新湘教版七年级数学上知识点总结-

合集下载

最新最新湘教版七年级上册数学知识点总结

最新最新湘教版七年级上册数学知识点总结

第一章有理数1.0既不是正数,也不是负数。

2.负数大于0,正数小于0。

3.正整数、零和负整数统称为整数4.正分数、负分数统称为分数;5.分数和整数统称为有理数。

6.任何有理数都可以用数轴上唯一的一个点表示。

7.数轴的三要素:原点、单位长度、正方向。

8.0的相反数是0。

9.正数的绝对值等于本身;负数的绝对值等于它的相反数;0的绝对值等于0;互为相反数的两个数的绝对值相等。

10.正数大于一切负数。

11.两个负数,绝对值大的反而小。

12.在以向右为正方向的数轴上的两点,右边的点表示的数比左边的点表示的数大。

13.加法法则:①同号两数相加,取相同的符号,并且把它们的绝对值相加。

②异号两数相加,绝对值不相等时,取绝对值较大的加数的符号,并且用绝对值大的减去绝对值小的。

③互为相反数的两个数相加得0。

④一个数与0相加,任得这个数。

14.加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c)。

15.减法法则:减去一个数,等于加上这个数的相反数。

16.乘法法则:①同号两数相乘得正数,并且把绝对值相乘。

②任何数与0相乘都得0。

③异号两数相乘得负数,并且把绝对值相乘。

17.乘法交换律:a×b=b×a;乘法结合律:(a×b)×c=a×(b×c);乘法对于加法的分配律:a×(b±c)=a×b±a×c 18.同号两数相除得正数,异号两数相除得负数,并且把它们的绝对值相除。

19.0除以任何一个不等于0的数都得0。

20.除以一个非零数等于乘上这个数的倒数。

21.n个相同的因式的乘积运算,叫做乘方,乘方运算的结果叫做幂。

22.在n a中,a叫做底数,n叫做指数。

23.把一个绝对值大于10的数记作a×n10,其中a是整数数位只有一位的数,这种记数法叫做科学记数法。

24.先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。

2024秋季新教材湘教版七年级上册数学第1章 小结与复习课件

2024秋季新教材湘教版七年级上册数学第1章 小结与复习课件
(2) 正数的绝对值是它本身;负数的绝对值是它的 相反数;0 的绝对值是 0. 互为相反数的两个数的绝 对值相等.
(3) 一般地,如果 a 表示一个数,则 ①当 a 是正数时,|a| = a; ②当 a = 0 时,|a| = 0; ③当 a 是负数时,|a| = -a.
6. 倒数 若两个有理数的乘积等于 1,则把其中一个数叫作 另一个数的倒数,也称它们互为倒数,0 没有倒数. 7. 有理数大小的比较 (1) 正数大于负数,0 大于负数;
(36)
注意符号问题
= 7 (36) 3 (36) 5 (36) 5 (36)
12
4
6
18
= 21 - 27 + 30 - 10= 14.3 Nhomakorabea2
1 12
1 12
=2 1 1 12 12
= -2×12×12
先确定商的符号, 再把绝对值相除
= -288.
(4)
(24
)
2
2 3
考点四 相反数、倒数、绝对值
例4 填表

3.5 -3.5 0
| -2 | -2
1 3 5
1 3
0.5
相反数 -3.5 3.5 0 -2 2 13 1 -0.5
53
倒数
2 7
2 7
没有
0.5
-0.5
5 8
-3
2
绝对值 3.5 3.5 0
2
2
13 5
1 3 0.5
针对训练
4.
-1 3
的倒数是
-3
;-1 1
七年级上册数学(湘教版)
第1章 有理数
小结与复习
÷
要点梳理
一、正数和负数 1. 大于 0 的自然数和分数(或小数)就是正数;

