激光应用及光谱学 Laser Spectroscopy
激光诱导等离子体光谱法
图1
2.实验
• 将无水NaCl化学纯、无水KCl化学纯、
无水MgSO4化学纯和无水FeCl3化学纯 与蒸馏水相混和,混合液中FeCl3的浓 度保持1%,改变NaCl、KCl、MgSO4的 浓度,分别倒入滴定管中进行测量。滴 定管固定在夹具上,水流表面位于透镜 焦点前,以防止空气被击穿,影响测量的 谱线强度.
图2
随时间变化,含有MgSO4, NaCl, KCl和FeCl3水溶液样 品的LIPS光谱
为了在同一窗口下获得高信噪比及空 间上可分辨的测量元素与参考元素的谱 线,所取的用于测量Mg、K和Na的谱线窗 口分别如图3、4、5所示。
• 图3为当混合液中含有2%的Mg、
0.5%Na、0.5%K和1%Fe时得到的 377.7~386.7nm范围的谱线,这里以Fe 的382.043nm谱线作为内标线,将Mg的 383.826nm谱线强度与之比较。
图6、7、8
• 分别为测得的Mg的浓度(CMg,浓度范围
0.05%~2%)与Fe的浓度(CFe)之比与它们 的谱线强度之比(I383.826/I382.043),K的 浓度(CK,浓度范围0.5%~2%)与Fe的浓度 (CFe)之比与它们的谱线强度之比 (I404.414/I406.399),Na的浓度(CNa,浓度 范围0.1%~1.5%)与Fe的浓度(CFe)之比与 它们的谱线强度之比 (I330.232+330.299/I329.813),每个数据是 10发平均结果。
FeCl3,并以Fe元素谱线作为定标线, 且水溶液中Mg、K、Na的浓度范围 分别为0.05%~2%、0.5%~2%、 0.1%~1.5%时,测得的Mg、K、Na 浓度与Fe的浓度之比与它们的谱线 强度之比呈很好的线性关系,线性 相关系数分别为0.99783、 0.99402、0.99267。
激光拉曼光谱法
激光拉曼光谱法激光拉曼光谱法(LaserRamanSpectroscopy,LRS)是一项非常重要的光谱技术,它是利用比较强的激光光束来测定物质的结构和化学性质。
技术的基本原理是利用激光照射被检测物质,使其中的原子能量升高,从而产生拉曼散射,通过测量散射光,可以获得有关物质结构和化学性质的信息。
简而言之,激光拉曼光谱法是利用激光光束使物质发射出拉曼散射,从而获得物质的结构和化学属性的一种光谱技术。
激光拉曼光谱法的优点主要有四:首先,它是一种非破坏性的检测方法,可以测量微量样品;其次,它具有良好的空间分辨率,可以对多种材料进行非破坏性检测;再次,它具有较强的抗噪声能力,并且测量精度高;最后,它可以用来测量几乎所有物质,涵盖了生物、化学和物理学等多个领域。
激光拉曼光谱法的应用非常广泛,它可以用来测量有机物、无机物、晶体以及液体的物理性质、结构和化学性质,同时可以用于对分子的排序和重组、纳米结构的测量以及蛋白质的结构分析,等等。
例如,激光拉曼光谱法可以用来分析有机材料、无机材料以及半导体材料,也可以用来测量液体、固体、粉体等材料的某些特性。
激光拉曼光谱法的精度取决于多种因素,主要有激光束能量、激光束精度、样品大小、样品分布和测量环境等。
因此,在实际使用时,必须按照规定的标准来选择合适的激光束、样品大小以及测量环境,以确保能够获得准确的测量结果。
除此之外,在使用激光拉曼光谱法测量样品时,为了避免环境温度和湿度等外界因素的影响,最好在封闭空间中进行测量。
总之,激光拉曼光谱法是一种非常实用的光谱技术,它可以用来检测有机物、无机物、晶体以及液体的物理性质、结构和化学性质,为分析物质的组成和结构提供了一种简洁、准确的方法。
当然,要想获得准确的测量结果,就必须根据测量样品的特性,选择合适的激光束、样品大小以及测量环境,严格按照规定的标准来进行测量。
光子学技术的生物医学应用方法介绍
光子学技术的生物医学应用方法介绍光子学技术是一种利用光的性质以及与光相互作用的物质来研究和应用的领域。
在生物医学领域中,光子学技术已经被广泛应用于诊断、治疗和监测等方面。
本文将介绍几种常见的光子学技术在生物医学中的应用方法。
1. 激光显微镜(Laser Microscopy)激光显微镜是一种利用激光束照射样品,并通过对光信号进行检测和处理进而获得高分辨率图像的技术。
其主要的应用在于细胞和组织的研究。
在生物医学中,激光显微镜可以用于观察和分析细胞的结构和功能。
例如,通过荧光染料对细胞进行标记,可以利用激光显微镜观察到特定分子的位置和运动轨迹,从而研究细胞的信号传递、分裂和死亡等过程。
此外,基于激光显微镜的多光子显微技术可以实现更深层次的组织成像,为生物医学研究提供了重要工具。
2. 光谱学技术(Spectroscopy)光谱学技术是通过分析物质与光的相互作用过程中所产生的光信号来研究物质的性质和组成的方法。
在生物医学中,光谱学技术有多种应用方法。
近红外光谱(NIRS)是一种利用近红外光对生物组织进行测量的技术。
通过测量光的吸收和散射等特性,可以获得组织中的氧合血红蛋白和脱氧血红蛋白的浓度信息,从而实现对血氧饱和度、血流量等生理参数的监测。
NIRS在脑功能研究、肌肉代谢评估和肿瘤诊断等方面具有广泛应用前景。
拉曼光谱技术是一种通过测量样品散射光谱来分析样品的分子结构和组成的方法。
通过对光的散射进行分析,可以获得样品分子的特征振动频率信息,从而实现对样品成分、结构和形态的分析。
拉曼光谱在生物医学中被广泛应用于肿瘤诊断、药物分析和组织工程等方面。
3. 光学成像技术(Optical Imaging)光学成像技术是一种利用光作为信号传播媒介来获取生物组织结构和功能信息的方法。
它具有无创、高分辨率和实时性强的特点,因此在生物医学领域中得到了广泛的应用。
其中,光学相干断层扫描(OCT)是一种通过测量光的干涉信号来实现对生物组织结构的成像的方法。
托福听力中“隐形”的阅读词汇
托福听力中“隐形”的阅读词汇说到托福听力,相信大家就会想到听力词汇,而好多得句子都是因为一个单词听不懂,而不能理解这句话得意思。
如果在一个听力段子中,有个单词听不懂但是看见就认识,这个词汇就是托福听力中的阅读词汇。
听力中得阅读词汇就是搞定托福听力句子的关键,所以听力中隐形的阅读词汇是重点。
我们可以看一下TPO5中的lecture3的一些词汇:1. 阅读词汇就是我们看见可以认识,但听不懂的单词。
Invasive 侵略性的;攻击性的;Fleck 斑点;使起斑点Undo vt. 取消;解开;破坏;扰乱vi. 撤消Infrared 红外线的;红外线touchup. 修改;修补;润色遇到这些单词就要注意了,一定要记住它的发音,不能只把他们当做阅读词汇,一定要把他们转化为听力词汇,要听音识词。
2.我们看见不认识,而且也听不懂的单词。
Spectroscopy 光谱学Wavelength 波长Spectrum 光谱;频谱;范围Signature 署名;签名;信号Laser Spectroscopy 激光光谱学Curator 馆长;监护人Pigment n. [物][生化] 色素;颜料vt. 给…着色vi. 呈现颜色InfraredUltraviolet adj. 紫外的;紫外线的n. 紫外线辐射,紫外光Zinc 锌一般这些词汇都是听力中的专业词汇,也是比较难得词汇。
搞定这些词汇首先要把他们变成阅读词汇,同时更要把他们变成听力词汇。
所以在备考听力时小编建议大家选择词汇书一定要选带音频的词汇。
这样在记单词的时候才可以听音识词。
要怎么运用这些带音频的单词书呢?首先就要听音频,看看自己能不能听出单词的意思,不能听出的单词要把它单独拿出进行汇总,进行再次的听音记单词,这是第二步。
第三步就要做到听到音频之后马上能说出它所对应的汉语意思。
这样才真正把听力的阅读词汇变成了听力词汇。
以上就是本期小编为大家总结的托福听力的阅读词汇,希望对大家有所帮助。
激光拉曼光谱-1解读
优于红外,基于M-Org键的振动 M-O也具有Raman活性 Roman谱证实: 对于汞离子在水溶液中,是以Hg+或Hg2+存在的,用红外光谱是无 法确定的。因这两种离子在红外光谱上都无吸收带。在拉曼光谱 中可看到(Hg--Hg)2+的强偏振线在169cm-1出现。 铊离子在水溶液中是以一价形式存在。 V(IV)是VO2+不是V(OH)22+ 硼酸离解是B(OH)4-不是H2(BO)3-
检测范围为100ppm
系数;α为光束在聚焦透
镜方向上的半角度
4.在高分子材料中的应用
聚合物材料结构方面许多信息
分子结构组成 立体规整性 结晶取向 分子相互作用
2021/3/25
38
5.在生物学中的应用
测定蛋白质二级结构和侧链情况
R
H
CN
Oห้องสมุดไป่ตู้
R
酰胺Ⅰ
C- O伸 缩 振 动 N- H在 平 面 内 弯 曲
1960年前研究主要集中于对拉曼光谱的理论解释
1960年后拉曼光谱技术得到很大的飞跃: o1960年激光的发现 o近年来高质量的双、三单色仪 o高灵敏度的探测器
2021/3/25
7
拉曼光谱原理
1.光散射
