直线与方程基础练习题

合集下载

(完整版)直线与方程练习题及答案详解

(完整版)直线与方程练习题及答案详解

直线与方程练习题及答案详解一、选择题1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ) A .1=+b aB .1=-b aC .0=+b aD .0=-b a2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行, 则m 的值为( )A .0B .8-C .2D .104.已知0,0ab bc <<,则直线ax by c +=通过( ) A .第一、二、三象限 B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限5.直线1x =的倾斜角和斜率分别是( )A .045,1 B .0135,1- C .090,不存在 D .0180,不存在6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( ) A .0≠m B .23-≠m C .1≠m D .1≠m ,23-≠m ,0≠m 二、填空题1.点(1,1)P - 到直线10x y -+=的距离是________________.2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________;若3l 与1l 关于x 轴对称,则3l 的方程为_________;若4l 与1l 关于x y =对称,则4l 的方程为___________; 3.若原点在直线l 上的射影为)1,2(-,则l 的方程为____________________。

4.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________. 5.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为________________。

直线方程练习题

直线方程练习题

直线方程练习题一、选择题1. 已知直线l过点A(2,3)且与直线3x-4y+5=0平行,求直线l的方程。

A. 3x-4y-1=0B. 3x-4y+13=0C. 4x-3y+6=0D. 4x-3y-6=02. 直线l1: ax+by+c=0与直线l2: cx+dy+e=0平行,那么以下哪个条件是正确的?A. ad-bc=0B. ac-bd=0C. a/c=b/dD. a/c≠b/d3. 已知直线l的方程为y=kx+b,若该直线过点(1,0)且斜率为1,则k 的值为:A. 0B. -1C. 1D. 24. 直线方程x+y-2=0与x-y+2=0的交点坐标是:A. (0,2)B. (2,0)C. (-2,0)D. (0,-2)5. 已知直线l1: 2x-3y+4=0与直线l2: x+y-2=0,求它们之间的距离。

A. 1B. 2C. 3D. 4二、填空题1. 若直线方程为ax+by=c,且a、b不全为0,则直线的斜率k=______。

2. 直线方程y=2x+3与x轴的交点坐标为______。

3. 若直线l过点(-1,2)且斜率为-2,则直线l的方程为______。

4. 已知直线方程为x-2y+4=0,求与该直线垂直的直线方程。

5. 已知直线方程为3x+4y-5=0,求直线上点(1,-1)到该直线的距离。

三、解答题1. 已知直线l1: 2x-y+3=0与直线l2: x+y+1=0,求它们所围成的三角形的顶点坐标。

2. 已知直线l1: ax+by+c1=0与直线l2: cx+dy+c2=0相交,求交点坐标。

3. 已知直线l1: 3x+4y-7=0与直线l2: 6x-8y+15=0,判断它们是否平行或重合,并说明理由。

4. 已知直线l: y=-2x+5与x轴相交于点A,与y轴相交于点B,求点A和点B的坐标。

5. 已知直线l1: 2x-y+1=0与直线l2: x-2y+2=0,求它们所成的角的正切值。

四、证明题1. 证明:若直线l1: ax+by+c1=0与直线l2: cx+dy+c2=0垂直,则有ad+bc=0。

完整版)直线与方程测试题及答案解析

完整版)直线与方程测试题及答案解析

完整版)直线与方程测试题及答案解析1.若过点(1,2)和(4,5)的直线的倾斜角是多少?A。

30° B。

45° C。

60° D。

90°2.如果三个点A(3,1)。

B(-2,b)。

C(8,11)在同一直线上,那么实数b等于多少?A。

2 B。

3 C。

9 D。

-93.过点(1,2),且倾斜角为30°的直线方程是什么?A。

y + 2 = (3/√3)(x + 1) B。

y - 2 = 3/2(x - 1) C。

3x - 3y + 6 - 3 = 0 D。

3x - y + 2 - 3 = 04.直线3x - 2y + 5 = 0和直线x + 3y + 10 = 0的位置关系是?A。

相交 B。

平行 C。

重合 D。

异面5.直线mx - y + 2m + 1 = 0经过一定点,则该点的坐标是多少?A。

(-2,1) B。

(2,1) C。

(1,-2) D。

(1,2)6.已知ab < 0,bc < 0,则直线ax + by + c = 0通过哪些象限?A。

第一、二、三象限 B。

第一、二、四象限 C。

第一、三、四象限 D。

第二、三、四象限7.点P(2,5)到直线y = -3x的距离d等于多少?A。

√(23/2) B。

√(2/23) C。

√(23+5) D。

√(22)8.与直线y = -2x + 3平行,且与直线y = 3x + 4交于x轴上的同一点的直线方程是什么?A。

y = -2x + 4 B。

y = (1/2)x + 4 C。

y = -2x - 3 D。

y = (2/3)x - 39.如果直线y = ax - 2和直线y = (a+2)x + 1互相垂直,则a 等于多少?A。

2 B。

1 C。

-1 D。

-210.已知等腰直角三角形ABC的斜边所在的直线是3x - y + 2 = 0,直角顶点是C(3,-2),则两条直角边AC,BC的方程是什么?A。

3x - y + 5 = 0.x + 2y - 7 = 0 B。

专题51:直线与方程基础基础巩固检测题(解析版)

专题51:直线与方程基础基础巩固检测题(解析版)

