高中数学线性规划汇总

合集下载

线性规划知识点总结

线性规划知识点总结

线性规划知识点总结一、概述线性规划是运筹学中的一种数学方法,用于解决线性约束条件下的最优化问题。

它的目标是在给定的约束条件下,找到使目标函数取得最大(或者最小)值的变量取值。

二、基本概念1. 目标函数:线性规划的目标是最大化或者最小化一个线性函数,称为目标函数。

通常用z表示。

2. 约束条件:线性规划的变量需要满足一系列线性等式或者不等式,这些等式或者不等式称为约束条件。

3. 变量:线性规划中的变量是决策问题中需要确定的值,可以是实数或者非负实数。

4. 可行解:满足所有约束条件的变量取值称为可行解。

5. 最优解:在所有可行解中,使目标函数取得最大(或者最小)值的变量取值称为最优解。

三、标准形式线性规划问题可以通过将不等式约束转化为等式约束来转化为标准形式,标准形式的线性规划问题如下:最小化:z = c₁x₁ + c₂x₂ + ... + cₙxₙ约束条件:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ = b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ = b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ = bₙx₁, x₂, ..., xₙ ≥ 0其中,c₁, c₂, ..., cₙ为目标函数的系数;aᵢₙ为约束条件的系数;b₁, b₂, ...,bₙ为约束条件的常数;x₁, x₂, ..., xₙ为变量。

四、解法线性规划问题的解法主要有下列两种方法:1. 图形法:适合于二维或者三维的线性规划问题,通过绘制约束条件的直线或者平面,找到可行域和最优解。

2. 单纯形法:适合于多维的线性规划问题,通过迭代计算,找到最优解。

单纯形法是一种高效的算法,广泛应用于实际问题中。

五、常见应用线性规划在实际问题中有广泛的应用,以下是一些常见的应用场景:1. 生产计划:确定最佳的生产方案,以最大化利润或者最小化成本。

2. 运输问题:确定最佳的物流方案,以最小化运输成本。

3. 资源分配:确定最佳的资源分配方案,以最大化效益或者最小化浪费。

线性规划知识点总结

线性规划知识点总结

线性规划知识点总结线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。

它在各个领域都有广泛的应用,包括经济学、工程学、管理学等。

本文将对线性规划的基本概念、模型构建、求解方法以及应用领域进行详细介绍。

一、基本概念1. 目标函数:线性规划的目标是最大化或者最小化一个线性函数,称为目标函数。

目标函数通常表示为Z = c1x1 + c2x2 + ... + cnxn,其中ci为系数,xi为决策变量。

2. 约束条件:线性规划的决策变量需要满足一系列线性约束条件,常用形式为a1x1 + a2x2 + ... + anxn ≤ b,其中ai为系数,b为常数。

3. 可行解:满足所有约束条件的决策变量取值称为可行解。

4. 最优解:在所有可行解中,使目标函数取得最大值或者最小值的解称为最优解。

二、模型构建1. 决策变量:根据具体问题确定需要优化的变量,通常用xi表示。

2. 目标函数:根据问题要求确定目标函数的系数,进而确定是最大化还是最小化。

3. 约束条件:根据问题中给出的条件,建立约束条件方程。

4. 非负约束:决策变量通常需要满足非负约束条件,即xi ≥ 0。

三、求解方法1. 图形法:对于二维线性规划问题,可以使用图形法进行求解。

首先绘制约束条件的直线,然后确定可行域,最后在可行域内找到目标函数的最优解。

2. 单纯形法:对于多维线性规划问题,常使用单纯形法进行求解。

单纯形法通过不断迭代,逐步接近最优解。

它基于线性规划的基本定理,即最优解一定在可行解的顶点上。

3. 整数规划:当决策变量需要取整数值时,可以使用整数规划方法进行求解。

整数规划问题通常更加复杂,求解时间较长。

四、应用领域1. 生产计划:线性规划可以用于确定最佳的生产计划,使得生产成本最小化或者利润最大化。

2. 运输问题:线性规划可以用于确定最佳的运输方案,使得运输成本最小化。

3. 资源分配:线性规划可以用于确定最佳的资源分配方案,使得资源利用率最高。

线性规划高中

线性规划高中
d 004
4 16 2 2 (x y ) min 5 9 16 25
3 x 4 y 4 (d为O到直线AB距离)
M
由图知kOA kOP kOC
x y2 0 y (2) x,y满足 x 2 y 4 0 求 最大值 x 2 y 3 0 y y0 解: kOP C x x0 B 其中P( x, y) A
9 2
B
O
x y 5 0 x y 0 x 3
y
x+y=0
5
-5 O
x
x-y+5=0
x=3
注:不等式组表示的平面区域是各不等式 所表示平面区域的公共部分。
1.点(-1,2)和(3,- 3)在直线3x+y-a=0两侧,则a的范围 解:点(-1,2)和(3,- 3)在直线3x+y-a=0的两侧,将这两 点坐标代入3x+y-a=0后,符号相反,
(1)画区域
(2)z 2 x 3 y化为y x 3 2 z 3 表示斜率为 ,纵截距为 的一组平行线 3 3
x 2 y 8 (4)解方程组 得点A(4,2) 4 x 16
(3)直线过点 A 时纵截距最大,此时z最大,过点 O 时z最小
zmax 2 4 3 6 14
z=2x+y
可行解: 满足约束条件的解(x,y) 即不等式组的解 可行域: 可行解组成的集合 (阴影部分) A(5,2),B(1,1) 最优解: 使目标函数取得最值的可行解 y x=1 2x+y=z 线性规划问题: 可行域 线性目标函数在线性约 最优解 束条件下的最值 的问题
o
1 x-4y+3=0