λ0
λ0 λ0 λ0 λ
光散射
表面散射
样品
漫反射
体内散射
弹性散射
散射波长不变
非弹性散射
散射波长发生变化
拉曼光谱分析方法 laser Raman spectroscopy
2021/3/25
1
基本内容
大学各专业名称英文翻译—— 理科 SCIENCE
大学各专业名称英文翻译——理科 SCIENCE大学各专业名称英文翻译——理科SCIENCE理科 SCIENCE课程中文名称课程英文名称矩阵分析 Matrix Analysis面向对象程序设计方法 Design Methods of Object oriented Program李代数 Lie Algebra代数图论 Algebraic Graph Theory代数几何(I) Algebraic Geometry(I)泛函分析 Functional Analysis论文选读 Study on Selected PapersHoof代数 Hoof Algebra基础代数 Fundamental Algebra交换代数 Commutative Algebra代数几何 Algebraic GeometryHoof代数与代数群量子群 Hoof Algebra , Algebraic Group and Qua numb G roup量子群表示 Representation of Quantum Groups网络算法与复杂性 Network Algorithms and Complexity组合数学 Combinatorial Mathematics代数学 Algebra半群理论 Semigroup Theory计算机图形学 Computer Graphics图的对称性 Graph Symmetry代数拓扑 Algebraic Topology代数几何(II) Algebraic Geometry(II)微分几何 Differential Geometry多复变函数 Analytic Functions of Several Complex Varian les代数曲面 Algebraic Surfaces高维代数簇 Algebraic Varieties of Higher Dimension数理方程 Mathematics and Physical Equation偏微分方程近代方法 The Recent Methods of Partial Differential Equatio ns激波理论 The Theory of Shock Waves非线性双曲型守恒律解的存在性 The Existence of Solutions for Non-linea r Hyperbolic Conservation Laws粘性守恒律解的稳定性 Stability of Solutions for Viscous Conservation Laws微分方程数值解 Numerical Methods for Differential Equations小波理论与应用 Wavelet Theory and Application非线性方程组的数值解法 Numerical Methods for No-linear System s of Eq uations网络算法与复杂性 Network Algorithms and Complexity Graph Theory 60近世代数 Modern Algebra高等量子力学 Advanced Quantum Mechanics统计力学 Statistical Mechanics固体理论 Solid State Theory薄膜物理 Thin Film Physics计算物理学 Computational Physics量子场论 Quantum Field Theory非线性物理导论 Introduction to Nonlinear Physics固体磁性理论 Theory of Magnetism in SolidC语言科学计算方法 Scientific Computation Method in C功能材料原理与技术 Principle and Technology of Functional Materials 超高真空科学与技术 Science and Technology of Ultrahigh Vacuum 60现代表面分析技术 Modern Technology of Surface Analysis现代传感技术 Modern Sensor Technology数学模型与计算机模拟 Mathematical Models and Computer Simulations计算物理谱方法 Spectral Method in Computational Physics蒙特卡罗方法在统计物理中的应用 Applications of the Monte Carlo Method in Statistical Physics理论物理 Theoretical Physics固体物理 Solid-State Physics近代物理实验 Contemporary Physics Experiments计算物理基础 Basics of Computational Physics真空与薄膜技术 Vacuum & Thin Film Technology高等光学 Advanced Optics量子光学与统计光学 Quantum Optics and Statistical Optics光电子学与光电信息技术 Optoelectronics and Optoelectronic Information Technology图像处理与分析 Image Processing and Analysis光纤通信系统 System of Fiber Communications计算机网络 Computer Networks光电检测与信号处理 Optoelectronic Detection and Processing物理光学与光电子技术实验 Experiments for Physical Optics and Optoelec tronic Technology非线性光学 Nonlinear Optics集成光学 Integrated Optics光子学器件原理与技术 Principle and Technology of Photonics Devices 物理光学与信息光子学实验 Physical Optics & Information Photonics Expe riments现代激光医学 Modern Laser Medicine生物医学光子学 Biomedicine Photonics激光医学临床实践 Clinical Practice for Laser Medicine光纤通信网络 Networks of Fiber Communications光接入网技术 Technology of Light Access Network全光通信系统 All-Optical Communication Systems计算机图形学 Computer Graphics信息光学 Information Optics光子学专题 Special Topics on Photonics激光与近代光学 Laser and Contemporary Optics光电子技术 Photo electronic Technique微机系统与接口 Micro Computer System and Interface智能仪器 Intelligent Instruments高等无机化学 Advanced Inorganic Chemistry量子化学(含群论) Quantum Chemistry(including Group Theory)高等分析化学 Advanced Analytical Chemistry高等有机化学 Advanced organic Chemistry现代科学前沿选论 Literature on Frontiers of Modern Science and Techno logy激光化学 Laser Chemistry激光光谱 Laser Spectroscopy稀土化学 Rare Earth Chemistry材料化学 Material Chemistry生物无机化学导论 Bioinorganic Chemistry配位化学 Coordination Chemistry膜模拟化学 Membrane Mimetic Chemistry晶体工程基础 Crystal Engineering催化原理 Principles of Catalysis绿色化学 Green Chemistry现代有机合成 Modern organic Synthesis无机化学 Inorganic Chemistry物理化学 Physics Chemistry有机化学 organic Chemistry分析化学 