专题51:直线与方程基础基础巩固检测题(解析版)一、单选题1.直线0x y -=的倾斜角为( ) A .45︒ B .60︒C .90︒D .135︒【答案】A 【分析】由直线方程得斜率,再得倾斜角. 【详解】由题意直线斜率为1,而倾斜角大于或等于0︒且不大于180︒,所以倾斜角为45︒. 故选:A .2.已知两条直线l 1,l 2的斜率是方程3x 2+mx -3=0(m ∈R )的两个根,则l 1与l 2的位置关系是( ) A .平行 B .垂直 C .可能重合 D .无法确定【答案】B 【分析】由韦达定理可知121k k =-,由此可作出判断. 【详解】解析由方程3x 2+mx -3=0,知∆=m 2-4×3×(-3)=m 2+36>0恒成立. 故方程有两相异实根,即l 1与l 2的斜率k 1,k 2均存在.设两根为x 1,x 2,则k 1k 2=x 1x 2=-1,所以l 1⊥l 2. 故选:B3.已知直线1:1l mx y -=与直线2:10l x my --=平行,则m 的值为( ) A .1 B .1-C .1或1-D .0【答案】B 【分析】根据两直线平行的条件列方程,解方程求得m 的值. 【详解】由于12//l l ,所以()()11m m ⨯-=⨯-,即21m =,1m =±.当1m =时,两条直线重合,故1m ≠, 所以1m =-. 故选:B4.已知点(x ,y )到原点的距离等于1,则实数x ,y 满足的条件是( ) A .x 2-y 2=1 B .x 2+y 2=0 C1 D=0【答案】C 【分析】由两点间的距离公式即可求结果. 【详解】1= 故选:C5.已知直线4370x y +-=,430x my ++=平行,则它们之间的距离是( ) A .1 B .2C .1310D .135【答案】B 【分析】根据两直线平行的性质和平行线间距离公式进行求解即可. 【详解】因为直线4370x y +-=,430x my ++=平行,所以有433437m m =≠⇒=-,2=,故选:B6.过两点(-2,1)和(1,4)的直线方程为( ) A .y =x +3 B .y =-x +1 C .y =x +2 D .y =-x -2【答案】A 【分析】利用直线的两点式有1(2)411(2)y x ---=---,整理即可得直线方程. 【详解】由两点式得:直线方程1(2)411(2)y x ---=---,整理得y =x +3. 故选:A.7.在x 轴,y 轴上的截距分别是-3,4的直线方程是( ) A .134x y -+= B .134x y +=- C . 1.34x y-=- D .143x y +=- 【答案】A 【分析】设0,0y x ==分别求x 轴,y 轴上的截距,即可判断各项直线方程是否符合要求. 【详解】A :0y =时,13x =-,即3x =-;0x =时,14y=,即4y =,故正确; B :0y =时,13x =,即3x =;0x =时,14y=-,即4y =-,故错误; C :0y =时,13x =-,即3x =-;0x =时,14y-=,即4y =-,故错误; D :0y =时,14x =,即4x =;0x =时,13y =-,即3y =-,故错误;故选:A.8.过点(2,5)A 和点(4,5)B -的直线与直线3y =的位置关系是( ) A .相交 B .平行 C .重合 D .以上都不对【答案】B 【分析】根据斜率公式求得AB 的斜率,得出直线AB 的方程,进而得出两直线的位置关系. 【详解】由题意,点(2,5)A 和点(4,5)B -,可得55042AB k -==--,所以AB 的方程为5y =,又由直线3y =的斜率为0,且两直线不重合, 所以两直线平行. 故选:B.9.直线10kx y --=与直线220x y +-=的交点在第四象限,则实数k 的取值范围为( )A .11,22⎛⎫- ⎪⎝⎭B .1,02⎛⎫- ⎪⎝⎭C .1,2⎛⎫+∞ ⎪⎝⎭D .1,2⎛⎫-∞- ⎪⎝⎭【答案】A 【分析】联立两直线的方程,解得交点的坐标,根据交点在第四象限,由00x y >⎧⎨<⎩求解.【详解】由10220kx y x y --=⎧⎨+-=⎩,解得4212121x k k y k ⎧=⎪⎪+⎨-⎪=⎪+⎩,因为直线10kx y --=与直线220x y +-=的交点在第四象限,所以402121021x k k y k ⎧=>⎪⎪+⎨-⎪=<⎪+⎩,解得1122k -<<, 所以实数k 的取值范围为11,22⎛⎫- ⎪⎝⎭, 故选:A 10.已知直线1:l y kx b =+,2:l y bx k =+则它们的图像可能是( )A .B .C .D .【答案】C 【分析】由两直线的解析式可得直线1l 的斜率为k 、纵截距为b ,2l 的斜率为b ,纵截距为k , 再逐一判断四个选项的正误即可得正确选项. 【详解】 由1:l y kx b =+,2:l y bx k =+可知直线1l 的斜率为k 、纵截距为b ,2l 的斜率为b ,纵截距为k ,对于选项A :1l 中0,0k b <>,2l 中0,0b k ><,不成立; 对于选项B :1l 中0,0k b ><,2l 中0,0b k >>,不成立; 对于选项C :1l 中0,0k b >>,2l 中0,0b k >>,成立; 对于选项D :1l 中0,0k b <>,2l 中0,0b k <<,不成立; 故选:C.11.在直角坐标系中,已知O 为坐标原点,(1,0),(1,0)A B -.点P 满足3PA PB k k ⋅=且||||4PA PB +=,则||OP =( )A .713B 85C 513D 13 【答案】B 【分析】设(,)P x y ,根据椭圆的定义得出点P 在椭圆22143x y +=①上,再由斜率公式得出2233y x =-②,联立得出2289,55x y ==,最后由距离公式得出||OP .【详解】设(,)P x y ,4PA PB AB +=>,∴点P 在椭圆22143x y +=①上3PA PB k k ⋅=,311y y x x ∴⋅=+-,即2233y x =-②联立①②可得2289,55x y ==,则OP === 故选:B 【点睛】关键点睛:解决本题的关键是由椭圆的定义得出点P 在椭圆22143x y +=上,再结合斜率公式求出||OP . 12.已知2320a a ,则直线1l :()30ax a y a +--=和直线2l :()()623540a x a y a -+--+=的位置关系为( )A .垂直或平行B .垂直或相交C .平行或相交D .垂直或重合【答案】D 【分析】 因为2320a a ,所以1a =或2a =;当1a =时,121k k 则直线垂直,当2a =时,两直线重合. 【详解】 因为2320a a ,所以1a =或2a =.当1a =时,1l :210x y +-=,2l :4230--=x y ,112k =-,22k =所以121k k ,则两直线垂直;当2a =时,1l :220x y +-=,2l :220x y +-=,则两直线重合.故选:D二、填空题13.在ABC 中,A (1,3),B (2,-2),C (-3,1),则D 是线段AC 的中点,则中线BD 长为_______________; 【答案】5【分析】先求D 点坐标,再结合两点距离公式求解即可. 【详解】 由13311,222-+=-=所以()1,2D -,则5BD ===故答案为:514.斜率为-2,且过两条直线3x -y +4=0和x +y -4=0交点的直线方程为______________. 【答案】2x +y -4=0 【分析】设直线系方程,然后通过斜率确定参数即可. 【详解】设所求直线方程为3x -y +4+λ(x +y -4)=0, 即(3+λ)x +(λ-1)y +4-4λ=0,所以k =31λλ+-=-2,解得λ=5 ∴所求直线方程为2x +y -4=0.15.求经过A (m ,3),B (1,2)两点的直线的倾斜角α的取值范围是________.(其中m 1≥) 【答案】090α<≤︒ 【分析】由题设,讨论1,1m m =>时倾斜角α的值或范围,再取并即为α的取值范围. 【详解】由题意,当m =1时,倾斜角α=90°; 当1m 时,321tan 011m m α-==>--,即倾斜角α为锐角; ∴综上:090α<≤︒. 故答案为:090α<≤︒.16.已知直线l 过点M (2,1),且分别与x 轴的正半轴、y 轴的正半轴交于A ,B 两点,O 为原点,当|MA |·|MB |取得最小值时,直线l 的方程为________________. 【答案】x +y -3=0. 【分析】由条件可知,直线斜率存在且为负,设出直线方程,求出与x 轴和y 轴的交点,A B ,可计算||MA =MB MA MB ⋅,利用基本不等式可求出最值,并求出取最值时k 的值,故而求出直线方程. 【详解】设:直线l 与x 轴正半轴和y 轴正半轴都相交,所以直线l 的斜率存在且为负, 设直线l 的斜率为k ,则直线l 的方程为:()21y k x =-+, 则12,0A k -⎛⎫+⎪⎝⎭,()0,21B k -+,||MA ==MB所以224MA MB ⋅=⨯= 当且仅当221k k =,即1k =-时取等号,所以直线方程为()21y x =--+ 即30x y +-=. 故答案为:30x y +-=. 【点睛】知识点点睛:(1)两点间的距离公式||AB =(2)基本不等式的应用条件:一正二定三相等,要注意检验等号成立的条件.三、解答题17.已知点(2,2)A ,直线:320l x y -+=. (1)求A 点到直线l 距离;(2)求过点A 且与直线l 平行的直线的方程.【答案】(1;(2)340x y --=. 【分析】(1)利用点到直线的距离公式计算即可得解;(2)方法一:根据已知设直线为3y x n =+,点(2,2)A 代入即可得解,方法二:设过点A 且与直线l 平行的直线方程为30x y n -+=,点(2,2)A 代入即可得解. 【详解】(1)设点A 到直线l 的距离为d ,则d ==(2)方法一:∵直线l 的斜率3k =,设过点A 且与直线l 平行的直线方程为3y x n =+,把点A 的坐标代入可得4n =-, ∴过点A 且与直线l 平行的直线方程为340x y --=. 方法二:设过点A 且与直线l 平行的直线方程为30x y n -+=, 把点A 的坐标代入可得:620n -+=,解得4n =-, ∴过点A 且与直线1l 平行的直线方程为340x y --=. 18.已知点1,0A ,直线:220l x y --=.(1)求直线1:220l x y -+=与直线l 的交点坐标; (2)求过点A ,且与直线l 垂直的直线方程. 【答案】(1))(2,2--;(2)220x y +-=. 【分析】(1)联立两直线方程,直接求解,即可得出交点坐标;(2)先由垂直关系,设出所求直线方程,再由过点A ,即可求出结果. 【详解】 (1)由22022202x y x x y y --==-⎧⎧⇒⎨⎨-+==-⎩⎩,∴直线1l 与直线l 的交点坐标)(22--,; (2)设与直线l 垂直的直线方程为20x y n --+=, 又因为20x y n --+=过点1,0A , 所以20n -+=,则2n =, 故所求直线方程为220x y +-=.19.在ABC 中,BC 边上的高所在的直线的方程为210x y -+=,A ∠的平分线所在直线的方程为0y =,若点B 的坐标为1,2. (1)求点A 的坐标. (2)求直线BC 的方程.【答案】(1)()1,0A -;(2)240x y +-=.【分析】(1)由BC 边上的高与∠A 平分线交于A 点,联立两直线方程求交点即可.(2)由垂直关系及高所在直线方程可求直线BC 的斜率BC k ,再有B 的坐标为1,2即可写出直线BC 的方程. 【详解】 (1)联立2100x y y -+=⎧⎨=⎩,解得1x y =-⎧⎨=⎩,可得()1,0A -.(2)∵BC 边上的高所在的直线的方程为210x y -+=, ∴112BC k ⨯=-,即2BC k =-, ∴直线BC 的方程为()221y x -=--,整理得240x y +-=. 20.已知直线过点(2,1)A 和(6,2)B -两点 (1)求出该直线的直线方程(用点斜式表示)(2)将(1)中直线方程化成斜截式,一般式以及截距式且写出直线在x 轴和y 轴上的截距.【答案】(1)32(6)4y x +=--;(2)答案见解析. 【分析】(1)先求斜率,再利用点斜式写出直线方程; (2)由31(2)4y x -=--,得3542y x =-+,可化为34100x y +-=,从而可得答案 【详解】解;(1)直线AB 的斜率为34AB k =-故直线AB 的点斜式方程为:31(2)4y x -=--或32(6)4y x +=--.(2)由31(2)4y x -=--,得3542y x =-+,可化为34100x y +-=,当0x =时,52y =,当0y =时,103x =, 所以斜截式:3542y x =-+,一般式:34100x y +-=,截距式:110532x y +=,在x 轴上的截距为103;在y 轴上的截距为5221.已知直线1l :()2320m x y m -++=,2l :60x my ++= (1)若直线1l 与2l 垂直,求实数m 的值;(2)若直线1l 与2l 平行,求实数m 的值.【答案】(1)12;(2)1-. 【分析】(1)由题意可得()2130m m -⨯+=,解方程即可求解; (2)由已知条件利用直线与直线平行的条件直接求解.【详解】(1)∵直线1l :()2320m x y m -++=,2l :60x my ++=,直线1l 与2l 垂直, ∴()2130m m -⨯+=, 解得12m =. (2)∵直线1l :()2320m x y m -++=,2l :60x my ++=, 若直线1l 与2l 平行, ∴23216m m m -=≠, 解得:1m =-.22.已知直线1l 的方程为34120x y +-=,分别求直线2l 的方程,使得: (1)2l 与1l 平行,且过点(1,3)-;(2)2l 与1l 垂直,且2l 与两坐标轴围成的三角形面积为6.【答案】(1)3490x y +-=;(2)43120x y -+=或43120x y --=.【分析】(1)由于2l 与1l 平行,所以设直线2l 的方程为340x y m ++=,然后把点(1,3)-代入方程中可求出m 的值,从而可得直线2l 的方程,(2)由于2l 与1l 垂直,所以设直线2l 的方程为430x y n -+=,然后求出直线在坐标轴上的截距,由2l 与两坐标轴围成的三角形面积为6,列方程求出n 的值,从而可得直线2l 的方程,【详解】解:(1)因为直线1l 的方程为34120x y +-=,且2l 与1l 平行, 所以设直线2l 的方程为340x y m ++=,因为点(1,3)-在直线2l 上,所以3120m -++=,解得9m =-, 所以直线2l 的方程为3490x y +-=;(2)因为直线1l 的方程为34120x y +-=,且2l 与1l 垂直, 所以设直线2l 的方程为430x y n -+=,当0x =时,3n y =,当0y =时,4n x =-, 因为2l 与两坐标轴围成的三角形面积为6, 所以16243n n ⨯-⨯=,解得12n =或12n =-, 所以直线2l 的方程为43120x y -+=或43120x y --=.【点睛】此题考查由平行、垂直关系求直线方程,考查计算能力,属于基础题。

高一数学必修2《第三章_直线与方程》基础测验(含答案)

高一数学必修2《第三章_直线与方程》基础测验(含答案)

小太阳英教中心高一数学《第三章 直线与方程》基础测验一、选择题(共10小题,每小题4.5分,共45分)1、若A (-2,3),B (3,-2),C (m ,21)三点共线,则m 的值为( ) A 、2 B 、-2 C 、21 D 、21-2、直线01025=--y x 与坐标轴围成的三角形的面积为( )A 、-5B 、5C 、-10D 、103、若直线04)2(=-+-y x m 的倾斜角是钝角,则m 的取值范围是( )A 、2- mB 、2 mC 、2- mD 、2 m4、如果直线04)2()52(=+-++y a x a 与直线01)3()2(=-++-y a x a 相互垂直,则a 的值等于( )A 、2B 、-2C 、2或-2D 、0或2或-25、过A (4,1)且在两坐标轴上的截距相等的直线方程是 ( )A 、05=-+y xB 、05=--y xC 、0405=-=-+y x y x 或D 、0405=+=--y x y x 或6、若A (-1,2),B (0,-1),直线A B ∥l 且l 过点 C (-2,3),则直线l 的方程为( )A 、033=-+y xB 、033=-+y xC 、033=++y xD 、033=+-y x7、点(-4,3)与直线024301032=-+=+-y x y x 和的交点的距离是( )A 、5B 、5C 、52D 、108、已知第一象限的点(a ,2)到直线03=+-y x 的距离为1,则a 为( )A 、2B 、22-C 、12+D 、12-9、若直线l :0433=-+-=y x kx y 和直线的交点位于第二象限,则直线l 的倾斜角的取值范围是( )A 、【ππ,2)B 、(ππ,2)C 、(32,2ππ)D 、(ππ,3) 10、两点A (m+2,n+2)和B (n-m ,-n )关于直线1134=+y x 对称,则m,n 的值为( )A 、m=-1,n=2B 、m=4,n=-2C 、m=2,n=4D 、m=4,n=2二、填空题(共6空,每空4分,共24分)11、若直线l与过(3-,9)与(326,-15)两点的直线平行,则l的倾斜角是0。