高中数学线性规划汇总

高中数学线性规划汇总

直线与线性规划由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下七类常见题型。

一、求线性目标函数的取值范围例1、 若x 、y 满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y 的取值范围是 ( )A 、[2,6]B 、[2,5]C 、[3,6]D 、(3,5]变式训练1:已知x ,y 满足约束条件 3005≤≥+≥+-x y x y x ,则y x z -=4的最小值为______________.变式训练2:若⎩⎨⎧≥+≤≤2,22y x y x ,则目标函数 z = x + 2 y 的取值范围是 ( )A .[2 ,6]B . [2,5]C . [3,6]D . [3,5]二、求可行域的面积例2、不等式组260302x y x y y +-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为 ( )A 、4B 、1C 、5D 、无穷大 变式训练1:由12+≤≤≤x y x y 及围成的几何图形的面积是多少?变式训练2:已知),2,0(∈a 当a 为何值时,直线422:422:2221+=+-=-a y a x l a y ax l 与及坐标轴围成的平面区域的面积最小?三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( ) A 、9个 B 、10个 C 、13个 D 、14个变式训练1:不等式3<+y x 表示的平面区域内的整点个数为( )A . 13个B . 10个C . 14个D . 17个变式训练2:.在直角坐标系中,由不等式组230,2360,35150,0x y x y x y y ->⎧⎪+-<⎪⎨--<⎪⎪<⎩所确定的平面区域内整点有( )A.3个B.4个C.5个D.6个四、求线性目标函数中参数的取值范围例4、已知x 、y 满足以下约束条件5503x y x y x +≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a 的值为 ( ) A 、-3 B 、3 C 、-1 D 、1变式训练1:不等式3|2|<++m y x 表示的平面区域包含点)0,0(和点),1,1(-则m 的取值范围是( )A .32<<-mB .60<<mC .63<<-mD .30<<m变式训练2:已知平面区域如右图所示,)0(>+=m y mx z 在平面区域内取得最大值的最优解有无数多个,则m 的值为( )A .207 B .207- C .21 D .不存在五、求非线性目标函数的最值例5、已知x 、y 满足以下约束条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x 2+y 2的最大值和最小值分别是( )A 、13,1B 、13,2C 、13,45 D、5变式训练1:: 已知实数y x ,满足条件⎪⎩⎪⎨⎧≤-≥-+≤-,03,05,0y y x y x 若不等式222)()(y x y x m +≤+恒成立,则实数m 的最大值是 .变式训练2:设O 为坐标原点,点()1,1,,4A M x y ⎛⎫⎪⎝⎭若满足不等式组21,2x y x OM OA y +≥⎧⎪≤⎨⎪≤⎩则uuu r uu r g 的最小值是___________.六、求约束条件中参数的取值范围例6、已知|2x -y +m|<3表示的平面区域包含点(0,0)和(-1,1),则m 的取值范围是 ( ) A 、(-3,6) B 、(0,6) C 、(0,3) D 、(-3,3) 变式训练1:已知点(3 , 1)和点(-4 , 6)在直线 3x –2y + m = 0 的两侧,则 ( )A .m <-7或m >24B .-7<m <24C .m =-7或m =24D .-7≤m ≤ 24变式训练2:在ABC ∆所包围的阴影区域内(包括边界),若有且仅有)2,4(B 是使得y ax z -=取得最大值的最优解,则实数a 的取值范围为( )A. 11<<-aB. 11≤≤-aC.11<≤-aD. 11≤<-a七·比值问题例7、 已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≤0,x ≥1,x +y -7≤0,则 yx 的取值范围是( ).(A )[95,6] (B )(-∞,95]∪[6,+∞)(C )(-∞,3]∪[6,+∞) (D )[3,6]变式训练1:已知x ,y 满足⎪⎩⎪⎨⎧≥-+≥≥≤-+0320,1052y x y x y x ,则3251x y x +++的最大值为___________,最小值为____________.变式训练2:变量x , y 满足条件430,35250,1.x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩设z=23121x y x --+, 则z min = ,z max = .巩固练习题:一、选择题,本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知点(3,1)和(-4,6)在直线3x -2y +a =0的两侧,则a 的取值范围是 ( )A. a <-1或a >24B. a =7或a =24C. -7<a <24D. -24<a <72.若x , y 满足约束条件210,0,0.x y x y +-≤⎧⎪≥⎨⎪≥⎩则x +2y 的最大值是 ( )A.[2,6]B.(2,5)C.(3,6)D.(3,5)3.满足|x |+|y |≤4的整点(横纵坐标均为整数)的点(x , y )的个数是 ( )A.16B.17C.40D.414.不等式x -2y +6>0表示的平面区域在直线x -2y +6=0的 ( )A.右上方B.右下方C.左上方D.左下方5.不等式组3,0,20x x y x y ≤⎧⎪+≥⎨⎪-+≥⎩表示的平面区域的面积等于 ( )A.28B.16C.439 D.1216.在直角坐标系中,由不等式组230,2360,35150,0x y x y x y y ->⎧⎪+-<⎪⎨--<⎪⎪<⎩所确定的平面区域内整点有 ( )A.3个B.4个C.5个D.6个7.点P (a , 4)到直线x -2y +2=0的距离等于且在不等式3x + y -3>0表示的平面区域内,则点P 的坐标为( )A .(16,-4)B .(16,4)C .(-16,4)D .(-16,-4)8.在直角坐标平面上,满足不等式组224640,233x y x y x y ⎧+--+≤⎪⎨-+-≥⎪⎩面积是 ( )A .6π+10B .9π-18C .8π-10D .18π-99.如图220x y -<表示的平面区域是 ( )10.已知点(3,1)和(-4,6)在直线3x -2y +a =0的两侧,则a 的取值范围是( )A .a <-7或a >24B .a =7或a =24 11.给出平面区域如图所示,其中A (5,3),B (1,1),C (1,5),若使目标函数z =ax +y (a >0)取得最大值的最优解有无穷多个,则a的值是( ) A .32B .21C .2D .23 12.某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘,根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式有 ( )A.5种B.6种C.7种D.8种二、填空题,本大题共6小题,每小题4分,满分24分,把正确的答案写在题中横线上.13.变量x , y 满足条件430,35250,1.x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩设z=y x , 则z min = ,z max = .14.已知集合A ={(x , y )│|x |+|y |≤1},B ={(x , y )|(y -x )(y +x )≤0},M =A ∩B ,则M 的面积为.15.设m 为平面内以A (4,1),B (-1,-6),C (-3,2)三点为顶点的三角形区域内(包括边界),当点(x , y )在区域m 上变动时,4x -3y 的最小值是 .16.设P (x ,y )是区域|x |+|y |≤1内的动点,则函数f (x ,y )=ax +y (a >0)的最大值是 . 17.下图所示的阴影区域用不等式组表示为18.若x ,y 满足不等式组5,26,0,0,x y x y x y +≤⎧⎪+≤⎨⎪≥≥⎩则使k =6x+8y 取得最大值的点的坐标是 .20. (本题满分12分)设实数x 、y 满足不等式组14,2|23|.x y y x ≤+≤⎧⎨+≥-⎩(1)作出点(x , y )所在的平面区域(2)设a >-1,在(1)所求的区域内,求函数f (x ,y )=y -ax 的最大21. (本题满分14分)某机械厂的车工分Ⅰ、Ⅱ两个等级,各级车工每人每天加工能力,成品合格率及日工资数如下表所示:工厂要求每天至少加工配件2400个,车工每出一个废品,工厂要损失2元,现有Ⅰ级车工8人,Ⅱ级车工12人,且工厂要求至少安排6名Ⅱ级车工,试问如何安排工作,使工厂每天支出的费用最少.22.(本题满分14分)某工厂要制造A种电子装置45台,B电子装置55台,为了给每台装配一个外壳,要从两种不同的薄钢板上截取,已知甲种薄钢板每张面积为2平方米,可作A的外壳3个和B 的外壳5个;乙种薄钢板每张面积3平方米,可作A和B的外壳各6个,用这两种薄钢板各多少张,才能使总的用料面积最小?23. (本题满分14分)私人办学是教育发展的方向,某人准备投资1200万元兴办一所完全中学,为了考虑社会效益和经济效益,对该地区教育市场进行调查,得出一组数据列表(以班级为单位):市场调查表根据物价部门的有关文件,初中是义务教育阶段,收费标准适当控制,预计除书本费、办公费以外每生每年可收取600元,高中每生每年可收取1500元.因生源和环境等条件限制,办学规模以20至30个班为宜,教师实行聘任制.初、高中的教育周期均为三年,请你合理地安排招生计划,使年利润最大,大约经过多少年可以收回全部投资?。

