工程力学全套课件 第12章-弯曲变形

合集下载

第十二章工程力学之组合变形方案

第十二章工程力学之组合变形方案
解得: T=P
将T分解为沿AC杆轴线的分量Tx和垂直于轴线的分量Ty
Tx T cos 30 40
3 34.6KN 2
Ty

T
sin 30

40
1 2

20KN
可见, Tx和Fcx使AC产生轴向压缩,而Ty、P和Fcy产生弯曲变 形,所以AC杆实际发生的是轴向压缩与弯曲的组合变形。
32 M
d 3

4 15 103
d 2
32 6 103
d 3
根据强度条件 t max [ ]

4 15 103
d 2

32
6 103
d 3

35 106
由上式可求得立柱的直径 d≥122mm
例12-3:如图12-6(a)所示,电动机的功率为9kW,转速为 715r/m,皮带轮直径D=250mm,电动机主轴外伸部分长度为 l=120mm,直径d=40mm。求外伸部分根部截面A、B两点的应力。
二、叠加原理
杆在组合变形下的应力和变形分析,一般可利用叠加原理。
叠加原理: 实践证明,在小变形和材料服从虎克定律的前提下, 杆在几个载荷共同作用下所产生的应力和变形,等于每个载荷 单独作用下所产生的应力和变形的总和。
当杆在外力作用下发生几种基本变形时,只要将载荷简化为一 系列发生基本变形的相当载荷,分别计算杆在各个基本变形下 所产生的应力和变形,然后进行叠加,就得到杆在组合变形下 的应力和变形。
M

M max Wy

35 103 2 152 106
115106
115MPa
截面上的弯曲正应力分布如图12-4(c)所示。 (4) 组合变形下的最大正应力

材料力学课件ppt-6弯曲变形

材料力学课件ppt-6弯曲变形

L 6
(x
a)3 ]
4、求转角
x 0 代入得:
A
1
x0
Fb(L2 b2 ) 6LEI
x L代入得:
B
2
xL
Fab(L 6LEI
a)
目录
5、求 ymax 。
由 dy 0 求得 ymax 的位置值x。
dx
A
Fb(L2 b2 ) 6LEI
0,
C
1
xa
Fab(a b) 3LEI
0( a
例6-4 已知:q、l、 EI,求:yC ,B
目录
w w w
目录
弯曲变形/用叠加法求梁的变形 w
B1
ql3 24 EI
,
wC1
5ql 4 384 EI
w
B3
(ql2 ) l 3EI
ql3
3EI
,
wC 3
3ql 4 48 EI
w
B2
(ql) l2 16 EI
ql3 16 EI
,
wC 2
(ql )l 3 48 EI
则简支梁的转角方程和挠度方程为
AC段 (0 x a)
1(x)
Fb 6LEI
[3x2
(L2
b2
)],
y1 ( x)
Fb 6LEI
[x3
(L2
b2 )x],
BC段 (a x L)
2 ( x)
Fb 6LEI
[3x2
(L2
b2 )]
F(x 2
a)2
,
y2
(x)
Fb 6LEI
[x3
(L2
b2)x
目录
§6-4 用叠加法求弯曲变形 一、叠加法前提

梁的弯曲(工程力学课件)

梁的弯曲(工程力学课件)

