湘教版八年级下册数学复习归纳

合集下载

湘教版八年级数学下册知识点总结

湘教版八年级数学下册知识点总结

湘教版八年级数学下册知识点总结湘教版初二数学下册(义务教育教科书)第1章直角三角形1.1 直角三角形的性质和判定(I)1.2 直角三角形的性质和判定(II)1.3 直角三角形全等的判定1.4 角平分线的性质本章复习与测试第2章四边形2.1 多边形2.2 平行四边形2.3 中心对称和中心对称图形2.4 三角形的中位线2.5 矩形2.6 菱形2.7 正方形本章复习与测试第3章图形与坐标3.1 平面直角坐标系3.2 简单图形的坐标表示3.3 轴对称和平移的坐标表示本章复习与测试第4章一次函数4.1 函数和它的表示法4.2 一次函数4.3 一次函数的图象4.4 用待定系数法确定一次函数表达式4.5 一次函数的应用本章复习与测试第5章数据的频数分布5.1 频数与频率5.2 频数直方图本章复习与测试期末考点第一章直角三角形一、已学须用知识点回顾知识点1、等腰三角形的性质(bjvdhuibf )(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴. (2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合. (3)等边对等角:等腰三角形的两个底角相等. 提示:“三线合一”是指对应的角平分线、中线、高线在画图时实际上只是一条线段,即是一条线段既是顶角的平分线,又是底边上的中线,还是底边上的高,不能混淆.三角形的高可能在三角形的内部,也有可能在三角形的外部,还有可能和三角形的边重合。

知识点2、等腰三角形的判定定理1、定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:等角对等边). 2、提示:(1)定理题设中的两个角必须是同一个三角形中的两个内角,不能出现在两个三角形中;(2)结论中的两条边应是这两个内角的“对边”,这种对应关系不能混淆;(3)此定理的作用在于证明一个三角形为等腰三角形. 知识点3、等边三角形的性质与判定1、等边三角形的三个角都相等,并且每个角都等于60°.2、等边三角形具有等腰三角形的所有性质,并且在每条边上都有“三线合一”.因此等边三角形是轴对称图形,它有三条对称轴,而等腰三角形(非等边三角形)只有一条对称轴. 3、有一个角是60°的等腰三角形是等边三角形.拓展:等边三角形是一种特殊的三角形,容易知道等边三角形的三条高(或三条中线、三条角平分线)都相等.知识点4、等腰三角形性质的应用等腰三角形的性质除“三线合一”外,三角形中的主要线段之间也存在着特殊的性质,如:(1) 等腰三角形两底角的平分线相等;(2)等腰三角形两腰上的中线相等; (3)等腰三角形两腰上的高相等;(4)等腰三角形底边上的中点到两腰的距离相等.知识点5、全等三角形的判定1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”)。

湘教版八年级下册数学复习知识点归纳过关

湘教版八年级下册数学复习知识点归纳过关

cbaCBAPF E D CB21AEDCBA八年级下册数学复习知识点梳理姓名:一、直角三角形1、角平分线: 角平分线上的点到这个角的两边的距离相等 如图,∵AD 是∠BAC 的平分线(或∠1=∠2),PE ⊥AC ,PF ⊥AB ∴PE=PF1·如右上图,在ΔABC 中,∠C=90°∠ABC 的平分线BD 交AC 于点D,若BD=10厘米,BC=8厘米,则点D 到直线AB 的距离是 厘米。

2·如图:在△ABC 中,,O 是∠ABC 与∠ACB 的平分线的交点。

求证:点O 在∠A 的平分线上。

2、线段垂直平分线:线段垂直平分线上的点到线段两个端点的距离相等 。

·如图,△ABC 中,DE 是AB 的垂直平分线,AE=4cm ,△ABC 的周长是18 cm ,则△BDC 的周长是_3、勾股定理及其逆定理①勾股定理: 222c b a =+。

,∠CAD=60°,则拉线AC 的长是_ _·如图是拉线电线杆的示意图。

已知CD ⊥AB ,·直角三角形的两边长分别为6和10,那么这个三角形的第三条边长是______。

②逆定理 如果三边a 、b 、c 有关系222c b a =+,那么这个三角形是Rt ∆。

·在Rt △ABC 中,若AC=2,BC=7,AB=3,则下列结论中正确的是( )。

A .∠C=90°B .∠B=90°C .△ABC 是锐角三角形D .△ABC 是钝角三角形·若一个三角形三边满足ab c b a 2)(22=-+,则这个三角形是 三角形.·一块木板如图所示,已知AB =4,BC =3,DC =12,AD =13,90B ∠=︒,木板的面积为 . ·某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,AC=80米,BC=60米,若线段CD 是一条小渠,且D 点在边AB 上,•已知水渠的造价为10元/米,问D 点在距A 点多远处时,水渠的造价最低?最低造价是多少?O CBAA DBCCBACBADC BAGFEDC B A4、直角三角形全等·如图,在ΔABC 中,D 为BC 的中点,DE ⊥BC 交∠BAC 的平分线AE 于点E ,EF ⊥AB 于点F ,EG ⊥AC的延长线于点G 。

