流体力学基础-第三章-一维流体动力学基础
吉林大学流体力学3
所以: v dz v dy=0 y z
v z dx v x dz=0 v dy v dx=0 y x
dx dy dz 即: vx v y vz
流线微分方程
流线的性质
(1)定常流动中流线不随时间变化,而且流体质点的 轨迹与流线重合。 (2)实际流场中除驻点或奇点外,流线不能相交,不 能突然转折。(速度为0的点称为驻点,速度为无穷大 的点称为奇点,奇点是一种抽象的理论模型。)
如何用欧拉法表示流体质点的加速度 a
应当注意到的是:速度是坐标和时间的函数,同时 运动质点的坐标也是随时间变化的,即坐标 x,y,z 本身也是时间的函数,因此用欧拉法表示某质点的 加速度实际上是一个对复合函数求导的问题,必须 按照复合函数求导法则进行求导。
如用加速度矢量 a 和速度矢量 来表示,则有 υ a (υ ) υ t
0
dp gdz 0
积分得: z
p C g
详细论证请参看教材P64
3.2.4 缓变流和急变流 流线不是严格平行,但流线之间夹角很小,或流线的曲率 半径很大,或两者皆有,这种流动称为缓变流,其有效断面 称为缓变流断面。
在缓变流断面上可以认为流线近似平行,有效断面为一平面,
压强分布近似与静止流体相同。
(即也近似满足: Z
p C 条件是:质量力只有重力,不可压缩流体) g
那种流线不平行,加速度较大的流动称为急变流。
均匀流、急变流和缓变流
均匀流、急变流和缓变流
均匀流
急变流
缓变流
急变流
3.3 用欧拉法描述流体运动的基本概念
3.3.1 流线 3.3.2 流管、流束、和有效断面
3.3.3 流量 3.3.4 平均流速
第三章一元流体动力学基础
d (gz p 1 u 2 ) 0
2
积分后得 gz p 1 u 2 常数
2
考虑到重度γ=ρg,将上式两端除以重力加速度g,得: z p u 2 常数 (3)
2 . 通过某一空间点在给定瞬间只能有一条流线,一般情况流 线不能相交和分支。否则在同一空间点上流体质点将同时 有几个不同的流动方向。只有在流场中速度为零或无穷大 的那些点,流线可以相交,这是因为,在这些点上不会出 现在同一点上存在不同流动方向的问题。速度为零的点称 驻点,速度为无穷大的点称为奇点。
)
再看右端三式相加: 由于是在重力场中,故流体
dx
u x t
u x x
ux
u x y
uy
u x z
uz
X
1
p x
的质量力只是重力,则 X=0, Y=0, Z=-g。
dy
u y t
u y x
ux
u y y
uy
u y z
uz
Y
1
p y
所以: Xdx+Ydy+Zdz=-gdz
dz
u z t
u z x
非定常流动(unsteady flow) :流动物理参数随时间而变化
如:p f (x, y, z,t),u f (x, y, z,t)
定常流动
非定常流动
有旋流动(rotational flow):流体在流动中,流场中有若干处 流体微团具有绕通过其自身轴线的旋转运动
无旋流动(irrotational flow):在整个流场中各处的流体微团 均不绕自身轴线的旋转运动
欧拉法与拉格朗日法区别:
欧拉法:以固定空间为研究对象,了解质点在某一位置时 的流动状况
拉格朗日法:以质点为研究对象,研究某一时刻质点全 部流动过程
《工程流体力学》第三章 流体运动研究方法及一维定常流基本方程
控制体:1-1-2-2,用I+III表示 在空间上:固定的
t时体系:1-1-2-2,t时刻占据控制体I+III的流体
t+dt时体系:1’-1’-2’-2’ dt时间后: t时体系沿流线运动到III+II
由质量守恒定律: t时体系内质量=t+dt时体系内质量
定常流:空间中任一点参数随不随时间变化? 不随
物理意义?
A1, r1, V1 —— 控制面1-1上的横截面积、气流密度、速度
物理意义?
A2, r2, V2 —— 控制面2-2上的横截面积、气流密度、速度
物理意义?
一维定常流连续方程:在一维定常流中,通过同一流管任 意截面上的流体质量流量、重量流量保持不变。
例1:已知平面非定常流中的流速分量为:ux=x+t, uy= -y+t, 求:流线方程和迹线方程。 解:流线微分方程:
其中t为常数 积分后:
最后得:
迹线微分方程:
其中t为变量
结论:非定常流中迹线与流线不同
—— 迹线方程 ——流线方程
例2:已知平面定常流中的流速分量为:ux=x, uy= -y, 求:流线方程和迹线方程。 解:由流线微分方程:
体系动量对时间变化率:
控制体 = t时体系 环境对控制体内流体作用力 = 环境对t时体系内流体作用力
牛顿第二定律: 某瞬时作用在体系上全部外力合力 =该瞬时体系动量对时间的变化率
分量形式:
作用在控制体内流体上的外力: 1)表面力:控制体外流体或固体壁面作用在控制面上力
作用在进口截面上切向力:0 作用在出口截面上切向力:0
流体力学课件_第3章_一元流体动力学基础(下)
A
2. 急变流
动压强特性:在断面上有
3.控制断面的选取: 控制断面一般取在渐变流过水断面或其 极限情况均匀流断面上。
想一想
为什么在总流分析法中需引入断面平均 流速? 即目的所在?