02 弯曲的内力—弯矩与剪力
3-3截面
M 3 q 2a a 2qa 2
4-4截面
qa 2
5qa 2
2
M 4 FB 2a M C
3qa
2
2
5-5截面
qa 2
M 5 FB 2a
2
02 弯曲的内力—弯矩与剪力
由以上计算结果可以看出:
(1)集中力作用处的两侧临近截面的弯矩相同,剪力不同,说明剪力在
后逐段画出梁的剪力图和弯矩图。
04 弯矩、剪力与载荷集度之间的关系
例8 悬臂梁AB只在自由端受集中力F作用,如图(a)所示,
试作梁的剪力图和弯矩图。
解:
1-1截面: Q1=-F M1=0
2-2截面: Q1=-F M1=-Fl
04 弯矩、剪力与载荷集度之间的关系
例9 简支梁AB在C点处受集中力F作用,如图(a)所示,作此梁的剪力
(2)建立剪力方程和弯矩方程;
(3)应用函数作图法画出剪力Q(x),弯矩M(x)的图线,即为剪力
图和弯矩图
03 弯矩图和剪力图
例9.3 悬臂梁AB在自由端B处受集中载荷F作用,如图(a)所示,试作
其剪力图和弯矩图。
解 :(1)建立剪力方程和弯矩方程
() = ( < < )
() = −( − ) ( ≤ ≤ )
方程和弯矩方程,并作剪力图和弯矩图。
解:(1)求支反力
(2)建立剪力方程和弯矩方程
03 弯矩图和剪力图
(3)绘制剪力图、弯矩图
计算下列5个截面的弯矩值:
03 弯矩图和剪力图
二、用简便方法画剪力图、弯矩图 (从梁的左端做起)
1.无载荷作用的梁段上 剪力图为水平线。 弯矩图为斜直线(两点式画图)。

《工程力学》教学课件第十二章弯曲应力

《工程力学》教学课件第十二章弯曲应力
简支梁
在均布载荷或集中力作用下,简支梁横截面上的正应力呈线 性分布,最大正应力出现在梁的中性层上。
悬臂梁
在自由端受到集中力或均布载荷作用时,悬臂梁横截面上的 正应力呈非线性分布,最大正应力出现在固定端附近。
叠加原理在复杂载荷下梁正应力计算中应用
叠加原理
当梁受到多个载荷作用时,可以将每个载荷单独作用时产生的弯曲变形和正应力进行叠加,从而得到梁在复杂载 荷作用下的总弯曲变形和正应力。
提高构件的弯曲疲劳强度。
06 弯曲应力实验测定方法
电阻应变片法测量原理及操作步骤
测量原理
基于电阻应变效应,通过测量应变片电阻值变化来推算 出试件应变,进而得到弯曲应力。
操作步骤
粘贴应变片、连接测量电路、加载试件、记录数据。
光弹性法测量原理及优缺点分析
01
02
03
测量原理
利用某些透明材料在偏振 光场中受力产生应力双折 射现象,通过光弹性仪器 分析得到应力分布。
其他截面形状(圆形、工字形等)梁剪应力计算方法
圆形截面梁
对于圆形截面梁,可以采用极坐标方法进行剪应力计算,或者将其等效为矩形截面进行 计算。
工字形截面梁
对于工字形截面梁,由于其截面形状复杂,一般采用数值方法进行剪应力计算,如有限 元法等。
剪应力对梁强度和稳定性影响分析
对强度的影响
剪应力过大会导致梁截面发生剪切破坏 ,从而降低梁的承载能力。
《工程力学》教学课件第十二章弯 曲应力
contents
目录
• 弯曲应力基本概念与原理 • 梁弯曲时正应力计算与分析 • 梁弯曲时剪应力计算与分析 • 弯曲变形与位移计算 • 弯曲强度条件与校核方法 • 弯曲应力实验测定方法
01 弯曲应力基本概念与原理

材料力学 弯曲变形ppt课件

材料力学  弯曲变形ppt课件

由此可见,M

d 2w dx2
始终保持同号,(d)式左边取“+”号,即有
6.1 引 言
d2w dx2
M(x) EI
〔6-2〕
式(6-2)称为梁挠曲线的近似微分方程。根据这个近似 微分方程所得的解,在工程中,已足够准确。
对于等截面梁,抗弯刚度EI为常量,式(6-2)可改写为
d2w EI dx2
M(x)
CB段:
E(I x) Fx2 b F (x a )2 F(b b 2 l2)
2 l 2
6 l
(g) 〔h〕
〔i〕
E(I x) w Fx3 b F (x a )3 F(b b 2 l2)x 〔j〕
6 l 6
6 l
6.1 引 言 〔5〕求梁的最大转角与最大挠度。
将x=0代入式〔g〕可得梁左端面的转角为
6.1 引 言
〔3〕分段建立梁的挠曲线近似微分方程。写出挠曲线
的近似微分方程分别为
AC段:
d2w b
EI dx2
l
Fx
CB段:
EIdd2xw 2 bl FxF(xa)
6.1 引 言
〔4〕积分法求变形。分别积分两次,可得
AC段:
EIdwFbx2 dx 2l
C1
(a)
EIwF6lbx3C1xD1
(b)
图6-3
6.1 引 言
解 选取坐标系如图6-3所示。距梁左端为x处截面的弯
矩为
M x W l x W W x l
代入式〔6-3〕,得挠曲线的近似微分方程为
EIdd2xw2 WxWl
将式〔a〕积分一次,得
EIdwW2xWlxC dx 2
再积分一次,得 W3x Wl2x