新湘教版八年级下数学知识点大全精编版

新湘教版八年级下数学知识点大全精编版

新湘教版八年级下数学知识点大全GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-cba CB ADC BAPF E D CB21APE D C BA新湘教版八年级下册数学复习资料一、直角三角形1、角平分线: 角平分线上的点到这个角的两边的距离相等如图,∵AD 是∠BAC 的平分线(或∠1=∠2),PE ⊥AC ,PF ⊥AB ∴PE=PF角平分线的逆定理; 角内部的点到角两边的距离相等,那么这一点到角的角平分线上。

∵PE ⊥AC ,PF ⊥AB PE=PF ∴点P 在∠BAC 的平分线AD 上2、线段垂直平分线:线段垂直平分线上的点到这条线段两个端点的距离相等 。

如图,∵CD 是线段AB 的垂直平分线,∴PA=PB3、勾股定理及其逆定理①勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方,即222a b c +=。

边,则c =求斜边,则a =求直角b②逆定理 如果三角形的三边长a 、b 、c有关系222a b c +=,那么这个三角形是直角三角形 。

分别计算“22a b +”和“2c ”,相等就是Rt ∆,不相等就不是Rt ∆。

4、直角三角形全等方法:SAS 、ASA 、SSS 、AAS 、HL 。

HL: 斜边和一条直角边分别对应相等的两个直角三角形全等。

5、直角三角形的其它性质直角三角形两锐角互余②直角三角形斜边上的中线等于斜边上的一半CBAC BAFE CBA 如图,在Rt ∆ABC 中,∵CD 是斜边AB 的中线,∴CD=12AB。

②在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半如图,在Rt ∆ABC 中,∵∠A=30°,∴BC=12AB 。

③在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°如图,在Rt ∆ABC 中,∵BC=12AB,∴∠A=30°。

八年级湘教数学下知识梳理(知识总结)

八年级湘教数学下知识梳理(知识总结)

知 识 梳 理1.多项式的因式分解把一个含字母的多项式表示成若干个均含字母的多项式的乘积的形式,称为把这个多项式因式分解。

注:因式分解是“和差”化“积”,整式乘法是“积”化“和差”故因式分解与整式乘法之间是互为相反的变形过程,因些常用整式乘法来检验因式分解. 2、因式分解的几种常用方法 (1)提取公因式法把ma mb mc ++,分解成两个因式乘积的形式,其中一个因式是各项的公因式m ,另一个因式()a b c ++是ma mb mc ++除以m 所得的商,像这种分解因式的方法叫做提公因式法.用式子表求如下:()ma mb mc m a b c ++=++注:i 多项式各项都含有的相同因式,叫做这个多项式各项的公因式.ii 公因式的构成:①系数:各项系数的最大公约数;②字母:各项都含有的相同字母; ③指数:相同字母的最低次幂. (2)运用公式法把乘法公式反过用,可以把某些多项式分解因式,这种分解因式的方法叫做运用公式法.ⅰ)平方差公式22()()a b a b a b -=+- 注意:①条件:两个二次幂的差的形式;②平方差公式中的a 、b 可以表示一个数、一个单项式或一个多项式;③在用公式前,应将要分解的多项式表示成22b a -的形式,并弄清a 、b 分别表示什么.ⅱ)完全平方公式 2222222(),2()a ab b a b a ab b a b ++=+-+=-注意:①是关于某个字母(或式子)的二次三项式; ②其首尾两项是两个符号相同的平方形式;③中间项恰是这两数乘积的2倍(或乘积2倍的相反数);④使用前应根据题目结构特点,按“先两头,后中间”的步骤,把二次三项式整理成222)(2b a b ab a ±=+±公式原型,弄清a 、b 分别表示的量.补充:常见的两个二项式幂的变号规律:① 22()()nn a b b a -=-; ②2121()()n n a b b a ---=--.(n 为正整数)3、因式分解的一般步骤可归纳为一“提”、二“套”、三“分”、四“查”:(1)一“提”:先看多项式的各项是否有公因式,若有必须先提出来.(2)二“套”:若多项式的各项无公因式(或已提出公因式),第二步则看能不能用公式法或用ab x b a x +++)(2型分解.(3)“三分”:若以上两步都不行,则应考虑分组分解法,将能用上述方法进行分解的项分成一组,使之分组后能“提”或能“套”,当然要注意其要分解到底才能结束. (4)四“查”:可以用整式乘法检查因式分解的结果是否正确. 2.分式(1)分式及其基本性质 (1)分式的基本性质:MB M A B A M B M A B A ÷÷=⨯⨯=,( M 为不等于零的整式)(2)最简公分母:几个分式,取各分母的系数的最小公倍数与各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

湘教版八年级下册数学各章节知识点

湘教版八年级下册数学各章节知识点

CBAC BADCBAP FE D CB 21A FE CBA2014年新湘教版八年级下册数学复习资料一、直角三角形1、角平分线: 角平分线上的点到这个角的两边的距离相等如图,∵AD 是∠BAC 的平分线(或∠1=∠2),PE ⊥AC ,PF ⊥AB ∴PE=PF 3、勾股定理及其逆定理①勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方,即222a b c +=。