高中数学线性规划知识点汇总

高中数学线性规划知识点汇总

高中数学线性规划知识点汇总高中数学线性规划知识点汇总一、知识梳理1.目标函数:包含两个变量x和y的函数P=2x+y被称为目标函数。

2.可行域:由约束条件表示的平面区域被称为可行域。

3.整点:坐标为整数的点称为整点。

4.线性规划问题:在线性约束条件下,求解线性目标函数的最大值或最小值的问题被称为线性规划问题。

对于只包含两个变量的简单线性规划问题,可以使用图解法来解决。

5.整数线性规划:要求变量取整数值的线性规划问题被称为整数线性规划。

线性规划是一门研究如何使用最少的资源去最优地完成科学研究、工业设计、经济管理等实际问题的专门学科。

主要应用于以下两类问题:一是在资源有限的情况下,如何最大化任务的完成量;二是如何合理地安排和规划任务,以最小化资源的使用。

1.对于不含边界的区域,需要将边界画成虚线。

2.确定二元一次不等式所表示的平面区域的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一端为所求的平面区域。

若直线不过原点,通常选择原点代入检验。

3.平移直线y=-kx+P时,直线必须经过可行域。

4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域。

此时,变动直线的最佳位置一般通过这个凸多边形的顶点来确定。

5.简单线性规划问题就是求解在线性约束条件下线性目标函数的最优解。

无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:1)寻找线性约束条件和线性目标函数;2)由二元一次不等式表示的平面区域做出可行域;3)在可行域内求解目标函数的最优解。

积累知识:1.如果点P(x0,y0)在直线Ax+By+C=0上,则点P的坐标满足方程Ax0+y0+C=0.2.如果点P(x0,y0)在直线Ax+By+C=0上方(左上或右下),则当B>0时,Ax0+y0+C>0;当B<0时,Ax0+y0+C<0.3.如果点P(x0,y0)在直线Ax+By+C=0下方(左下或右下),则当B>0时,Ax0+y0+C0.注意:在直线Ax+By+C=0同一侧的所有点,将它们的坐标(x,y)代入Ax+By+C=0,所得实数的符号都相同。

高中数学必修5:简单的线性规划问题 知识点及经典例题(含答案)

高中数学必修5:简单的线性规划问题  知识点及经典例题(含答案)

简单的线性规划问题【知识概述】线性规划是不等式应用的一个典型,也是数形结合思想所体现的一个重要侧面.近年的考试中,通常考查二元一次不等式组表示的平面区域的图形形状以及目标函数的最大值或最小值,或求函数的最优解等问题.通过这节课的学习,希望同学们能够掌握线性规划的方法,解决考试中出现的各种问题.解决线性规划的数学问题我们要注意一下几点1.所谓线性规划就是在线性约束条件下求线性目标函数的最值问题;2.解决线性规划问题需要经历两个基本的解题环节(1)作出平面区域;(直线定”界”,特“点”定侧);(2)求目标函数的最值.(3)求目标函数z=ax+by最值的两种类型:①0b>时,截距最大(小),z的值最大(小);②0b>时,截距最大(小),z的值最小(大);【学前诊断】1.[难度] 易满足线性约束条件23,23,0,x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数z x y=+的最大值是()A.1B.32C.2D.32.[难度] 易设变量,x y满足约束条件0,0,220,xx yx y≥⎧⎪-≥⎨⎪--≤⎩则32z x y=-的最大值为( )A.0B.2C.4D.63. [难度] 中设1m >,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A.(1,1 B.(1)+∞ C .(1,3) D .(3,)+∞【经典例题】例1. 设变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =+的最大值为( )A.5B.4C.1D.8例2. 若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为( )A.4B.3C.2D.1例3. 设,x y 满足约束条件2208400,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数(0,0)z abx y a b =+>>的最小值为8,则a b +的最小值为____________.例4. 在约束条件下0,0,,24,x y x y s x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩当35s ≤≤时,目标函数32z x y =+的最大值的变化范围是( )A.[]6,15B.[]7,15 C.[]6,8 D.[]7,8例5. 设不等式组1230x x y y x ≥⎧⎪-+≥⎨⎪≥⎩,所表示平面区域是1,Ω平面区域2Ω与1Ω关于直线3490x y --=对称,对于1Ω中任意一点A 与2Ω中的任意一点B ,AB 的最小值等于( )A.285B.4C.125D.2例6.对于实数,x y ,若11,21,x y -≤-≤则21x y -+的最大值为_________.例7.在约束条件22240x y x y +++≤下,函数32z x y =+的最大值是___________.例8. 已知函数2()2(,)f x x ax b a b =++∈R ,且函数()y f x =在区间()0,1与()1,2内各有一个零点,则22(3)z a b =++的取值范围是( ).A.2⎫⎪⎪⎝⎭B.1,42⎛⎫ ⎪⎝⎭C.()1,2D.()1,4 例9. 奇函数()f x 在R 上是减函数,若,s t 满足不等式22(2)(2)f s s f t t -≤--,则当14s ≤≤时,t s的取值范围是( ). A.1,14⎡⎫-⎪⎢⎣⎭ B.1,14⎡⎤-⎢⎥⎣⎦ C.1,12⎡⎫-⎪⎢⎣⎭ D.1,12⎡⎤-⎢⎥⎣⎦例10. 某加工厂用某原料由甲车间加工出A 产品,由乙车间加工出B 产品.车间加工一箱原料需耗费工时10小时可加工出7千克A 产品,每千克 A 产品获利40元.乙车间加工一箱原料需耗费工时6小时可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70多箱原料的加工,每天甲、乙车间耗费工时总和不得超过480小时,甲、乙两车间每天获利最大的生产计划为(A )甲车间加工原料10箱,乙车间加工原料60箱(B )甲车间加工原料15箱,乙车间加工原料55箱(C )甲车间加工原料18箱,乙车间加工原料50箱(D )甲车间加工原料40箱,乙车间加工原料30箱【本课总结】线性规划是不等式和直线与方程的综合应用,是数形结合的和谐载体,也是高考中的重要考点,近几年的高考题中考查的频率较高,一般以考查基本知识和方法为主,属于基础类题,难度一般不高.1. 解决线性规划问题有一定的程序性:第一步:确定由二元一次不等式表示的平面区域;第二步:令z=0画直线0:0l ax by +=;第三步:平移直线0l 寻找使直线a z y x b b=-+截距取最值(最大或最小)的位置(最优解).第四步:将最优解坐标代入线性目标函数z ax by =+求出最值2. 解决线性规划问题要特别关注线性目标函数z ax by =+中b 的符号,若b >0,则使函数a z y x b b=-+的截距取最大(小)值的点,可使目标函数z ax by =+取最大(小)值,若b <0,则使函数a z y x b b=-+的截距取最大(小)值的点,可使目标函数z ax by =+取最小(大)值, b <0的情况是很多同学容易出现的盲点.3. 线性规划问题要重视数形结合思想的运用,善于将代数问题和几何问题相互转化,由线性规划问题引申的其它数形结合题目也要灵活掌握,如:将平面区域条件引申为:22240x y x y +++≤表示圆面等,将目标函数引申为:2224z x y x y =+++表示动点到定点的距离的最值问题;21y z x +=-表示动点与定点连线的斜率的最值问题等. 4. 线性规划问题首先作出可行域,若为封闭区域(即几条直线围成的区域)则一般在区域顶点处取得最大或最小值5. 线性规划中易错点提示(1)忽视平面区域是否包括边界.一般最优解都处于平面区域的边界顶点处,若平面区域不包含边界,则可能不存在最值.(2)忽视对线性目标函数z ax by =+中b 的符号的区分.(3)代数问题向其几何意义的转化困难.【活学活用】1. [难度] 中若不等式组⎪⎪⎩⎪⎪⎨⎧≤+≥≤+≥-ay x y y x y x 0220表示的平面区域是一个三角形,则a 的取值范围是( ) A.4,3⎡⎫+∞⎪⎢⎣⎭ B.(]0,1 C.41,3⎡⎤⎢⎥⎣⎦ D.(]40,1,3⎡⎫+∞⎪⎢⎣⎭2. [难度] 中 设变量x y ,满足约束条件1133x y x y x y ⎧--⎪+⎨⎪-<⎩,,.≥≥则目标函数4z x y =+的最大值为( ) A .4B .11C .12D .143. [难度] 中 已知变量x 、y 满足约束条件 20,1,70,x y y x x x y -+≤⎧⎪≥⎨⎪+-≤⎩则的取值范围是( ) A .9,65⎡⎤⎢⎥⎣⎦ B .9,5⎛⎤-∞ ⎥⎝⎦∪[)6,+∞ C .(],3-∞∪[)6,+∞ D .[3,6]。