工程力学第12章弯曲变形

工程力学第12章弯曲变形

AC段 (0 ≤ x ≤ a) 段 BC段 (a ≤ x ≤ L) 段 Fb 2 Fb 2 F EIω1' = EIθ1 = x + C1, EIω2 ' = EIθ2 = x − (x − a)2 + C2 , 2L 2L 2 Fb 3 EIω1 = x + C1x + D , EIω2 = Fb x3 − F (x − a)3 + C2 x + D2 , 1 6L 6L 6 3、确定常数 、 边界条件: 边界条件:
θA 。
X
解:取参考坐标系Axy。 取参考坐标系 。 1、列出梁的弯矩方程 、
d 2ω M(x) 2、 、 2 = dx EIz
(0 ≤ x ≤ L)
1 2 EIω"= − qx 2 积分一次: 积分一次:EIω' = EIθ = − 1 qx3 + C(1) ) 1 46 积分二次: 积分二次: EIω = − qx + Cx + D (2) ) 24
2、积分常数的确定——边界条件和连续条件: 、积分常数的确定 边界条件和连续条件: 边界条件和连续条件 边界条件:梁在其支承处的挠度或转角是已知的,这样的 边界条件:梁在其支承处的挠度或转角是已知的, 已知条件称为边界条件。 已知条件称为边界条件。 连续条件:梁的挠曲线是一条连续、光滑、平坦的曲线。 连续条件:梁的挠曲线是一条连续、光滑、平坦的曲线。因 此,在梁的同一截面上不可能有两个不同的挠度 值或转角值,这样的已知条件称为连续条件。 值或转角值,这样的已知条件称为连续条件。
二、分段列出梁的挠曲线近似微分方程,并对其积分两次 分段列出梁的挠曲线近似微分方程, 1、对挠曲线近似微分方程积分一次,得转角方程: 、对挠曲线近似微分方程积分一次,得转角方程:

工程力学A 平面弯曲ppt

工程力学A 平面弯曲ppt

Pa(l x) 2 x a 2 2lx w2 6lEI



用叠加法求弯曲变形
叠加原理:梁的变形微小, 且梁在线弹性范
围内工作时, 梁在几项荷载(可以是集中力,
集中力偶或分布力)同时作用下的挠度和转
角, 就分别等于每一荷载单独作用下该截面
的挠度和转角的叠加。 这就是叠加原理。
例题: 一抗弯刚度为 EI 的简支梁受荷载如 图 所示。试按叠加原理求梁跨中点的挠度 wC和支座处横截面的转角A ,B 。 m
z
y x
(4)纯剪切应力状态
E
τ
max
三、
平面应力状态的分析 平面应力状态的普 遍形式如图所示
σy
τy
σx
a d
τx
y
σx
y
x
y
τx
τy σy
c
x
x
x
x
b
y
y
1、斜截面上的应力
y
x
y
y
n
e
x
e
x

xx
b

f

x
f b
x
y y
y
y
:从x 轴到外法线 n 逆时针转向为正,反之为负。 正应力 :拉应力为正,压应力为负。 切应力 :对单元体任一点的矩顺时针转为正,反之为负。
(0 x a)