因为总流过水断面上各点的流速是不相等的。为了 简化总流的计算,所以引入了断面平均流速来代替 各点的实际流速。
第五节 恒定总流连续性方程
取距基准面的铅直距离来分别表示相应断面的总水头与测 压管水头。 • 测压管水头线是根据总水头线减去流速水头绘出的。
第十一节 恒定气流能量方程式
虽然恒定总流伯努利方程是在不可压缩这样 的流动模型基础上提出的,但在流速不高(小于 68m / s ) ,压强变化不大的情况下,同样可以应 用于气体。
p1 α v p2 α v z1 + + = z2 + + + hw γ 2g γ 2g
二、控制断面的选取
1、渐变流的性质 渐变流过水断面近似为平面,即 渐变流是流线接近于平行直线的流动。均匀流是渐变 流的极限。 2、动压强特性:在渐变流同一过水断面上, 各点动 压强按静压强的规律(2-11)式分布,如图的c-c断面, 即
想一想
图中,过水断面上的动压强分布符合静 压强分布规律的为: A 直管处 B 弯管处
第3章 一元流体动力学基础(下)
重点内容: 1、总流分析方法; 2、恒定总流能量方程 1)恒定总流能量方程 2)能量方程的扩展 3)能量方程的应用 掌握内容: 1、连续性方程 2、实际流体元流能量方程
第五节 补充内容 (伯努利方程基础概念)
一、概念 1.控制体:即在流场中划定的一个固定的 空间区域,该区域完全被流动流体所充满。 2.控制断面:即控制体(流管)有流体流 进流出的两个断面,如图中的1-1,2-2断面。
流体力学基础第三章
3、非恒定流动:通过空间某一固定点的各液 体质点的速度、压力和密度等任一参数只要 有一个是随时间变化的,即为非恒定流动。
4、一维流动:若运动参数(流速、压力、 密度等)只是一个坐标的函数,则称为一维 流动。
第一章 液压油及液压流体力学基础
§1-3 流动液体的基本力学特性 一、基本概念
动画演示
第一章 液压油及液压流体力学基础
∵ v1 << v2 v1可忽略不计,收缩断面流动是紊流 α2=1; 而△pw仅为局部损失 即
△pw=ζρv22/2 ∴ v2 =√2/ρ·(p1-p2)/√α2+ξ = Cv√2△p /ρ 故 q = A2v2 = CcATv2 = CvCcAT√2/ρ△p = CqAT√2△p/ρ
第一章 液压油及液压流体力学基础
§1-3 流动液体的基本力学特性 滑阀上的稳态液动力
稳态液动力是阀芯移动完毕,开口固定 以后,液流流过阀口时因动量变化而作 用在阀芯的力
第一章 液压油及液压流体力学基础
§1-3 流动液体的基本力学特性 滑阀上的瞬态液动力
瞬态液动力是滑阀在移动过程中(即开 口大小发生变化时)阀腔中液流因加速或 减速而作用在阀芯上的力
2. 液体所受质量力只有重力;
3. 液体是连续的,不可压缩。ρ=常数;
4. 所选择的两个通流截面必须符合渐变 流条件,且不考虑两截面间的流动状 态。
第一章 液压油及液压流体力学基础
§1-3 流动液体的基本力学特性 五、动量守恒
动星定理指出:作用在物体上的力的大 小等于物体在力作用方向上动量的变化 率,即:
层流和紊流是两种不同性质的流动状 态。层流时粘性力起主导作用,惯性力 与粘性力相比不大,液体质点受粘性的 约束,不能随意运动;紊流时惯性力起 主导作用,液体质点在高速流动时,粘 性不再能约束它。
工程流体力学课件3流体动力学基础
边界层理论是研究流体在固体表面附近流动的理论, 其特征包括流体的粘性和湍流状态。
详细描述
边界层理论主要关注流体与固体表面之间的相互作用 ,特别是流体的粘性和湍流状态对流动的影响。在边 界层内,流体的速度和压力变化梯度较大,湍流状态 较为明显。
边界层分离现象和转捩过程
总结词
边界层分离现象是指流体在经过曲面或突然扩大区域 时,流速减小,压力增加,导致流体离开壁面并形成 回流的现象。转捩过程则是从层流到湍流的过渡过程 。
有旋流动
需要求解偏微分方程组,如纳维-斯托克斯 方程(Navier-Stokes equations),该方 程组较为复杂,需要采用数值方法进行求解
。
05 流体动力学中的湍流流动
湍流流动的定义和特征
湍流流动的定义
湍流是一种高度复杂的流动状态,其中流体的速度、压 力和其它属性随时间和空间变化。
湍流流动的特征
质量守恒定律在流体中的应用
质量守恒定律
物质的质量不会凭空产生也不会消失,只会从一种形式转化为另一种形式。在流体中,质量守恒定律表现为流体 微元的质量变化率等于进入和离开微元的净质量流量。
质量守恒方程
根据质量守恒定律,流体微元的质量变化率可以表示为流入和流出微元的净质量流量。这个方程是流体动力学基 本方程之一,用于描述流体的运动特性。
流体流动的描述方法
描述流体流动的方法包括拉格朗日法和欧拉法。
拉格朗日法是以流体质点作为描述对象,追踪各个质点的运动轨迹,研究其速度、加速度等参数随时 间的变化。欧拉法是以空间点作为描述对象,研究空间点上流速、压强等参数随时间和空间的变化。
03 流体动力学基本方程的推 导
牛顿第二定律在流体中的应用
能源
2-流体力学-第三章-流体动力学(1)-三大方程-黄国钦
d ∂ ∂ ∂ ∂ = +u +v + w dt ∂t ∂x ∂y ∂z
质点导数亦称随体导数亦称物质导数等。
11 12
2
例题 例题:
r r r r V = x 2 yi − 3 yj + 2 z 2 k
3.2 几个概念 3.2.1 流动的分类——定常流和非定常流