Analytical Chemistry现代仪器分析 Modern Instrumental Analysis现代波谱学 Modern Spectroscopy化学计量学 Chemistries现代食品分析 Modern Methods of Food Analysis天然产物化学 Natural Product Chemistry天然药物化学 Natural Pharmaceutical Chemistry现代环境分析与监测 Analysis and Monitoring of Environment Pollution 现代科学前沿选论 Literature on Frontiers of Modern Science and Techno logy计算机在分析化学的应用 Computer Application in Analytical Chemistry 现代仪器分析技术 Modern Instrument Analytical Technique分离科学 Separation Science高等环境微生物 Advanced Environmental Microorganism海洋资源利用与开发 Utilization & Development of Ocean Resources立体化学 Stereochemistry高等发光分析 Advanced Luminescence Analysis激光光谱分析 Laser Spectroscopy Analysis保健食品监督评价 Evaluation and Supervision on Health Food s生物电化学 Bioelectrochemistry现代技术与中药 Modern Technology and Traditional Chinese Medicine高等有机化学 Advanced organic Chemistry中药新药研究与开发 Study and Exploitation of Traditional Chinese Medi cine药物化学研究方法 Pharmaceutical Chemical Research Methods废水处理工程 Technology of Wastewater Treatment生物与化学传感技术 Biosensors & Chemical Sensors现代分析化学研究方法 Research Methods of Modern Analytical Chemistry 神经生物学 Neurobiology动物遗传工程 Animal Genetic Engineering动物免疫学 Animal Immunology动物病害学基础 Basis of Animal Disease受体生物化学 Receptor Biochemistry动物生理与分子生物学 Animal Physiology and Molecular Biochemistry分析生物化学 Analytical Biochemistry学科前沿讲座 Lectures on Frontiers of the Discipline微生物学 Microbiology细胞生物学 Cell Biology生理学 Physiology电生理技术基础 Basics of Electrophysiological Technology 生理学 Physiology生物化学 Biochemistry高级水生生物学 Advanced Aquatic Biology藻类生理生态学 Ecological Physiology in Algae水生动物生理生态学 Physiological Ecology of Aquatic Animal 水域生态学 Aquatic Ecology水生态毒理学 Aquatic Ecotoxicology水生生物学研究进展 Advance on Aquatic Biology水环境生态学模型 Models of Water Quality藻类生态学 Ecology in Algae生物数学 Biological Mathematics植物生理生化 Plant Biochemistry水质分析方法 Water Quality Analysis水产养殖学 Aquaculture环境生物学 Environmental Biology专业文献综述 Review on Special Information分子生物学 Molecular Biology学科前沿讲座 Lectures on Frontiers of the Discipline植物学 Botany动物学 Zoology普通生态学 General Ecology生物统计学 Biological Statistics分子遗传学 Molecular Genetics基因工程原理 Principles of Gene Engineering高级生物化学 Advanced Biochemistry基因工程技术 Technique for Gene Engineering基因诊断 Gene Diagnosis基因组学 Genomics医学遗传学 Medical Genetics免疫遗传学 Immunogenetics基因工程药物学 Pharmacology of Gene Engineering 高级生化技术 Advanced Biochemical Technique基因治疗 Gene Therapy肿瘤免疫学 Tumor Immunology免疫学 Immunology免疫化学技术 Methods for Immunological Chemistry 毒理遗传学 Toxicological Genetics分子病毒学 Molecular Virology分子生物学技术 Protocols in Molecular Biology神经免疫调节 Neuroimmunology普通生物学 Biology生物化学技术 Biochemical Technique分子生物学 Molecular Biology生殖生理与生殖内分泌 Reproductive Physiology & Reproductive Endocrino logy生殖免疫学 Reproductive Immunology发育生物学原理与实验技术 Principle and Experimental Technology of Dev elopment免疫学 Immunology蛋白质生物化学技术 Biochemical Technology of Protein受精的分子生物学 Molecular Biology of Fertilization免疫化学技术 Immunochemical Technology低温生物学原理与应用 Principle & Application of Cryobiology不育症的病因学 Etiology of Infertility分子生物学 Molecular Biology生物化学 Biochemistry分析生物化学 Analytical Biochemistry医学生物化学 Medical Biochemistry医学分子生物学 Medical Molecular Biology医学生物化学技术 Techniques of Medical Biochemistry生化与分子生物学进展 Progresses in Biochemistry and Molecular Biology 高级植物生理生化 Advanced Plant Physiology and Biochemistry拟南芥—结构与发育 Arabidopsis-Structure and Development开花的艺术 Art of Flowering蛋白质结构基础 Principle of Protein Structure生活在美国 Living in America分子进化工程 Engineering of Molecular Evolution生物工程下游技术 Downstream Technique of Biotechnology 仪器分析 Instrumental Analysis临床检验与诊断 Clinical Check-up & Diagnosis药理学 Pharmacology。
超快激光光谱学的原理与技术
超快激光光谱学的原理与技术超快激光光谱学(Ultrafast Laser Spectroscopy)是一种利用超快激光技术来研究物质的光学和电子过程的分析方法。
它通过测量物质对短脉冲激光的响应来获得信息,可以提供非常高的时间分辨率以及精确的光谱特性。
本文将介绍超快激光光谱学的原理和常用的技术。
超快激光的原理主要基于激光脉冲的特性。
超快激光是指激光脉冲的时间尺度在飞秒(10^-15秒)或皮秒(10^-12秒)级别,这使得我们能够观察和研究材料中发生的非常快的过程。
超快激光通常由飞秒激光器产生,其光谱范围可以覆盖从紫外到红外的波长。
