≤⎧⎪⎨-<⎪⎩的解集是.13.已知点(1,)A m ,(2,)B n 在反比例函数2y x=-的图象上,则m 与n 的大小关系为 . 14.如图1,点P 从ABC ∆的顶点B 出发,沿B C A →→匀速运动到点A .图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则ABC ∆的面积是 .15.如图,在Rt ABC ∆中,90A ∠=︒,AB AC =,1BC =,点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠B ∠,使点B 的对应点'B 始终落在边AC 上.若'MBC ∆为直角三角形,则BM 的长为 .三、解答题 (本大题共8个小题,满分75分)16.先化简,再求值:2(2)()()5()x y x y x y x x y ++-+--,其中1x =,1y =.17.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有 人,a b += ,m = ;(2)求扇形统计图中扇形C 的圆心角度数;(3)该校共有1000人,请估计每月零花钱的数额x 在60120x ≤<范围的人数.18.如图,在ABC ∆中, AB AC =,以AB 为直径的⊙O 交AC 边于点D ,过点C 作//CF AB ,与过点B 的切线交于点F ,连接BD .(1)求证:BD BF =;(2)若10AB =,4CD =,求BC 的长.19.如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C .此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45︒方向,B 船测得渔船C 在其南偏东53︒方向.已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:4sin 535︒≈,3cos535︒≈,4tan 533︒≈ 1.41≈)20. 如图,一次函数y x b =-+与反比例函数(0)k y x x=>的图象交于点(,3)A m 和(3,1)B .(1)填空:一次函数的解析式为 ,反比例函数的解析式为 ;(2)点P 是线段AB 上一点,过点P 作PD x ⊥轴于点D ,连接OP ,若POD ∆的面积为S ,求S 的取值范围.21.学校“百变魔方”社团准备购买A ,B 两种魔方.已知购买2个 A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个(其中A 种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.如图1,在R t A B C ∆中,90A ∠=︒,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;(2)探究证明把ADE ∆绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN ∆的形状,并说明理由;(3)拓展延伸把ADE ∆绕点A 在平面内自由旋转,若4AD =,10AB =,请直接写出PMN ∆面积的最大值.23.如图,直线32y x e =-+与x 轴交于点(3,0)A ,与y 轴交于点B ,抛物线243y x bx c =-++经过点A ,B .相似,求点M的坐标;①点M在线段OA上运动,若以B,P,N为顶点的三角形与APM②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)在﹣2017、0、﹣3、2017这四个数中,最小的数是()A.﹣2017B.0C.﹣3D.2017【解答】解:根据有理数比较大小的方法,可得﹣2017<﹣3<0<2017,∴在﹣2017、0、﹣3、2017这四个数中,最小的数是﹣2017.故选:A.2.(3分)如图是几何体的三视图,该几何体是()A.圆锥B.圆柱C.三棱柱D.三棱锥【解答】解:∵几何体的主视图和左视图都是长方形,故该几何体是一个柱体,又∵俯视图是一个三角形,故该几何体是一个三棱柱,故选:C.3.