直线与方程基础练习题

直线与方程基础练习题

直线与方程基础练习题一、选择题1.过点(1,0)且与直线220x y --=平行的直线方程是( )A .210x y +-=B .210x y -+=C .220x y +-=D .210x y --= 2.已知直线l 过点(0,7),且与直线42y x =-+平行,则直线l 的方程为( ). A. 47y x =-- B. 47y x =- C. 47y x =-+ D. 47y x =+ 3.过点(-1,3)且垂直于直线x -2y +3=0的直线方程是( )A .x -2y +7=0B .2x +y -1=0C .x -2y -5=0D .2x +y -5=0 4.已知直线l 的方程为20(0)x y a a --=≠,则下列叙述正确的是( ) A. 直线不经过第一象限B. 直线不经过第二象限C. 直线不经过第三象限 D. 直线不经过第四象限5.过点(1,3)-且平行于直线032=+-y x 的直线方程为( )A.072=+-y xB.012=-+y x C .250x y --= D .052=-+y x 6.已知两条直线01:1=-+y x l ,023:2=++ay x l 且21l l ⊥,则a =A. 31-B .31C . -3D .37.在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( )A .B .C .D . 8.若三点(2,3),(5,0),(0,)(0)A B C b b ≠共线,则b =A .2B .3C .5D .19.如果直线(m+4)x+(m+2)y+4=0与直线(m+2)x+(m+1)y-1=0互相平行,则实数m 的值等于( )A 、0B 、2C 、-2D 、0或-210.已知直线αsin :1x y l =和直线c x y l +=2:2,则直线1l 与2l ( )。

A.通过平移可以重合B.不可能垂直C.可能与x 轴围成等腰直角三角形 D.通过1l 上某一点旋转可以重合11.已知点A(0, –1),点B 在直线x –y+1=0上,直线AB 垂直于直线x+2y –3=0,则点B 的坐标是( )A.(–2, –3)B.(2, 3)C.(2, 1)D.(–2, 1)12.已知直线方程:1l :2x-4y+7=0, 2l :x-2y+5=0,则1l 与2l 的关系( ) A.平行 B.重合 C.相交 D.以上答案都不对13.如果直线220ax y -+=与直线320x y --=平行,那么系数a 等于( ).A . 6B .-3CD 14.若直线20mx y m +-=与直线(34)10m x y -++=垂直,则m 的值是( )A.1-或B.1或或1- 1 15.两条平行线l 1:3x-4y-1=0与l 2:6x-8y-7=0间的距离为( )A 、1 16.已知直线l 方程为25100x y -+=,且在x 轴上的截距为a ,在y 轴上的截距为b ,)A .3B .7C .10D .517.直线02=++by ax ,当0,0<>b a 时,此直线必不过 ( ) A .第一象限 B .第二象限 C .第三象限D .第四象限18在y 轴上的截距是( )A B .2b - C .b 2D .±b 19.若直线Ax +By +C=0与两坐标轴都相交,则有A 、0AB ⋅≠ B 、0A ≠或0B ≠C 、0C ≠D 、A 2+B 2=020.点(a,b)关于直线x+y=0对称的点是 ( )A 、 (-a,-b)B 、 (a,-b)C 、 (b,a)D 、 (-b,-a) 21.已知点(x ,-4)在点(0,8)和(-4,0)的连线上,则x 的值为 (A)-2 (B)2 (C)-8 (D)-622.已知两点A (1,2).B (2,1)在直线10mx y -+=的异侧,则实数m 的取值范围为( ) A .(,0-∞)B .(1,+∞)C .(0,1)D .(,0-∞)(1,)+∞23.对任意实数m ,直线(1)260m x m y -++=必经过的定点是A.(1,0)B.(0,3)-C.(6,3)- 24.过点P (4,-1)且与直线3x-4y+6=0垂直的直线方程是A 、4x+3y-13=0B 、4x-3y-19=0C 、3x-4y-16=0D 、3x+4y-8=0 25.点P (2,5)关于直线x 轴的对称点的坐标是 ( ) A .(5,2) B .(-2,5)C .(2,-5) D .(-5,-2)26.直线l 1: ax+3y+1=0, l 2: 2x+(a+1)y+1=0, 若l 1∥l 2,则a=A .-3B .2C .-3或2D .3或-2 27.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x 28. 直线:10l x y -+=关于y 轴对称的直线方程为( )A .10x y -+=B . 10x y +-=C .10x y ++=D .10x y --= 29.过点(1-,3)且垂直于直线032=+-y x 的直线的方程为A .2x +y -1=0B .2x +y -5=0C .x +2y -5=0D .x -2y +7=030.已知过点A (-2,m )和B (m ,4)的直线与直线012=-+y x 垂直,则m 的值为 A. -8 B. 0 C. 10 D. 231. 过点(1,0)且与直线022=--y x 平行的直线方程是A. 012=--y xB. 012=+-y xC. 022=-+y xD. 012=-+y x32.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A 、012=-+y xB 、052=-+y x C 、052=-+y x D 、072=+-y x 33.经过点)1,2(的直线l 到A )1,1(、B )5,3(两点的距离相等,则直线l 的方程为( ) A .032=--y xB .2=xC .032=--y x 或2=xD .都不对34.过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是( )A 、4x+3y-13=0B 、4x-3y-19=0C 、3x-4y-16=0D 、3x+4y-8=035.AB C ∆中,(2,0)A - 、(2,0)B C(3,3)、,则 AB 边的中线对应方程为( ) A .x y = B .3)x x(0y ≤≤= C .x y -= D .3)x x(0y ≤≤-= 36.无论m 取何值,直线210mx y m -++=经过一定点,则该定点的坐标是 ( ). A.(-2,1) B.(2,1) C.(1,-2) D.(1,2) 37.直线02=+--m y mx 经过一定点,则该点的坐标是( ) A .)2,1(- B .)1,2(- C .)2,1( D .)1,2( 38.直线l 与直线0432=+-y x 垂直,则直线l 的方程可能是( )A.0123=-+y xB.0723=+-y xC.0532=+-y xD.0832=++y x39.若n m ,满足012=-+n m , 则直线03=++n y mx 过定点 (A. B. C. D.40.已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为 A .01=+-y x B .0=-y x C .01=++y x D .0=+y x 41..已知点A (1,2)、B (3,1),则线段AB 的垂直平分线的方程是 A.4x +2y =5 B.4x -2y =5 C.x +2y =5 D.x -2y =5 42.直线210x y -+=关于直线1x =对称的直线方程是( )A.210x y +-=B.210x y +-=C.230x y +-=D.230x y +-= 43.过点(-1,3)且平行于直线032=+-y x 的方程是( )A .052=+-y xB .052=-+y x .012=-+y x D .072=+-y x 44.已知两直线1l :08=++n y mx 和012:2=-+my x l 若21l l ⊥且1l 在y 轴上的截距为 –1,则n m ,的值分别为 ( )A .2 ,7B .0,8C .-1,2D .0,-845.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( )A .0B .8-C .2D .1046.若动点P 到点(1,1)F 和直线340x y +-=的距离相等,则点P 的轨迹方程为( )A .360x y +-=B .320x y -+=C .320x y +-=D .320x y -+= 47.若直线0=++C By Ax 经过第一、二、三象限,则( ) A .AB<0,BC<0 B .AB>0,BC<0 C .AB<0,BC>0D .AB>0,BC>0二、填空题48.直线01052=--y x 与坐标轴围成的三角形的面积为 .49.直线过点 (-3,-2)且在两坐标轴上的截距相等,则这直线方程为 .直线与方程基础练习题(二)参考答案1.D 【解析】试题分析:因为所求直线与直线220x y --=平行,所以,设为20x y c -+=, 将(1,0)代入得c=1-,故过点(1,0)且与直线220x y --=平行的直线方程是210x y --=,选D 。

直线与方程练习题

直线与方程练习题

直线与方程练习题一、填空题1. 直线斜率为2,过点(-1, 3),则直线方程为__________。

2. 直线过点(2, -5)和点(4, 1),则直线方程为__________。

3. 直线过点(-3, 4)且与x轴垂直,则直线方程为__________。

4. 直线过点(0, 7)且平行于y轴,则直线方程为__________。

5. 直线过点(3, -2)且平行于直线2x + 3y = 1,则直线方程为__________。

二、选择题1. 斜率为3,过点(1, 2)的直线方程可能是:A. y = 3x + 1B. y = 3x - 1C. y = -3x + 1D. y = -3x - 12. 过原点(0, 0)且垂直于直线2x + 3y = 6的直线方程可能是:A. x = 2B. x = -2C. y = 2D. y = -23. 过点(2, -5)且平行于直线3x - 2y = 9的直线方程可能是:A. 3x - 2y = 19B. 3x - 2y = -19C. 3x - 2y = 4D. 3x - 2y = -44. 过点(3, 4)且平行于x轴的直线方程可能是:A. x = 3B. x = -3C. y = 3D. y = -35. 过点(-2, 1)且与直线4x + 5y = 10垂直的直线方程可能是:A. 5x - 4y = 10B. 5x - 4y = -10C. 4x + 5y = 2D. 4x + 5y = -2三、应用题1. 设直线L过点(1, 2)和点(4, 7),求直线L的斜率和截距,并写出直线L的方程。

2. 已知直线L过点(-3, 5)且与x轴垂直,求直线L的方程。

3. 直线L过点(1, -4)且平行于直线2x - 3y = 6,求直线L的方程。

4. 直线L过点(-2, -1)且平行于y轴,求直线L的方程。

5. 直线L过点(3, 2)且与直线3x - 4y = 5垂直,求直线L的方程。

直线与方程习题(带答案)

直线与方程习题(带答案)

直线与方程习题(带答案)直线与方程题(带答案)一、选择题1.若直线x=1的倾斜角为α,则α().A。

等于0B。

等于π/2C。

等于πD。

不存在斜率2.图中的直线l1,l2,l3的斜率分别为k1,k2,k3,则().A。

k1<k2<k3B。

k3<k1<k2C。

k3<k2<k1D。

k1<k3<k23.已知直线l1经过两点(-1,-2)、(-1,4),直线l2经过两点(2,1)、(x,6),且l1∥l2,则x=().A。

2B。

-2C。

4D。

14.已知直线l与过点M(-3,2),N(2,-3)的直线垂直,则直线l的倾斜角是().A。

π/3B。

2π/3C。

π/4D。

3π/45.如果AC<0,且BC<0,那么直线Ax+By+C=0不通过().A。

第一象限B。

第二象限C。

第三象限D。

第四象限6.设A,B是x轴上的两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程为x-y+1=0,则直线PB的方程是().A。

x+y-5=0B。

2x-y-1=0C。

2y-x-4=0D。

2x+y-7=07.过两直线l1:x-3y+4=0和l2:2x+y+5=0的交点和原点的直线方程为().A。

19x-9y=0,19y=0B。

9x+19y=0C。

19x-3y=0D。

3x+7y=08.直线l1:x+a2y+6=0和直线l2:(a-2)x+3ay+2a=0没有公共点,则a的值是().A。

3B。

-3C。

1D。

-19.将直线l沿y轴的负方向平移a(a>0)个单位,再沿x轴正方向平移a+1个单位得直线l',此时直线l'与l重合,则直线l'的斜率为().A。

a/(a+1)B。

-a/(a+1)C。

(a+1)/aD。

-(a+1)/a10.点(4,5)关于直线5x+4y+21=0的对称点是().A。

(-6,8)B。

(6,-8)C。

(-6,-8)D。

(6,8)二、填空题11.已知直线l1的倾斜角α1=15°,直线l1与l2的交点为A,把直线l2绕着点A按逆时针方向旋转到和直线l1重合时所转的最小正角为60°,则直线l2的斜率k2的值为tan(75°)或2+√3.12.若三点A(-2,3),B(3,-2),C(1,m)共线,则m的值为-1.13.已知长方形ABCD的三个顶点的坐标分别为A(0,1),B(1,0),C(3,2),求第四个顶点D的坐标为D(2,3)。