超快激光光谱学的核心技术是时间分辨光谱测量。
其中最基本的方法是通过脉冲延迟线来控制两个光束之间的时间差,并利用这个时间差来研究样品对光的响应。
这种方法称为傅里叶变换光学相干光谱学(FT-CARS)。
在实验过程中,我们通常将样品暴露在一个脉冲激光束中,并在另一个激光束中引入一个延迟。
然后,通过探测两束光的相互作用,我们可以测量样品中的光谱特征。
1.傅里叶变换红外光谱学(FTIR):通过将样品暴露在一个连续的宽带红外光源下,并测量样品在不同频率上的吸收或散射,来获得材料的红外光谱信息。
这种方法可以提供非常高的分辨率和灵敏度,并且可以用于研究材料的振动和转动运动。
2. 顺应性光谱学(Transient Absorption Spectroscopy):通过测量材料对短脉冲激光的吸收或透射来研究光吸收过程。
当样品吸收光子并进入激发态时,会出现吸收峰或谱线。
通过测量光线通过样品前后的强度差异,可以获得激发态的寿命、能级结构和激发态之间的相互作用等信息。
3. 闪烁光谱学(Fluorescence Spectroscopy):测量样品在激发态向基态跃迁时所发射的荧光光谱。
该方法可以用于研究材料的激发态寿命、荧光发射强度以及能级结构。
常用的技术包括时间分辨荧光光谱法(Time-Resolved Fluorescence Spectroscopy)和荧光相关光谱学(Fluorescence Correlation Spectroscopy)。
01激光拉曼光谱法
(3) 激发光是可见光,在可见光区测分子振动光谱。 (4) 拉曼光谱中的基团振动频率和红外光谱相同。
酮羰基的伸缩振动在红外光谱中位于1710cm-1附近, 而拉曼光谱中总在(1710土3)cm-1。
06:08:55
②拉曼活性振动 诱导偶极矩 = E
非极性基团,对称分子。 拉曼活性振动-伴随有极化率变化的振动。
对称分子: 对称振动→拉曼活06性:0。8:5不5 对称振动→红外活性
(二) Raman光谱
CCl4的Ramam光谱图
06:08:55
1. Raman光谱特点
(1) 拉曼光谱记录的是stoke 线。 (2) 测量相对单色激发光频率的位移。
(1) 对不同物质: 不同。
(2) 对同一物质: 与入射光频率无关;表征分子振-
转能级的特征物理量;定性与结构分析的依据;分子振-转
光谱;与红外光谱互补。
(3) Raman散射的产生:光电场E中,分子产生诱导偶极
矩,即
= E
分子极化率,分子电子云分布改变的难易程度。
06:08:55
06:08:55
4)环状化合物的对称呼吸振动常常是最强的拉曼谱 带。形成环状骨架的键同时振动。
5)在拉曼光谱中, X=Y=Z,C=N=C,O=C=O 这类键的对称伸缩振动是强谱带,反之,非对称伸 缩振动是弱谱带。红外光谱与此相反。
6)C—C伸缩振动谱带在拉曼光谱中强,红外光谱中弱。
06:08:55
3.实验结束,首先取出样品,关断电源。 4.注意激光器电源开、关机的顺序正好相反。
06:08:55
四、 激光拉曼光谱法的应用
第13讲 第五章 发射光谱技术+激光诱导荧光光谱技术+时间分辨荧光
Laser spectroscopy and its application 23
荧光强度:
N f A21 N 2 (t )dt
0
得弱入射光时得荧光光子数
N f A21 B12 N ΦB12 N A21 A23 k21 k23 k23
共振荧光
斯托克斯荧光
图5-4 LIF的三能级模型
Laser spectroscopy and its application 21
⑴ 共振荧光
假设能级2和3的布居比γ:
N3 A23 k 23 N 2 A31 k 31 k 32
在稳态情况下
B12 N2 N A21 A23 B12 (1 ) B21 k 21 k 23 k 23
级3布居情况直接与它的碰
撞消激发速率有关。
图5-5 铊原子荧光检测的三能级模型
Laser spectroscopy and its application 28
3 分子荧光光谱
分子荧光发射过程比较复杂:一个分子的激发态 包括它的电子态、振动态和转动态,假定电子激发态 的振动 - 转动能级 (vk´, Jk´) 被选择性激发,布居数密 度为 Nk 在平均寿命 τ 之内,分子要通过跃迁定则允许 的所有低能级 (vj″, Jj″)发射荧光。一条 k→j荧光线的 强度Ikj为
⑴ 线性情况
ρυB12<<(k21+A21),激发光强很弱,这时荧光为:
Nf
量子效率或 量子产额
A21 B12 N Φ B12 N (k 21 A21 )
激光吸收光谱技术
24
探测器PD1与PD2输出到平衡器,则平衡器的输出信号 Is(υ)比例于
Is () I2 () I1 '() (1 )I () [ I() I()] I() (1 2 )I()
当β=1/2时, Is(υ)为
IT () I0 () exp[ ()L]
1 L
一般气体样品 吸收系数α(υ) 比较小: α(υ)•x<<1
ln I0 /IT L
8
什么是吸收系数α(υ)
爱因斯坦的能级跃迁:入射光频率υ=(ε2- ε1)/h,分子才能 吸收入射光。在厚度为dl的分子层内,强度为I的入射
39
调制光谱技术:波长调制光谱与频率调制光谱。 两者的主要差别:调制频率和调制幅度
波长调制:调制幅度大(接近被测谱线的线宽),而调制 频率较低(数kHz到数十kHz) ; 频率调制:调制幅度较小但调制频率很高(~数百MHz, 与被测谱线的线宽相当) 。 频率调制在数百MHz的频率调制,各种噪声已降低到可 忽略的水平,因此可以达到高的检测灵敏度。但频率调 制光谱的解调困难,检测结果的分析比较复杂,因此波 长调制光谱相对实用。
lorentzgaussvoigt函数中的一种10什么是吸收线强laserspectroscopyitsapplication11分子吸收线强浓度压力cm2atmatm11hchcehckt配分函数跃迁对应的低能级能量kelvin温度波数cm1波尔兹曼常数普朗克常数12sxpsxp为峰值归一化函数用来估算吸收光谱技术的探测灵cm2atm14激光吸收光谱1516激光吸收光谱特点17有很高的光谱分辨率在传统吸收光谱技术中光谱的分辩率受到谱线展宽效应的限制又受仪器分辨率的限制例如受到分光元件如光栅分辨率和狭缝宽度等因素的影响
激光拉曼光谱的原理
激光拉曼光谱的原理
激光拉曼光谱(Laser Raman Spectroscopy)是一种非常强大的分析技术,它利用激光光源和拉曼散射效应来获得样品的分子结构和化学成分信息。
激光拉曼光谱的原理可以概括如下:
1. 激光光源:激光拉曼光谱的核心是激光器,通常使用单色激光源,如氦氖激光器(He-Ne)或激光二极管激光器(例如Nd:YAG激光器)。
激光光源发出单一波长的激光光束,通常是可见光或近红外光。
2. 样品激发:激光光束照射到待分析的样品上。
激光光子与样品中的分子相互作用,引起分子的振动、转动和能级变化。
这些过程会导致光子的散射。
3. 拉曼散射:当激光光子与样品中的分子相互作用时,部分光子的能量会发生微小的频率变化,这就是拉曼散射。
拉曼散射产生的光子具有不同的频率或波数,其中一些频率高于激光光子,而另一些则低于它。
这种频率变化的光子被称为拉曼散射光子。
4. 原始光与拉曼散射光的分离:拉曼散射光子与原始的激光光子分开,通常通过使用光谱仪中的光栅或其他分光元件。
这使得能够将拉曼散射光子分离并记录其频率。
5. 光谱分析:分离后的拉曼光谱通过光谱仪传递到检测器上,记录不同频率(波数)下的光强度。
这个拉曼光谱包含了样品中不同分子的振动和转动模式的信息。
6. 数据解释:通过分析拉曼光谱,可以识别样品中的不同分子、它们的浓度以及分子之间的相互作用。
这使得激光拉曼光谱成为一种非侵入性、非破坏性的分析工具,可用于化学、材料科学、生物学和环境科学等领域。
总的来说,激光拉曼光谱的原理是基于激光散射的现象,通过测量拉曼光谱,可以提供有关样品分子结构和成分的宝贵信息。
激光诱导击穿光谱技术在环境检测中的应用
激光诱导击穿光谱技术在环境检测中的应用激光诱导击穿光谱技术(Laser-Induced Breakdown Spectroscopy,LIBS)是一种利用激光聚焦高能量脉冲激光束在被测样品表面产生高温等离子态的原理,通过原子和分子发射光谱信号来获得样品元素成分和含量分布信息的无损分析检测技术。
LIBS技术具有快速、无损、原位等优点,因此在环境检测中得到了广泛应用。
首先,LIBS技术在土壤环境检测中的应用十分重要。
土壤是农业生产和环境生态系统的重要基础,对土壤中重金属元素、有机物污染物等进行准确、快速的检测是维护农产品质量和人类健康的关键。
传统的土壤检测方法通常需要样品的前处理和实验室分析,耗时耗力。
而LIBS技术具有无损、不需样品前处理等优势,可以直接对土壤进行原位检测,大大提高了检测效率。
其次,LIBS技术在水环境检测中也具有广泛应用前景。
水是人类生活和工业生产的基本需求,对水质的监测与评估具有重要意义。