高中数学线性规划知识总结+练习

高中数学线性规划知识总结+练习

(一) 知识内容1.二元一次不等式表示的区域对于直线(A 〉0)当B >0时, 表示直线上方区域; 表示直线的下方区域。

当B <0时, 表示直线下方区域; 表示直线的上方区域。

2.线性规划(1)不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件。

z =Ax +By 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z =Ax +By 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数。

另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示。

(2)一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.(3)那么,满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域。

在上述问题中,可行域就是阴影部分表示的三角形区域。

其中可行解()和()分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解。

线性目标函数的最值常在可行域的顶点处取得;而求最优整数解必须首先要看它们是否在可行(二)主要方法:用图解法解决简单的线性规划问题的基本步骤:1。

首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域)。

2.设z =0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解。

4。

最后求得目标函数的最大值及最小值.(三)典例分析:1。

二元一次不等式(组)表示的平面区域【例1】 画出下列不等式(或组)表示的平面区域⑴⑵求不等式表示的平面区域的面积。

2.区域弧长、面积问题【例2】 若不等式组所表示的平面区域被直线分为面积相等的两部分,则的值是( )A .B .C .D .【例3】 若,,且当时,恒有,则以,为坐标点所形成的平面区域的面积等于 .例题精讲高考要求板块一:线性规划【例4】已知钝角的最长边为,其余两边的长为、,则集合所表示的平面图形面积等于()A.B.C.D.【例5】如图,在平面直角坐标系中,是一个与轴的正半轴、轴的正半轴分别相切于点、的定圆所围成的区域(含边界),、、、是该圆的四等分点.若点、点满足且,则称优于.如果中的点满足:不存在中的其它点优于,那么所有这样的点组成的集合是劣弧()A.B.C.D.【例6】已知是由不等式组所确定的平面区域,则圆在区域内的弧长为( )A. B.C.D.3.线性规划【例7】设变量,满足约束条件:.则目标函数的最小值为()A.6 B.7 C.8 D.23【变式】已知实数、满足,则的最大值是( )A.B.C.D.【例8】已知点的坐标满足条件,点为坐标原点,那么的最小值等于______,最大值等于______.【例9】设变量,满足约束条件,则函数的最大值为()A.B.C.D.【例10】若实数满足,则的最小值为.4。

高一线性规划问题知识点

高一线性规划问题知识点

高一线性规划问题知识点在高中数学课程中,线性规划是一个非常重要的概念。

线性规划是运筹学的一个分支,旨在通过确定一组变量的取值,使得一个线性目标函数在一系列线性约束条件下达到最大或最小值。

它在实际生活中有很多应用,比如生产计划、资源分配等。

一、线性规划的基本概念线性规划的目标是找到使得目标函数取得最大或最小值的一组变量取值。

目标函数通常是一个线性函数,即它的各项之间不存在乘法关系。

约束条件也是一组线性不等式或等式,它们定义了变量取值的限制条件。

二、线性规划的解法方法解决线性规划问题的方法有很多,但其中最常用的是单纯形法。

单纯形法是通过逐步改进当前解,逐渐接近最优解的过程。

具体来说,单纯形法的基本思想是找到一个基础可行解,然后在基础可行解的基础上不断寻找更优解。

这个过程通过计算目标函数在可行解的基础上的变化量来完成。

三、线性规划的矩阵表示在线性规划中,我们可以用矩阵来表示目标函数和约束条件。

设目标函数为 f(x),约束条件为 AX=b,其中 x 是一个 m 维列向量,A 是一个 m × n 的矩阵,b 是一个 m 维列向量。

这样,线性规划问题可以表示为:min/max f(x)subject to AX=bx≥0四、线性规划问题的求解步骤解决线性规划问题的一般步骤如下:1. 确定目标函数和约束条件;2. 将目标函数和约束条件转化为矩阵表示;3. 通过单纯形法求解线性规划问题;4. 分析最优解。