直线方程练习题

直线方程练习题

直线方程练习题一、选择题1. 下列哪个方程表示经过点(2, 3)且斜率为2的直线?A. y = 2x + 1B. y = 2x 1C. y = 2x + 3D. y = 2x 3A. y = 3B. x = 3C. y = xD. y = 2x + 13. 两条直线y = 2x + 1和y = 2x + 3的关系是:A. 平行B. 相交C. 重合D. 垂直二、填空题1. 经过点(1, 2)和点(3, 4)的直线方程是______。

2. 斜率为1,y轴截距为3的直线方程是______。

3. 两条直线y = 2x + 1和y = 2x 3的交点坐标是______。

三、解答题1. 已知直线l经过点A(2, 3)和B(4, 5),求直线l的方程。

2. 设直线l的斜率为k,且经过点(1, 1)和点(3, 5),求k的值。

3. 已知直线l1:2x + 3y + 1 = 0和直线l2:3x 2y 6 = 0,求这两条直线的交点坐标。

4. 证明:若直线l1和直线l2的斜率分别为k1和k2,且k1k2 = 1,则直线l1垂直于直线l2。

5. 设直线l1:y = 2x + 1,直线l2:y = x + 3,求这两条直线的夹角。

四、综合题1. 已知直线l1:y = 2x + 1,直线l2:y = 2x + 3,求直线l1和直线l2的对称轴方程。

2. 在平面直角坐标系中,求过点(1, 2)、(3, 4)和(5, 6)的直线方程。

3. 已知直线l1:2x + 3y + 1 = 0和直线l2:3x 2y 6 = 0,求这两条直线的平行线方程。

4. 设直线l1:y = kx + b经过点(1, 2)和点(3, 4),求k和b的值。

5. 在平面直角坐标系中,求过点(2, 3)、斜率为1的直线与x轴、y轴围成的三角形面积。

五、判断题1. 若直线l的方程为y = mx + b,则m表示直线l的截距,b表示直线l的斜率。

()2. 两条直线的斜率相等,则这两条直线一定平行。

2024届高考数学复习:精选历年真题、好题专项(直线与方程)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(直线与方程)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(直线与方程)练习一. 基础小题练透篇1.过点P (3 ,-23 )且倾斜角为135°的直线方程为( ) A .3x -y -43 =0 B .x -y -3 =0 C .x +y -3 =0 D .x +y +3 =02.直线l :x +3 y +1=0的倾斜角的大小为( ) A .30° B .60° C .120° D .150°3.[2023ꞏ河北示范性高中开学考]“λ=3”是“直线(2λ-3)x +(λ+1)y +3=0与直线(λ+1)x -λy +3=0互相垂直”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件 4.[2023ꞏ广东韶关月考]过点M ()-1,-2 ,在两坐标轴上截距相等的直线方程为( ) A .x +y +3=0B .2x -y =0或x +y +3=0C .y =x -1D .x +y +3=0或y =x -15.[2023ꞏ湖北省质量检测]在平面直角坐标系中,某菱形的一组对边所在的直线方程分别为x +2y +1=0和x +2y +3=0,另一组对边所在的直线方程分别为3x -4y +c 1=0和3x -4y +c 2=0,则|c 1-c 2|=( )A .23B .25C .2D .46.[2023ꞏ杭州市长河高级中学期中]已知直线l 过点P ()2,4 ,且在y 轴上的截距是在x 轴上的截距的两倍,则直线l 的方程为( )A .2x -y =0B .2x +y -8=0C .2x -y =0或x +2y -10=0D .2x -y =0或2x +y -8=07.经过两条直线2x +3y +1=0和x -3y +4=0的交点,并且垂直于直线3x +4y -7=0的直线方程为________.8.[2023ꞏ宁夏银川月考]已知直线3x +4y +3=0与直线6x +my -14=0平行,则它们之间的距离是________.二. 能力小题提升篇1.[2023ꞏ江苏泰州调研]已知直线l :x +()a -1 y +2=0,l 2:3 bx +y =0,且l 1⊥l 2,则a 2+b 2的最小值为( )A .14B .12C .22 D .13162.[2023ꞏ河北邢台市月考]下列四个命题中,正确的是( ) A .直线3x +y +2=0在y 轴上的截距为2 B .直线y =0的倾斜角和斜率均存在C .若两直线的斜率k 1,k 2满足k 1=k 2,则两直线互相平行D .若两直线的倾斜角相等,则它们的斜率也一定相等3.[2023ꞏ福建宁德质量检测]已知点A (-2,1)和点B 关于直线l :x +y -1=0对称,斜率为k 的直线m 过点A 交l 于点C .若△ABC 的面积为2,则实数k 的值为( )A .3或13 B .0C .13 D .34.[2023ꞏ云南大理检测]设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y )(点P 与点A ,B 不重合),则△P AB 面积的最大值是( )A .25B .5C .52 D .55.[2023ꞏ重庆黔江检测]在平面直角坐标系中,△ABC 的一个顶点是A (-3,1),∠B ,∠C 的平分线所在直线的方程分别为x =0,y =x ,则直线BC 的方程为________.6.[2023ꞏ云南楚雄期中]已知平面上一点M (5,0),若直线l 上存在点P ,使|PM |=4,则称该直线为点M 的“相关直线”,下列直线中是点M 的“相关直线”的是________.(填序号)①y =x +1;②y =2;③4x -3y =0;④2x -y +1=0.三. 高考小题重现篇1.[2020ꞏ全国卷Ⅱ]若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为( )A .55 B .255 C .355 D .4552.[2020ꞏ全国卷Ⅲ]点(0,-1)到直线y =k (x +1)距离的最大值为( ) A .1 B .2 C .3 D .2 3.[北京卷]在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线x -my -2=0的距离.当θ,m 变化时,d 的最大值为( )A .1B .2C .3D .44.[2019ꞏ江苏卷]在平面直角坐标系xOy 中,P 是曲线y =x +4x (x >0)上的一个动点,则点P 到直线x +y =0的距离的最小值是________.四. 经典大题强化篇1.[2023ꞏ武汉调研]已知直线l 经过直线2x +y -5=0与x -2y =0的交点. (1)若点A (5,0)到l 的距离为3,求l 的方程;(2)求点A (5,0)到l 的距离的最大值.2.在△ABC 中,BC 边上的高所在直线的方程为x -2y +1=0,∠A 的平分线所在直线的方程为y =0,若点B 的坐标为(1,2),求:(1)点A 和点C 的坐标; (2)△ABC 的面积.参考答案一 基础小题练透篇1.答案:D答案解析:因为直线的倾斜角为135°,所以直线的斜率为k =tan 135°=-1, 所以直线方程为y +23 =-(x -3 ),即x +y +3 =0. 2.答案:D答案解析:由l :x +3 y +1=0可得y =-33 x -33 ,所以直线l 的斜率为k =-33 ,设直线l 的倾斜角为α,则tan α=-33,因为0°≤α<180°,所以α=150°. 3.答案:A答案解析:∵直线(2λ-3)x +(λ+1)y +3=0与直线(λ+1)x -λy +3=0互相垂直,∴(2λ-3)(λ+1)-λ(λ+1)=0,∴λ=3或-1, 而“λ=3”是“λ=3或-1”的充分不必要条件,∴“λ=3”是“直线(2λ-3)x +(λ+1)y +3=0与直线(λ+1)x -λy +3=0互相垂直”的充分不必要条件,故选A. 4.答案:B答案解析:当所求直线不过原点时,设所求直线的方程为x +y =a , 因为直线过点M ()-1,-2 ,代入可得a =-3,即x +y +3=0; 当所求直线过原点时,设直线方程为y =kx ,因为直线过点M ()-1,-2 ,代入可得k =2,即2x -y =0, 综上可得,所求直线的方程为2x -y =0或x +y +3=0. 故选B. 5.答案:B答案解析:设直线x +2y +1=0与直线3x -4y +c 2=0的交点为A ,则⎩⎪⎨⎪⎧x +2y +1=03x -4y +c 2=0 ,解得⎩⎪⎨⎪⎧x =-c 2+25y =c 2-310,故A (-c 2+25 ,c 2-310 ),同理设直线x +2y +1=0与直线3x -4y +c 1=0的交点为B ,则B (-c 1+25 ,c 1-310),设直线x +2y +3=0与直线3x -4y +c 1=0的交点为C ,则C (-c 1+65 ,c 1-910),设直线x +2y +3=0与直线3x -4y +c 2=0的交点为D ,则D (-c 2+65 ,c 2-910),由菱形的性质可知BD ⊥AC ,且BD ,AC 的斜率均存在,所以k BD ·k AC =-1,则c 1-310-c 2-910-c 1+25-⎝ ⎛⎭⎪⎫-c 2+65 ·c 2-310-c 1-910-c 2+25-⎝ ⎛⎭⎪⎫-c 1+65 =-1,即36-(c 2-c 1)24[]16-(c 2-c 1)2 =-1,解得|c 1-c 2|=25 .6.答案:D答案解析:若直线l 经过原点,满足条件,可得直线l 的方程为y =2x ,即2x -y =0;若直线l 不经过原点,可设直线l 的方程为x a +y2a=1()a ≠0 ,把点P ()2,4 代入可得2a +42a =1,解得a =4,∴直线l 的方程为x 4 +y8=1,即2x +y -8=0,综上可得直线l 的方程为2x -y =0或2x +y -8=0. 故选D.7.答案:4x -3y +9=0答案解析:方法一 由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0, 解得⎩⎪⎨⎪⎧x =-53,y =79即交点为(-53 ,79),∵所求直线与直线3x +4y -7=0垂直,∴所求直线的斜率为k =43.由点斜式得所求直线方程为y -79 =43 (x +53),即4x -3y +9=0.方法二 由垂直关系可设所求直线方程为4x -3y +m =0,由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0, 可解得交点为(-53 ,79 ),代入4x -3y +m =0,得m =9,故所求直线方程为4x -3y +9=0. 方法三 由题意可设所求直线方程为(2x +3y +1)+λ(x -3y +4)=0,即(2+λ)x +(3-3λ)y +1+4λ=0 ① 又∵所求直线与直线3x +4y -7=0垂直,∴3(2+λ)+4(3-3λ)=0,∴λ=2,代入①式得所求直线方程为4x -3y +9=0.8.答案:2答案解析:∵直线3x +4y +3=0与直线6x +my -14=0平行,∴m =8,6x +8y -14=0可化为3x +4y -7=0.∴它们之间的距离为|3-(-7)|32+42=2.二 能力小题提升篇1.答案:A答案解析:l 1⊥l 2,则3 b +a -1=0,∴a =1-3 b , 所以a 2+b 2=()1-3b 2+b 2=4b 2-23 b +1,二次函数的抛物线的对称轴为b =--232×4 =34,当b =34 时,a 2+b 2取最小值14. 故选A. 2.答案:B答案解析:对于直线3x +y +2=0,令x =0得y =-2,所以直线3x +y +2=0在y 轴上的截距为-2,故A 错误;直线y =0的倾斜角为0,斜率为0,存在,故B 正确;若两直线的斜率k 1,k 2满足k 1=k 2,则两直线互相平行或重合,所以C 错误;若两直线的倾斜角为90°,则它们的斜率不存在,所以D 错误.故选B. 3.答案:B答案解析:设点B (x ,y ),则⎩⎪⎨⎪⎧y -1x +2=1,x -22+y +12-1=0,解得⎩⎪⎨⎪⎧x =0,y =3, 则B (0,3).由已知可得直线m 的方程为y -1=k (x +2),与方程x +y -1=0联立, 解得x =-2k k +1,y =3k +1k +1 ,则C ⎝ ⎛⎭⎪⎫-2k k +1,3k +1k +1 . 由已知可得直线AB 的方程为y -1=x +2,即y =x +3,且|AB |=22 , 则点C 到直线AB 的距离d =⎪⎪⎪⎪⎪⎪-2k k +1-3k +1k +1+32 =|2-2k |2|k +1|, 所以S △ABC =12 ×22 ·|2-2k |2|k +1|=2,即|1-k |=|k +1|(k ≠-1),解得k =0. 4.答案:C答案解析:动直线x +my =0,令y =0,解得x =0,因此此直线过定点A (0,0). 动直线mx -y -m +3=0,即m (x -1)+3-y =0,令x -1=0,3-y =0,解得x =1,y =3,因此此直线过定点B (1,3).当m =0时,两条直线分别为x =0,y =3,交点P (0,3),S △PAB =12 ×1×3=32.当m ≠0时,两条直线的斜率分别为-1m ,m ,则-1m·m =-1,因此两条直线相互垂直.设|PA |=a ,|PB |=b ,∵|AB |=12+32 =10 ,∴a 2+b 2=10.又a 2+b 2≥2ab ,∴ab ≤5,当且仅当a =b =5 时等号成立.∴S △PAB =12 |PA |·|PB |=12 ab ≤52.综上,△PAB 的面积最大值是52.5.答案:2x -y -5=0答案解析:因为∠B ,∠C 的平分线所在直线的方程分别为x =0,y =x ,所以直线AB 与直线BC 关于直线x =0对称,直线AC 与直线BC 关于直线y =x 对称.则点A (-3,1)关于直线x =0对称的点A ′(3,1)在直线BC 上,点A (-3,1)关于直线y =x 对称的点A″(1,-3)也在直线BC上,所以由两点式得直线BC的方程为y+31+3=x-13-1,即y=2x-5.6.答案:②③答案解析:①点M到直线y=x+1的距离d=|5-0+1|12+(-1)2=32>4,即点M与该直线上的点的距离的最小值大于4,所以该直线上不存在点P,使|PM|=4成立,故①不是点M 的“相关直线”.②点M到直线y=2的距离d=|0-2|=2<4,即点M与该直线上的点的距离的最小值小于4,所以该直线上存在点P,使|PM|=4成立,故②是点M的“相关直线”.③点M到直线4x-3y=0的距离d=|4×5-3×0|42+(-3)2=4,即点M与该直线上的点的距离的最小值等于4,所以该直线上存在点P,使|PM|=4成立,故③是点M的“相关直线”.④点M到直线2x-y+1=0的距离d=|2×5-0+1|22+(-1)2=1155>4,即点M与该直线上的点的距离的最小值大于4,所以该直线上不存在点P,使|PM|=4成立,故④不是点M的“相关直线”.三 高考小题重现篇1.答案:B答案解析:设圆心为P(x0,y0),半径为r,∵圆与x轴,y轴都相切,∴|x0|=|y0|=r,又圆经过点(2,1),∴x0=y0=r且(2-x0)2+(1-y0)2=r2,∴(r-2)2+(r-1)2=r2,解得r=1或r=5.①r=1时,圆心P(1,1),则圆心到直线2x-y-3=0的距离d=|2-1-3|22+(-1)2=255;②r=5时,圆心P(5,5),则圆心到直线2x-y-3=0的距离d=|10-5-3|22+(-1)2=255.2.答案:B答案解析:方法一 点(0,-1)到直线y=k(x+1)的距离为d=|k·0-(-1)+k|k2+1=|k+1|k2+1,注意到k2+1≥2k,于是2(k2+1)≥k2+2k+1=|k+1|2,当且仅当k=1时取等号.即|k+1|≤k2+1·2,所以d=|k+1|k2+1≤2,故点(0,-1)到直线y=k(x+1)距离的最大值为2.方法二 由题意知,直线l:y=k(x+1)是过点P(-1,0)且斜率存在的直线,点Q(0,-1)到直线l的最大距离在直线l与直线PQ垂直时取得,此时k=1,最大距离为|PQ|=2.3.答案:C答案解析:由题意可得d=|cos θ-m sin θ-2|m2+1=|m sin θ-cos θ+2|m2+1=⎪⎪⎪⎪⎪⎪m2+1(mm2+1sin θ-1m2+1cos θ)+2m2+1=|m2+1sin (θ-φ)+2|m2+1(其中cos φ=mm2+1,sin φ=1m2+1),∵-1≤sin (θ-φ)≤1,∴|2-m 2+1|m 2+1 ≤d ≤m 2+1+2m 2+1 ,m 2+1+2m 2+1 =1+2m 2+1,∴当m =0时,d 取最大值3.4.答案:4答案解析:通解 设P ⎝ ⎛⎭⎪⎫x ,x +4x ,x >0,则点P 到直线x +y =0的距离d =|x +x +4x |2=2x +4x 2 ≥22x ·4x 2=4,当且仅当2x =4x,即x =2 时取等号,故点P 到直线x +y =0的距离的最小值是4.优解 由y =x +4x (x >0)得y ′=1-4x 2 ,令1-4x2 =-1,得x =2 ,则当点P 的坐标为(2 ,32 )时,点P 到直线x +y =0的距离最小,最小值为|2+32|2=4. 四 经典大题强化篇1.答案解析:(1)易知点A 到直线x -2y =0的距离不等于3,可设经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0.由题意得|10+5λ-5|(2+λ)2+(1-2λ)2 =3,即2λ2-5λ+2=0,∴λ=2或12.∴l 的方程为4x -3y -5=0或x =2.(2)由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得交点为P (2,1),如图,过P 作任一直线l ,设d 为点A到l 的距离,则d ≤|PA |(当l ⊥PA 时等号成立).∴d max =|PA |=10 .2.答案解析:(1)由方程组⎩⎪⎨⎪⎧x -2y +1=0,y =0,解得点A (-1,0).又直线AB 的斜率为k AB =1,且x 轴是∠A 的平分线,故直线AC 的斜率为-1,所以AC 所在的直线方程为y =-(x +1). 已知BC 边上的高所在的直线方程为x -2y +1=0,故直线BC 的斜率为-2,故BC 所在的直线方程为y -2=-2(x -1).解方程组⎩⎪⎨⎪⎧y =-(x +1),y -2=-2(x -1), 得点C 的坐标为(5,-6).(2)因为B (1,2),C (5,-6),所以|BC |=(1-5)2+(2+6)2=45 ,点A(-1,0)到直线BC:y-2=-2(x-1)的距离为d=|2×(-1)-4|5=65,所以△ABC的面积为12×45×65=12.。