(3分)我国一次性建成最长的万吨重载铁路﹣﹣晋豫鲁重载铁路,铁路全线长1260公里,横跨山西、河南、山东三省,总投资941亿元,941亿用科学记数法表示为()A.941×l09B.9.41×l010C.94.1×1011D.9.41×1012【解答】解:941亿=941 0000 0000=9.41×l010,故选:B.4.(3分)如图所示,一艘船在海上从A点出发,沿东北方向航行至点B,再从B点出发沿南偏东20°方向行至点C,则∠ABC的度数是()A.45°B.65°C.75°D.90°【解答】解:如图,由题意,可得∠EAB=45°,∠CBF=20°.∵AE∥BF,∴∠ABF=∠EAB=45°,∴∠ABC=∠ABF+∠CBF=45°+20°=65°,故选:B.5.(3分)下列说法中,正确的是()A.为检测市场上正在销售的酸奶质量,应该采用全面调查的方式B.在连续5次的数学测试中,两名同学的平均分相同,方差较大的同学数学成绩更稳定C.小强班上有3个同学都是16岁,因此小强认为他们班学生年龄的众数是16岁D.给定一组数据,则这组数据的中位数一定只有一个【解答】解:A、调查市场上酸奶的质量情况,破坏性较强,应该用抽样调查,故此选项错误;B、在连续5次的数学测试中,两名同学的平均分相同,方差较大的同学数学成绩不稳定,故本选项错误;C、虽然小强班上有3个同学都是16岁,但不一定是班里学生人数最多的,所以不一定是众数,故本选项错误;D、给定一组数据,则这组数据的中位数一定只有一个,故本选项正确;故选:D.6.(3分)如图,已知△ABC,∠ACB=90°,BC=3,AC=4,小红按如下步骤作图:①分别以A 、C 为圆心,以大于12AC 的长为半径在AC 两边作弧,交于两点M 、N ;②连接MN ,分别交AB 、AC 于点D 、O ; ③过C 作CE ∥AB 交MN 于点E ,连接AE 、CD . 则四边形ADCE 的周长为( )A .10B .20C .12D .24【解答】解:∵分别以A 、C 为圆心,以大于12AC 的长为半径在AC 两边作弧,交于两点M 、N ,∴MN 是AC 的垂直平分线, ∴AD =CD ,AE =CE ,∴∠CAD =∠ACD ,∠CAE =∠ACE , ∵CE ∥AB , ∴∠CAD =∠ACE , ∴∠ACD =∠CAE , ∴CD ∥AE ,∴四边形ADCE 是平行四边形, ∴四边形ADCE 是菱形;∴OA =OC =12AC =2,OD =OE ,AC ⊥DE , ∵∠ACB =90°, ∴DE ∥BC ,∴OD 是△ABC 的中位线, ∴OD =12BC =12×3=1.5, ∴AD =√OA 2+OD 2=2.5, ∴菱形ADCE 的周长=4AD =10. 故选:A .7.(3分)如图是甲、乙、丙三人玩跷跷板的示意图(支点在中点处),则甲的体重的取值范围在数轴上表示正确的是( )A .B .C .D .【解答】解:设甲的体重为x , 根据题意得:35<x <45, 表示在数轴上,如图所示:,故选:D .8.(3分)从九年级一班3名优秀班干部和九二班2名优秀班干部中随机抽取两名学生担任升旗手,则抽取的两名学生刚好一个班的概率为( ) A .15B .25C .35D .45【解答】解:画树形图得:∴一共有20种情况,抽取的两名学生刚好一个班的有8种, ∴抽取的两名学生刚好一个班的概率为820=25.故选:B .9.(3分)某校团委准备举办学生绘画展览,为美化画面,在长8dm 、宽为5dm 的矩形内画面四周镶上宽度相等的彩纸,并使彩纸的面积等于22dm 2(如图),若设彩纸的宽度为x 分米,则可得方程为( )A.40﹣10x﹣16x=18B.(8﹣x)(5﹣x)=18C.(8﹣2x)(5﹣2x)=18D.40﹣5x﹣8x+4x2=22【解答】解:若设彩纸的宽度为x分米,则(8﹣2x)(5﹣2x)=18,故选:C.10.(3分)如图,矩形ABCD中,AB=2AD=4cm,动点P从点A出发,以1cm/s的速度沿线段AB向点B运动,动点Q同时从点A出发,以2cm/s的速度沿折线AD→DC→CB 向点B运动,当一个点停止时另一个点也随之停止.设点P的运动时间是x(s)时,△APQ的面积是y(cm2),则能够反映y与x之间函数关系的图象大致是()A.B.C.D.