求斜边,则c =ab = ②逆定理 如果三角形的三边长a 、b 、c 有关系222a b c +=,那么这个三角形是直角三角形 。

分别计算“22a b +”和“2c ”,相等就是Rt ∆,不相等就不是Rt ∆。

4、直角三角形全等方法:SAS 、ASA 、SSS 、AAS 、HL 。

5、其它性质①直角三角形斜边上的中线等于斜边上的一半如图,在Rt ∆ABC 中,∵CD 是斜边AB 的中线,∴CD=21AB 。

②在直角三角形中,如果一个锐角等于30°那么它所对的直角 边等于斜边的一半如图,在ABC 中,∵∠A=30°,∴BC=21AB 。

③在直角三角形中,如果一条直角边等于斜边的一半,那么 这条直角边所对的角等于30°如图,在Rt ∆ABC 中,∵BC=12AB,∴∠A=30°。

④三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半 如图,在⊿ABC 中,∵E 是AB 的中点,F 是AC 的中点, ∴EF 是⊿ABC 的中位线 ∴EF ‖BC ,12EF BC =三、图形与坐标1、点的对称性:关于x 轴对称的点,横坐标相反,纵坐标相等; 关于y 轴对称的点,横坐标相等,纵坐标相反; 关于原点对称的点,横、纵坐标都相反。

例如:若直角坐标系内一点P (a ,b ),则P 关于x 轴对称的点为P1(a ,-b ),P 关于y 轴对称的点为P2(-a ,b ),关于原点对称的点为P3(-a ,-b )。

湘教版八年级数学下册知识点总结

湘教版八年级数学下册知识点总结

湘教版八年级数学下册知识点总结湘教版初二数学下册(义务教育教科书)第1章直角三角形1.1 直角三角形的性质和判定(I)1.2 直角三角形的性质和判定(II)1.3 直角三角形全等的判定1.4 角平分线的性质本章复习与测试第2章四边形2.1 多边形2.2 平行四边形2.3 中心对称和中心对称图形2.4 三角形的中位线2.5 矩形2.6 菱形2.7 正方形本章复习与测试第3章图形与坐标3.1 平面直角坐标系3.2 简单图形的坐标表示3.3 轴对称和平移的坐标表示本章复习与测试第4章一次函数4.1 函数和它的表示法4.2 一次函数4.3 一次函数的图象4.4 用待定系数法确定一次函数表达式4.5 一次函数的应用本章复习与测试第5章数据的频数分布5.1 频数与频率5.2 频数直方图本章复习与测试期末考点第一章直角三角形一、已学须用知识点回顾知识点1、等腰三角形的性质(bjvdhuibf )(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴. (2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合. (3)等边对等角:等腰三角形的两个底角相等. 提示:“三线合一”是指对应的角平分线、中线、高线在画图时实际上只是一条线段,即是一条线段既是顶角的平分线,又是底边上的中线,还是底边上的高,不能混淆.三角形的高可能在三角形的内部,也有可能在三角形的外部,还有可能和三角形的边重合。

知识点2、等腰三角形的判定定理1、定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:等角对等边). 2、提示:(1)定理题设中的两个角必须是同一个三角形中的两个内角,不能出现在两个三角形中;(2)结论中的两条边应是这两个内角的“对边”,这种对应关系不能混淆;(3)此定理的作用在于证明一个三角形为等腰三角形. 知识点3、等边三角形的性质与判定1、等边三角形的三个角都相等,并且每个角都等于60°.2、等边三角形具有等腰三角形的所有性质,并且在每条边上都有“三线合一”.因此等边三角形是轴对称图形,它有三条对称轴,而等腰三角形(非等边三角形)只有一条对称轴. 3、有一个角是60°的等腰三角形是等边三角形.拓展:等边三角形是一种特殊的三角形,容易知道等边三角形的三条高(或三条中线、三条角平分线)都相等.知识点4、等腰三角形性质的应用等腰三角形的性质除“三线合一”外,三角形中的主要线段之间也存在着特殊的性质,如:(1) 等腰三角形两底角的平分线相等;(2)等腰三角形两腰上的中线相等; (3)等腰三角形两腰上的高相等;(4)等腰三角形底边上的中点到两腰的距离相等.知识点5、全等三角形的判定1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”)。

湘教版数学八下知识点总结

湘教版数学八下知识点总结

湘教版数学八下知识点总结一、图形的认识1. 几何图形(1) 两个角相等等于 180°,这两个角互补;(2) 两个角互补的角分别是一个直角,则这两个角互为补角;(3) 两条直线相交,且互相垂直,称这两条直线互相垂直;(4) 直角的对边相等长;(5) 存在1条到平面上所有点距离恒等于一个给定值的线段。

2. 图形的绘制 (1) 使用规定长度的线段构作柱状图;(2) 使用定长定圆心构作圆。

3. 定理证明 (1) 平行线分别与两条同位角相交,得到的角相等;(2) 两角的角和等于相互的补角和;(3) 两角的角和等于180°时,这个角对的两边互相垂直;(4) 直线与同一平面外一点的一个确定方向垂直交于直线和平面的交点上;(5) 如果直线和一个平面相交,则它最多有一个共同点和一个共同的公有线段;(6) 如果直线和一个平面相交,则最多有一条直线经过平面外一个的一点并与这条线相交形成一个直角。