试求点 (1, 2 , 3) 处流体加速度的三个分量 解:
•
欧拉法是流场法,
它定义流体质点的速 度矢量场为:
选定某一空 选定某一空 间固定点 间固定点
记录流动空间 某固定位置 处,流体运动 要素(速度、 加速度)随时 间变化规律
r r u =u (x,y,z,t)
综合流场中 许多空间点 随时间的变 化情况
(( x ,, y ,, zz )) 是 x y 是空 空间 间点 点( (场 场 r u 点)。流速 是在 点)。流速 是在 tt 时 时 刻占据 (( x ,, y ,, zz )) 的那个流 刻占据 x y 的那个流
工程流体力学 Engineering Fluid Mechanics
制造工程系:黄国钦
1
2
3.1.2 描述流体运动的两种方法及质点导数概念
3.1.2 描述流体运动的两种方法 3.1.2.1 拉格朗日法
基本思想:以研究个别流体质点的运动为基础,跟踪每个流体质点的运动全 基本思想: 过程,记录它们在运动过程中的各物理量及其变化规律。即通过描述每一质 点的运动了解流体运动。(随体法或跟踪法)
迹线
M(-1,-1)
o
x
流线
t = 0 时过 M(-1,-1)点的流线和迹线示意图
19
dx dy dz = = vx v y vz
流体力学 第三章
(1)有压流动 总流的全部边界受固体边界的约束, 即流体充满流道,如压力水管中的流动。
(2)无压流动 总流边界的一部分受固体边界约束,另 一部分与气体接触,形成自由液面,如明渠中的流动。
图 3-1 流体的出流
一、定常流动和非定常流动
这种运动流体中任一点的流体质点的流动参数(压强和 速度等)均不随时间变化,而只随空间点位置不同而变化的 流动,称为定常流动。
现将阀门A关小,则流入水箱的水量小于从阀门B流出的 水量,水箱中的水位就逐渐下降,于是水箱和管道任一点流 体质点的压强和速度都逐渐减小,水流的形状也逐渐向下弯 曲。
(2)如果流体是定常的,则流出的流体质量必然等于流 入的流体质量。
二、微元流束和总流的连续性方程 在工程上和自然界中,流体流动多数都是在某些周界
所限定的空间内沿某一方向流动,即一维流动的问题。 所谓一维流动是指流动参数仅在一个方向上有显著的
变化,而在其它两个方向上的变化非常微小,可忽略不计。 例如在管道中流动的流体就符合这个条件。在流场中取一 微元流束如图所示。
图 3-6 流场中的微元流束
假定流体的运动是连续、定 常的,则微元流管的形状不随时 间改变。根据流管的特性,流体 质点不能穿过流管表面,因此在 单位时间内通过微元流管的任一 过流断面的流体质量都应相等, 即
ρ1v1dA1=ρ2v2dA2=常数 dA1 、dA2—分别为1、2两个过 图 3-6 流场中的微元流束 流断面的面积,m2;
§ 3-1描述流体运动的两种方法
连续介质模型的引入,使我们可以把流体看作为由无 数个流体质点所组成的连续介质,并且无间隙地充满它所 占据的空间。
《流体力学》第三章一元流体动力学基础
02
能源领域
风力发电机的设计和优化需要考虑风力湍流对风能转换效率的影响;核
能和火力发电厂的冷却塔设计也需要考虑湍流流动的传热和传质特性。
03
环境工程领域
大气污染物的扩散和传输、城市空气质量等环境问题与湍流流动密切相
关,需要利用湍流模型和方法进行模拟和分析。
06
一元流体动力学的实验研 究方法
实验设备与测量技术
一元流体动力学
研究一元流体运动规律和特性的学科。
研究内容
包括流体运动的基本方程、流体的物理性质、流动状态和流动特 性等。
02
一元流体动力学基本概念
流体静力学基础
静止流体
流体处于静止状态,没有相对运动,只有由于重力引起的势能变 化。
平衡状态
流体内部各部分之间没有相对运动,且作用于流体的外力平衡。
流体静压力
总结词
求解无旋流动的方法主要包括拉普拉斯方程和泊松方程。
详细描述
拉普拉斯方程是描述无旋流动的偏微分方程,它可以通过求 解偏微分方程得到流场的速度分布。泊松方程是另一种求解 无旋流动的方法,它通过求解泊松方程得到流场的速度分布 。
无旋流动的应用实例
总结词
无旋流动在许多工程领域中都有应用,如航 空航天、气象学、环境工程等。
能量方程
• 总结词:能量方程是一元流体动力学的基本方程之一,用于描述流体能量的传递和转化规律。
• 详细描述:能量方程基于热力学第一定律,表示流体能量的变化率等于流入流体的净热流量和外力对流体所做的功。在直角坐标系下,能量方程可以表示为:$\frac{\partial}{\partial t}(\rho E) + \frac{\partial}{\partial x_j}(\rho u_j E + p u_j) = \frac{\partial}{\partial x_j}(k \frac{\partial T}{\partial x_j}) + \frac{\partial}{\partial xj}(\tau{ij} u_i)$,其中$E$为流体 的总能,$T$为温度,$k$为热导率。
第三章流体动力学基础(1)
A Control Volume is a region in space, mass can cross its boundary 8
2019/3/27
流体力学基础
第三章 流体动力学基础
§2 流体运动中的几个基本概念