【解答】解:当点Q在AD上运动时,0≤x≤1,y=12•AP•AQ=12•(2x)•x=x2;当点Q在CD上运动时,1<x≤3,y=12•AP•AD=12•x•2=x;当点Q 在CB 上运动时,3<x ≤4, y =12•AP •CB =12•x •(8﹣2x )=﹣x 2+4x , 故选:A .二、填空题(每小题3分,共15分) 11.(3分)计算30= 1 . 【解答】解:30=1. 故答案为:1.12.(3分)如图,在△ABC 中,D 、E 分别是AB 和AC 上的点,且DE ∥BC ,如果AB =12cm ,AD =9cm ,AC =8cm ,那么AE 的长是 6cm .【解答】解:∵DE ∥BC , ∴AD AB=AE AC,∵AB =12cm ,AD =9cm ,AC =8cm , ∴912=AE 8,∴AE =6cm , 故答案为:6cm13.(3分)当k = 12 时,双曲线y =kx 当过点(√3,4√3).【解答】解:∵双曲线y =kx 当过点(√3,4√3),∴k =√3×4√3=12. 故答案为:12.14.(3分)如图,把抛物线y =12x 2平移得到抛物线m ,抛物线m 经过点A (﹣8,0)和原点O (0,0),它的顶点为P ,它的对称轴与抛物线y =12x 2交于点Q ,则图中阴影部分的面积为 32 .【解答】解:连结OQ、OP,如图,平移后的抛物线解析式为y=12(x+8)•x=12x2+4x=12(x+4)2﹣8,所以P点坐标为(﹣4,﹣8),抛物线m的对称轴为直线x=﹣4,当x=﹣4时,y=12x2=8,则Q点的坐标为(﹣4,8),由于抛物线y=12x2向左平移4个单位,再向下平移8个单位得到抛物线y=12(x+4)2﹣8,所以图中阴影部分的面积=S△OPQ=12×4×(8+8)=32.故答案为32.15.(3分)如图,在矩形ABCD中,AB=6,BC=4,点E是边BC上一动点,把△DCE 沿DE折叠得△DFE,射线DF交直线CB于点P,当△AFD为等腰三角形时,DP的长为92√2或247√7.【解答】解:∵AD=BC=4,DF=CD=AB=6,∴AD <DF , 故分两种情况:①如图所示,当F A =FD 时,过F 作GH ⊥AD 与G ,交BC 于H ,则HG ⊥BC ,DG =12AD =2,∴Rt △DFG 中,GF =√62−22=4√2, ∴FH =6﹣4√2, ∵DG ∥PH , ∴△DGF ∽△PHF , ∴PF DF=HF GF ,即PF 6=√24√2, 解得PF =92√2−6,∴DP =DF +PF =6+92√2−6=92√2;②如图所示,当AF =AD =4时,过F 作FH ⊥BC 于H ,交DA 的延长线于G ,则 Rt △AFG 中,AG 2+FG 2=AF 2,即AG 2+FG 2=16; Rt △DFG 中,DG 2+FG 2=DF 2,即(AG +4)2+FG 2=36; 联立两式,解得FG =32√7, ∴FH =6−32√7,∵∠G =∠FHP =90°,∠DFG =∠PFH , ∴△DFG ∽△PFH , ∴PF DF=HF GF,即PF 6=6−32√732√7,解得PF =247√7−6, ∴DP =DF +PF =6+247√7−6=247√7, 故答案为:92√2或247√7.三、解答题(本大题共8个小题,满分75分) 16.(8分)先化简,再求值:x 2+2x+12x−6÷(x −1−3xx−3),其中x 为方程(x ﹣6)(x ﹣3)=0的实数根.【解答】解:原式=(x+1)22(x−3)÷x(x−3)−(1−3x)x−3=(x+1)22(x−3)÷x 2−1x−3=(x+1)22(x−3)•x−3(x+1)(x−1)=x+12x−2. ∵(x ﹣6)(x ﹣3)=0, ∴x =6或3.当x =3时,原式无意义. 当x =6时,原式=6+12×6−2=710.17.(9分)如图,在菱形ABCD 中,AB =20,∠DAB =60°,点E 是AD 边的中点,点M 是AB 边上一动点(不与点A 重合),延长ME 交射线CD 于点N ,连接MD ,AN . (1)求证:四边形AMDN 是平行四边形; (2)填空:①当AM 的值为 10 时,四边形AMDN 是矩形;②当AM的值为20时,四边形AMDN是菱形.【解答】(1)证明:∵四边形ABCD是菱形,∴ND∥AM,∴∠NDE=∠MAE,∠DNE=∠AME,又∵点E是AD边的中点∴DE=AE,∴△NDE≌△MAE,∴ND=MA,∴四边形AMDN是平行四边形;(2)解:①当AM的值为10时,四边形AMDN是矩形.