最新湘教版七年级上册数学知识点总结

最新湘教版七年级上册数学知识点总结

第一章最新湘教版七年级上册数学知识点总结1.0既不是正数,也不是负数。

2.负数大于0,正数小于0。

3.正整数、零和负整数统称为整数4.正分数、负分数统称为分数;5.分数和整数统称为有理数。

6.任何有理数都可以用数轴上唯一的一个点表示。

7.数轴的三要素:原点、单位长度、正方向。

8.0的相反数是0。

9.正数的绝对值等于本身;负数的绝对值等于它的相反数;0的绝对值等于0;互为相反数的两个数的绝对值相等。

10.正数大于一切负数。

11.两个负数,绝对值大的反而小。

12.在以向右为正方向的数轴上的两点,右边的点表示的数比左边的点表示的数大。

13.加法法则:①同号两数相加,取相同的符号,并且把它们的绝对值相加。

②异号两数相加,绝对值不相等时,取绝对值较大的加数的符号,并且用绝对值大的减去绝对值小的。

③互为相反数的两个数相加得0。

④一个数与0相加,任得这个数。

14.加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c)。

15.减法法则:减去一个数,等于加上这个数的相反数。

16.乘法法则:①同号两数相乘得正数,并且把绝对值相乘。

②任何数与0相乘都得0。

③异号两数相乘得负数,并且把绝对值相乘。

17.乘法交换律:a×b=b×a;乘法结合律:(a×b)×c=a×(b×c);乘法对于加法的分配律:a×(b±c)=a×b±a×c 18.同号两数相除得正数,异号两数相除得负数,并且把它们的绝对值相除。

19.0除以任何一个不等于0的数都得0。

20.除以一个非零数等于乘上这个数的倒数。

21.n个相同的因式的乘积运算,叫做乘方,乘方运算的结果叫做幂。

22.在n a中,a叫做底数,n叫做指数。

23.把一个绝对值大于10的数记作a×n10,其中a是整数数位只有一位的数,这种记数法叫做科学记数法。

24.先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。

湘教版七年级数学知识点总结

湘教版七年级数学知识点总结

湘教版七年级数学知识点总结第一章有理数与小数1. 有理数的概念与性质1)有理数的概念:有理数是整数和分数的统称,可以表示为a/b的形式,其中a是整数,b是非零整数。

2)有理数的性质:有理数的四则运算封闭性、交换律、结合律等。

2. 小数的概念与性质1)小数的概念:小数是指小数点后有限位、或无限循环的无限位的数。

2)小数的性质:小数的大小比较、小数的加减法、小数与整数的运算等。

3. 有理数的加减法1)有理数的加法:同号相加、异号相减。

2)有理数的减法:减去一个有理数等于加上与被减数相反数的和。

4. 有理数的乘法与除法1)有理数的乘法:同号相乘得正,异号相乘得负。

2)有理数的除法:除以一个有理数等于乘以这个有理数的倒数。

5. 有理数的绝对值1)绝对值的概念:一个数a的绝对值是非负数,记作|a|,如果a≥0,则|a|=a;如果a<0,则|a|=-a。

2)绝对值的性质:绝对值的非负性、非负数的绝对值等于该数自身、负数的绝对值等于该数的相反数等。

第二章平方根和立方根1. 平方数与立方数1)平方数的概念:一个数的平方等于它本身的积,这个数就是平方数。

2)立方数的概念:一个数的立方等于它本身的三次方,这个数就是立方数。

2. 平方根与立方根1)平方根的概念:如果一个数的平方等于a,那么这个数就叫做a的平方根,记作√a。

2)立方根的概念:如果一个数的立方等于a,那么这个数就叫做a的立方根,记作³√a。

3. 平方根与立方根的性质1)平方根与立方根的非负性:平方根和立方根都是非负数。

2)平方根与立方根的相等性:如果a≥0,那么a的平方根和a的立方根相等。

3)平方根与立方根的大小关系:如果a≥b≥0,那么√a≥√b,³√a≥³√b。

4. 平方根的运算1)平方根的开平方运算:利用平方根的非负性和加减法性质进行运算。

2)平方根的化简:求一个数的平方根的过程。

5. 立方根的运算1)立方根的开立方运算:利用立方根的非负性和加减法性质进行运算。

最新湘教版七年级数学上知识点

最新湘教版七年级数学上知识点

最新湘教版七年级数学上知识点一、有理数的基本概念1.正数:大于0的数叫做正数;负数:小于0的数叫做负数。

备注:在正数前面加“-”的数是负数;“0”既不是正数;也不是负数。

2.有理数:整数和分数统称有理数。

3.数轴:规定了原点、正方向和单位长度的直线。

性质:(1)在数轴上表示的两个数;右边的数总比左边的数大;(2)正数都大于0;负数都小于0;正数大于一切负数;(3)所有有理数都可以用数轴上的点表示。

4.相反数 :只有符号不同的两个数;其中一个是另一个的相反数。

性质:(1)数a 的相反数是-a (a 是任意一个有理数);(2)0的相反数是0;(3)若a 、b 互为相反数;则a+b=0;若a 、b 互为相反数且a 、b 都不等于零;则1-=ba ; 5.倒数 :乘积是1的两个数互为倒数 。