一、物理量的质点导数(全导数) • 运动中的流体质点所具有的物理量N(例如速度、压强、 密度、温度、质量、动量、动能等)对时间的变化率称 为物理量N的质点导数。 • 流体质点处于静止状态,则不存在质点导数概念; • 质点导数是针对某一物理量; • 质点导数必然是数学上多元复合函数对独立自变量t的 导数
流体微团的标识:通常取 t0 时刻该流体微团的初始空间坐标 (a, b, c )作为该流体微团的标识 (a, b, c )可以是直角坐标系下,也可以任选,只要能把所 研究的流体微团彼此区别开即可
2019/3/27
流体力学基础
2
第三章 流体动力学基础
• 拉格朗日变数 : ( a, b, c ) 和 t • 任一时刻流体微团(a, b, c )的运动空间坐标(x, y,z)
r t
(2)
2019/3/27
流体力学基础
16
第三章 流体动力学基础
• 欧拉参数转换为拉格朗日参数
若已知欧拉法表示的速度场为 v = v (r, t) = v (x, y, z, t ) 利用流体质点的速度关系式: dr/dt = v(r, t) 或分量形式: dx/dt = u(x, y, z, t) dy/dt = v(x, y, z, t) dz/dt = w(x, y, z, t) 设此组常微分方程组的解为: x = x(c1, c2, c3, t) y = y(c1, c2, c3, t) z = z(c1, c2, c3, t) 由起始条件确定积分常数,t=t0时有: a = x(c1, c2, c3, t0) b = y(c1, c2, c3, t0) c = z(c1, c2, c3, t0) 积分常数由拉格朗日参数(a, b, c)表示,获得拉氏与欧氏 参数关系:x=x (a, b, c, t), y=y (a, b, c, t), z=z (a, b, c, t), 原速度场:v = v [x(a,b,c,t), y(a,b,c,t), z(a,b,c,t), t] = v (a,b,c,t) 完成欧氏参数向拉氏参数转换 流体力学基础 17
流体动力学理论基础第三章解析
az= x
uy
ux y
uz
ux z
ay
u y t
ux
u y x
uy
u y y
uz
u y z
az
uz t
ux
uz x
uy
uz y
uz
uz z
式中第一项叫时变加速度或当地加速度 (Local Acceleration),流动过程中流体由于速度 随时间变化而引起的加速度;第二项叫位变速度 ,流动过程中流体由于速度随位置变化而引起的 加速度(Connective Acceleration)。
uz uz (x、y、z、t)
(x,y,z,t)—欧拉变量
考察不同时刻液体质点通过流场中固定空间点 的运动情况,综合足够多的固定空间点的运动情 况,得到整个液流的运动规律。——流场法
欧拉法不直接追究质点的运动过程,而是研究各时 刻质点在流场中的变化规律。将个别流体质点运动过程 置之不理,而固守于流场各空间点。通过观察在流动空 间中的每一个空间点上运动要素随时间的变化,把足够 多的空间点综合起来而得出的整个流体的运动情况。
显然,在欧拉描述中,各空间点上的物理量(实际上是通 过此点的流体质点所具有的物理量)是随时间变化的。因此, 流体的运动参数应该是空间坐标和时间的函数。如流体的速 度、压强和密度可以表示为
z
t时刻
M (x,y,z) O
x
y
ux ux (x, y, z,t) uy uy (x, y, z,t) uz uz (x, y, z,t)
算子
全质 导点 数导
数
d dt
=
t
+ (u )
时变导数 当地导数 局部导数
位变导数 迁移导数 对流导数
流体力学第三章课后习题答案
流体⼒学第三章课后习题答案⼀元流体动⼒学基础1.直径为150mm 的给⽔管道,输⽔量为h kN /7.980,试求断⾯平均流速。
解:由流量公式vA Q ρ= 注意:()vA Q s kg h kN ρ=?→//A Qv ρ=得:s m v /57.1=2.断⾯为300mm ×400mm 的矩形风道,风量为2700m 3/h,求平均流速.如风道出⼝处断⾯收缩为150mm ×400mm,求该断⾯的平均流速解:由流量公式vA Q = 得:A Q v =由连续性⽅程知2211A v A v = 得:s m v /5.122=3.⽔从⽔箱流经直径d 1=10cm,d 2=5cm,d 3=2.5cm 的管道流⼊⼤⽓中. 当出⼝流速10m/ 时,求(1)容积流量及质量流量;(2)1d 及2d 管段的流速解:(1)由s m A v Q /0049.0333==质量流量s kg Q /9.4=ρ (2)由连续性⽅程:33223311,A v A v A v A v ==得:s m v s m v /5.2,/625.021==4.设计输⽔量为h kg /294210的给⽔管道,流速限制在9.0∽s m /4.1之间。
试确定管道直径,根据所选直径求流速。
直径应是mm 50的倍数。
解:vA Q ρ= 将9.0=v ∽s m /4.1代⼊得343.0=d ∽m 275.0 ∵直径是mm 50的倍数,所以取m d 3.0= 代⼊vA Q ρ= 得m v 18.1=5.圆形风道,流量是10000m 3/h,,流速不超过20 m/s 。
试设计直径,根据所定直径求流速。
直径规定为50 mm 的倍数。