传统的水环境检测方法多依赖于取样、实验室分析等步骤,耗时且容易受到外界干扰。
LIBS 技术通过直接照射水样品,可以实现无损、实时的元素分析,并且对微量元素的检测也能够达到较高的灵敏度。
因此,LIBS技术在水体中重金属、有机物等污染物的快速检测中具有广阔的应用前景。
此外,LIBS技术还可以应用于大气环境监测。
大气污染对人类健康和生态环境产生严重影响,因此准确、快速地监测大气污染物的浓度和组成显得非常重要。
传统的大气环境监测方法主要依赖于地面站点获取数据,而LIBS技术的特点使其具有携带性和快速反应的优势,可以在移动平台上实现对大气成分的实时监测和分析,可以对空气中的各种元素、有害气体进行高效的检测。
最后,LIBS技术在固体废物处理中也有广泛的应用。
固体废物处理是环境保护的重要组成部分,传统的固体废物检测方法多依赖于样品取样和实验室分析,耗时耗力。
而LIBS技术可以在不破坏废物外包装的情况下,直接对废物进行原位检测,实现对废物中有害物质的快速分析,为废物分类、处理提供准确的数据支持。
激光诱导击穿光谱技术发展与应用
激光诱导击穿光谱技术发展与应用激光诱导击穿光谱技术(LIBS)是一种近年来随着激光和光谱检测技术的发展而兴起的对元素定性和定量分析的技术,本文主要讲述该技术的研究现状,发展方向以及在环境污染检测、生物医学、植物学、空间探测和军事等诸多领域的应用。
标签:激光诱导击穿技术(LIBS)原理LIBS应用LIBS发展趋势及前景一、基本原理激光诱导击穿光谱技术(laser-induced breakdown spectroscopy,LIBS)是用高能量脉冲激光烧蚀材料,使材料表面的微量样品瞬间气化形成高温、高密度的等离子体,发射出带有样品内元素特征波长的等离子体光谱,谱线的波长和强度反映了样品中的元素组成及含量。
激光诱导击穿光谱技术基于原子光谱和离子光谱的波长与特定的元素一一对应的关系,而且光谱信号强度与对应元素的含量也具有一定的量化关系,通过解析等离子体光谱,并结合定量分析模型,可以得到分析样品成分的类别和含量信息。
二、激光诱导击穿光谱技术的研究发展LIBS技术作为一种物质成分检测方法,虽然相比于电感耦合等离子体发射光谱等光谱检测技术在精确度和灵敏度方面尚有不足,但是LIBS技术的样品需求量少并且无需预处理,对固体、液体、气体、非导电材料和生物样品等各种材料都适用,可同时探测多种元素。
为了将LIBS技术进一步向实用化方向推进,提高LIBS探测的可靠性、经济性和准确性,目前研究重点集中在对收集光谱信号的优化上,如增强光谱线信号强度、提高信噪比、降低基体效应、提高探测限等方面。
三、LIBS技术应用1.环境检测由于近几十年的工业发展,城市建设等因素导致环境污染日益严重,尤其是重金属污染、水体富营养化等越来越引起人们的重视。
这就迫切需要一种快速、原位、远距离、无需制样的技术来实现对环境污染物质的检测和监测。
LIBS 可以满足上述要求,可以检测分析任何形态的物质元素(液体,气体,固体),在对水体污染,危险有害废物,气体气溶胶污染物质的检测分析,定量计算等方面都有很广阔的應用前景。
激光拉曼光谱课程
2)红外光谱中,由C N,C=S,S-H伸缩振动产生的谱带一 般较弱或强度可变,而在拉曼光谱中则是强谱带。
3)环状化合物的对称振动常常是最强的拉曼谱带。
4)在拉曼光谱中,X=Y=Z,C=N=C,O缩振动是弱谱带。 红外光谱与此相反。
其输出激光波长为6328埃,功率在100mW以下。
样品的放置方法
为了提高散射强度,样品的放置方式非常重要。 气体的样品可采用内腔方式,即把样品放在激
光器的共振腔内。 液体和固体样品是放在激光器的外面。
激光Raman光谱仪
laser Raman spectroscopy 激光光源:He-Ne激光器,波长632.8nm;
1960年以后,激光技术的发展使拉曼技术得以复兴。由于激光束的 高亮度、方向性和偏振性等优点,成为拉曼光谱的理想光源。随探测 技术的改进和对被测样品要求的降低,目前在物理、化学、医药、工 业等各个领域拉曼光谱得到了广泛的应用,越来越受研究者的重视。
吴大猷先生
1935年在北大完成了第一篇关于拉曼散射 的论文‘四氯乙烯拉曼线的退极化’(《中 国化学学会会志》第四卷) ,也是该领域国 内的第一篇论文。
在不同方向上的分子被入射光电场极化程度是不同的。
在激光拉曼光谱中,完全自由取向的分子所散射的光也可 能是偏振的,因此一般在拉曼光谱中用退偏振比(或称去偏 振度)ρ表征分子对称性振动模式的高低。
I
I //
I∥和I⊥—3—的分别谱代带表称与为激偏光振电矢谱量带平,行表和示垂分直的子谱有线较的高强的度 对称振4 动模式 。
●将负拉曼位移,
即ν0-ν1称为Stokes线(斯托克斯线)。
激光诱导荧光光谱
激光诱导荧光光谱激光诱导荧光光谱(Laser-Induced Fluorescence Spectroscopy,简称LIF)是一种常见的光谱分析技术,广泛应用于生物医学、环境、材料等领域。
本文将介绍激光诱导荧光光谱的基本原理、应用和发展趋势。
激光诱导荧光光谱是一种通过激光进样样品,通过光的诱导机制产生荧光,并通过光谱分析荧光特性来判定样品的成分和性质的技术。
在LIF中,激光光源通过光学透镜成一个点,照射到样品表面或样品内部。
样品中的分子吸收入射光能量,并通过电荷转移或激发态跃迁的方式将能量转化为荧光。
荧光光子经过处理后,通过光谱仪进行检测和分析,得到荧光光谱信息。
通过分析荧光光谱特征,可以了解样品的化学成分、结构和性质。
激光诱导荧光光谱在生物医学领域有广泛应用。
例如,通过荧光标记蛋白质、细胞或分子,可以实现对生物分子和细胞的检测和定位。
通过针对特定蛋白质或染料的荧光探针,可以实现对细胞内生化分子的成像和分析。
光谱分析可以提供准确的信息,用于诊断和研究各种疾病,如肿瘤、心血管疾病等。
此外,激光诱导荧光光谱还在环境监测和材料科学等方面得到广泛应用。
LIF技术的优点之一是其高灵敏度和选择性。
由于荧光往往是一个特定基团或物质的属性,因此可以通过荧光信号来识别不同的化学物质。
同时,激光诱导荧光光谱也具有高灵敏度,可以检测到非常低浓度的物质。
这使得LIF在追踪和分析环境中微量物质、检测生物分子以及荧光探针的研发等方面具有潜力。
此外,LIF技术还具有快速性和非破坏性。
相对于传统的化学分析方法,激光诱导荧光光谱可以快速获取样品的荧光光谱信息,避免了长时间的化学反应和分析步骤。
同时,LIF对于样品的破坏非常小,可以进行无损检测,保留样品的完整性和结构。
然而,激光诱导荧光光谱在应用中也面临一些挑战。
首先是荧光信号的强度。
由于背景荧光或其他干扰信号的存在,荧光信号常常被掩盖或稀释。
因此,需要采取一系列信号增强和背景抑制的手段来提高信噪比。
激光诱导荧光光谱
激光诱导荧光光谱激光诱导荧光光谱(Laser-induced fluorescence spectroscopy)是一种分析样品中含有的荧光材料的方法。
它利用激光的高能量激发样品中的部分荧光材料,进而通过检测产生的荧光信号来分析样品的组成和性质。
本文将从原理、应用以及未来发展方向三个方面来探讨激光诱导荧光光谱。
一、原理激光诱导荧光光谱的原理基于激光激发样品中的荧光物质,通过光谱仪测量产生的荧光信号。
激光通过样品时,样品中的荧光物质会处于基态。
当激光的能量与荧光物质的能级差相匹配时,荧光物质会被激发到激发态,进而发射荧光。
因为每种荧光物质都有独特的能级结构,所以它们在被激发后会发射出特定波长的荧光光谱。
通过测量荧光光谱,我们可以得到关于样品中荧光物质的信息,如浓度、结构等。
二、应用激光诱导荧光光谱在许多领域都有广泛的应用。
首先,在环境监测方面,它被用于检测水中的污染物,如重金属离子和有机化合物。
通过激光诱导荧光光谱,我们可以快速准确地确定水样中的有害物质浓度,从而提供有关水质安全和环境监测的重要信息。
其次,在生物医学研究中,激光诱导荧光光谱被广泛应用于细胞和组织的荧光成像。
这种成像技术可以帮助了解人体组织的分子结构和功能,有助于疾病的早期诊断和治疗。
此外,激光诱导荧光光谱还被用于材料科学、食品安全和工业生产等领域。
三、未来发展方向尽管激光诱导荧光光谱已经在许多领域取得了重要的应用,但仍然存在一些挑战和发展方向。
首先,当前大部分激光诱导荧光光谱的分析仪器仍需使用复杂的实验装置,对操作人员的要求较高。
未来的发展应该着重于简化和便携化仪器设备,以满足不同领域的实际应用需求。
其次,提高荧光材料的效率和选择性也是一个重要的研究方向。
通过改进荧光材料的结构和性质,可以提高激光激发后的荧光强度和光谱特征,进一步提高分析的准确性和灵敏度。
此外,结合其他分析技术,如光谱成像和机器学习等方法,也是未来发展的趋势。
这将提高激光诱导荧光光谱在复杂样品分析和多组分分析中的应用能力。
激光光谱-02-光谱仪与单色仪
光谱仪的基本特性:接收口径
• 光谱仪口径(speed of spectrometer,速率?)