五、线性规划问题的实际应用线性规划问题在实际生活中有着广泛的应用。

比如,在生产计划中,我们可以通过线性规划来确定产量和资源的最优配置,从而实现生产成本的最小化或产品质量的最大化。

在运输领域,线性规划可以帮助我们确定货物的最优配送方案,以减少运输成本。

此外,线性规划还可以应用于金融、市场营销、决策分析等领域。

六、线性规划问题的拓展线性规划问题的应用不仅限于线性目标函数和约束条件。

有时候,目标函数和约束条件可能是非线性的。

高三线性规划知识点

高三线性规划知识点

高三线性规划知识点线性规划是高中数学中的一个重要知识点,它在实际生活中有着广泛的应用。

本文将全面介绍高三线性规划的相关知识,包括定义、基本概念、解题步骤以及一些典型例题。

一、线性规划的定义线性规划是一种数学模型,用于求解一个线性函数在一组线性约束条件下的最优值。

在实际生活中,我们常常需要在一定的条件下寻找最优解,例如:生产成本最小、收益最大、资源利用最佳等等。

线性规划通过建立数学模型,帮助我们找到最优解。

二、线性规划的基本概念1. 目标函数:线性规划的目标通常是最大化或最小化一个线性函数。

这个函数被称为目标函数,记作Z。

2. 线性约束条件:线性规划的约束条件是一组线性不等式或等式,限制了变量的取值范围。

3. 变量:线性规划的变量是我们要求解的未知数,可以用任意字母表示。

4. 可行解:满足所有约束条件的解称为可行解。

可行解的集合称为可行域。

5. 最优解:在所有可行解中,使目标函数取到最大值或最小值的解称为最优解。

三、线性规划的解题步骤1. 建立数学模型:根据问题的描述,将目标函数和约束条件用代数式表示出来。

2. 确定可行域:将约束条件化为不等式形式,并将它们表示在坐标系中,找出它们的交集,确定可行域的范围。

3. 确定最优解:在可行域内寻找目标函数的极值点,得出最优解。

4. 检验最优解:将最优解代入原问题中,检验是否满足所有约束条件。

四、典型例题例题1:某工厂生产甲、乙两种产品,甲产品每吨利润为1000元,乙产品每吨利润为1200元。

已知生产一吨甲产品需要材料A 30千克,材料B 10千克;生产一吨乙产品需要材料A 20千克,材料B 40千克。

工厂每天可以使用材料A 600千克,材料B 200千克。

问如何安排生产,使得利润最大化?解:首先,我们定义两个变量x和y,分别表示甲、乙产品的生产量(吨)。

目标函数Z表示利润的最大值,即Z=1000x+1200y。

约束条件如下:30x+20y ≤ 60010x+40y ≤ 200x,y ≥ 0我们可以将该问题转化为图形解法,将约束条件绘制在坐标系中,确定可行域的范围。

高中线性规划

高中线性规划

高中线性规划引言概述:线性规划是数学中的一种优化方法,用于解决最大化或者最小化目标函数的问题。

在高中数学中,线性规划是一个重要的概念,它可以应用于各种实际问题,如资源分配、生产计划等。

本文将详细介绍高中线性规划的概念、应用以及解题方法。

一、线性规划的基本概念1.1 目标函数:线性规划的目标是最大化或者最小化一个线性函数,该函数称为目标函数。

目标函数通常表示为Z = c1x1 + c2x2 + ... + cnxn,其中ci为常数,xi 为变量。

1.2 约束条件:线性规划的解必须满足一组约束条件,这些条件通常表示为一组线性不等式或者等式。

例如,Ax ≤ b,其中A是一个矩阵,x和b是向量。

1.3 可行解和最优解:满足所有约束条件的解称为可行解。

在可行解中,使目标函数达到最大或者最小值的解称为最优解。

二、线性规划的应用领域2.1 生产计划:线性规划可以用于确定最佳的生产计划,以最大化利润或者最小化成本。

通过考虑资源约束和市场需求,可以确定每种产品的生产量。

2.2 资源分配:线性规划可以用于确定资源的最佳分配方式,以最大化资源利用率或者最小化浪费。

例如,可以确定每一个部门的资源分配,以满足不同项目的需求。

2.3 运输问题:线性规划可以用于解决运输问题,即确定如何将货物从供应地点运送到需求地点,同时最小化运输成本。

三、线性规划的解题方法3.1 图形法:对于二维问题,可以使用图形法来解决线性规划问题。

通过绘制目标函数和约束条件的图形,可以确定最优解所在的区域。

3.2 单纯形法:对于多维问题,单纯形法是一种常用的解题方法。

该方法通过迭代计算,逐步接近最优解。

3.3 整数规划:在某些情况下,变量的值必须是整数。

这种情况下,可以使用整数规划方法来解决问题。

整数规划通常比线性规划更复杂,需要使用特定的算法进行求解。

四、线性规划的局限性4.1 线性假设:线性规划假设目标函数和约束条件都是线性的,但实际问题中往往存在非线性因素。

高中线性规划

高中线性规划

高中线性规划一、概述线性规划是运筹学中的一种优化方法,通过建立数学模型,解决最大化或最小化目标函数的问题。

在高中数学中,线性规划是一种重要的内容,旨在培养学生的数学建模和解决实际问题的能力。

本文将详细介绍高中线性规划的基本概念、解题步骤和应用案例。

二、基本概念1. 目标函数:线性规划的目标是通过最大化或最小化目标函数来寻找最优解。

目标函数通常是一个线性函数,可以表示为z = c₁x₁ + c₂x₂ + ... + cₙxₙ,其中c₁、c₂、...、cₙ为常数,x₁、x₂、...、xₙ为变量。

2. 约束条件:线性规划的解必须满足一系列约束条件,通常表示为一组线性不等式或等式。

约束条件可以用不等式组的形式表示,如a₁x₁ + a₂x₂ + ... + aₙxₙ ≤ b,也可以用等式组的形式表示,如a₁x₁ + a₂x₂ + ... + aₙxₙ = b。

3. 变量:线性规划中的变量表示问题中需要求解的未知数,通常用x₁、x₂、...、xₙ表示。

三、解题步骤1. 建立数学模型:根据实际问题,确定目标函数和约束条件,并将其转化为数学模型。

2. 确定可行域:将约束条件表示为几何图形,确定可行域,即满足所有约束条件的解集合。

3. 确定最优解:在可行域内,确定目标函数的最大值或最小值。

可以使用图形法、代入法或单纯形法等方法求解。

4. 检验最优解:将最优解代入原问题,验证是否满足所有约束条件。

四、应用案例假设某公司生产两种产品A和B,每单位产品A的利润为5元,每单位产品B 的利润为8元。

公司的生产能力限制为每天生产A产品不超过1000个,B产品不超过800个。

另外,公司的销售部门预计每天销售A产品最多900个,B产品最多700个。

问如何安排生产,使得利润最大化?解题步骤如下:1. 建立数学模型:设x₁为生产的A产品数量,x₂为生产的B产品数量。

目标函数:z = 5x₁ + 8x₂(最大化利润)约束条件:- 生产能力限制:x₁ ≤ 1000,x₂ ≤ 800- 销售限制:x₁ ≤ 900,x₂ ≤ 700- 非负约束:x₁ ≥ 0,x₂ ≥ 02. 确定可行域:根据约束条件,绘制出可行域的图形。

高中线性规划

高中线性规划

高中线性规划引言概述:高中线性规划是数学中的一个重要概念,它是一种用于解决最优化问题的数学方法。

线性规划可以应用于各种实际情况,如资源分配、生产计划和投资决策等。

本文将详细介绍高中线性规划的基本概念、解决方法和实际应用。

一、线性规划的基本概念1.1 目标函数:线性规划中的目标函数是需要最小化或最大化的线性表达式。

它通常表示为一系列变量的线性组合。

1.2 约束条件:线性规划中的约束条件是限制变量取值范围的条件。

这些条件可以是等式或不等式,用于限制解的可行域。

1.3 可行解:满足所有约束条件的解称为可行解。

线性规划的目标是找到一个最优可行解,使目标函数达到最小值或最大值。

二、线性规划的解决方法2.1 图形法:对于二维线性规划问题,可以通过绘制约束条件的图形来求解最优解。

最优解通常出现在可行域的顶点上。

2.2 单纯形法:对于多维线性规划问题,可以使用单纯形法进行求解。

该方法通过迭代计算,逐步接近最优解。

单纯形法是一种高效且广泛使用的线性规划求解算法。

2.3 整数规划:当问题要求变量取整数值时,可以使用整数规划方法求解。

整数规划是线性规划的扩展,它在求解过程中限制变量取值为整数。

三、线性规划的实际应用3.1 资源分配:线性规划可以用于优化资源的分配,如生产线上的机器分配、员工排班和原材料采购等。

通过合理安排资源的使用,可以最大化效益并降低成本。

3.2 生产计划:线性规划可以应用于生产计划中,如确定产品的生产数量和生产时间。

通过最优化生产计划,可以提高生产效率和产品质量。

3.3 投资决策:线性规划可以帮助进行投资决策,如确定投资的资金分配和投资组合。

通过最优化投资决策,可以实现最大化回报和降低风险。

四、线性规划的局限性和发展方向4.1 非线性问题:线性规划只适用于目标函数和约束条件均为线性的问题。

对于非线性问题,需要采用其他数学方法进行求解。

4.2 多目标优化:线性规划只能处理单一目标的优化问题。

对于多目标优化问题,需要引入多目标规划方法进行求解。

高中数学知识点精讲精析 简单线性规划

高中数学知识点精讲精析 简单线性规划

3.4.2 简单线性规划1. 相关定义:(1)线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。

(2)可行解:满足线性约束条件的解叫做可行解。

(3)可行域:由所有可行解组成的集合叫做可行域。

(4)最优解:分别使目标函数取得最大值和最小值的可行解叫做最优解。

2. 线性规划问题的求解步骤:(1)先设出决策变量,找出约束条件和线性目标函数;(2)作出相应的图象(注意特殊点与边界)(3)利用图象,在线性约束条件下找出决策变量,使线性目标函数达到最大(小)值;在在求线性目标函数的最大(小)值时,直线往右(左)平移则值随之增大(小),这样就可以在可行域中确定最优解。