解:vA Q = 将s m v /20≤代⼊得:mm d 5.420≥ 取mm d 450= 代⼊vA Q = 得:s m v /5.17=6.在直径为d 圆形风道断⾯上,⽤下法选定五个点,以测局部风速。
设想⽤和管轴同⼼但不同半径的圆周,将全部断⾯分为中间是圆,其他是圆环的五个⾯积相等的部分。
流体力学讲义 第三章 流体动力学基础
第三章流体动力学基础本章是流体动力学的基础。
主要阐述了流体运动的两种描述方法,运动流体的基本类别与基本概念,用欧拉法解决运动流体的连续性微分方程、欧拉运动微分方程及N-S方程。
此外,还阐述了无旋流与有旋流的判别,引出了流函数与势函数的概念,并且说明利用流网与势流叠加原理可解决流体的诸多复杂问题。
第一节流体流动的基本概念1.流线(1)流线的定义流线(stream line)是表示某一瞬时流体各点流动趋势的曲线,曲线上任一点的切线方向与该点的流速方向重合。
图3-1为流线谱中显示的流线形状。
(2)流线的作法:在流场中任取一点(如图3-2),绘出某时刻通过该点的流体质点的流速矢量u1,再画出距1点很近的2点在同一时刻通过该处的流体质点的流速矢量u2…,如此继续下去,得一折线1234 …,若各点无限接近,其极限就是某时刻的流线。
流线是欧拉法分析流动的重要概念。
图3-1 图3-2(3)流线的性质(图3-3)a.同一时刻的不同流线,不能相交。
图3-3因为根据流线定义,在交点的液体质点的流速向量应同时与这两条流线相切,即一个质点不可能同时有两个速度向量。
b.流线不能是折线,而是一条光滑的曲线。
因为流体是连续介质,各运动要素是空间的连续函数。
c.流线簇的疏密反映了速度的大小(流线密集的地方流速大,稀疏的地方流速小)。
因为对不可压缩流体,元流的流速与其过水断面面积成反比。
(4)流线的方程(图3-4)根据流线的定义,可以求得流线的微分方程:图3-4设d s为流线上A处的一微元弧长:u为流体质点在A点的流速:因为流速向量与流线相切,即没有垂直于流线的流速分量,u和d s重合。
所以即展开后得到:——流线方程(3-1)(或用它们余弦相等推得)2.迹线(1)迹线的定义迹线(path line)某一质点在某一时段内的运动轨迹线。
图3-5中烟火的轨迹为迹线。
(2)迹线的微分方程(3-2)式中,u x,u y,u z均为时空t,x,y,z的函数,且t是自变量。
流体力学讲义 第三章 流体动力学基础.
第三章流体动力学基础本章是流体动力学的基础。
主要阐述了流体运动的两种描述方法,运动流体的基本类别与基本概念,用欧拉法解决运动流体的连续性微分方程、欧拉运动微分方程及N-S方程。
此外,还阐述了无旋流与有旋流的判别,引出了流函数与势函数的概念,并且说明利用流网与势流叠加原理可解决流体的诸多复杂问题。
第一节流体流动的基本概念1.流线(1)流线的定义流线(stream line)是表示某一瞬时流体各点流动趋势的曲线,曲线上任一点的切线方向与该点的流速方向重合。
图3-1为流线谱中显示的流线形状。
(2)流线的作法:在流场中任取一点(如图3-2),绘出某时刻通过该点的流体质点的流速矢量u1,再画出距1点很近的2点在同一时刻通过该处的流体质点的流速矢量u2…,如此继续下去,得一折线1234 …,若各点无限接近,其极限就是某时刻的流线。
流线是欧拉法分析流动的重要概念。
图3-1 图3-2(3)流线的性质(图3-3)a.同一时刻的不同流线,不能相交。
图3-3因为根据流线定义,在交点的液体质点的流速向量应同时与这两条流线相切,即一个质点不可能同时有两个速度向量。
b.流线不能是折线,而是一条光滑的曲线。
因为流体是连续介质,各运动要素是空间的连续函数。
c.流线簇的疏密反映了速度的大小(流线密集的地方流速大,稀疏的地方流速小)。
因为对不可压缩流体,元流的流速与其过水断面面积成反比。
(4)流线的方程(图3-4)根据流线的定义,可以求得流线的微分方程:图3-4设d s为流线上A处的一微元弧长:u为流体质点在A点的流速:因为流速向量与流线相切,即没有垂直于流线的流速分量,u和d s重合。
所以即展开后得到:——流线方程(3-1)(或用它们余弦相等推得)2.迹线(1)迹线的定义迹线(path line)某一质点在某一时段内的运动轨迹线。
图3-5中烟火的轨迹为迹线。
(2)迹线的微分方程(3-2)式中,u x,u y,u z均为时空t,x,y,z的函数,且t是自变量。
流体力学 第3章流体动力学基础
第3章 流体动力学基础教学提示:流体力学是研究流体机械运动的一门学科,与理论力学中分析刚体运动的情况相似。
如研究的范围只限于流体运动的方式和状态,则属于流体运动学的范围。
如研究的范围除了流体运动的方式和状态以外,还联系到流体发生运动的条件,则属于流体动力学的范围。
前者研究流体运动的方式和速度、加速度、位移等随空间与时间的变化,后者研究引起运动的原因和流体作用力、力矩、动量和能量的方法。
如前所述,流体力学的研究方法是基于连续介质体系的,重点研究由流体质点所组成的连续介质体系运动所产生的宏观效果,而不讨论流体分子的运动。
与处于相对平衡状态下的情况不同,处于相对运动状态下的实际流体,粘滞性将发生作用。
由于流体具有易流动性和粘滞性的影响,因此流体力学的研究方法与固体力学有明显的区别。
教学要求:流体运动的形式虽然多种多样的,但从普遍规律来讲,都要服从质量守恒定律、动能定律和动量定律这些基本原理。