高二数学直线与方程精选50题

高二数学直线与方程精选50题

直线与方程精选50题1、求过点()5,3,倾斜角等于直线13+=x y 的倾斜角的一半的直线方程.★2、已知直线l 的倾斜角为α,53sin =α,且这条直线经过点()5,3P ,求直线l 的一般式方程.★3、已知矩形OACB 的顶点的坐标分别为()()()5,00,80,0B A O 、、,求该矩形的对角线所在直线方程.4、已知直线0632=+-y x ,这条直线的点方向式可以是________________★5、求过点P 且平行于直线0l 的一般式方程:(1)()04:,1,20=+x l P ★(2)()07143:,2,10=++y x l P6、求过点P 且垂直于直线1l 的直线的一般式方程:(1)()03:,1,21=-y l P(2)4231:),1,2(1+=---y x l P ★7、求满足下列条件的直线方程(1)直线l 经过()()7,3,0,2B A 两点★(2)直线l 经过点()4,3P ,且与向量()1,1-=d 平行★(3)直线l 经过点()4,3P ,且与向量()1,1-=d 垂直★8、已知直线()0816:1=--+y t x l 与直线()()01664:2=-+++y t x t l(1)当t 为何值时,21l l 与相交?(2)当t 为何值时,21l l 与平行?(3)当t 为何值时,21l l 与重合?(4)当t 为何值时,21l l 与垂直?★9、已知直线08:1=++n y mx l 与直线012:2=-+my x l .当直线1l 与直线2l 分别满足下列条件时,求实数m 、n 的值(1)直线1l 与直线2l 平行;(2)直线1l 与直线2l 垂直,且直线1l 在y 轴上的截距为1-..★10、根据下列条件,写出满足条件的直线的一般式方程.★(1)经过直线012=+-y x 与直线0122=-+y x 的交点,且与直线05=-y x 垂直.(2)经过直线01=+-y x 与直线022=+-y x 的交点,且与直线1243=+y x 平行.11、已知直线2:1++=k kx y l 与直线42:2+-=x y l 的交点在第一象限,求实数k 的范围.★12、已知集合(){}R y x y x y x A ∈=--=、,01|,,集合(){}R y x y ax y x B ∈=+-=、,02|,,且φ=⋂B A ,求实数a 的值.13、是否存在实数a ,使直线()()0121:1=--+-y a x a l 与直线()03326:2=--+y a x l 平行?若存在,求a 的值;若不存在,请说明理由.★14、求过点()3,2P 且与直线012=+-y x 垂直的直线方程★15、若坐标原点O 在直线l 的射影H 的坐标为()2,4-,求直线l 的方程★16、已知平面内三点()()()2,14,33,1---C B A 、、,点P 满足BC BP 23=,则直线AP 的方程是17、已知()()4,1,1,3--B A ,则线段AB 的垂直平分线方程是★18、已知三点()()()a C B a A 2,4,1,5,2,-共线,则实数a 的值是___________________19、不论m 取何实数,直线()()()01131=--+--m y m x m 恒过什么象限?20、分别写出下列直线的一个方向向量d 和一个法向量n ★(1)0543=-+y x(2)152=+y x (3)()5413+-=-x y (4)1=x(5)01=+y21、已知0,0<<bc ac ,则直线0:=++a cy bx l 不通过_______________象限22、直线l 的倾斜角的正弦值为54,则其斜率为______________★ 23、过()()a B a a A 2,3,1,1+-的直线的倾斜角为钝角,求实数a 的取值范围★24、直线l 的斜率k 满足13<≤-k ,求其倾斜角的取值范围★25、直线l 的倾斜角是()()2,6,1,2--B A 两点连线的倾斜角的两倍,求直线l 的倾斜角的大小26、直线l 过点()2,1且与两坐标轴围成等腰直角三角形,求l 的方程★27、求直线()R y x ∈=-+αα010cos 的倾斜角的取值范围28、直线()()039372:222=+-++-a y a x a a l 的倾斜角大小是4π,求实数=a __________★29、方程x k y =与方程()0>+=k k x y 的曲线有两个不同的公共点,则实数k 的取值范围是____________________30、过点()()3,0,0,4B A 的直线的倾斜角大小是________________★31、将直线033=++y x 绕着它与x 轴的交点顺时针旋转︒30后,所得的直线方程是★32、将直线0943=+-y x 绕其与x 轴的交点逆时针旋转︒90后得到直线l ,求直线l 的方程★33、ABC ∆的一个顶点()4,3B ,AB 边上的高CH 所在直线方程是01632=-+y x ,BC 边上的中线AM 所在的直线方程是0132=+-y x ,求边AC 所在直线方程.34、已知直线l 沿x 轴的负方向平移3个单位,再沿y 轴的正方向平移1个单位,又回到原来的位置,求直线l 的斜率k 和倾斜角α★35、过点()4,5-P 作一直线l ,使它与两坐标轴相交且与两坐标轴围成的三角形面积为5个面积单位,求直线l 的方程★36、直线()()01213:=----y a x a l (其中a 为实数)★(1)求证:不论a 取何值,直线l 恒过定点;(2)已知直线l 不通过第二象限,求实数a 的取值范围37、已知()()2211,,,y x B y x A 为直线()0≠+=k b kx y 上的两点(1)求证:2121x x k AB -+=;(2)根据(1)的形式特征,用21,,y y k 表示AB38、已知ABC ∆中,顶点()7,2-A ,AC 边上的高BH 所在直线方程为0113=++y x ,AB 边上中线CM 所在的直线方程072=++y x ,求ABC ∆三边所在直线方程39、从点()2,5A 发出的光线经过x 轴反射后,反射光线经过点()3,1-B ,求发射光线所在直线与x 轴的夹角大小★40、求经过0332:01:21=++=++y x l y x l 和的交点且与直线0523=-+y x 的夹角为4π的直线方程★'41、已知等腰直角三角形ABC 的斜边AB 的中点是()2,4,直角边AC 所在的直线方程是02=-y x ,求斜边AB 和直角边BC 所在直线的方程42、光线沿直线052=+-y x 的方向入射到直线0723=+-y x 后反射出去,求反射光线所在的直线方程43、已知()()8,4,3,2-B A 两点,直线l 经过原点,且A 、B 两点到直线l 的距离相等,求直线l 的方程★44、已知平行直线21l l 与的距离为5,且直线1l 经过原点,直线2l 经过点()3,1,求直线1l 和直线2l 的方程★45、已知直线l 过点()1,0P ,且被平行直线0243:0843:21=++=-+y x l y x l 与所截得的线段的长为22,求直线l 的方程46、求与直线032012=+-=+-y x y x 和距离相等的点的轨迹47、已知点()4,3P 到直线l 的距离为5,且直线l 在两坐标轴上的截距相等,则满足条件的直线是___________________★48、过点()2,1P 的所有直线中,与原点距离最大的直线方程是______________49、直线l 经过直线002477=-=-+y x y x 与直线的交点,且原点到直线l 的距离为512,则直线l 的方程为★50、经过直线032=-+y x 和直线0624=--y x 的交点,且与y 轴平行的直线方程为★。