I :单位立体角、单位 波长的辐射功率。
– étendue (光学扩展量, 集光率, 采光本领)
– I*/As:亮度(单位立体角、单位面积上的功率), 不考虑损耗和折射率变化,守恒量
+ 狭缝衍射角 < a/f1;
• 增加狭缝高度,对提高光谱 质量的价值有限:象差?;
• 出缝和入缝的宽度应满足: b2 = f2/f1*b1,使用阵列探测 器,入缝像的宽度应与阵列 单元的宽度一致。
光谱仪基本特性:自由光谱范围
• x()为单值函数的波长区间,称自由光谱
范围。
– 棱镜光谱仪:棱镜材料的正常色散区域; – 光栅光谱计:自由光谱范围随m增大而减小。
– 为保证最大限度利用光谱仪的收集能力(即透镜收受到的光能能被光 谱仪全部利用,不会溢出产生背景噪声),透镜距狭缝至少应该为 485 mm,透镜距辐射源的距离为786 mm。
• 狭缝宽度的设定?
入射光路
点光源
激光束
光谱仪基本特性:光谱透过率
• 棱镜光谱仪:决定于透镜、棱镜材料的透过 率;
• 光栅光谱仪:决定于反射镜、光栅的反射 率,有相当宽的高透过率范围。与偏振相关
第2讲 光谱仪与单色仪
- Laser Spectroscopy, 4th Ed., Vol.1, Sec 4.1.1, Sec 4.1.3.
左都罗 zuoduluo@
概要
• 基本性质 • 光栅光谱仪
– 基本特性 – 光栅
• 成像光谱仪(Imaging spectrograph)
激光的英语单词
跟激光有关的英语单词1.Laser(激光)2.Light(光)3.Photon(光子)4.Beam(光束)5.Optics(光学)6.Amplification(放大)7.Excitation(激发)8.Wavelength(波长)9.Frequency(频率)10.Intensity(强度)11.Collimation(准直)12.Diffraction(衍射)13.Interference(干涉)14.Resonator(谐振腔)15.Holography(全息术)16.Absorption(吸收)17.Refraction(折射)18.Scattering(散射)19.Polarization(偏振)20.Laser diode(激光二极管)21.Semiconductor(半导体)22.Excited state(激发态)23.Population inversion(粒子逆转)24.Laser cavity(激光腔)25.Mode locking(锁模)26.Q-switching(Q开关)27.Continuous wave(连续波)28.Pulse(脉冲)29.Power output(功率输出)30.Laser safety(激光安全)31.Laser pointer(激光笔)32.Laser surgery(激光手术)33.Laser cutting(激光切割)34.Laser engraving(激光雕刻)35.Laser printing(激光打印)36.Laser scanning(激光扫描)37.Laser spectroscopy(激光光谱学)38.Laser cooling(激光冷却)39.Laser ablation(激光剥离)40.Laser therapy(激光疗法)。
激光吸收光谱技术
激光吸收光谱技术
激光吸收光谱技术(Laser Absorption Spectroscopy)是一种利用激光与物质相互作用的原理进行分析检测的技术。
该技术利用激光的高单色性、高亮度和高定向性,通过物质吸收特定波长激光的强度变化来分析样品的成分和浓度。
在激光吸收光谱技术中,首先选择与待测物质所吸收的特定波长相匹配的激光器,然后将激光束传输到待测物质上。
当激光束与待测物质相互作用时,物质分子会吸收特定波长的激光能量,从而导致激光强度的衰减。
通过测量激光束穿过待测物质之前和之后的强度,可以确定待测物质的浓度。
激光吸收光谱技术可以应用于气体、液体和固体样品的分析,具有高灵敏度、高选择性和非破坏性等优点。
激光吸收光谱技术在环境监测、工业过程控制、化学分析和生物医学领域等具有广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Department of Electronic and Electrical EngineeringEE986 Assignment and Professional StudiesGroup Project Interim ReportName: Kuo SunZhe ZhangNan ZhouContentAbstract (2)1. Introduction (3)2. Background (3)2.1 Principle of LASER (3)2.1.1 Deconstructing the LASER (3)2.1.2 Underlying physics of LASER (4)2.1.3 LASER Oscillation (4)2.2 Principle of TDLS (5)2.2.1 TDLS with Direct Detection (6)2.2.2 TDLS with Wavelength Modulation Spectroscopy (6)2.3 Fundamentals of Cavity Ring-down Spectroscopy (7)2.3.1 Basic CRDS Set-Up (8)2.3.2 Principle of CRDS (8)2.3.3 Technical Characteristics of CRDS (9)2.4 Principle of photoacoustic spectroscopy (9)2.4.1 Foundational Principle (9)2.4.2 Physical Process (10)2.4.3 Advantages of Photoacoustic Spectroscopy (10)3. Industrial Application (11)3.1 Industry applications of TDLS (11)3.2 Cavity Ring-Down Spectroscopy for Combustion Studies (12)3.2.1 Experimental Set-up (12)3.2.2 Methodology for CRD Flame Experiment (12)4. Further work (14)5. References (15)AbstractModern spectroscopy which has the advantages of immunity to electromagnetic interference, resistance to chemical corrosion, high sensitivity, large bandwidth, and remote operation has become the preferred option for industrial gas monitoring.This paper presents the basic principle of laser operation which involved to the spectroscopy discuss in the next section. Then the paper discusses the fundamental of three different types of spectroscopy--Tunable Diode Laser Spectroscopy, Cavity Ring-down Spectroscopy and Photo acoustic Spectroscopy. Furthermore, the applications in industrial of the spectroscopy mentioned before are given to provide a further explanation. Finally, the future work is shown to make the project plan clear.1.IntroductionThe title of this group project is ‘Optical Fibre Gas Sensors’. Gas sensing has been an important issue since the existence of mankind. This project involves a number of optical gas sensing techniques especially different kinds of spectroscopy and how each technique can be used in industrial applications. In the project each member will mainly do the research on one specific kind of spectroscopy and study the knowledge of its industry applications. Under the permit conditions an experimental system will be used to measure the characteristics of spectroscopy.2.Background2.1 Principle of LASERLASER, which is the short name for Light Amplification by Stimulated Emission of Radiation, has already explained its main process in the full name.2.1.1 Deconstructing the LASERAs an optical oscillator, a laser can be deconstructed into three essential elements —pump, gain medium and resonator. Figure 1 below could show the detailed structure of a laser.Figure 1: Structure of a laser [1]Pump acts as source of energy, providing external energy to gain medium, allowing it to amplify light. Generally, it can be specified into different types of optical pump, thermal pump, electrical pump and chemical pump. The types utilized should be determined by gain medium.Gain medium is the key element of a laser that creates and amplifies light at appropriate wavelength. It absorbs energy from pump and produces light at the required frequency. Types of gain medium can be classified according to their material, such as insulating solids, semi-conductors, gas and liquid.Resonator is made up by two mirrors, one of which is partially reflective and the other is 100% reflective. This is used to re-circulates light. Resonator has three effects: keeping the emission of radiation continuous, accelerating the photons and confining the direction of emitted light.2.1.2 Underlying physics of LASERIn 1917, Albert Einstein published the paper On the Quantum Theory of Radiation that explained the absorption, spontaneous emission and stimulated emission of photons. For an electron, the nearer the electron orbits to the Bohr atom, the lower energy it has; vice versa. Therefore, the electron orbit near to the atom is defined as low energy level.For a system, if photons transit from low energy level E1to high energy level E2, they will absorbe energy E=E2-E1=hν=hc/λ from external system. Absorption occurs with a rate of N1ρνB12, where N1 is the photon population at E1, ρν is the photon energy density, and B12 is the probability of absorption per unit time.Spontaneous emission occurs when photons transit from high energy level E2 to low energy level E1. This is a spontaneous active due to the lifetime for a photon at upper state and emit energy E=E2-E1=hν=hc/λ with a random direction. The rate is N2A21, where is the probability of spontaneous decay per unit time from state 2 to state 1.Stimulated emission is what we expect. The emission is stimulated by an incoming photon with energy E=E2-E1=hν=hc/λ incidenting on an atom to stimulate an electron transiting from low energy level to high energy level. The emitted photon has the same direction and energy with the incident photon. The rate of stimulated emission is N2ρνB21.2.1.3 LASER OscillationThe operational process of laser is self-sustaining optical oscillation. When the system is powered with pump, spontaneous emission occur and emit radiates in all directions. With the increasing of pump power, the provided energy will achieve a threshold value to exceed the losses in the optical cavity and compensate for the loss to spontaneous emission. At thismoment, the spontaneous emission reflected by the mirror becomes the incident photons to start the stimulated emission and part of the stimulated emission get out while the others reflected and repeat this process, which finishes the build-up process of laser oscillation. See in figure 2.Figure 2: Build-up laser oscillation [2]With further increase of the stimulated emission, circulating light extracts more energy and output more power until the population reaches the upper state and the amplifier gain becomes saturated. At this time, the energy produced equals to the output and losses. Then the laser oscillation steps to steady state. It is shown in figure 3.Figure 3: Steady state of laser oscillation [2]2.2 Principle of TDLSCompare with many other optical gas sensing approaches, tunable diode laser spectroscopy (TDLS) is widely used based on its specific advantages, particularly in industrial gas monitoring area. TDLS was firstly developed in 1970’s. Up until that time conventional spectrometers and gas lasers had been used to obtain gas absorption data, and the technique of using the unique capabilities of diode lasers was a novel approach to providing high resolution measurements of absorption spectra.