在本章中,我们将阐述研究流体流动的一些基本方法,讨论流体运动学方面的一些基本概念,应用质量守恒定律、牛顿第二运动定律、动量定理和动量矩定理等推导出理想流体动力学中的几个重要的基本方程:连续性方程、欧拉方程、伯努利方程、动量方程、动量矩方程等,并举例说明它们的应用。
3.1 流体运动的描述方法要研究流体运动的规律,就要建立描述流体运动的方法。
在流体力学中,表达流体的运动形态和方式有两种不同的基本方法:拉格朗日法和欧拉法。
3.1.1 拉格朗日法拉格朗日法是瑞士科学家欧拉首先提出的,法国科学家J. L.拉格朗日作了独立的、完整的表述和具体运用。
该方法着眼于流体内部各质点的运动情况,描述流体的运动形态。
按照这个方法,在连续的流体运动中,任意流体质点的空间位置,将是质点的起始坐标),,(c b a (即当时间t 等于起始值0t 时的坐标)以及时间t 的单值连续函数。
若以r 代表任意选择的质点在任意时间t 的矢径,则: ),,,(t c b a r r = (3-1) 式中,r 在x 、y 、z 轴上的投影为x 、y 、z ;a 、b 、c 称为拉格朗日变量。
《流体力学》第三章 一元流体动力学基础3.6-3.7
渐变流
急变流 渐变流
急 变 流
均匀流和不均匀流
§3-7 过流断面的压强分布
p1
A
p2
Z1
Z2
均匀流断面上微小柱体的平衡
§3-7 过流断面的压强分布
粘滞阻力对垂直于流速方向的过流断面上压强 的变化不起作用。过流断面只考虑压力和重力 的平衡,和静止流体所考虑的一致。
能量方程式说明:理想不可压缩流体 恒定流动中,各断面总水头相等,单位 重量的总能量保持不变。
实际流体的流动中,由于粘性力的存在, 单位能量方程式为:
p1 u p2 u ' Z1 Z2 hl12 2g 2g
§3-6 恒定元流能量方程
2 1
2 2
1'
2'
h
p1
u2 0 2g p2
u 2 gh
p1 p2
1'
2'
2、u 2 g
2 1 2
u 2g h
'
第七节
过流断面的压强分布
流体内部作用的力:重力、粘性力、惯性力。 重力是不变的,粘性力与惯性力则与质点流速 有关。 流速的变化包括大小的变化和方向的变化 直线惯性力、离心惯性力
§3-7 过流断面的压强分布
p1dA ldA cos p2 dA 因为: l cos Z1 Z 2
p1
p1 (Z1 Z 2 ) p2
Z1
A
p1
Z2
p2
p2
Z2
Z1
所以:均匀流过 流断面上压强分 布服从于水静力 学规律。
§3-7 过流断面的压强分布
流体力学第三章流体动力学(1)
(2)流线的作法
流线的作法如下:在流速场中任取一点1(如下图),绘出
在某时刻通过该点的质点的流速矢量u1,再在该矢量上取距
点1很近的点2处,标出同一时刻通过该处的另一质点的流速
矢量u2……如此继续下去,得一折线1 2 3 4 5 6……,若
折线上相邻各点的间距无限接近,其极限就是某时刻流速场 中经过点1的流线。
(b)非恒定流
mt1 流线 mt2
迹线 mt3
且与迹线重合。
3. 均匀流和非均匀流 划分依据:按流速的大小和方向是否沿程变化
(1)均匀流
流速沿程不变的流动称为均匀流
在均匀流时不存在迁移加速度,即 auuo s
其流线为彼此平行的直线
例:等直径直管中的液流或者断面形状和水深不变的长直渠道中的水流 都是均匀流。
ux
uz x
uy
uz y
uz
uz z
质点的加速度由两部分组成:
auuu t s
欧拉加速度
ax
ux t
ux
ux x
uy
ux y
uz
ux z
ay
uy t
ux
uy x
uy
uy y
uz
uy z
az
uz t
ux
பைடு நூலகம்
uz x
uy
uz y
uz
uz z
①时变加速度(当地加速度)——流动过程中液体由于速度 随时间变化而引起的加速度; ——等号右边第一项是时变 加速度 ②位变加速度(迁移加速度)——流动过程中液体由于速度 随位置变化而引起的加速度。 ——后三项是位变加速度
(1) (a,b,c)=Const , t为变数,可以得出某个指定质点在任意时刻 所处的位置。 (2) (a,b,c)为变数, t =Const ,可以得出某一瞬间不同质点在空 间的分布情况。
3流体动力学
工程流体力学
连续性方程的应用
3.流体动力学
连续性方程表明:
通过各个断面上的流体质量是相等的,流体通过管 道各断面上的流速和其断面面积成反比。在图a所示的管 路中,由于A1>A2,所以V1<V2。
对于有分支的管道,连续性方程就是: Q1=Q2+Q3+Q4即在有分支的管道中,各输入管道的
流量之和等于各输出管道流量之和。
流线可以形象地给出流场的流动状态。通过流 线,可以清楚地看出某时刻流场中各点的速度方向, 由流线的密集程度,也可以判定出速度的大小。流线 的引入是欧拉法的研究特点。例如在流动水面上同时 撤一大片木屑,这时可看到这些木屑将连成若干条曲 线,每一条曲线表示在同一瞬时各水点的流动方向线 就是流线。
12
工程流体力学
9
工程流体力学
3.流体动力学
2、 二元流(two-dimensional flow):
流体主要表现在两个方向的流动,而第三个方向的流 动可忽略不计,即流动流体的运动要素是二个空间坐标 (不限于直角坐标)函数。 如实际液体在圆截面(轴对 称)管道中的流动。
3、三元流(three-dimensional flow):
2)质量流量Qm
单位时间内通过过流截面的流体质量称为质量流量,以 Qm表示,其单位为kg/s.