4. 利用图形计算 (1) 计算图形的面积和周长;(2) 计算平行四边形的面积;(3) 计算三角形的面积;(4) 计算平行四边形的对角线的长。

二、平面直角坐标系1. 直角坐标系(1) 两条不同直线相交时,相交的两边对角相等;(2) 同一交点两个互相垂直的直线;(3) 两个相交直线夹角的余弦;(4) 平行线两边呈直角;(5) 判断线段与平面相交。

2. 向量(1) 两个向量的夹角等于它们对应的两个线段的夹角;(2) 平行向量的夹角等于0°或180°。

三、几何运动1. 位移(1) 位移的大小与方向都不相等;(2) 求解物体的位移;(3) 在给定的坐标系中求物体的位移。

2. 速度(1) 物体的运动是五线型的曲线;(2) 求解平均速度;(3) 在给定的速度与加速度中求物体的位移;(4) 处在定点上的速度为0.3. 加速度(1) 沿圆形轨道向心加速度与轨道垂直,向心加速度共同指向圆心;(2) 连接两动点的线称为“运动线”。

新湘教版八年级下数学知识点大全

新湘教版八年级下数学知识点大全

新湘教版八年级下册数学复习资料B一、直角三角形1、角平分线:角平分线上的点到这个角的两边的距离相等如图,••• AD是/ BAC的平分线(或/ 仁/2), D边等于斜边的一半如图,在ABC中,•••/ A=30°,•BC=oPE丄AC, PF丄AB:PE=PF角平分线的逆定理;角内部的点到角两边的距离相等,那么这一点到角的角平分线上。

•/ PE丄AC, PF丄AB PE=PF°.点P在/ BAC的平分线AD上2、线段垂直平分线:线段垂直平分线上的点到这条线段两个端点的距离相等。

如图,J CD是线段AB的垂直平分线,••• PA=PB3、勾股定理及其逆定理①勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方,2 .2 2 即a b c。

b③在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°如图,在ABC中,J BC=,「./ A=30°o6、直角三角形的判定1、有一个角是直角的三角形是直角三角形。

求斜边,则c a b;求直角边,贝y a b或b2 2②逆定理如果三角形的三边长a、b、c有关系a b2c ,那么这个三角形是直角三角形2 2分别计算“ a b ”和“”,相等就是,不相等就不是。

4、直角三角形全等方法:SAS ASA SSS AAS、HL。

HL:斜边和一条直角边分别对应相等的两个直角三角形全等。

5、直角三角形的其它性质直角三角形两锐角互余②直角三角形斜边上的中线等于斜边上的一半1 AB 如图,在ABC中,J CD是斜边AB的中线,• CD=2 。

②在直角三角形中,如果一个锐角等于30°那么它所对的直角A2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

2 9 93、勾股定理的逆定理:如果三角形的三边长a, b, c有关系a2 b2 c2,那么这个三角形是直角三角形。

7、三角形中位线定义:连接三角形两边中点的线段叫做中位线。

最新湘教版八年级下册数学复习归纳

最新湘教版八年级下册数学复习归纳

cb aCB AP FE D C B21A P E DC B A ED CB A 新湘教版八年级下册数学复习知识点梳理一、直角三角形 1、角平分线: 角平分线上的点到这个角的两边的距离相等如图,∵AD 是∠BAC 的平分线(或∠1=∠2), PE ⊥AC ,PF ⊥AB ∴PE=PF·如图,在ΔABC 中,∠C=90°∠ABC 的平分线BD 交AC 于点D, 若BD=10厘米,BC=8厘米,DC=6厘米,则点D 到直线AB 的距 离是________厘米。

·如图:在△ABC 中,,O 是∠ABC 与∠ACB 的平分线的交点。

求证:点O 在∠A 的平分线上。

2、线段垂直平分线:线段垂直平分线上的点到这条线段两个端点 的距离相等 。

如图,∵CD 是线段AB 的垂直平分线, ∴PA=PB·如图,△ABC 中,DE 是AB 的垂直平分线,AE=4cm ,△ABC 的周长是18 cm ,则△BDC 的周长是__。

·已知:如图,求作点P ,使点P 到A 、B 两点的距离相等, 且P 到∠MON 两边的距离也相等.3、勾股定理及其逆定理①勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方,即222a b c +=。