[3]The technique used mid-infrared (midIR) lasers at first. It need cooled detectors and cooled lasers which will have some difficulties with deployment. Later, distributed feedback (DFB) lasers and InGaAs photodiode detectors which use near-IR technology for communication applications were available at low cost and high performance. There are two common forms for the TDLS. One is called TDLS with direct detection and the other one is TDLS with wavelength modulationspectroscopy (WMS).2.2.1 TDLS with Direct DetectionFigure 4: System diagram of direct TDLS [4]The basic system diagram of tunable diode laser spectroscopy with direct detection is shown above. TDLS with direct detection involves temperature tuning of the wavelength of a laser at DFB laser part to overlap with that of a particular target absorption line and applying a repetitive ramp signal to the laser's injection current to sweep its output wavelength across the entire absorption profile. [5]To make sure the intensity variations do not have a bad influence on the measurement results, a part of main laser beam is isolated and then monitored at a reference photoreceiver. A ratio to make up the difference between the main beam and reference beam is taken at a point away from the gas absorption. This is called ‘off-lin e’ measurement. The ratio is known as ‘zero-point reference’. However, the sensitivity of TDLS with direct detection is limited by the noise across a large bandwidth. What is more, further issues will occur when the measurement is made at high temperature.2.2.2 TDLS with Wavelength Modulation SpectroscopyFigure 5: System diagram of TDLS/WMS [6]The basic system diagram of TDLS with WMS is shown above. There is a low frequency ramp (tens of HZ) at ramp generator with the direction version. Also, one small amplitude, high frequency (tens of kHZ) sinusoidal dither is produced by sinusoidal generator to test the line shape. The amplifier of the frequency deviation is defined in terms of the modulation index m where m=δv/γ. Here δv is the frequency deviation and γ is the half-width-half-maximum (HWHM) linewidth. [6] The interaction of the frequency modulation (FM) generates detected amplitude-modulation (AM) signals at the modulation frequency f and its higher harmonics. The first harmonic AM signal at the receiver is defined as the residual-AM (RAM) signal.The transmitted intensity I out at a spec ific optical frequency v is given by Beer’s law [7]:I out =I in e −α(v)Cl =I in (1−α(v)Cl)Where,I in is the incident intensity on the gas volume;α(v) is the absorption coefficient at frequency v;l is the length through which the beam and gas interact;C is the gas concentration expressed as C =N/N 0.For the gas absorption line, the absorption coefficient α(v ) is defined by Lorentzian profile:α(v )=α0{1+(v −v 0γ)2}=α02 Where,v 0 and α0 are the frequency and absorption coefficient at the line center;γ is the half line width;α0= N 0S/(γπ), S is the line strength. 2.3 Fundamentals of Cavity Ring-down SpectroscopyCavity Ring-Down Spectroscopy (CRDS) is a direct absorption technique which has outstanding sensitivity than conventional absorption spectroscopy. The principle of CRDS is to determine the rate of absorption, rather than the magnitude of absorption, by measuring the decay time. Decay time, also called cavity ring-down time, is the total time that the light circulating in the cavity.As CRDS measuring the ring down time which independent on the incident light intensity, CRDS has the advantages such as high sensitivity, high Signal-Noise-Ratio and resist to interference on the laser pulse.2.3.1 Basic CRDS Set-UpAs the figures shows below the ring-down cavity consisting of two highly reflective mirrors (Reflectivity R>99%, R ≈1). The pulse produced by the laser travels forth and back in the cavity.A fast detector measures the output light intensity as a function of time.Figure 6: Basic CRDS Set-UpAs the reflectivity of the ring-down cavity mirrors is sufficient high, the pulse decay time in the cavity can be extremely long, that is to say the gas total absorption path is pretty long which can significantly promote the measuring result.2.3.2 Principle of CRDSFrom the Beers Law, the output light intensity against the decay time can be expressed:I(t)=I 0exp (tc L(lnR −αCL)) Where I 0is the incident light, c is light speed, L is the cavity length, C is the concentration of the gas and α is the frequency-dependent absorption coefficient. As the reflectivity R ≈1, lnR ≈-(1-R), the expression can be rewritten as,I (t )=I 0exp (−tc (1−R +αCL)) The ring down time τ which defined as the 1/e decay time of the exponential expression can be expressed asτ=L As the expression shows the ring down time depends on the cavity length L, the absorption coefficient α and the reflectivity R. For the vacuum condition, the ring down time can be expressed asτ0=L So the vacuum ring down time only depends on the reflectivity R. If the cavity reflectivity R is constant, it is possible to determine the absorption loss αCL by measuring the ring down time ταCL=L(1−1)For a particular wavelength the absorption coefficient is constant which makes it possible to determine the gas concentration by measuring the ring down time.C=1cα(1τ−1τ0)2.3.3 Technical Characteristics of CRDSi.Incident light intensity independent.As mentioned before the concentration of the gas which to be determined is only depends on the ring down time in gas and vacuum (τ and τ0). Thus, it is possible to increase the SNR by measuring the 1/e decay time.ii.Long absorption path.The absorption path in the cavity is the product of decay time and the light speed which can be expressed asL eff=LSince αCL≪(1−R)L eff≈LAs the reflectivity of the cavity mirrors is sufficient high, the absorption path can be pretty long. For example, if L=60cm, R=99 %(it is much higher in reality which could be99.7%, 99.9%) the L eff>60m [8] [9]iii.High sensitivity.CRDS has been applied at wavelengths between 197nm and 3.2 mm. A sensitivity of 10−6cm−1can easily obtained.2.4 Principle of photoacoustic spectroscopy2.4.1 Foundational PrinciplePhotoacoustic spectroscopy is a new developed spectroscopic analysis technique based on photoacoustic effect. This technique is developed in recent decades, however, the foundational principle of it was discovered by Alexander Graham Bell early in 1988 [10]. Photoacoustic effect is an interaction between light and materials, is a physical process of materials absorbing light and turning it to acoustic energy. Using intense laser to illuminate the sample which is enclosed in a cylindrical chamber, the sample absorbs energy from the light and turns it into thermal energy. The thermal energy heats the sample and mediumaround it with a modulated frequency of light, and therefore the medium produce a periodic pressure wave. This wave can be detected by sensitive microphones and amplified through lock-in amplifiers, which is called photoacoustic effect. If the wavelength of incident monochromatic light is variable, then people could get photoacoustic signal spectrums in a variable ranges. This is the principle of photoacoustic spectroscopy.2.4.2 Physical