3)关系:
Qm Q
17
工程流体力学
3.流体动力学
3、断面平均流速
平均流速为流量与过流断面通流面积之比。实
际上由于液体具有粘性,液体在管道内流动时,通 流截面上各点的流速是不相等的。管道中心处流速 最大;越靠近管壁流速越小;管壁处的流速为零。 为方便起见,以后所指流速均为平均流速。
21
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1Q1dt 2Q2dt
1. 微小流束连续性方程
1Q1 2Q2 11dA1 22dA2
对不可压缩流体:
1 2 , Q1 Q2 1dA1 2dA2
1. 微小流束连续性方程 推而广之,在全部流动的各个断面上:
Q1 Q2 ~ Q
拉格朗日法(Lagrange method)—“跟踪”法
拉格朗日法是将流场中每一流体质点作为研究对象, 研究每一个流体质点在运动过程中的位置、速度、加 速度及密度、重度、压强等物理量随时间的变化规律。 然后将所有质点的这些资料综合起来,便得到了整 个流体的运动规律。即将整个流体的运动看作许多流 体质点运动的总和。
d 2 4A d 4R d x
非圆形截面管道的当量直径 x
D 4A 4R x
R
关于湿周和水力半径的概念在非圆截面管道的水力计算中常常用到。
五、一维流动模型
一维流动: 流动参数是一个坐标的函数; 二维流动: 流动参数是两个坐标的函数; 三维流动: 流动参数是三个坐标的函数。
二维流动→一维流动
(1)(a,b,c)=const ,t 为变数,可以 得出某个指定质点在任意时刻所处的位置。 (2)(a,b,c)为变数,t =const,可以得 出某一瞬间不同质点在空间的分布情况。
流体质点速度为: x a,b,c,t
流体质点加速度为:
v x x a,b,c,t a x t t 2 v y 2 y a,b,c,t a y 2 t t vz 2 z a,b,c,t a z t 2 t
动方向的横断面, 如图中的 1-1,2-2 断面。又称为有效 截面,在流束中与各流线相垂直,在每一个微元流束的过 水断面上,各点的速度可认为是相同的。
2.湿周 水力半径 当量直径 湿周——在总流的有效截面上,流体与固体壁面的接触长度。 水力半径——总流的有效截面积A和湿周之比。 A
圆形截面管道的几何直径
流线的性质
a.同一时刻的不同流线,不能相交. b.流线不能是折线,而是一条光 滑的曲线。 c.流线的形状和位置,在定常流 动时不随时间变化;而在不定 常流动时,随时间变化。
交点
u1 u2
s1
s2
u1
折点
u2
s
d.流线簇的疏密反映了速度的大小 (流线密集的地方流速大,稀疏的地方流速小)。
流线的方程
第一节 概述
流体的流动是由充满整个流动空间的无限 多个流体质点的运动构成的。充满运动流体的 的空间称为流场。 研 欧拉法 究 方 拉格朗日法
法
一、拉格朗日法
拉格朗日方法:是以流场中每一流体质点作为描述流 体运动的方法,它以流体个别质点随时间的运动为基 础,通过综合足够多的质点(即质点系)运动求得整 个流动。 研究对象:流体质点
-1782)。1738年撰写和出版
了《流体动力学》一书,建
立了反映理想流体做定常流
动时能量关系的伯努利方程。
雅各布第一.伯努利:伯努利大数定律 约翰第一.伯努利:罗比塔法则、变分法(有限元原理基础),是欧拉的 老师 丹尼尔第一.伯努利:《流体力学》
由欧拉法的特点可知,各物理量是空间点x,y,z和时 间t的函数。所以速度、密度、压强和温度可表示为:
v v x,y,z,t = x,y,z,t p p x,y,z,t T T x,y,z,t
第二节 流体运动的基本概念
2
v x t y a,b,c,t v y t z a,b,c,t vz t
流体质点的其它流动参量可以类 似地表示为a、b、c和 t 的函数。 如: p=p(a,b,c,t) ρ=ρ(a,b,c,t)
由于流体质点的运动轨迹非常 复杂,而实用上也无须知道个别质 点的运动情况,所以除了少数情况 (如波浪运动)外,在工程流体力 学中很少采用。
根据流线的定义,可以求得流 线的微分方程: 设ds为流线上A处一微元弧长:
ds dxi dyj dzk
u为流体质点在A点的流速:
u uxi u y j uz k
因为流速向量与流线相切,即没有垂直于流线的流速 分量,u 和ds重合。所以 ds u 0
对于工程实际问题,在满足精度要求的情 况下,将三维流动简化为二维、甚至一维 流动,可以使得求解过程尽可能简化。
三维流动→二维流动
六、流量和平均流速
1、流量
单位时间内流过过流断面的流体量称为流量。流量又称 为体积流量(单位为 m s ,用Q表示)和质量流量(单位 为kg ,用Qm表示)
3
s
Q udA, Qm udA
有输入或输出的情况