1
Pb 3x 2 b 2 l 2 6lEI


2 Pbx 2 2 b w1 6lEI x l
DB

(a x l )
2 1 Pb 2 l 2 2 x ( x a) (b l ) 2 2lEI b 3

静力学和材料力学课件第十二章 弯曲变形(H)

静力学和材料力学课件第十二章 弯曲变形(H)
A
l
B
第十二章 弯曲变形
解:
ql q 2 M ( x) x x 2 2 ql q 2 EIw x x 2 2
y
q
B
x l x
ql 2 q 3 EIw x x C 4 6
A
ql 3 q 4 EIw x x Cx D 12 24
由边界条件:
x 0时,w 0 x l 时,w 0
得:
ql 3 C , D0 24
第十二章 弯曲变形
梁的转角方程和挠曲线方程分别为:
q (6lx 2 4 x 3 l 3 ) 24 EI
y
q
B
x l x
qx w (2lx 2 x 3 l 3 ) 24 EI
最大转角和最大挠度分别为:
A
max A
wmax w
常工作。
第十二章 弯曲变形
摇臂钻床的摇臂或车床的主轴变形过大,就会影响零件 的加工精度,甚至会出现废品。
F
F
第十二章 弯曲变形
桥式起重机的横梁变形过大,则会使小车行走困难, 出现爬坡现象。
P
P
第十二章 弯曲变形
但在另外一些情况下,有时却要求构件具有较大的
弹性变形,以满足特定的工作需要。
例如,车辆上的板弹簧,要求有足够大的变形, 以缓解车辆受到的冲击和振动作用。
画挠曲线的大致形状
3qa 4
qa 2
A B
q
C D
Q
+
_
qa 4
a
a
a
M
3qa 2 4
+
qa 2 4
qa 2 32
d w M x 2 EI dx

第十二章 弯曲应力 工程力学 教学课件 77页PPT文档

第十二章 弯曲应力 工程力学 教学课件 77页PPT文档
第十二章 弯曲应力
§12-1 梁弯曲时的正应力 §12-2 惯性矩的计算 §12-3 梁弯曲时的强度计算 §12-4 梁弯曲时的切应力 §12-5 提高弯曲强度的措施
梁横截面上 与弯矩M对应, 与剪力F对应。
M
FQ

12-1 梁弯曲时的正应力
一、弯曲分类
纯弯曲 (pure bending) ━━ 梁或梁上的某段内各横截面 上无剪力而只有弯矩,横截面上只有与弯矩对应的正应力。
根据对称性可知,原截面对于形心轴z和y的惯性矩Iz 和Iy是相等的,Iz= Iy,于是得
Iz
Iy

Ip 2
πd4 64
d
而弯曲截面系数为
Wz Wy
Iz d
Iy d
πd3
32
22
o
z
ry
z dA
y
(3) 空心圆截面
由于空心圆截面的面积A等于大圆的面积AD减去小圆
(即空心部分)的面积Ad故有
由于切应力的存在而发生翘曲(warping)。此外,横向力还 使各纵向线之间发生挤压(bearing)。因此,对于梁在纯弯曲
时所作的平面假设和纵向线之间无挤压的假设实际上都不
再成立。但弹性力学的分析结果表明,受满布荷载的矩形
截面简支梁,当其跨长与截面高度之比
l h
大于5时,梁的
跨中横截面上按纯弯曲理论算得的最大正应力其误差不超
b
d2
yc,max
h d
oz
o
z
Oz
d1
h
yt,max
y
y
y
b
(a)
(b)
(c)
中性轴 z 为横截面对称轴的梁 (图a,b) 其横截面上最大