高中数学必修二直线与方程练习题(考查直线五种形式)

高中数学必修二直线与方程练习题(考查直线五种形式)

必修二直线与方程(直线的五种形式)练习题让4第I卷(选择题)一、单选题(本大题共16小题,共80.0分)1.如图,直线l1,l2,l3的斜率分别为k1,k2,k3,则()A. k1<k2<k3B. k3<k1<k2C. k3<k2<k1D. k1<k3<k22.已知△ABC的顶点为A(3,3),B(2,−2),C(−7,1),则∠A的内角平分线AD所在直线的方程为()A. y=−x+6B. y=xC. y=−x+6和y=xD. 15x−12y−20=03.点(1,1)到直线x+y−1=0的距离为()D. √2A. 1B. 2C. √224.已知直线l1:ax+2y−1=0,直线l2:8x+ay+2−a=0,若l1//l2,则实数a的值为()A. ±4B. −4C. 4D. ±25.已知点A(1,6√3),B(0,5√3)到直线l的距离均等于a,且这样的直线l可作4条,则a的取值范围是()A. a≥1B. 0<a<1C. 0<a≤1D. 0<a<26.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y轴上的截距为1,3则实数m,n的值分别为()A. 4和3B. −4和3C. −4和−3D. 4和−37.若两平行直线2x+y−4=0与y=−2x−m−2间的距离不大于√5,则实数m的取值范围是()A. [−11,−1]B. [−11,0]C. [−11,−6)∪(−6,−1]D. [−1,+∞)8.已知定点P(x0,y0)不在直线l:f(x,y)=0上,则f(x,y)+f(x0,y0)=0表示一条()A. 过点P且与l垂直的直线B. 过点P且与l平行的直线C. 不过点P且垂直于l的直线D. 不过点P且平行于l的直线9.已知过点M(2,1)的直线与x轴、y轴分别交于P,Q两点.若M为线段PQ的中点,则这条直线的方程为()A. 2x−y−3=0B. 2x+y−5=0C. x+2y−4=0D. x−2y+3=010.经过两条直线2x+3y+1=0和x−3y+4=0的交点,并且垂直于直线3x+4y−7=0的直线的方程为()A. 4x−3y+9=0B. 4x−3y−9=0C. 3x−4y+9=0D. 3x−4y−9=011.已知两直线的方程分别为l1:x+ay+b=0,l2:x+cy+d=0,它们在坐标系中的位置如图所示,则()A. b>0,d<0,a<cB. b>0,d<0,a>cC. b<0,d>0,a>cD. b<0,d>0,a<c12.已知直线l1:3x+4y+2=0,l2:6x+8y−1=0,则l1与l2之间的距离是()A. 12B. 35C. 1D. 31013.三点A(3,1),B(−2,k),C(8,11)在一条直线上,则k的值为()A. −8B. −9C. −6D. −714.直线l:y=x+1上的点到圆C:x2+y2+2x+4y+4=0上的点的最近距离为()A. √2B. 2−√2C. 1D. √2−115.已知两点A(−3,4),B(3,2),过点P(1,0)的直线l与线段AB有公共点,则直线l的斜率k的取值范围是()A. (−1,1)B. (−∞,−1)∪(1,+∞)C. [−1,1]D. (−∞,−1]∪[1,+∞)16.直线y=−√33x+1与x轴,y轴分别交于点A,B,以线段AB为边在第一象限内作等边△ABC,如果在第一象限内有一点P(m,12),使得△ABP和△ABC面积相等,则m的值()A. 5√32B. 3√32C. √32D. √3第II卷(非选择题)二、单空题(本大题共4小题,共20.0分)17.已知直线ax+3y−12=0与直线4x−y+b=0互相垂直,且相交于点P(4,m),则b=.18.已知两直线2x−5y+20=0,mx−2y−10=0与两坐标轴围成的四边形有外接圆,则实数m=.19.若直线l1:(2m2−5m+2)x−(m2−4)y+5=0的斜率与直线l2:x−y+1=0的斜率相同,则m的值为.20.若原点O在直线l上的射影是P(1,2),则直线l在y轴上的截距为__________.三、解答题(本大题共5小题,共60.0分)21.已知直线m:(a−1)x+(2a+3)y−a+6=0,n:x−2y+3=0.(1)当a=0时,直线l过m与n的交点,且它在两坐标轴上的截距相反,求直线l的方程;(2)若坐标原点O到直线m的距离为√5,判断m与n的位置关系.22.已知直线l1:ax+2y+6=0和直线l2:x+(a−3)y+a2−1=0.(1)当l1⊥l2时,求a的值;(2)在(1)的条件下,若直线l3//l2,且l3过点A(1,−3),求直线l3的一般方程.23.设直线4x+3y=10与2x−y=10相交于一点A.(1)求点A的坐标;(2)求经过点A,且垂直于直线3x−2y+4=0的直线的方程.24.已知直线l:(a+1)x+y−2−a=0(a∈R).(1)若直线l在两坐标轴上的截距相等,求直线l的方程;(2)当O(0,0)点到直线l距离最大时,求直线l的方程.25.如图,△ABC中,顶点A(1,2),BC边所在直线的方程为x+3y+1=0,AB边的中点D在y轴上.(1)求AB边所在直线的方程;(2)若|AC|=|BC|,求AC边所在直线的方程.答案和解析1.【答案】D本题考查直线的倾斜角与斜率,属于基础题.根据题意,利用直线的倾斜角来判断直线的斜率关系,即可得解.【解答】解:直线l1的倾斜角α1是钝角,故k1<0,直线l2与l3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k3<k2,因此k1<k3<k2,故选D.2.【答案】B本题考查了点到直线的距离公式,角平分线的性质,考查了学生的运算能力,属于中档题.求出直线AB,直线AC的方程,进行求解即可.【解答】解:设∠A的内角平分线AD上的任意一点P(x,y),又△ABC的顶点为A(3,3)、B(2,−2)、C(−7,1),可得:直线AB方程为:5x−y−12=0,直线AC的方程为:x−5y+12=0,∴点P到直线AC距离等于点P到直线AB距离,则√26=√26,解得x+y−6=0(此时B、C两点位于直线x+y−6=0同侧,不符合题意,舍去)或x−y=0.∴角平分线AD所在直线方程为:x−y=0.故选B.3.【答案】C【分析】本题考查了点到直线的距离公式,考查了推理能力与计算能力,属于基础题.利用点到直线的距离公式即可得出.【解答】解:由点到直线的距离公式,得所求距离d=22=√22.4.【答案】B【分析】本题考查直线的一般式方程与直线的平行关系,利用直线平行的性质求解.【解答】解:由a2−2×8=0,得a=±4.当a=4时,l1:4x+2y−1=0,l2:8x+4y−2=0,l1与l2重合.当a=−4时,l1:−4x+2y−1=0,l2:8x−4y+6=0,l1//l2.综上所述,a=−4.故选B.5.【答案】B本题主要考查了点与直线的位置关系和两点间的距离公式的应用,做题时要善于转化,把求a的范围问题转化为求两点间的距离的问题,属于中档题.可分A,B在直线l的同侧还是两侧两种情况讨论直线l的可能,若A,B两点在直线l 的同侧,一定可作出两条直线,所以则当A,B两点分别在直线l的两侧时,还应该有两条,这时,只需a小于A,B两点间距离的一半即可.【解答】解:∵若A,B两点在直线l的同侧,可作出两条直线,∴若这样的直线l可作4条,则当A,B两点分别在直线l的两侧时,还应该有两条.∴2a小于A,B间距离,∵|AB|=√(1−0)2+(6√3−5√3)2=2.∴0<2a<2,∴0<a<1.故选B .6.【答案】C本题主要考查直线的方程的应用,属于基础题.由直线平行可得−mn =−43,再由直线在y 轴上的截距为13,可得−1n =13,联立解得m ,n 的值. 【解答】解:当n =0时,不合题意,所以n ≠0, 由题意知:−mn =−43,即3m =4n , 且在y 轴上的截距为13,即−1n =13, 联立解得:n =−3,m =−4. 故选C .7.【答案】C8.【答案】D9.【答案】C本题考查直线点斜式方程、中点坐标公式,属于基础题.设所求直线的方程为y −1=k(x −2),得Q 点坐标为(0,1−2k),P 点纵坐标为0,所以根据中点坐标公式有0+(1−2k)2=1,解得k =−12,故所求直线的方程为x +2y −4=0. 【解答】解:设所求直线的方程为y −1=k(x −2). 令x =0得y =1−2k , 所以Q 点坐标为(0,1−2k),又因为M 为线段PQ 的中点,P 点纵坐标为0,所以根据中点坐标公式有0+(1−2k)2=1,解得k =−12,故所求直线的方程为x +2y −4=0.10.【答案】A本题主要考查两条直线的交点及两直线垂直的性质应用,属于基础题.联立方程2x +3y +1=0和x −3y +4=0,可求出交点坐标,垂直于直线3x +4y −7=0,可设为4x −3y +m =0,代入交点坐标即可求出该直线的方程. 【解答】解:由{2x +3y +1=0,x −3y +4=0,得{x =−53y =79, 因为所求直线与直线3x +4y −7=0垂直, 所以可设所求直线的方程为4x −3y +m =0, 代入点(−53,79),解得m =9,故所求直线的方程为4x −3y +9=0. 故选A .11.【答案】C本题考查直线的一般式向斜截式转化,属于基础题.将直线转化成斜截式,根据图象得两直线斜率、截距的不等关系,解不等式即可得解. 【解答】解:l 1 :y =−1a x −ba , l 2 : y =−1c x −dc ,由图象知:①−1a >−1c >0,②−ba <0,③−dc >0, 解得:①c <a <0,②b <0,③d >0, 故选C .12.【答案】A【分析】本题考查两条平行线之间的距离公式,属基础题.在使用两条平行线间的距离公式时,要注意两直线方程中x,y的系数必须相同.【解答】解:直线l1:3x+4y+2=0可化为直线l1:6x+8y+4=0,则l1与l2之间的距离是√62+82=12,故选A.13.【答案】B本题考查了斜率计算公式、斜率与三点共线的关系,考查了推理能力与计算能力,属于基础题.三点A(3,1),B(−2,k),C(8,11)在一条直线上,可得k AB=k AC,利用斜率计算公式即可得出.【解答】解:∵三点A(3,1),B(−2,k),C(8,11)在一条直线上,∴k AB=k AC,即k−1−2−3=11−18−3,解得k=−9.故选B.14.【答案】D本题考查直线和圆的位置关系,点到直线的距离公式的应用,是基础题.化标准方程求圆心与半径,由圆心到直线的距离易得结果.【解答】解:由题设知圆心为C(−1,−2),半径r=1,而圆心C(−1,−2)到直线x−y+1=0距离为:d=√2=√2,因此,圆上点到直线的最短距离为d−r=√2−1,故选D.15.【答案】D本题主要考查直线的斜率的求法,利用数形结合是解决本题的关键,属于基础题.根据两点间的斜率公式,利用数形结合即可求出直线斜率的取值范围.【解答】解:如图所示:∵点A(−3,4),B(3,2),过点P(1,0)的直线l与线段AB有公共点,∴直线l的斜率k≥k PB或k≤k PA,∵PA的斜率为4−0−3−1=−1,PB的斜率为2−03−1=1,∴直线l的斜率k≥1或k≤−1,故选D.16.【答案】A【解析】解:根据题意画出图形,如图所示:由直线y=−√33x+1,令x=0,解得y=1,故点B(0,1),令y=0,解得x=√3,故点A(√3,0),∵△ABC为等边三角形,且OA=√3,OB=1,根据勾股定理得:AB=2,故点C到直线AB的距离为√3,由题意△ABP和△ABC的面积相等,则P到直线AB的距离d=√32|−√33m+12|=√3,即−√33m+12=2或−√33m+12=−2,解得:m=−3√32(舍去)或m=5√32.则m的值为5√32.根据题意画出图形,令直线方程中x与y分别为0,求出相应的y与x的值,确定出点A与B的坐标,进而求出AB的长即为等边三角形的边长,求出等边三角形的高即为点C到直线AB的距离,由△ABP和△ABC的面积相等,得到点C与点P到直线AB的距离相等,利用点到直线的距离公式表示出点P到直线AB的距离d,让d等于求出的高列出关于m的方程,求出方程的解即可得到m的值.此题考查了一次函数的性质,等边三角形的性质以及点到直线的距离公式.学生做题时注意采用数形结合的思想及转化的思想的运用,在求出m的值后要根据点P在第一象限舍去不合题意的解.17.【答案】−13【解析】【分析】本题考查两条直线垂直的斜率关系,两直线的交点问题,属于基础题.由两直线互相垂直得a=34,由点P(4,m)在直线34x+3y−12=0上,得m=3,再将点P(4,3)代入4x−y+b=0,即可求出结果.【解答】解:由题意,直线ax+3y−12=0与直线4x−y+b=0互相垂直,可得−a3×4=−1,解得a=34,由点P(4,m)在直线34x+3y−12=0上,得3+3m−12=0,解得m=3,再将点P(4,3)代入直线4x−y+b=0,得16−3+b=0,解得b=−13,故答案为−13.18.【答案】−5【解析】略19.【答案】320.【答案】52【解析】【分析】本题考查直线方程的求法,两直线垂直斜率之间的关系,属于基础题.由题意得OP ⊥l ,求出OP 的斜率即可得到直线l 的斜率,从而求出直线l 的方程,即可得到答案.【解答】解:由题意得OP ⊥l ,而k OP =2−01−0=2,∴k l =−12. ∴直线l 的方程为y −2=−12(x −1),化成斜截式为y =−12x +52.当x =0时,y =52,∴直线l 在y 轴上的截距为52.故答案为52. 21.【答案】解:(1)当a =0时,直线m:x −3y −6=0,由{x −3y −6=0x −2y +3=0,解得{x =−21y =−9, 即m 与n 的交点为(−21,−9).当直线l 过原点时,直线l 的方程为3x −7y =0;当直线l 不过原点时,设l 的方程为x b +y −b =1,将(−21,−9)代入得b =−12,所以直线l 的方程为x −y +12=0.故满足条件的直线l 的方程为3x −7y =0或x −y +12=0.(2)设原点O 到直线m 的距离为d ,则d =22=√5,解得a =−14或a =−73,当a =−14时,直线m 的方程为x −2y −5=0,此时m//n;当a =−73时,直线m 的方程为2x +y −5=0,此时m ⊥n.【解析】本题主要考查了直线的截距式方程,两条直线平行与垂直的判定,点到直线的距离公式,属于中档题.(1)当a =0时,由题意可求出x 与y ,可求出m 与n 的交点,当直线l 过原点时,直线l 的方程为3x −7y =0,当直线l 不过原点时,设l 的方程为x b +y −b =1,将(−21,−9)代入即可求解.(2)求出原点O 到直线m 的距离d ,求出a ,当a =−14时,证明m//n ,当a =−73时,证明m ⊥n. 22.【答案】解:(1)由A 1A 2+B 1B 2=0⇒a +2(a −3)=0⇒a =2;(2)由(1),l 2:x −y +3=0,又l 3//l 2,设l 3:x −y +C =0,把(1,−3)代入上式解得C =−4,所以l 3:x −y −4=0.【解析】本题考查了两条直线平行、两条直线垂直的条件,属于基础题.(1)利用两条直线垂直的充要条件即可得出.(2)根据平行可设l 3:x −y +C =0,代值计算即可.23.【答案】解:(1)由{2x −y =104x +3y =10,解得{x =4,y =−2., ∴A (4,−2). (2)直线3x −2y +4=0的斜率为32,垂直于直线3x −2y +4=0的直线斜率为−23,则过点A (4,−2)且垂直于直线3x −2y +4=0的直线的方程为y +2=−23(x −4),即:2x +3y −2=0.【解析】本题考查求两直线的交点坐标,直线与直线的位置关系,直线方程的求法,属于基础题.(1)解方程组{2x −y =104x +3y =10,可得点A 的坐标; (2)由题可得直线3x −2y +4=0的斜率为32,则垂直于直线3x −2y +4=0的直线斜率为−23,由点斜式即可得出所求直线的方程. 24.【答案】解:(1)直线l :(a +1)x +y −2−a =0,取x =0,y =a +2,取y =0,x =a+2a+1,即a +2=a+2a+1,解得a =−2或a =0,故直线方程为x −y =0或x +y −2=0.(2)l :(a +1)x +y −2−a =0变换得到a(x −1)+x +y −2=0,故过定点A(1,1),当直线l 与AO 垂直时,距离最大.k OA =1,故k =−1,解得a =0,故所求直线方程为x +y −2=0.【解析】本题考查了直线的截距、相互垂直时斜率之间的关系,考查了推理能力与计算能力,属于基础题.(1)取x =0,y =a +2,取y =0,x =a+2a+1,即a +2=a+2a+1,解得a .(2)l :(a +1)x +y −2−a =0变换得到a(x −1)+x +y −2=0,故过定点A(1,1),当直线l 与AO 垂直时,距离最大,即可求解. 25.【答案】解:(1)因点B 在直线x +3y +1=0上,不妨设B(−3a −1,a),由题意得(−3a −1)+1=0,解得a =0,所以B 的坐标为(−1,0),故AB 边所在直线的方程为x−1−1−1=y−20−2,即x −y +1=0;(2)因|AC|=|BC|,所以点C 在线段AB 的中垂线x +y −1=0上由{x +y −1=0x +3y +1=0,解得x =2,y =−1,即C 的坐标为(2,−1), 又点A(1,2),∴AC 边所在直线的方程为x−12−1=y−2−1−2,即3x +y −5=0.【解析】(1)利用点B 在直线上,设B(−3a −1,a),利用中点坐标公式,求出点B 的坐标,然后再由两点式求出直线方程即可;(2)联立两条直线的方程,求出交点坐标即点C ,再由两点式求出直线方程即可. 本题考查了直线方程的求解,主要考查了两点式直线方程的应用,涉及了中点坐标公式以及直线交点坐标的求解,属于基础题.。