例:断面为50X50cm2的送风管,通过abcd四个40X40cm2的 送风口向室内输送空气,送风口气流平均速度为5m/s,求 通过送风管1-1,2-2,3-3各断流面的流速和流量。
解:每一个送风口流量
Q 0.4 0.4 5 0.8 m
3
s
3
3 Q0 Q2 2Q Q2 2Q 1.6 m s 3 Q0 Q3 3Q Q3 Q 0.8 m s
即
i
j k
dx dy dz 0 ux u y uz
展开后得到: dx
dy dz ——流线方程 ux u y uz
或用它们余弦相等推得:
u y dy u x dx u z dz cos , cos , cos u ds u ds u ds
2.迹线
1dA1 2dA2 ~ dA
由此得出速度之比与断面积之比之间的关系:
1 dA2 1 1 1 1 : 2 :~~: : ~~: dA1 dA2 dA 2 dA1
2. 总流的连续性方程 将微小流束连续性方程两边对相应的过水断面A1及A2 进行积分可得:
A1
1u1dA1 2 u2dA2 1m u1dA1 2m u2dA2
二 流线与迹线
1. 流线
流线的定义——表示某
一瞬时流体各点流动趋势 的曲线; 曲线上每一点的速度矢量 总在该点与曲线相切。 右图为流线谱中显示的流 线形状。
流线的作法
在流场中任取一点(如图所示), 绘出某时刻通 过该点的流体质点的流速矢量u1,再画出距1点很近的2 点在同一时刻通过该处的流体质点的流速矢量u2…,如 此下去,得一折线1234 …,若各点无限接近,其极限 就是某时刻的流线。
v
1 Q udA Q vA A A A
第三节 流体运动的连续性方程
连续性条件:流体连续地充满所占据的空间,当流体流动 时在其内部不形成空隙,这就是流体运动的连续性条件。 连续性方程:根据流体运动时应遵循质量守恒定律 (conservation of mass),将连续性条件用数学形式表示出 来,即连续性方程。 在管路等流体力学计算中得到极为广泛的应用。
元流性质:
流体做定常流动时,元流的形状不随时间变化。 流体不能从元流的侧面流入和流出,流体只能沿元流 端面流入或流出。 元流横断面积无限小,其断面流速、压强等参数可以 认为是相等的。
4.总流:若干元流组合成的流束称为总流。
四.过水断面 湿周 水力半径
1.过水断面—即水道(管道、明渠等)中垂直于水流流
A2
1mQ1 2mQ2
—总流的连续性方程,它说明可压缩流体做定常流动 时,总流的质量流量保持不变。
2. 总流的连续性方程 对不可压缩流体: 1 2 Q1 Q2 and u1 A1 u2 A2 —不可压缩流体定常流动总流的连续性方程,其物理 意义是:不可压缩流体做定常流动时,总流的体积流 量保持不变;各过水断面平均流速与过水断面面积成 反比,即过水断面面积↑处,流速↓;而过水断面面积↓ 处,流速↑。 对于理想流体和实际流体均可适用。
1. 微小流束连续性方程 如图所示,在总流上取一微小流束,过水断面分别为 dA1 和dA2 ,相应的平均流速分别为υ1和υ2 ,密度ρ1 和 ρ2 。由于微小流束的表面是由流线围成的,所以没有流 体穿入或穿出流束表面,只有两端面dA1 和dA2有流体 的流入和流出。在dt时间内对于dA1断面: 1dA11dt 1Q1dt 对于dA2断面: 2dA22dt 2Q2dt 根据质量守恒定律:
A A
六、流量和平均流速
2、断面平均流速
断面平均流速,以v表示,它是一种假想的流速,假定在 单位时间内,过流断面上各流体质点都以v流速流动,按 此流速计算的流量恰好等于过流断面上各流体质点以真实 流速u所通过的流量。 即 vA udA Q
A
断面平均流速为 Q-流体的体积流量 v-断面平均流速 A-总流过流断面的面积
非定常流动:在流场中,流体质点的一切运动要素(υ、 p、粘性力、惯性力)都是时间和坐标的函数的流动。 表示为:
u u( x, y, z, t ) u p 0, 0, 0 t t t p p( x, y, z, t )
例如水箱中的水位随着水的泄出而不 断下降的孔口出流就是非定常流动。
第三章 一维流体动力学基础
无论在自然界或工程实际中,流体的静止总是相 对的,运动才是绝对的。流体最基本的特征就是它 的流动性。因此,进一步研究流体运动规律便具有 更重要、更普遍的意义。
第一节 概述
一、流体动力学与流体静力学的区别 流体静力学只考虑作用在流体上的重力和压力, 流体静压强只与该点的空间位置有关; 流体动力学除考虑重力和压力外,还要考虑流体 受到的惯性力和粘性力,动力学中的压强不仅与 空间坐标有关,还与方向有关。
Q0 Q1 Q
Q1 3Q 2.4 m
s
Q1 2.4 9.6 m s A 0.5 0.5 Q 1.6 v2 2 6.4 m s A 0.5 0.5 Q3 0.8 v3 3.2 m s A 0.5 0.5 v1