求斜边,则22c a b =+; 求直角边,则22a c b =-或22b c a =-。

·如图是拉线电线杆的示意图。

已知CD ⊥AB ,,∠CAD=60°,则拉线AC 的长是________m 。

OC B AO N M··A BGFEDC B A·若一个直角三角形的两边长分别为6和10,那么这个三角形的第三条边长是______。

②逆定理 如果三角形的三边长a 、b 、c 有关系222a b c +=,那么这个三角形是直角三角形 。

分别计算“22a b +”和“2c ”,相等就是Rt ∆,不相等就不是Rt ∆。

新湘教版八年级下数学知识点大全

新湘教版八年级下数学知识点大全

一、代数运算1.实数的加减乘除运算2.同底数幂的乘除运算3.一元一次方程的解法,包括加减消元法、公式法、积零法等4.一元一次方程组的解法,包括消元法和代入法5.平方差公式和完全平方公式6.因式分解的方法,包括公式法、分组法、公因式法等7.分式的加减乘除运算,包括通分、倒置法、配方法等8.分式方程的解法,包括加减消元法、分离变量法等9.整式的乘法公式和除法公式10.根式的化简和加减乘除运算11.变量的字母代换以及表达式的简化和运算二、几何与图形1.平面直角坐标系2.平行线与垂直线的性质3.三角形的分类和性质,包括等边三角形、等腰三角形、直角三角形等4.三角形的面积公式和周长公式5.三角形的中线、角平分线、垂心、重心、外心的性质6.直角三角形的勾股定理和正弦定理、余弦定理7.二次根式图形的特征,包括平方图形、抛物线、圆等8.空间几何图形的表达和性质,包括长方体、正方体、棱柱、棱锥等9.几何运动中的位置关系,包括平移、旋转、翻折等10.图形的相似与全等的判定和性质,包括比例定理、相似比、对应角的相等性等11.图形的线段比和面积比的计算和应用三、概率与统计1.事件的概率计算和性质,包括试验、样本空间、事件等基本概念2.事件的和、差、积、商运算的概率计算3.分类频数、频率和频率分布表的构建与分析4.统计图形的绘制和分析,包括直方图、折线图、饼图等5.样本估计和总体估计的方法,包括平均数、中位数、众数等6.抽样调查和统计调查的设计和实施7.统计问题的建模和解决方法,包括概率统计的实际应用等四、函数与方程1.线性函数和非线性函数的性质和特征,包括函数的定义域、值域、单调性等2.函数的表示方法,包括函数表、函数图象、符号表示法等3.函数的相等和不等关系,包括不等式的解法和表示4.二次函数的图象、性质和应用,包括顶点、轴对称、最值等5.一次函数、反比例函数、指数函数、对数函数等基本函数的图象、性质和应用6.方程的根的性质和判定方法,包括一元二次方程的判别式、和差乘积关系等7.不等式的根的性质和表示方法,包括一元一次不等式、一元二次不等式等8.函数的运算和复合,包括函数的和、差、积、商等运算规则9.函数的增减性、奇偶性和周期性的判定和应用10.方程组的解法和应用,包括线性方程组、非线性方程组等五、数与量的换算1.分数和小数的相互换算和比较2.万分数、百分数和比例的相互换算和应用3.长度、质量、时间、容积等度量数与国际单位的换算4.平方、立方和体积的相互换算和计算5.面积、投影面积和体积的相互换算和计算6.差量和倍量的相互换算和计算。

湘教版八年级数学下册各章节知识点汇编

湘教版八年级数学下册各章节知识点汇编

C BAC BAc b a CBA D CB A P FE D C B21A PE D CB A FECBAB A DC o B AD C八年级数学下册知识点汇编第一章 直角三角形1、角平分线: 角平分线上的点到这个角的两边的距离相等 如图,∵AD 是∠BAC 的平分线(或∠1=∠2), PE ⊥AC ,PF ⊥AB∴PE=( ) 2、线段垂直平分线:线段垂直平分线上的点到 这条线段两个端点的距离相等 。

如图,∵CD 是线段AB 的垂直平分线,∴PA=( )3、勾股定理及其逆定理 ①勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方,即。

a 2+b 2=c 2求斜边, 则c=( );求直角边,则a=( )或b=( )。

②逆定理 如果三角形的三边长a 、b 、c有关系a 2+b 2=c 2那么这个三角形是直角三角形 。

分别计算a 2+b 2和c 2,相等就是直角三角形,不相等就不是直角三角形4、直角三角形全等:方法SAS 、ASA 、SSS 、AAS 、HL5、其它性质 ①直角三角形斜边上的中线等于斜边上的一半如图,在直角三角形ABC 中,∵CD 是斜边AB的中线,∴CD=( )②在直角三角形中,如果一个锐角等于30° 那么它所对的直角边等于斜边的一半如图,在ABC 中∠c=90°,若∠A=30°则BC=( ) ③在直角三角形中,如果一条直角边等于斜边的一半, 那么这条直角边所对的角等于30°如图,在ABC 中∠c=90° 若BC=( ),则∠A=30°。