《工程力学》最新备课课件:第十二章-静定结构的内力计算

《工程力学》最新备课课件:第十二章-静定结构的内力计算
l
0.086 ql2 l
q
x 0.172l
1 ql2 8
1 ql2 0.125ql2 8
与简支梁相比:弯矩较小而且均匀. 从分析过程看:附属部分上若无外力,其上也无内力。
二、静定平面刚架的内力计算
刚架的杆件主要是以弯曲变形为主的,是以梁和柱组成的 具有刚结点的结构。刚架的变形特点在于:它的刚结点处 各杆不能发生相对转动,因而各杆之间的夹角始终保持不 变。
最新版
《工程力学》
备课课件 第十二章:静定结构的内力计算
一、多跨静定梁的内力计算
静定结构几何特性:无多余约束的几何不变体系 静力特征:仅由静力平衡条件可求全部反力内力
1.单跨静定梁
(1)梁支反力 (2)截面法求指定截面内力 (3)作内力图的基本方法 (4)弯矩、剪力、荷载集度之间的微分关系 (5)叠加法作弯矩图
➢画层叠图,即将多跨静定梁拆成单跨梁; ➢计算各单跨梁的约束力:
按层叠图依次画出各单跨梁的受力图,注意基 础部分受到由附属部分传来的反作用力; ➢结合区段叠加绘制整个多跨静定梁的内力图
例1: 作内力图
ql
q
AB
C
l l 2l
4l
ql
D EF 2l l l
ql
q
1 ql
2
ql ql
ql
1 ql 2
ql
1/2qa2
↓↓↓↓↓↓↓↓↓↓↓↓↓↓
C
MB=0.5qa2+2aXB-aYB=0 (2q) a
解方程(1)和(2)可得
a
1/2qa2
XB=0.5qa YB=1.5qa
A
3) 再由整体平衡
qa/X2 A
X=0 解得:XA=0.5qa

工程力学 平面弯曲PPT课件

工程力学  平面弯曲PPT课件
2
dM 0
dM / dx Q
dQ q , dx
dM Q , dx
d 2M dx 2
q
33
第33页/共48页
剪力、弯矩和载荷集度间的关系
dQ dx
q
,
dM dx
Q
,
d 2M dx2
q
(1) q = 0 时: Q =常数,Q图为一水平线; M 为 x 的一次函数,M图是一条斜直线。
(计算关键点连直线)
P
a
b
A
C
RA
x1 x2 l
解:1.确定约束力
B
Y 0, M A 0
RB
RA Pb / l, RB Pa / l
2. 分段列剪力方程和弯矩方程
AC段: Y 0 RA Q1 0
Q1 Pb / l (0 < x1 < a)
MC 0 M1 RA x1 0
M1 A
x1 RA
Q1
M1 Pbx1 / l (0 x1 a)
§7-1 概述
车削工件
1
第1页/共48页
§7-1 概述
火车轮轴
2
第2页/共48页
3
§7-1 概述
弯曲变形
第3页/共48页
4
§7-1 概述
加工变形
第4页/共48页
5
§7-1 概述
纯弯曲
第5页/共48页
§7-1 概述
弯曲特点 以弯曲变形为主的杆件通常称为梁
6
第6页/共48页
§7-1 概述
常见弯曲构件截面
弯矩符号: 截面上的弯矩使
得梁呈凹形为正;反之为负。
+
_
求内力方法: 截面法

梁的弯曲计算—弯曲切应力及强度计算(工程力学课件)

梁的弯曲计算—弯曲切应力及强度计算(工程力学课件)
(2)对于一般的跨度与横截面高度的比值较大的梁, 通常只进行正应力强度计算,切应力强度能自然满足。
(3)几种特殊情况下必须进行梁的切应力强度计算。
短粗梁 自行焊接 木梁
梁的合理截面
max
M max Wz
(1) 将材料配置于离中性轴较远处
(2) 采用不对称于中性轴的截面
脆性材料
(3) 采用变截面梁
弯曲切应力及强度计算
弯曲
(内力图)
外力 —— 内力 —— 应力
弯曲变形 的条件
求约束反力
弯矩M 剪力Fs
My
Iz
Fs
S
* z
bI z
梁横截面上的切应力 矩形截面梁