注:①对线性目标函数中的符号一定要注意:当时,当直线过可行域且在y 轴截距最大时,值最大,在y 轴截距最小时,值最小;当时,当直线过可行域且在y 轴截距最大时,值最小,在y 轴截距最小时,值最大。

②如果可行域是一个多边形,那么一般在其顶点处使目标函数取得最大或最小值,最优解一般就是多边形的某个顶点。

例1:设满足约束条件:,分别求下列目标函数的的最大值与最小值:(1); (2);(3)(是整数); (4); (5) 示中的区域,且【解析】先作可行域,如下图所求得、、),(y x ny mx z +=0=+ny mx By Ax z +=B 0>B z z 0<B z z y x ,⎪⎩⎪⎨⎧≥≤+-≤-1255334x y x y x y x z 106+=y x z -=2y x z -=2y x ,22y x +=ω1+=x y ωABC ∆)2,5(A)1,1(B )522,1(C(1)作出直线,再将直线平移,当的平行线过点B 时,可使达到最小值;当的平行线过点A 时,可使达到最大值。

故,(2)同上,作出直线,再将直线平移,当的平行线过点C 时,可使达到最小值;当的平行线过点A 时,可使达到最大值。

高中数学线性规划知识点汇总

高中数学线性规划知识点汇总

高中数学线性规划知识点汇总一、知识梳理1 目标函数:P=2x+y是一个含有两个变量x和y的函数,称为目标函数。

2 可行域:约束条件表示的平面区域称为可行域。

3 整点:坐标为整数的点叫做整点。

4 线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题。

只含有两个变量的简单线性规划问题可用图解法来解决。

5 整数线性规划:要求量整数的线性规划称为整数线性规划。

线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科,主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定和条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务。

1 对于不含边界的区域,要将边界画成虚线。

2 确定二元一次不等式所表示的平面区域有种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一端为所求的平面区域。

若直线不过原点,通常选择原点代入检验。

3 平移直线y=-kx+P时,直线必须经过可行域。

4 对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点。

5 简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等于表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解。

积储知识:一、1.占P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+ y0+C=02.点P(x0,y0)在直线Ax+By+C=0上方(左上或右下),则当B>0时,Ax0+ y0+C >0;当B<0时,Ax0+ y0+C<03.点P(x0+,y0)D在直线Ax0+ y0+C=0下方(左下或右下),当B>0时,Ax0+ y0+C<0;当B>0时,Ax0+ y0+C>0注意:(1)在直线Ax+ By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+ By+C=0,所得实数的符号都相同。

线性规划知识点总结

线性规划知识点总结

线性规划知识点总结线性规划是一种数学优化方法,用于在给定的约束条件下,寻找一个线性模型的最优解。

它在各个领域都有广泛的应用,包括经济学、管理学、工程学等。

一、线性规划的基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,称为目标函数。

通常表示为Z = c1x1 + c2x2 + ... + cnxn。

2. 决策变量:表示问题中需要决策的变量,通常用x1, x2, ..., xn表示。

3. 约束条件:线性规划问题必须满足一定的约束条件,这些约束条件可以是等式或不等式。

例如,Ax ≤ b 或 Ax = b。

4. 可行解:满足所有约束条件的解称为可行解。

5. 最优解:在所有可行解中,使目标函数达到最大或最小值的解称为最优解。

二、线性规划的解法1. 图形法:对于二维线性规划问题,可以使用图形法进行求解。

首先绘制约束条件的图形,然后找到目标函数的等高线,最后确定最优解的位置。

2. 单纯形法:对于多维线性规划问题,可以使用单纯形法进行求解。

单纯形法是一种迭代算法,通过不断移动到更优的解来寻找最优解。

3. 整数规划:当问题的决策变量需要取整数值时,称为整数规划。

整数规划问题的求解相对更复杂,可以使用分支定界法等方法进行求解。

三、线性规划的应用1. 生产计划:线性规划可以用于优化生产计划,例如确定每个产品的生产数量,以最大化利润或最小化成本。

2. 运输问题:线性规划可以用于解决运输问题,例如确定货物从不同地点到达目的地的最佳路径和运输量。

3. 投资组合:线性规划可以用于优化投资组合,例如确定不同资产的投资比例,以最大化收益或最小化风险。

4. 供应链管理:线性规划可以用于优化供应链管理,例如确定不同供应商的采购量和价格,以最小化总成本。

5. 能源优化:线性规划可以用于能源优化,例如确定不同能源来源的使用量,以最大化能源效率。

四、线性规划的局限性1. 线性假设:线性规划基于线性假设,即目标函数和约束条件都是线性的。

高中数学线性规划题型总结

高中数学线性规划题型总结

高考线性规划归类解析一、已知线性约束条件,探求线性目标关系最值问题2x y2例 1、设变量 x、y 满足约束条件x y 1 ,则z 2 x 3 yx y1的最大值为。

解析:如图 1,画出可行域,得在直线2x-y=2 与直线 x-y=-1的交点 A(3,4) 处,目标函数z 最大值为 18点评:本题主要考查线性规划问题,由线性约束条件画出可行域 ,然后求出目标函数的最大值.,是一道较为简单的送分题。

数形结合是数学思想的重要手段之一。

二、已知线性约束条件,探求非线性目标关系最值问题图 1x 1,例 2、已知x y10,则 x2y2的最小值是.2x y20解析:如图 2,只要画出满足约束条件的可行域,而x2y2表示可行域内一点到原点的距离的平方。

由图易知A( 1,2)是满足条件的最优解。

x2y2的最小值是为5。

点评:本题属非线性规划最优解问题。

求解关键是在挖掘目标关系几何意义的前提下,作出可行域,寻求最优解。

三、约束条件设计参数形式,考查目标函数最值范围问题。

图 2x0C例 3 、在约束条件y0下,当 3s 5 时,目标函数y x sy 2x4z3x 2y 的最大值的变化范围是()A. [6,15]B. [7,15]C. [6,8]D. [7,8]解析:画出可行域如图 3 所示,当 3s 4 时 , 目标函数z3x2y在 B(4s,2 s4) 处取得最大值,即zmax3(4s) 2(2s 4)s 4[7,8); 当 4s 5 时 , 目标函数z 3x2y在点E(0, 处取得最大值,即z max 3 0 2 48,故z[7,8],从而选 D;点评:本题设计有新意,作出可行域,寻求最优解条件,然后转化为目标函数Z 关于 S的函数关系是求解的关键。

四、已知平面区域,逆向考查约束条件。

例 4、已知双曲线x2y2 4 的两条渐近线与直线x 3 围成一个三角形区域 ,表示该区域的不等式组是()x y 0x y 0x y 0x y 0(A) x y 0(B)x y 0(C) x y0(D) x y 00 x 30 x 30 x 30 x 3解析:双曲线 x2y2 4 的两条渐近线方程为y x ,与直线 x 3围成一个三角形区域(如图4 所示)时有x y 0 。