④三角形中位线定理 三角形的中位线平行于第三边, 并且等于它的一半如图,在⊿ABC 中,∵E 是AB 的中点,F 是AC 的中点∴EF 是⊿ABC 的( ) ∴EF ‖BC ,EF=( )BC 第二章 四边形1、多边形内角和公式:n 边形的内角和=(n -2)·180º2、多边形外角和都是360°(记住:与边数无关)n 边形的对角线共有( )条3、中心对称:(在直角坐标系中即关于原点对称,其横、纵坐标 都互为相反数)成中心对称的两个图形中,对应点得连线经过对 称中心,且被对称中心平分 会画与某某图形成中心对称图形会辨别图形、实物、汉字、英文字母、扑克等是否中心对称图形 4、特殊四边形的判定 ①平行四边形:方法1两组对边分别平行的四边形是平行四边形如图,∵ AB ‖CD ,AD ‖BC ,∴四边形ABCD 是平行四边形 方法2两组对边分别相等的四边形是平行四边形如图,∵ AB=CD ,AD=BC ,∴四边形ABCD 是平行四边形 方法3两组对角分别相等的四边形是平行四边形如图,∵∠A=∠C ,∠B=∠D ,∴四边形ABCD 是平行四边形 方法4一组对边平行相等的四边形是平行四边形如图,∵ AB ‖CD ,AB=CD ,∴四边形ABCD 是平行四边形 或∵AD ‖BC ,AD=BC ,∴四边形ABCD 是平行四边形 方法5对角线互相平分的四边形是平 行四边形如图,∵ OA=OC ,OB=OD ,∴四边形ABCD 是平行四边形②矩形:方法1有三个角是直角的四边形是矩形方法2对角线相等的平行四边形是矩形③菱形:方法1四边都相等的四边形是菱形方法2对角线互相垂直的平行四边形是菱形④正方形方法1有一个角是直角的菱形是正方形方法2有一组邻边相等的矩形是正方形5、面积公式①S平行四边形=底×高②S矩形=长×宽③S正方形=边长×边长④S菱形=底×高=()×对角线的积即:S=(a×b)÷26、有关中点四边形问题的知识点:(1)顺次连接任意四边形的四边中点所得的四边形是平行四边形;(2)顺次连接矩形的四边中点所得的四边形是();(3)顺次连接菱形的四边中点所得的四边形是();(4)顺次连接等腰梯形的四边中点所得的四边形是();(5)顺次连接对角线相等的四边形四边中点所得的四边形是();(6)顺次连接对角线互相垂直的四边形四边中点所得的四边形是();(7)顺次连接对角线互相垂直且相等的四边形四边中点所得的四边形是()7、四边形、矩形、菱形、正方形、梯形、等腰梯形、直角梯形的关系图:第三章图形与坐标1、点的对称性:关于x轴对称的点,横坐标相反,纵坐标相等;关于y轴对称的点,横坐标相等,纵坐标相反;关于原点对称的点,横、纵坐标都相反。

(完整版)湘教版八年级(下册)数学复习归纳,推荐文档

(完整版)湘教版八年级(下册)数学复习归纳,推荐文档

. .eord 完美格式c2 7 ABOAB一、直角三角形八年级下册数学复习知识点梳理3、勾股定理及其逆定理B 1、角平分线: 角平分线上的点到这个角的两边的距离相等 A如图,∵AD 是∠BAC 的平分线(或∠1=∠2),PE ⊥AC ,PF ⊥AB∴PE=PF·如图,在 ΔABC 中,∠C=90°∠ABC 的平分线 BD 交 AC 于点 D, 若 BD=10 厘米,BC=8 厘米,DC=6 厘米,则点 D 到直线 AB 的距离是厘米。

Da①勾股定理: a 2 + b 2 = c 2 。

CbA·如图是拉线电线杆的示意图。

已知 CD⊥AB,,∠CAD=60°,则拉线 AC 的长是m 。

·如图:在△ABC 中,,O 是∠ABC 与∠ACB 的平分线的交点。

求证:点 O 在∠A 的平分线上。

C·直角三角形的两边长分别为6和10,那么这个三角形的第三条边长是 。

②逆定理 如果三边 a 、b 、c 有关系 a 2 + b 2 = c 2 ,那么这个三角形是 Rt ∆ 。

分别计算“ a 2+ b 2”和“ c 2”,相等就是 Rt ∆ ,不相等就不是 Rt ∆ 。

2、线段垂直平分线:线段垂直平分线上的点到线段两个端点的距离相等 。

C·在 Rt△ABC 中,若 AC= ,BC= ,AB=3,则下列结论中正确的是( )。

·如图,△ABC 中,DE 是 AB 的垂直平分线,AE=4cm ,△ABC 的周长是 18 cm ,则△BDC 的周长是__。

A·已知:如图,求作点 P ,使点 P 到 A 、B 两点的距离相等,且 P 到∠MON 两边的距离也相等.DA .∠C=90°B .∠B=90°EBC .△ABC 是锐角三角形D .△ABC 是钝角三角形M·若一个三角形三边满足(a + b )2 - c 2 = 2ab ,则这个三角形是三角形.A ··B ON ·一块木板如图所示,已知AB =4,BC =3,DC =12,AD =13,C∠B = 90︒ ,木板的面积为.DBF1 2 P E C. .E F F DC GE1·某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,AC=80 米,BC=60 米, 若线段 CD 是一条小渠,且 D 点在边 AB 上,•已知水渠的造价为 10 元/米,问 D 点在距 A 点多远处时, 水渠的造价最低?最低造价是多少?4、直角三角形全等方法:SAS 、ASA 、SSS 、AAS 、HL 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

cb aCB AP FE D C B21A P E DC B A ED CB A 新湘教版八年级下册数学复习知识点梳理一、直角三角形 1、角平分线: 角平分线上的点到这个角的两边的距离相等如图,∵AD 是∠BAC 的平分线(或∠1=∠2), PE ⊥AC ,PF ⊥AB ∴PE=PF·如图,在ΔABC 中,∠C=90°∠ABC 的平分线BD 交AC 于点D, 若BD=10厘米,BC=8厘米,DC=6厘米,则点D 到直线AB 的距 离是________厘米。