ProcessThe cylindrical chamber used to cause photoacoustic effect can be divided into three spaces: sample, backing and gas (medium), shown in figure 4.Figure 7: Model of cylindrical chamberConsidering the incident light is only absorbed and decayed on the surface of samples, solve the thermal diffusion equations in these three spaces, and we can get the change of periodic pressure produced by incident light with a modulated frequency of ω:δP =Q cosωtwhere Q is the amplitude of pressure changing. The expression for Q is quite complicated:Q=BIγp[(r−1)(b−1)(eσL−(r+1)(b−1)e−σL+2(b−r)e−βL)] 2√2TKL′α(β2−α2)[(g+1)(b+1)eσL−(g−1)(b−1)e−σL]where βis the light absorption coefficient of material; I is the strength of incident light; P is the pressure of gas in the chamber; γis the ratio of isobaric heat capacity to constant volume heat capacity of gas in the chamber; T is the temperature in the chamber; L is the thickness of sample; L′is the length of space for gas; K,K′,K′′are density of sample, gas and backing respectively; C,C′,C′′are the specific heat of sample, gas and backing respectively. In additionb=√K′′ρ′′C′′/KρC; g=√K′ρ′C′/KρC;α=√ωρC/2K; σ=(1+i)√ωρC/2K;r=(1+i)β/2√ωρC/2K; i=√−1.2.4.3 Advantages of Photoacoustic SpectroscopyPhotoacoustic spectroscopy is an effective backup to the traditional spectroscopy. The maindifference between them is that photoacoustic spectroscopy does not directly detect the emitted photons of the material after illumination, but measures the energy absorbed by the interaction between light and materials. Due to this, photoacoustic spectroscopy could overcome the difficulties of traditional spectroscopy [11]:1.For slight absorption materials, the transmission signal hardly has any decay. It isextremely difficult to measure the tiny difference of the transmission light.2.For intense scattering materials, the absorption method cannot tell if the photons arereally absorbed.3.For the materials that don’t allo w light passing through or too thick for light to passthrough, the absorption method can never detect the transmission light.3. Industrial Application3.1 Industry applications of TDLSFigure 8: Location of the NIR system ALTO and the MID-IR lead-salt TDL COLD on M55 Geophysica [12]Gas sensing act as an important part in industry is to protect from harmful gases and optimize the production processes. During the production process, Tunable diode laser sensors can be used to make the measurement effectively. It was pointed out that Tunable Diode Laser Spectroscopy (TDLS) has managed to turn from a “promising technology” into an “established technology” in the industry in the session held at the 4t h International Conference. In 2004 the first company sold the 1,000th TDLS instrument by using NIR wavelengths which mainly used O2, NH3, CH4 and water vapour. Also the laser producers cooperate with each other to develop and market VCSELs (vertical-cavity surface-emitting laser), DFB-lasers and QC-lasers (Quantum cascade lasers). Besides, the TDLS systems areused for medical diagnostics and breath analysis in healthcare and novel trace gas analyzer for environmental measurements.3.2 Cavity Ring-Down Spectroscopy for Combustion StudiesThe first flame experiment using the CRDS technic was reported by Meijer etal in 1994 which provided a new way in measuring the reactive species in flames.3.2.1 Experimental Set-upFlames can be classified into two parts, laminar and turbulent. CRD method only deals with the laminar flame which provides a stable and thin (<1mm0) [13]flame front. The figure shows below is a simple low-pressure burner with ring down cavity. Two pinholes are introduced to maintain the cavity match to the TEM00mode. The burner is positioned at the center of the cavity. Wavelength selected laser beam provides the incident light. A fast photomultiplier tube detector connected with a digital oscilloscope.Figure 9: Low-pressure burner with ring down cavity3.2.2 Methodology for CRD Flame Experimenti.Integrated AbsorptionTwo different methods are being widely used in literal in CRD flame experiment. The first one is based on measuring the integrated absorption (cm−1) as a function of laser frequency in wavenumbers (cm−1).Make the assumption that the optically thin limit which means a weak absorption.(i.e. α(ω,T)l s≪1). [14]The integrated absorption A can be expressed as a function ofabsolute molecules population N iA I=πe2e2×N i f if l sπe2m e c2=1.13×1012cm−1, f if is the oscillator strength for the absorption, l s the absorption sample path. From the definition of temperature dependent Boltzmannfactor f Bf B =N i TThe expression can be rewritten asN T =A I s ×m e c 22×1if ×1BWhere N T is the total molecules numbers. The oscillator strength f if can be direct provided by the literature.ii. Peak AbsorptionThe second method is based on peak absorption measurement. Thetemperature-dependent absorption cross-section is defined by Derzy et al.σ(ω,T )=√4ln2×11/2×πe 2e 2×f if f B Again, πe 2m e c =1.13×1012cm −1. ∆ω1/2 is the full width at half maximum.As σ(ω,T )=α(ω,T ), the equation can be rewritten asN T =α(ω,T)peak ×∆ω1/2×m e c 22×1if ×1B4.Further workFigure 10: Gantt chartIn the future firstly each member will keep on the study of the principle and industry applications for the spectroscopy. Then find a way to develop the experiment to measure the characteristics of spectroscopy, test the experimental results and make a conclusion for the research.5. References[1] Michael Lengden, “Lecture Note: Introduction to Lasers” from class EE473 PhotonicSystem, Department of Electronic & Electrical Engineering, University of Strathclyde. [2] Cinan Wu, Sigeng Yang, “Photoacoustic Spectroscopy and Its Application” from Journalof Guizhou Normal University (Nature Science), No.1 Vol.16 1998.[3] Kevin Duffin, “Wavelength Modulation Spectroscopy with Tunable Diode Lasers: aCalibration-Free Approach to the Recovery of Absolute Gas Absorption Line-Shapes,”pp23, Apr4l 2007.[4] Kevin Duffin, “Wavelength Modulation Spectroscopy with Tunable Diode Lasers: aCalibration-Free Approach to the Recovery of Absolute Gas Absorption Line-Shapes,”pp17, April 2007.[5] Andrew J McGettrick, Walt er Johnstone, Robert Cunningham and John Black, “TunableDiode Laser Spectroscopy With Wavelength Modulation: Calibration-Free Measurement of Gas Compositions at Elevated Temperatures and Varying Pressure,” Journal of Lightwave Technology, vol. 27, no.15, August 2009.[6] Kevin Duffin, “Wavelength Modulation Spectroscopy with Tunable Diode Lasers: aCalibration-Free Approach to the Recovery of Absolute Gas Absorption Line-Shapes,”pp21, April 2007.[7] Kevin Duffin, Andrew James McGettrick, Walter Johnstone, George Stewart and David G.Moodie, “Tunable Diode-Laser Spectroscopy with Wavelength Modulation: a Calibration-Free Approach to the Recovery of Absolute Gas Absorption Line Shapes,” vol.25, no.10, October 2007.[8] Ml Yunpitg ,WANG Xiaopirig, Review on cavity ring down spectroscopy technology andits application, 2007[9] Sneep, M.; Hannemann, S, Cavity Ring-Down Spectroscopy, Express 2008, 16,15013-15023[10] Cinan Wu, Sigeng Yang, “Photoacoustic Spectroscopy and Its Application” from Jour nalof Guizhou Normal University (Nature Science), No.1 Vol.16 1998.[11] “Photo-Acoustic Spectroscopy Application for Dissolved Gas Analysis”, BaiduDocuments, [Online]. 27th January, 2013. Available:/view/29490c6da45177232f60a263.html[12] M. Pantani, F. Castagnoli, F. D´Amato, M. De Rosa, P. Mazzinghi, P. Werle, "Twoinfrared laser spectrometers for the in-situ measurement of stratospheric gas concentration", Infrared Physics & Technology 46, 109-113 (2004).[13] FLAMES AND FLAME STRUCTURE, /eee/cpe630/comfun3.html[14] GIEL BERDEN, Cavity Ring-Down Spectroscopy Techniques and Applications, 2009。