(完整版)高中数学必修2直线与方程练习题及答案详解(最新整理)

(完整版)高中数学必修2直线与方程练习题及答案详解(最新整理)

这样的直线有 3 条: y 2x , x y 3 0 ,或 x y 1 0 。
4. 解:设直线为 y 4 k(x 5), 交 x 轴于点 ( 4 5, 0) ,交 y 轴于点 (0,5k 4) , k
S 1 4 5 5k 4 5, 40 16 25k 10
2k
2. l2 : y 2x 3,l3 : y 2x 3,l4 : x 2 y 3, 3. 2x y 5 0 k ' 1 0 1 , k 2, y (1) 2(x 2)
20 2 4. 8 x2 y2 可 看 成 原 点 到 直 线 上 的 点 的 距 离 的 平 方 , 垂 直 时 最 短 :


5.当 0 k 1 时,两条直线 kx y k 1、 ky x 2k 的交点在

2
限.
三、解答题
1.经过点 M (3, 5) 的所有直线中距离原点最远的直线方程是什么?
2.求经过点 P(1, 2) 的直线,且使 A(2, 3) , B(0, 5) 到它的距离相等的直线方程
3.已知点 A(1,1) , B(2, 2) ,点 P 在直线 y 1 x 上,求 PA 2 PB 2 取得 2
A. 2x y 1 0 B. 2x y 5 0
C. x 2 y 5 0 D. x 2 y 7 0
3.已知过点 A(2, m) 和 B(m, 4) 的直线与直线 2x y 1 0 平行,
则 m 的值为( )
A. 0
B. 8
C. 2
D.10
4.已知 ab 0,bc 0 ,则直线 ax by c 通过( )
k 2,
2
y 3 2(x 2), 4x 2 y 5 0 2
2.A
k AB