·如图:在△ABC 中,,O 是∠ABC 与∠ACB 的平分线的交点。

求证:点O 在∠A 的平分线上。

2、线段垂直平分线:线段垂直平分线上的点到这条线段两个端点 的距离相等 。

如图,∵CD 是线段AB 的垂直平分线, ∴PA=PB·如图,△ABC 中,DE 是AB 的垂直平分线,AE=4cm ,△ABC 的周长是18 cm ,则△BDC 的周长是__。

·已知:如图,求作点P ,使点P 到A 、B 两点的距离相等, 且P 到∠MON 两边的距离也相等.3、勾股定理及其逆定理①勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方,即222a b c +=。

求斜边,则22c a b =+; 求直角边,则22a c b =-或22b c a =-。

·如图是拉线电线杆的示意图。

已知CD ⊥AB ,,∠CAD=60°,则拉线AC 的长是________m 。

OC B AO N M··A BGFEDC B A·若一个直角三角形的两边长分别为6和10,那么这个三角形的第三条边长是______。

②逆定理 如果三角形的三边长a 、b 、c 有关系222a b c +=,那么这个三角形是直角三角形 。

分别计算“22a b +”和“2c ”,相等就是Rt ∆,不相等就不是Rt ∆。

·在Rt △ABC 中,若2,7AB=3,则下列结论中正确的是( )。

A .∠C=90°B .∠B=90°C .△ABC 是锐角三角形D .△ABC 是钝角三角形·若一个三角形三边满足ab c b a 2)(22=-+,则这个三角形是 三角形.·一块木板如图所示,已知AB =4,BC =3,DC =12,AD =13, 90B ∠=︒,木板的面积为 .·某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,AC=80米,BC=60米,若线段CD 是一条小渠,且D 点在边AB 上,•已知水渠的造价为10元/米,问D 点在距A 点多远处时,水渠的造价最低?最低造价是多少?4、直角三角形全等方法:SAS 、ASA 、SSS 、AAS 、HL 。

·如图,在ΔABC 中,D 为BC 的中点,DE ⊥BC 交∠BAC 的平分线AE 于点E ,EF ⊥AB 于点F ,EG ⊥AC 的延长线于点G 。

求证:BF=CG 。

A DBCC BAC BADCBAFE CBA5、其它性质①直角三角形斜边上的中线等于斜边上的一半。

如图,在Rt ∆ABC 中,∵CD 是斜边AB 的中线,∴12CD AB =。

·直角三角形斜边长20cm,则此斜边上的中线为 .②在直角三角形中,如果一个锐角等于30°那么它所对的直角 边等于斜边的一半。

如图,在Rt ∆ABC 中,∵∠A=30°,∴12BC AB =。

·在Rt △ABC 中,∠C=90°,∠A=30°,则下列结论中正确的是( )。

A .AB=2BC B .AB=2AC C .AC 2+AB 2=BC 2 D .AC 2+BC 2=AB 2③在直角三角形中,如果一条直角边等于斜边的一半,那么 这条直角边所对的角等于30°。

如图,在Rt ∆ABC 中,∵12BC AB =,∴∠A=30°。

·等腰三角形一腰上的高等于腰长的一半,则顶角的度数是 。

④三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半。

如图,在⊿ABC 中,∵E 是AB 的中点,F 是AC 的中点, ∴EF 是⊿ABC 的中位线 ∴EF ‖BC ,12EF BC =·如图,□ABCD 中,对角线AC 、BD 交于点O ,点E是BC 的中点.若OE=3 cm ,则AB 的长为·在□ABCD 中,对角线AC 、BD 相交于点O ,如果AC=14,BD=8,AB=x ,那么x 的取值范围是__________。

二、四边形1、多边形内角和公式:n 边形的内角和=(n -2)·180ºn 2180n =+︒内角和求边形的方法:·一个多边形的内角和为12600,它是 边形。

·一个n 边形的n – 1个内角和为23500,它是 边形,另一个内角是 。

2、中心对称:(在直角坐标系中即关于原点对称,其横、纵坐标都互为相反数) 成中心对称的两个图形中,对应点得连线经过对称中心,且被对称中心平分 会画与某某图形成中心对称图形会辨别图形、实物、汉字、英文字母、扑克等是否中心对称图形oB ADCBADC·下列几张扑克牌中,中心对称图形的有________张·图6中4张扑克牌如图(1)所示放在桌面上,小 敏把其中一张旋转180°后得到如图(2)所示,那 么她所旋转的牌从左数起是( )A .第一张B .第二张C .第三张D .第四张· 在字母C 、H 、V 、M 、S 中是中心对称图形的 是·下列既是轴对称图形又是中心对称图形的是( ) A: 等边三角形 B : 平行四边形 C: 等腰梯形 D : 矩形·下列图案是中心对称图形,不是轴对称图形的是( ).3、特殊四边形的判定①平行四边形:方法1两组对边分别平行的四边形是平行四边形如图,∵ AB ‖CD ,AD ‖BC ,∴四边形ABCD 是平行四边形 方法2 两组对边分别相等的四边形是平行四边形如图,∵ AB=CD ,AD=BC ,∴四边形ABCD 是平行四边形 方法3两组对角分别相等的四边形是平行四边形如图,∵∠A=∠C ,∠B=∠D ,∴四边形ABCD 是平行四边形 方法4一组对边平行相等的四边形是平行四边形如图,∵ AB ‖CD ,AB=CD ,∴四边形ABCD 是平行四边形 或∵AD ‖BC ,AD=BC ,∴四边形ABCD 是平行四边形方法5 对角线互相平分的四边形是平行四边形如图,∵ OA=OC ,OB=OD ,∴四边形ABCD 是平行四边形·如图,在□ABCD 中,点E 是AD 的中点,BE 的延长线与CD 的延长线交于点F 。