S
* z
bI z
x
σ 分布规律 τ 分布规律
Fs
S
* z
不同形状截面梁的最大剪应力
bI z
矩形截面梁
B
A
C
A
C
B
max l max h
梁内的主要应力是正应力!
危险截面、危险点
E右到B左
z
y
危险点
危险截面 24
D右 28
24
My
Iz
Fs
S
* z
bI z
危险截面上的危险点
max ≤[ ]
max ≤[ ]
正应力强度条件 切应力强度条件
三类计算:①强度校核、②截面设计、③确定许用荷载
(1)在进行梁的强度计算时,必须同时满足正应力 和切应力两种强度条件。
“等强度梁”
Wz (x)
M ( x)
[ ]
工字形截面梁
max
3 2
Fs A
max

工程力学课件 12弯曲变形

工程力学课件 12弯曲变形

2.待定系数的确定
P
P
A
C
B
D
支座边界条件:
wA 0 wB 0
wD 0 D 0
连续条件: wC wC 或 写 w C左 成 w C 右
光滑条件:
C
C
或 写C左 成C右
讨论: ①适用于小变形情况下、线弹性材料、平面弯曲。 ②可应用于求解承受各种载荷的等截面或变截面梁的位移。 ③积分常数由挠曲线变形的条件确定。 支座边界条件 连续条件 光滑条件 ④优点:使用范围广,直接求出挠曲线的精确解;基本方法。 缺点:计算较繁。
B
Pal EI
列挠度方程和转角方程,求指定截面的挠度和转角:
w 1(P x a E 2 1(P IP 2 (ll x a2 a )(P x6l)a)2 l P
0xl )allxla
EI2l
2l
6
w 1[Px aE 31(P IP 6(ll x a3 a )(P x6la x )3 ) l Pa x]ll 0 x x l la
0xl lxla
l
l
Ew I PaxPP (ll axa)(xl)
0xl lxla
l
l
Ew I P 2l a x2 P P 2(ll2 la xa 2 )(C x1l)2C2
0xl lxla
[例4] 用积分法求梁(刚度为EI)的 wA 和 B 。
w
B FB
L
P
C
a
x
A
EwI P 2l a x2P P 2(ll2 la xa 2 )(C x1l)2C2
a
P
L
x
x001 2P2aC10
C1
1 2
Pa2

梁的弯曲计算—弯曲正应力的计算(工程力学课件)