理由如下:∵AM=10=12AD,∴∠ADM=30°∵∠DAM=60°,∴∠AMD=90°,∴平行四边形AMDN是矩形;故答案为:10;②当AM的值为20时,四边形AMDN是菱形.理由如下:∵AM=20,∴AM=AD=20,∴△AMD是等边三角形,∴AM=DM,∴平行四边形AMDN是菱形;故答案为:20.18.(9分)全民学习、终身学习是学习型社会的核心内容,努力建设学习型家庭也是一个重要组成部分.为了解“学习型家庭”情况,对部分家庭五月份的平均每天看书学习时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)本次抽样调查了200个家庭;(2)将图①中的条形图补充完整;(3)学习时间在2~2.5小时的部分对应的扇形圆心角的度数是36度;(4)若该社区有家庭有3000个,请你估计该社区学习时间不少于1小时的约有多少个家庭?【解答】解:(1)本次抽样调查的家庭数是:30÷54360=200(个);故答案为:200;(2)学习0.5﹣1小时的家庭数有:200×108360=60(个),学习2﹣2.5小时的家庭数有:200﹣60﹣90﹣30=20(个),补图如下:(3)学习时间在2~2.5小时的部分对应的扇形圆心角的度数是:360×20200=36°;故答案为:36;(4)根据题意得:3000×90+30+20200=2100(个).答:该社区学习时间不少于1小时的家庭约有2100个.19.(9分)已知关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根.(1)求m的取值范围;(2)若方程有一个根为x=1,求m的值及另一个根.【解答】解:(1)∵关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,∴△=b2﹣4ac=22﹣4×1×[﹣(m﹣2)]=4m﹣4≥0,解得:m≥1.(2)将x=1代入原方程,1+2﹣(m﹣2)=0,解得:m=5,∴原方程为x2+2x﹣3=(x﹣1)(x+3)=0,解得:x1=1,x2=﹣3.∴m的值为5,方程的另一个根为x=﹣3.20.(9分)郑州市农业路高架桥二层的开通,较大程度缓解了市内交通的压力,最初设计南阳路口上桥匝道时,其坡角为15°,后来从安全角度考虑将匝道坡角改为5°(见示意图),如果高架桥高CD=6米,匝道BD和AD每米造价均为4000元,那么设计优化后修建匝道AD的投资将增加多少元?(参考数据:sin5°≈0.08,sin15°≈0.25,tan5°≈0.09.tan15°≈0.27,结果保留整数)【解答】解:由题意可得,∵∠DCA=90°,CD=6米,∴在RtACD中,∠CAD=5°,∴AD=6sin5°,在RtBCD中,∠CBD=15°,∴BD=6sin15°,∴设计优化后修建匝道AD 的投资将增加:(6sin5°−6sin15°)×4000≈204000(元),即设计优化后修建匝道AD 的投资将增加204000元.21.(10分)雾霾天气持续笼罩我国大部分地区,困扰着广大市民的生活,口罩市场出现热销,小明的爸爸用12000元购进甲、乙两种型号的口罩在自家商店销售,销售完后共获利2700元,进价和售价如表:品名 价格 甲型口罩乙型口罩进价(元/袋) 20 30 售价(元/袋)2536(1)小明爸爸的商店购进甲、乙两种型号口罩各多少袋?(2)该商店第二次以原价购进甲、乙两种型号口罩,购进甲种型号口罩袋数不变,而购进乙种型号口罩袋数是第一次的2倍,甲种口罩按原售价出售,而效果更好的乙种口罩打折让利销售,若两种型号的口罩全部售完,要使第二次销售活动获利不少于2460元,每袋乙种型号的口罩最多打几折?【解答】解:(1)设小明爸爸的商店购进甲种型号口罩x 袋,乙种型号口罩y 袋, 则{20x +30y =120005x +6y =2700, 解得:{x =300y =200,答:该商店购进甲种型号口罩300袋,乙种型号口罩200袋;(2)设每袋乙种型号的口罩打m 折,则 300×5+400(0.1m ×36﹣30)≥2460, 解得:m ≥9,答:每袋乙种型号的口罩最多打9折.22.