直线方程经典练习题

直线方程经典练习题

直线方程经典练习题直线方程是解析几何中的基础知识之一,它在很多数学问题中都起到了重要的作用。

本文将为您介绍几个经典的直线方程练习题,通过解题过程,帮助您更好地理解直线方程的概念和应用。

1. 题目一:通过两点求直线方程已知直线上两点A(x₁,y₁)和B(x₂,y₂),求直线的方程。

解析:设直线的方程为y = kx + b,其中k为斜率,b为截距。

首先我们需要求解斜率k。

根据两点的坐标计算斜率公式:k = (y₂ - y₁) / (x₂ - x₁)。

其次,我们可通过其中一个点的坐标和斜率求解直线的截距b。

将点A的坐标代入直线方程,得到y₁ = kx₁ + b,将斜率k代入,得到b = y₁ - kx₁。

综上,我们求得直线的方程为y = kx + b,其中k和b的值可根据两点的坐标得出。

2. 题目二:通过斜率截距求直线方程已知直线的斜率k和截距b,求直线的方程。

解析:直线的方程为y = kx + b,其中k为斜率,b为截距。

已知斜率k和截距b后,直接代入方程即可求得直线的方程。

3. 题目三:通过点斜式求直线方程已知直线上一点A(x₁,y₁)和斜率k,求直线的方程。

解析:点斜式表示直线的方程为y - y₁ = k(x - x₁)。

已知点A的坐标和斜率k后,直接代入方程即可求得直线的方程。

4. 题目四:通过截距式求直线方程已知直线的x截距a和y截距b,求直线的方程。

解析:直线的方程为x / a + y / b = 1。

已知x截距a和y截距b后,直接代入方程即可求得直线的方程。

通过以上四个经典练习题的解析,我们对直线方程的计算和求解有了更深入的理解。

在实际应用中,直线方程经常被用于解决各种几何问题,如求两条直线的交点、判断点是否在直线上等等。

因此,掌握直线方程的概念和求解方法对于数学学习和应用都具有重要意义。

总结:本文通过经典直线方程练习题的解析,详细介绍了通过两点求直线方程、通过斜率截距求直线方程、通过点斜式求直线方程以及通过截距式求直线方程的方法。

(完整版)直线与方程测试题(含答案)

(完整版)直线与方程测试题(含答案)

第三章 直线与方程测试题一.选择题(每小题5分,共12小题,共60分) 1.若直线过点(3,-3)且倾斜角为30°,则该直线的方程为( ) A .y =3x -6 B. y =33x +4 C . y =33x -4 D. y =33x +2 2. 如果A (3, 1)、B (-2, k )、C (8, 11), 在同一直线上,那么k 的值是( )。

A. -6 B. -7 C. -8 D. -93. 如果直线 x +by +9=0 经过直线 5x -6y -17=0与直线 4x +3y +2=0 的交点,那么b 等于( ).A. 2B. 3C. 4D. 54. 直线 (2m 2-5m +2)x -(m 2-4)y +5m =0的倾斜角是450, 则m 的值为( )。

A.2 B. 3 C. -3 D. -25.两条直线023=++m y x 和0323)1(2=-+-+m y x m 的位置关系是( ) A.平行 B .相交 C.重合 D.与m 有关*6.到直线2x +y +1=0的距离为55的点的集合是( )A.直线2x+y -2=0B.直线2x+y=0C.直线2x+y=0或直线2x+y -2=0 D .直线2x+y=0或直线2x+2y+2=07直线02=+-b y x 与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( ) A.[]2,2- B.(][)+∞⋃-∞-,22, C.[)(]2,00,2⋃- D.()+∞∞-,*8.若直线l 与两直线y =1,x -y -7=0分别交于M ,N 两点,且MN 的中点是P (1,-1),则直线l 的斜率是( )A .-23B .23C .-32D .329.两平行线3x -2y -1=0,6x +ay +c =0之间的距离为213 13 ,则c +2a的值是( ) A .±1 B. 1 C. -1 D . 2 10.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -3=0 D .x +2y -3=0**11.点P 到点A ′(1,0)和直线x =-1的距离相等,且P 到直线y =x 的距离等于 22,这样的点P 共有 ( )A .1个B .2个C .3个D .4个 *12.若y =a |x |的图象与直线y =x +a (a >0) 有两个不同交点,则a 的取值范围是 ( ) A .0<a <1 B .a >1 C .a >0且a ≠1 D .a =1二.填空题(每小题5分,共4小题,共20分)13. 经过点(-2,-3) , 在x 轴、y 轴上截距相等的直线方程是 ; 或 。

直线的方程基础题(附答案)

直线的方程基础题(附答案)
直线的方程基础题
学校:___________姓名:___________班级:___________考 号:___________
第I卷(选择题)
一、选择题
1.若直线x+2y+1=0与直线ax+y﹣2=0互相垂直,那么a的值等于( )
A.﹣2
B.﹣
C.﹣
D.1 2.直线
的倾斜角α=( )
A.30°
A.6
B.2
C.﹣2
D.﹣6
9.直线y=kx与直线y=2x+1垂直,则k等于( )
A.﹣2
B.2
C.
D.
10.经过点A(
,﹣1),且倾斜角为60°的直线方程为( ) A.
x﹣y﹣4=0
B.
x+y﹣2=0 C.
x﹣y﹣2=0
D.
x+y﹣4=0
11.已知A(2,4)与B(3,3)关于直线l对称,则直线l的方程为( )
三、解答题 15.已知三角形ABC的顶点坐标为A(-1,5)、B(-2,-1)、C(4, 3)。 (1)求AB边上的高线所在的直线方程;(2)求三角形ABC的面积。
答案:
一、选择题
1-5.AAAAA
6-11.BAACAD
二、填空题
12、-6
13、5
14、解析:∵直线l:
(a>0,b>0)经过点(1,2) ∴
=1, ∴a+b=(a+b)(
)=3+
≥3+2
,当且仅当b=
a时上式等号成立. ∴直线在x轴,y轴上的截距之和的最小值为3+2
. 故答案为:3+2

三、解答题
15、解:(1) ………2分;AB边高线斜率K=,………3分, AB边上的高线方程为,………5分;化简得x+6y-22=0 ………6分 (2)直线AB的方程为 即 6x-y+11=0………8分 C到直线AB的距离为d=………10分,|AB|=;……11分 ∴三角形ABC的面积S=………12分

直线的方程练习试题

直线的方程练习试题

直线的方程练习题1. 下列命题中正确的是: ( )A.经过点),(000y x P 的直线都可以用方程)(00x x k y y -=-表示B.经过定点),0(b A 的直线都可以用方程b kx y +=表示C.经过任意两个不同点),(),,(222111y x P y x P 的直线都可用方程))(())((112112x x y y y y x x --=--表示D.不经过原点的直线都可以用方程1=+by a x 表示 2. 直线)2,0(,01sin cos πααα∈=++y x 的倾斜角为( ) A. α B.απ-2 C.απ- D. απ+23. 以)1,5(),3,1(-B A 为端点的线段的垂直平分线方程是( )A.083=--y x B .043=++y x C. 063=+-y x D. 023=++y x4.方程)(012)1(R a a y x a ∈=++--表示的直线( )A.恒过(-2, 3)B. 恒过(2, 3)C. 恒过(-2, 3)或(2, 3)D.都是平行直线5. 过点)1,2(M 的直线与x 轴,y 轴分别交于Q P ,两点,且||||MQ MP =,则l 的方程( )A. 032=+-y xB. 032=--y x C .052=-+y x D. 042=-+y x6. 直线02=++m y x 和02=++n y x 的位置关系是( )A.平行B.垂直C.相交但不垂直D.不能确定7.把直线013:1=-+y x l 沿y 轴负方向平移1个单位后得到直线2l ,又直线l 与直线2l 关于x 轴 对称,那么直线l 的方程是( )A. 023=+-y xB. 043=--y xC. 023=--y xD. 043=+-y x8. 如图,直线ax y 1-=的图象可能是( A B C D9.设A 、B 两点是x 轴上的点,点P 的横坐标为2,且|PA|=|PB|,若直线PA 的方程为01=+-y x ,则PB 的方程为 ( )A .05=-+y xB .012=--y xC .042=--x yD .072=-+y x10.过点)2,1(-P ,且在两坐标轴上截距的绝对值相等的直线有( )A.4条B.3条C.2条D.1条11. 直线21,l l 在x 轴上的截距都是m ,在y 轴上的截距都是n ,则21,l l 满足( )A .平行B .重合C .平行或重合D .相交或重合12. 已知直线1l 的方程为x y =,直线2l 的方程为0=-y ax (a 为实数).当直线1l 与直线2l 的 夹角在)12,0(π之间变动时,a 的取值范围是( ) A.)1,33(∪)3,1( B.)3,33( C.)1,0( D. )3,1( 13 . 将直线13-+=x y 绕它上面一点)3,1(沿逆时针方向旋转015,则所得直线方程为 .14.一直线过点)4,3(-,并且在两坐标轴上截距之和为12,这条直线方程是 .15. 直线)0(0126≠=--a a y ax 在x 轴上的截距是它在y 轴上的截距的3倍,则a 等于 .16.原点O在直线l 上的射影为点)1,2(-H ,则直线l 的方程为 .17.若方程02222=++-y x my x 表示两条直线,则m 的取值是 . 18. 不论b a ,为何实数,直线0)()2(=-++++b a y b a x b a 均通过一定点,此定点坐标是 .19. ①求平行于直线01243=-+y x ,且与它的距离是7的直线的方程;②求垂直于直线053=-+y x , 且与点)0,1(-P 的距离是1053的直线的方程. ③求过直线17810l x y --=:和221790l x y ++=:的交点,且垂直于直线270x y -+=的直线方程.20. 在直线方程b kx y +=中,当]4,3[-∈x 时,]13,8[-∈y ,求此直线的方程21. 已知直线l 被两平行直线063=-+y x 033=++y x 和所截得的线段长为3,且直线过点)0,1(,求直线l 的方程.22.过点)4,5(--作一直线l ,使它与两坐标轴相交且与两轴所围成的三角形面积为5.23. 设不等式2x -1>m (x 2-1)对一切满足|m |≤2的值均成立,求x 的范围.参考答案13. y =3 x 14. x y +-=390或0164=+-y x ;15. -216. 2x -y +5=0; 17. 1=m ;18. (-2, 3)19. (1)3x +4y +23=0或3x +4y -47=0;(2)3x -y +9=0或3x -y -3=0.(3)解:由方程组217907810x y x y ++=⎧⎨--=⎩,解得11271327x y ⎧=-⎪⎪⎨⎪=-⎪⎩,所以交点坐标为11132727--(,). 又因为直线斜率为12k =-, 所以求得直线方程为27x +54y +37=0.20. y =-3x +4; y =3x +121. x =1或3x -4y -3=0.22. 分析:直线l 应满足的两个条件是(1)直线l 过点(-5, -4);(2)直线l 与两坐标轴相交且与两轴所围成的三角形面积为5. 如果设a ,b 分别表示l 在x 轴,y 轴上的截距,则有521=⋅b a .这样就有如下两种不同的解题思路:第一,利用条件(1)设出直线l 的方程(点斜式),利用条件(2)确定k ;第二,利用条件(2)设出直线l 的方程(截距式),结合条件(1)确定a ,b 的值.解法一:设直线l 的方程为()54+=+x k y 分别令00==x y ,,得l 在x 轴,y 轴上的截距为:kk a 45+-=,45-=k b 由条件(2)得ab =±10,()104545±=-⋅+-∴k k k 得01630252=+-k k 无实数解;或01650252=+-k k ,解得525821==k k , 故所求的直线方程为:02058=+-y x 或01052=--y x解法二:设l 的方程为1=+b y a x ,因为l 经过点()45--,,则有: 145=-+-b a ① 又10±=ab ②联立①、②,得方程组⎪⎩⎪⎨⎧±==-+-1015ab b b a 解得⎪⎩⎪⎨⎧=-=425b a 或⎩⎨⎧-==25b a 因此,所求直线方程为:02058=+-y x 或01052=--y x .23.解析:原不等式变为(x 2-1)m +(1-2x )<0,构造线段f (m )=(x 2-1)m +1-2x ,-2≤m ≤2,则f (-2)<0,且f (2)<0. 答案:213217+<<-x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档