梁的弯曲计算—弯曲正应力的计算(工程力学课件)
x(轴线)
横截面上σ的分布规律
My
Iz
横截面对中性轴的惯性矩
bh3 Iz 12
横截面对中性轴的惯性矩
bh3 Iz 12
Iz
D4 64
(14 )
My
Iz
式中各量均以绝对值代入! σ的正负自己判断
【例 1】求梁固定端A的右侧截面上的指定点的正应力
40kN.m
c 0
A
B
a
M ya Iz
40 106 N mm 300 2
33.75 107 mm4
mm 17.78 MPa
(拉应力)
b
M yb Iz
40 106 N mm 75 mm 33.75107 mm4
8.88
MPa
(拉应力)
d
M yd Iz
40 106 N mm 300
2 33.75 107 mm4
mm 17.78 MPa
a
M ya Iz
76106 90 48.6 106
140.74MPa
(拉应力)
b
M yb Iz
76106 50 48.6 106
78.19MPa
(拉应力)
d
M yd Iz
76106 90 48.6 106
140.74MPa (压应力)
c 0
(压应力)
习题1:求悬臂梁固定端A的右侧截面上各点的正应力
76kN.m
20kN/m
18kN
58kN
(1)求支座反力 (2)画弯矩图
76
28
A
M图(kN m) B
习题1:求悬臂梁固定A
B
(3)求正应力
Iz
100 1803
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5Fl 3 FByl 3 0 -补充方程 48EI 3EI
FBy
5F 16
M A 0, 得 M A 3Fl / 16
Fy 0, 得 FA y 11F / 16
-平衡方程
综合考虑三方面
单辉祖:工程力学
27
分析方法与步骤
判断梁的静不定度 用多余力 代替多余约束
的作用,得受力与原静不定 梁相同的静定梁-相当系统
d 2,max
d 2,max 62.5 % d 1,max
增加约束,制作成静不定梁
单辉祖:工程力学
37
例题
例 6-1 已知 F = 35 kN,l = 4 m,[s ] = 160 MPa ,[d ] =
l /500,E = 200 GPa,试选择工字钢型号。
解:
M max
Fl 4
Wz
M max
b
2
l
2
)
单辉祖:工程力学
dw1 0 dx1
f Fb(l 2b2 )3/2 9 3lEI
()
15
例 3-2 建立挠曲轴 微分方程,写出边界条件,EI 为常数
FAy
qa 2
FBy
3qa 2
解:1. 建立挠曲轴近似微分方程
AB段:
d2w1 dx12
qa 2EI
x1
2. 边界条件与连续条件
CB段:
d2w2 dx22
单辉祖:工程力学
7
挠曲轴微分方程
1 M (纯弯) EI
(推广到非纯弯) 1 M ( x) ( x) EI
1
(x)
w 1 w2
3/2
w
1 w2
3/2
M(x) EI
-挠曲轴微分方程
w-弯矩引起的挠度 ❖ smax < sp
单辉祖:工程力学
8
挠曲轴近似微分方程
w
1 w2
,
MB
Fa 2 b l2
单辉祖:工程力学
FAy
Fb2 (l l3
2a)
,
FBy
Fa2 (l l3
2b)
29
例 5-2 悬臂梁 AB,用短梁 DG 加固,试分析加固效果
解:1. 静不定分析
wC wG
wC
(5F 2FR 48EI
)l
3
wG
FR (l/2)3 3EI
FRl 3 24EI
(5F 2FR )l3 FRl3 48EI 24EI
水平反力忽略不 计,2多余未知力
2. 解静不定
A 0, B 0
A
A,F
A,M A
A,MB
Fab(l b) 6EIl
M Al 3EI
MBl 6EI
0
B B ,F B ,M A B ,MB
Fab(l a) M Al MBl 6EIl 6EI 3EI
0
MA
Fab2 l2
max -许用转角
桥式起重机梁:
d
75l 0~
l 500
一般用途的轴: d 3l ~ 5l
10000 10000
指定截面的位移控制
w d 例如滑动轴承处: 0.001 rad
单辉祖:工程力学
34
梁的合理刚度设计
横截面形状的合理选择
使用较小的截面面积 A,获得较大惯性矩 I 的截面形 状,例如工字形与盒形等薄壁截面
叠加法 逐段分析求和法 例题
单辉祖:工程力学
18
叠加法
方法
wA ?
分解载荷 分别计算位移
求位移之和
w
A,F
Fl 3 3EI
()
w A,q
ql 4 8 EI
()
w
A
w
A,F
w
A,q
Fl 3 3EI
ql 4 8EI
()
当梁上作用几个载荷时,任一横截面 的总位移,等于各载荷单独作用时在 该截面引起的位移的代数和或矢量和