试连结BD 、AF ,判断四边形ABDF 的形状,并证明你的结论.E ANMFC BO②矩形:方法1 有三个角是直角的四边形是矩形 方法2 对角线相等的平行四边形是矩形·如图,△ABC 中,点O 为AC 边上的一个动点,过点O 作直线MN ∥BC ,设MN 交∠BCA 的外角平分线CF 于点F ,交∠ACB 内角平分线CE 于E .(1)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论; (2)猜想△ABC 是何形状三角形时,矩形AECF 会是正方形?并证明你的结论。

③菱形:方法1 四边都相等的四边形是菱形方法2 对角线互相垂直的平行四边形是菱形·已知矩形ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别相交于E 、F. 求证:四边形AFCE 为菱形④正方形方法1 有一个角是直角的菱形是正方形 方法2有一组邻边相等的矩形是正方形·正方形具有而菱形不一定具有的性质是( )A: 对角线互相平分 B 对角线相等C:对角线平分一组对角 D:对角线互相垂直·顺次连接对角线相等的四边形各边中点所得的四边形是 ·如图,把一个长方形纸片对折两次,然后剪下一个角,为了 得到一个正方形,剪刀与折痕所成的角的度数应为( ) A.60°B.30° C.45° D.90°·下列说法错误的是( )A 对角线互相垂直平分的四边形是菱形B 对角线平分且相等的四边形是矩形ACDFEOC:对角线互相垂直且相等的四边形是正方形D对角线互相平分的四边形是平行四边形。

·如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB=_______.·如图为四边形、平行四边形、矩形、正方形菱形、梯形集合示意图,请将字母所代表的图形分别填入下表:4、面积公式①S平行四边形=底×高②S矩形=长×宽③S正方形=边长×边长④S菱形=底×高=×(对角线的积),即:S=(a×b)÷2·矩形ABCD的对角线相交于O,AB=6,AC=10,则面积为·菱形的周长为20,一条对角线长为6,则其面积为5、平面图形的镶嵌关键:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角。

·只用下列正多边形地砖中的一种,能够铺满地面的是()A.正十边形B.正八边形C.正六边形D.正五边形·在下列四种边长均为a的正多边形中:正方形、正五边形、正六边形、正八边形。

能与边长为a的正三边形作平面镶嵌的是三、图形与坐标1、点的对称性:关于x轴对称的点,横坐标相反,纵坐标相等;关于y轴对称的点,横坐标相等,纵坐标相反;关于原点对称的点,横、纵坐标都相反。

若直角坐标系内一点P(a,b),则P关于x轴对称的点为P1(a,-b),P关于y轴对称的点为P2(-a,b),关于原点对称的点为P3(-a,-b)。

解题方法:相等时用“=”连结,相反时两式相加=0。

·已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论:①A、B关于x轴对称;②A、B关于y轴对称;③A、B关于原点对称;④A、B之间的距离为4。

其中正确的有个。

·已知点A(m-1,3)与点B(2,n-1)关于x轴对称,则m= ,n= 。

图3相帅炮·已知点P (3,-1)关于y 轴对称点Q 的坐标是(a+b ,1-b ),则ba 的值是 。

2、坐标平移: 左右平移:横坐标右加左减,纵坐标不变;上下平移:横坐标不变,纵坐标上加下减。

例如:若直角坐标系内一点P (a ,b )向左平移h 个单位,坐标变为P (a -h ,b ),向右平移h 个单位,坐标变为P (a +h ,b );向上平移h 个单位,坐标变为P (a ,b +h ),向下平移h 个单位,坐标变为P (a ,b -h ).如:点A (2,-1)向上平移2个单位,再向右平移5个单位,则坐标变为A (7,1).·将四边形ABCD 先向左平移3个单位,再想上平移2个单位,那么点A (3,-2)的对应点A 的坐标是_____.·已知点A (m ,n ),把它向左平移3个单位后与点B(4,-3)关于y 轴对称,则m=__,n=__.·在平面直角坐标系中,点M 的坐标为(b ,-2b ),将点M 向左平移2个单位,再向上平移1个单位后得到点N ,当点N 在第三象限时,则b 的取值范围是___.3、在平面直角坐标系中会画轴对称、平移后的图形,并写出图形顶点的坐标。

相关文档
最新文档