线性规划知识点总结

线性规划知识点总结

线性规划知识点总结线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。

它在诸多领域中都有广泛的应用,如生产计划、物流调度、投资组合等。

本文将对线性规划的基本概念、模型建立、解法和应用进行详细总结。

一、基本概念1. 目标函数:线性规划的目标是最大化或者最小化一个线性函数,称为目标函数。

它通常表示为Z = c₁x₁ + c₂x₂ + ... + cₙxₙ,其中c₁、c₂、...、cₙ为常数,x₁、x₂、...、xₙ为决策变量。

2. 约束条件:线性规划的约束条件是一组线性等式或者不等式,限制了决策变量的取值范围。

约束条件通常表示为a₁x₁ + a₂x₂ + ... + aₙxₙ ≤ b,其中a₁、a₂、...、aₙ为常数,b为常数。

3. 可行解:满足所有约束条件的决策变量取值组合称为可行解。

4. 最优解:在所有可行解中,使得目标函数取得最大值或者最小值的解称为最优解。

二、模型建立1. 决策变量的确定:根据实际问题,确定需要优化的决策变量及其取值范围。

2. 目标函数的建立:根据问题要求,将目标转化为线性函数,并确定系数。

3. 约束条件的建立:根据问题中给出的限制条件,将其转化为线性等式或者不等式,并确定系数。

4. 模型的完整表达:将目标函数和约束条件整合在一起,形成线性规划模型。

三、解法1. 图形法:对于二维或者三维的线性规划问题,可以通过绘制约束条件的图形来找到最优解。

2. 单纯形法:对于高维的线性规划问题,可以使用单纯形法进行求解。

单纯形法是一种迭代算法,通过不断挪移顶点来寻觅最优解。

3. 整数规划:当决策变量需要取整数值时,可以使用整数规划方法进行求解。

整数规划问题通常比线性规划问题更难求解,可以使用分支定界法等算法进行求解。

四、应用1. 生产计划:线性规划可以匡助企业确定最佳的生产计划,使得生产成本最小化或者利润最大化。

2. 物流调度:线性规划可以优化物流调度方案,使得运输成本最低或者配送时间最短。

高三数学线性规划知识点

高三数学线性规划知识点

高三数学线性规划知识点线性规划是数学中的一个重要分支,广泛应用于经济、管理、工程等领域。

它通过建立数学模型,寻找一组最佳决策方案,以实现特定的目标。

在高三数学学习中,线性规划是一个重要的知识点,本文将介绍线性规划的基本概念、常见问题类型以及解题方法。

一、线性规划的基本概念1. 目标函数:线性规划的目标是在一组约束条件下,最大化或最小化一个线性函数,这个线性函数就是目标函数。

通常用Z表示目标函数的值。

2. 变量:目标函数中的每个变量都代表一个决策变量,这些变量的取值将影响目标函数的计算结果。

3. 约束条件:线性规划的一个重要特点是存在一组约束条件,这些约束条件限制了决策变量的取值范围。

约束条件通常是由一组线性不等式或等式表示。

4. 可行解:满足所有约束条件的解称为可行解。

5. 最优解:在所有可行解中,使得目标函数达到最大值或最小值的解称为最优解。

二、线性规划的问题类型1. 单纯形法:单纯形法是一种常用的线性规划求解方法。

它通过不断优化目标函数的值,逐步接近最优解。

单纯形法通过迭代计算一系列基础可行解,直到找到最优解为止。

2. 对偶性定理:线性规划中的对偶性定理是指对于一个标准型的线性规划问题,它与其对偶问题具有相同的最优解。

3. 整数线性规划:当决策变量要求为整数时,这就是一个整数线性规划问题。

整数线性规划的求解更加困难,常常需要借助于分支定界等特殊算法。

4. 网络流线性规划:网络流线性规划是线性规划与图论相结合的一种问题类型。

它通常用于解决最小费用流、最大流等网络优化问题。

三、线性规划的解题方法1. 图形法:对于二维线性规划问题,可以使用图形法进行求解。

首先绘制出约束条件所构成的区域,然后绘制目标函数的等高线,并找到最优解所在的点。

2. 单纯形法:对于高维的线性规划问题,可以使用单纯形法进行求解。

单纯形法通过迭代计算一系列基础可行解,直到找到最优解为止。

3. 对偶问题:通过建立原始问题与对偶问题之间的关系,可以将原始问题的求解转化为对偶问题的求解。

高中线性规划

高中线性规划

高中线性规划线性规划是运筹学中的一种数学方法,用于解决最优化问题。

在高中数学中,线性规划是一种重要的应用题型,涉及到数学模型的建立和求解。

本文将详细介绍高中线性规划的标准格式以及相关概念和求解方法。

一、线性规划的标准格式线性规划的标准格式可以用如下形式表示:最大(最小)化目标函数:Z = c₁x₁ + c₂x₂ + ... + cₙxₙ约束条件:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ非负约束条件:x₁, x₂, ..., xₙ ≥ 0其中,Z表示目标函数值,c₁, c₂, ..., cₙ为目标函数中的系数,x₁, x₂, ..., xₙ为决策变量,a₁₁, a₁₂, ..., aₙₙ为约束条件中的系数,b₁, b₂, ..., bₙ为约束条件的右侧常数。

二、线性规划的相关概念1. 决策变量:线性规划中需要决策的变量,通常表示为x₁, x₂, ..., xₙ。

2. 目标函数:线性规划中需要最大化或最小化的函数,通常表示为Z = c₁x₁+ c₂x₂ + ... + cₙxₙ。

3. 约束条件:线性规划中对决策变量的限制条件,通常表示为a₁₁x₁ +a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁,a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂,...,aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ。

4. 可行解:满足所有约束条件的解。

5. 最优解:在所有可行解中,使目标函数取得最大(最小)值的解。

三、线性规划的求解方法线性规划可以使用图形法、单纯形法和对偶理论等方法进行求解。

下面将介绍其中两种常用的求解方法。

1. 图形法:适用于二维线性规划问题。

首先,根据约束条件绘制出可行域的图形,然后确定目标函数的等高线,最后在可行域内寻找使目标函数取得最大(最小)值的点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与线性规划由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下七类常见题型。