单辉祖:工程力学
5
挠度与转角
转角
-挠度
挠度-横截面形心在垂直于梁轴方向的位移
w w ( x)-挠曲轴方程
转角-横截面的角位移
( x) -转角方程
挠度与转角的关系
(忽略剪力影响)
' tan' dw(小变形)
dx
dw (rad)
dx
单辉祖:工程力学
6
§2 梁变形基本方程
挠曲轴微分方程 挠曲轴近似微分方程
d max
Fl 3 48EI
M max
Fl 4
M l max
d max l 3
例如 l 缩短 20%,dmax 将减少 48.8%
跨度微小改变,将导致挠度显著改变
单辉祖:工程力学
36
合理安排约束与加载方式
d 1,max
d 2,max 8.75 % d 1,max
d 2,max
q=F/l
d 1,max
单辉祖:工程力学
3
§1 引 言
弯曲变形及其特点 挠度与转角
单辉祖:工程力学
4
弯曲变形及其特点
挠曲轴
变弯后的梁轴,称为挠曲轴 挠曲轴是一条连续、光滑曲线
对称弯曲时,挠曲轴为位于纵向对称面的平面曲线 对于细长梁,剪力对弯曲变形影响一般可忽略不计,
因而横截面仍保持平面,并与挠曲轴正交
研究弯曲变形的目的,进行梁的刚度计算,分析静 不定梁,为研究压杆稳定问题提供有关基础
工程力学全套课件
单辉祖:工程力学(材料力学)
第 12 章 弯曲变形
本章主要研究:
弯曲变形基本方程 计算梁位移的方法 简单静不定梁分析 梁的刚度条件与设计
单辉祖:工程力学
2
§1 引言 §2 梁变形基本方程 §3 计算梁位移的积分法 §4 计算梁位移的叠加法 §5 简单静不定梁 §6 梁的刚度条件与合理设计
材料的合理选择
影响梁刚度的力学性能是 E ,为提高刚度,宜选用E 较高的材料
注意:各种钢材(或各种铝合金)的 E 基本相同 钢与合金钢:E (200 ~ 220) GPa 铝 合 金:E (70 ~ 72) GPa
单辉祖:工程力学
35
梁跨度的合理选取
d max
Fl 3 3EI
M Fl max
FR
5F 4
单辉祖:工程力学
30
FR
5F 4
2. 加固效果分析(刚度)
wB
Fl 3 3EI
5FR l 3 48EI
13Fl 3 64EI
wB,未加固=3FEl I3
减少39.9%
3. 加固效果分析(强度)
M
max
Fa 2
单辉祖:工程力学
M max,未加固=Fa
减少 50%
31
例 5-3 图示杆梁结构,试求杆 BC 的轴力
在 x l 处,w 0 (2)
计算转角
D 0, C Mel 6 EI
dw Me (3x2 l2)
单辉祖:工程力d学x 6EIl
A
(0)
Mel()
6EI
12
挠曲轴的绘制
绘制依据
满足基本方程
w M ( x) EI
❖ 满足位移边界 条件与连续条件
绘制方法与步骤
画M图
❖ 由 M 图的正、负、零点或零值区,确定挠曲轴的 凹、凸、拐点或直线区,即确定挠曲轴的形状
单辉祖:工程力学
10
挠曲轴微分方程与边界条件
d2w dx 2
M(x EI
)
dw
dx
ME(Ix )dx C
w ME(Ix)dxdxCxD
约束处位移应满足的 条件-位移边界条件
梁段交接处位移定积分常数
单辉祖:工程力学
11
积分法求梁位移
A =?
单辉祖:工程力学
19
理论依据
EI
d2w dx 2
M
(
x
)
(小变形,比例极限内)
M ( x)MF ( x)Mq ( x)
(小变形)
上述微分方程的解,为下列微分方程解的组合
EI
d2w dx 2
MF
(
x)
w wF ( x)
EI
d2w dx 2
Mq
(x)
w wq ( x)
故:w wF ( x) wq ( x)
叠加法适用条件:小变形,比例极限内
单辉祖:工程力学
20
逐段分析求和法
分解梁
分别计算各梁段的 变形在需求位移处引 起的位移
w1 Ba
B
Fa l 3EI
w1
Fal 3EI
a
Fa 2 l 3EI
w2
Fa 3 3EI
求总位移
ww1
w2
Fa 2 3EI
(
l
a)
()
单辉祖:工程力学
在分析某梁段的变形在 需求位移处引起的位移 时,其余梁段视为刚体
z y
tan
一般情况下 I y I z 故
挠曲轴与外力作用面不重合
单辉祖:工程力学
24
§5 简单静不定梁
静不定度与多余约束 简单静不定梁分析方法 例题
单辉祖:工程力学
25
静不定度与多余约束
4-3 = 1 度 静不定
静不定梁 支反力(含力偶)数超过平衡方程数的梁 静不定度 =未知支反力(力偶)数-有效平衡方程数
Fa3 3EI1
()
wC
7Fa3 3EI2
Fa3 3EI1
3Fa3 2EI1
()
22
例 4-2 图示组合梁,EI=常数,求 wB 与A
FAy FBy qa 2
解:
wB
wB,FBy
相关文档
最新文档