(10分)如图,长方形ABCD 中,P 是AD 上一动点,连接BP ,过点A 作BP 的垂线,垂足为F ,交BD 于点E ,交CD 于点G .(1)当AB =AD ,且P 是AD 的中点时,求证:AG =BP ; (2)在(1)的条件下,求DE BE的值;(3)类比探究:若AB =3AD ,AD =2AP ,DE BE的值为118.(直接填答案)【解答】解:(1)如图,∵BP ⊥AG ,∠BAD =90°, ∴∠ABF +∠BAF =90°,∠BAF +∠DAG =90°, ∴∠ABF =∠DAG , 在△ABP 和△DAG 中, {∠BAP =∠ADG =90°∠ABF =∠DAG AB =DA, ∴△ABP ≌△DAG (AAS ), ∴AG =BP ;(2)∵△ABP ≌△DAG , ∴AP =DG , ∵AP =12AD , ∴DG =12AD =12AB , ∵AB ∥CD , ∴△DGE ∽△BAE , ∴DE BE=DG BA=12;(3)设AP =a ,则AD =2AP =2a ,AB =3AD =6a , ∵BP ⊥AG ,∠BAD =90°,∴∠ABF +∠BAF =90°,∠BAF +∠DAG =90°, ∴∠ABF =∠DAG , 又∵∠BAP =∠ADG , ∴△ABP ∽△DAG ,∴AP GD=AB DA ,即aDG=6a 2a=3,∴DG =13a , ∵AB ∥GD , ∴△DGE ∽△BAE , ∴DE BE=DG BA=13a 6a=118.故答案为:118.23.(11分)如图①,若直线l :y =﹣2x +4交x 轴于点A 、交y 轴于点B ,将△AOB 绕点O 逆时针旋转90°得到△COD .过点A ,B ,D 的抛物线h :y =ax 2+bx +4.(1)求抛物线h 的表达式;(2)若与y 轴平行的直线m 以1秒钟一个单位长的速度从y 轴向左平移,交线段CD 于点M 、交抛物线h 于点N ,求线段MN 的最大值;(3)如图②,点E 为抛物线h 的顶点,点P 是抛物线h 在第二象限的上一动点(不与点D 、B 重合),连接PE ,以PE 为边作图示一侧的正方形PEFG .随着点P 的运动,正方形的大小、位置也随之改变,当顶点F 或G 恰好落在y 轴上时,直接写出对应的点P 的坐标.【解答】解:(1)∵直线l :y =﹣2x +4交x 轴于点A 、交y 轴于点B , ∴A (2,0),B (0,4),∵将△AOB 绕点O 逆时针旋转90°得到△COD ,∴D (﹣4,0),C (0,2),设过点A ,B ,D 的抛物线h 的解析式为:y =a (x +4)(x ﹣2), 将B 点坐标代入可得:4=a (0+4)(0﹣2), ∴a =−12,∴抛物线h 的解析式为y =−12x 2﹣x +4; (2)∵D (﹣4,0),C (0,2), ∴直线CD 的解析式为y =12x +2, 设N 点坐标为(n ,−12n 2﹣n +4), 则M 点坐标为(n ,12n +2),∴MN =y N ﹣y M =−12n 2−32n +2=−12(n +32)2+258, ∴当n =−32时,MN 最大,最大值为258;(3)若G 点在y 轴上,如图,作PH ⊥y 轴于H ,交抛物线对称轴于K , 在△PKE 和△GHP 中, {∠EPK =∠PGH PE =GP ∠PEK =∠GPH , ∴△PKE ≌△GHP , ∴PK =GH ,EK =PH ,∵y =−12x 2﹣x +4=−12(x +1)2+92, ∴E (﹣1,92),设P (m ,−12m 2−m +4),则:EK =y E ﹣y P =92+12m 2+m −4=12m 2+m +12, PH =﹣m ,∴−m =12m 2+m +12, ∴m =−2±√3,∴P 点的坐标为(﹣2−√3,52−√3)(﹣2+√3,52+√3);若F 点在y 轴上,如图,作PR ⊥抛物线对称轴于R ,FQ ⊥抛物线对称轴于Q , 则△PER ≌△EFQ , ∴ER =FQ , ∴y E ﹣y P =﹣x E , ∴12m 2+m +12=1,∴m =﹣1−√2或m =﹣1+√2(舍), ∴P 点的坐标为(﹣1−√2,72),综上所述,满足要求的P 点坐标有三个,分别为:(﹣2−√3,52−√3)、(﹣2+√3,52+√3)、(﹣1−√2,72).。

相关文档
最新文档