一、求线性目标函数的取值范围例1、 若x 、y 满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y 的取值范围是 ( )A 、[2,6]B 、[2,5]C 、[3,6]D 、(3,5]变式训练1:已知x ,y 满足约束条件 305≤≥+≥+-x y x y x ,则y x z -=4的最小值为______________.变式训练2:若⎩⎨⎧≥+≤≤2,22y x y x ,则目标函数 z = x + 2 y 的取值范围是 ( ) A .[2 ,6] B . [2,5]C . [3,6]D . [3,5] 二、求可行域的面积例2、不等式组260302x y x y y +-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为 ( )A 、4B 、1C 、5D 、无穷大变式训练1:由12+≤≤≤x y x y 及围成的几何图形的面积是多少?变式训练2:已知),2,0(∈a 当a 为何值时,直线422:422:2221+=+-=-a y a x l a y ax l 与及坐标轴围成的平面区域的面积最小?三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( )A 、9个B 、10个C 、13个D 、14个变式训练1:不等式3<+y x 表示的平面区域内的整点个数为 ( )A . 13个B . 10个C . 14个D . 17个变式训练2:.在直角坐标系中,由不等式组230,2360,35150,0x y x y x y y ->⎧⎪+-<⎪⎨--<⎪⎪<⎩所确定的平面区域内整点有( ) A.3个 B.4个 C.5个 D.6个四、求线性目标函数中参数的取值范围例4、已知x 、y 满足以下约束条件5503x y x y x +≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a 的值为 ( )A 、-3B 、3C 、-1D 、1变式训练1:不等式3|2|<++m y x 表示的平面区域包含点)0,0(和点),1,1(-则m 的取值范围是( ) A .32<<-m B .60<<m C .63<<-m D .30<<m变式训练2:已知平面区域如右图所示,)0(>+=m y mx z 在平面区域内取得最大值的最优解有无数多个,则m 的值为( )A .207B .207-C .21D .不存在 五、求非线性目标函数的最值 例5、已知x 、y 满足以下约束条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩ 最小值分别是( )A 、13,1B 、13,2C 、13,45D 、 变式训练1:: 已知实数y x ,满足条件⎪⎩⎪⎨⎧≤-≥-+≤-,03,05,0y y x y x 若不等式222)()(y x y x m +≤+恒成立,则实数m 的最大值是 .变式训练2:设O 为坐标原点,点()1,1,,4A M x y ⎛⎫ ⎪⎝⎭若满足不等式组21,2x y x OM OA y +≥⎧⎪≤⎨⎪≤⎩则uuu r uu r g 的最小值是___________.六、求约束条件中参数的取值范围例6、已知|2x -y +m|<3表示的平面区域包含点(0,0)和(-1,1),则m 的取值范围是 ( )A 、(-3,6)B 、(0,6)C 、(0,3)D 、(-3,3) 变式训练1:已知点(3 , 1)和点(-4 , 6)在直线 3x –2y + m = 0 的两侧,则( )A .m <-7或m >24B .-7<m <24C .m =-7或m =24D .-7≤m ≤ 24变式训练2:在ABC ∆所包围的阴影区域内(包括边界),若有且仅有)2,4(B 是使得y ax z -=取得最大值的最优解,则实数a 的取值范围为( )A. 11<<-aB. 11≤≤-aC.11<≤-aD. 11≤<-a七·比值问题例7、 已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≤0,x ≥1,x +y -7≤0,则 y x 的取值范围是( ). (A )[95,6] (B )(-∞,95]∪[6,+∞) (C )(-∞,3]∪[6,+∞) (D )[3,6]变式训练1:已知x ,y 满足⎪⎩⎪⎨⎧≥-+≥≥≤-+0320,1052y x y x y x ,则3251x y x +++的最大值为___________,最小值为____________. 变式训练2:变量x , y 满足条件430,35250,1.x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩设z=23121x y x --+, 则z min = ,z max = .巩固练习题:一、选择题,本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知点(3,1)和(-4,6)在直线3x -2y +a =0的两侧,则a 的取值范围是 ( )A. a <-1或a >24B. a =7或a =24C. -7<a <24D. -24<a <72.若x , y 满足约束条件210,0,0.x y x y +-≤⎧⎪≥⎨⎪≥⎩则x +2y 的最大值是 ( )A.[2,6]B.(2,5)C.(3,6)D.(3,5)3.满足|x |+|y |≤4的整点(横纵坐标均为整数)的点(x , y )的个数是 ( )A.16B.17C.40D.414.不等式x -2y +6>0表示的平面区域在直线x -2y +6=0的 ( )A.右上方B.右下方C.左上方D.左下方5.不等式组3,0,20x x y x y ≤⎧⎪+≥⎨⎪-+≥⎩表示的平面区域的面积等于 ( )A.28B.16C.439D.1216.在直角坐标系中,由不等式组230,2360,35150,0x y x y x y y ->⎧⎪+-<⎪⎨--<⎪⎪<⎩所确定的平面区域内整点有 ( ) A.3个 B.4个 C.5个 D.6个7.点P (a , 4)到直线x -2y +2=0的距离等于且在不等式3x + y -3>0表示的平面区域内,则点P 的坐标为( )A .(16,-4)B .(16,4)C .(-16,4)D .(-16,-4)8.在直角坐标平面上,满足不等式组224640,233x y x y x y ⎧+--+≤⎪⎨-+-≥⎪⎩面积是 ( )A .6π+10B .9π-18C .8π-10D .18π-99.如图220x y -<表示的平面区域是 ( )10.已知点(3,1)和(-4,6)在直线3x -2y +a =0的两侧,则a 的取值范围是( )A .a <-7或a >24B .a =7或a =2411.给出平面区域如图所示,其中A (5,3),B (1,1),C (1,5),若使目标函数z =ax +y (a >0)取得最大值的最优解有无穷多个,则a 的值是 ( )A .32B .21C .2D .23 12.某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘,根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式有 ( )A.5种B.6种C.7种D.8种二、填空题,本大题共6小题,每小题4分,满分24分,把正确的答案写在题中横线上.13.变量x , y 满足条件430,35250,1.x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩设z=y x , 则z min = ,z max = . 14.已知集合A ={(x , y )│|x |+|y |≤1},B ={(x , y )|(y -x )(y +x )≤0},M =A ∩B ,则M 的面积为 .15.设m 为平面内以A (4,1),B (-1,-6),C (-3,2)三点为顶点的三角形区域内(包括边界),当点(x , y )在区域m 上变动时,4x -3y 的最小值是 .16.设P (x ,y )是区域|x |+|y |≤1内的动点,则函数f (x ,y )=ax +y (a >0)的最大值是 .17.下图所示的阴影区域用不等式组表示为 185,6,0,y y y ≤≤≥ 则使k =6x+8y 取得最大值的点的坐标是 . 20. 设实数x 、y 满足不等式组14,2|23|.x y y x ≤+≤⎧⎨+≥-⎩ (1)作出点(x , y )所在的平面区域(2)设a >-1,在(1)所求的区域内,求函数f (x ,y )=y -ax 的最大21. (本题满分14分)某机械厂的车工分Ⅰ、Ⅱ两个等级,各级车工每人每天加工能力,成品合格率及日工资数如下表所示:工厂要求每天至少加工配件2400个,车工每出一个废品,工厂要损失2元,现有Ⅰ级车工8人,Ⅱ级车工12人,且工厂要求至少安排6名Ⅱ级车工,试问如何安排工作,使工厂每天支出的费用最少.22.(本题满分14分)某工厂要制造A 种电子装置45台,B 电子装置55台,为了给每台装配一个外壳,要从两种不同的薄钢板上截取,已知甲种薄钢板每张面积为2平方米,可作A 的外壳3个和B 的外壳5个;乙种薄钢板每张面积3平方米,可作A 和B 的外壳各6个,用这两种薄钢板各多少张,才能使总的用料面积最小?23. (本题满分14分)私人办学是教育发展的方向,某人准备投资1200万元兴办一所完全中学,为了考虑社会效益和经济效益,对该地区教育市场进行调查,得出一组数据列表(以班级为单位):市场调查表根据物价部门的有关文件,初中是义务教育阶段,收费标准适当控制,预计除书本费、办公费以外每生每年可收取600元,高中每生每年可收取1500元.因生源和环境等条件限制,办学规模以20至30个班为宜,教师实行聘任制.初、高中的教育周期均为三年,请你合理地安排招生计划,使年利润最大,大约经过多少年可以收回全部投资?。

相关文档
最新文档