性质:(1)a 的倒数是(a ≠0); (2)0没有倒数 ;(3)若a 与b 互为倒数;则ab=1;若a 与b 互为负倒数;则ab=-1。

倒数与相反数的区别和联系:(1)a 与-a 互为相反数; a 与a1(a ≠ 0)互为倒数;(2)符号上:互为相反数(除0外)的两数的符号相反;互为倒数的两数符号相同;(3)a 、b 互为相反数 →→ a+b=0;a 、b 互为倒数 →→ ab=1;(4)相反数是本身的数是0;倒数是本身的数是±1 。

6.绝对值:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。

性质:(1)数a 的绝对值记作︱a ︱;(2)若a >0;则︱a ︱= a ;若a <0;则︱a ︱= -a ;若a =0;则︱a ︱=0;(3) 对任何有理数a ;总有︱a ︱≥0.7.有理数大小的比较:(1)可通过数轴比较:在数轴上的两个数;右边的数总比左边的数大;正数都大于0;负数都小于0;正数大于一切负数;(2)两个负数;绝对值大的反而小。

即:若a <0;b <0;且︱a ︱>︱b ︱;则a < b.8.科学记数法:把一个绝对值大于10的数记成a ×10n 的形式;其中a 是整数数位只有一位的数;这种记数法叫做科学记数法。

湘教版七年级数学上册知识点

湘教版七年级数学上册知识点

七年级上册 第一章 有理数1、 具有相反意义的量:零上与零下;存入与支出;运进与运出。

(用正负号表示)2、 有理数大小比较方法:正数都大于零;负数都小于零;正数大于一切负数;两个负数,绝对值大的反而小(负得越多,反而越小)。

数轴上的点,右边的总比左边的大。

3、 零既不是正数也不是负数。

分数可以写成有限小数或无限循环小数。

4、 正整数、零和负整数统称为整数;正分数和负分数统称为分数;整数的分数统称为有理数。

5、 任何有理数都可以用数轴上唯一的一个点一表示。

数轴上的点不一定是有理数。

6、 数轴:规定了原点、正方向、单位长度的直线叫数轴。

7、 相反数:只有符号不同的两个数互为相反数;0的相反数是0。

8、 相反数的表示方法:在一个数前加“-”号,表示这个数的相反数。

9、 绝对值:数轴上表示一个数的点与原点的距离。

叫做这个数的绝对值。

10、一个正数的绝对值等于它的本身; 一个负数的绝对值等于它的相反数;0的绝对值等于0; 互为相数的两个数的绝对值相等。

11、有理数的加法:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0 ;一个数与0 相加,仍得这个数。

12、如果两个数的和等于0 ,那么这两个数互为相反数。

13、加法交换律: a + b = b + a 加法结合律:(a + b ) + c = a + ( b+ c ) 分配律:a (b +c ) = ab+ac14、有理数的减法:减去一个数,等于加上这个数的相反数。

15、代数和书写要注意:式子的第一个数前的“+”号可省略;式子中有连续两个符号在一起,后面一个符号及数要添括号;连续两个符号中有“+”号,可省略一个“+”;代数和中任何一个数前可添括号和“+”号。

16、有理数的乘法:○1同号两数相乘得正,并把绝对值相乘;异号两数相乘得负,并把绝对值相乘;○2任何数与0相乘都得0;○3几个不等于0的数相乘,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;○4几个数相乘,有一个因数为0时,积为0。

完整版)新湘教版七年级数学上知识点总结

完整版)新湘教版七年级数学上知识点总结

完整版)新湘教版七年级数学上知识点总结Chapter 1: Review of nal Numbers in Grade 7 XXXI。

Basic Concepts of nal Numbers1.Positive Numbers: Numbers greater than 0 are called positive numbers。

such as 3.3.5.and 0.32.Negative Numbers: Numbers less than 0 are called negative numbers。

such as -2.-0.04.and -1/5.Note: A number with a "-" sign in front of a positive number is a negative number。

"0" is neither positive nor negative。

(We collectively refer to positive and non-negative numbers as non-negative numbers.)2.nal N umbers: XXX: π XXX.)3.Number line: A straight line with an origin。

a positive n。

and a unit length.Properties: (1) Two numbers represented on the number line。

the number on the right is always greater than the number on the left。

(2) Positive numbers are greater than 0.negative numbers are less than 0.and positive numbers are greater than all negative numbers。

2024年湘教版初一数学知识点总结(3篇)

2024年湘教版初一数学知识点总结(3篇)

2024年湘教版初一数学知识点总结____年湘教版初一数学知识点总结一、数的认识1. 数的基础概念:整数、自然数、零、数轴2. 数的表示方法:数字符号、数位、数的读法3. 比较大小:比较两个整数大小的方法4. 数的分类:正数、负数5. 数的相反数和绝对值:相反数的概念、绝对值的概念与计算二、算术运算1. 四则运算:加法、减法、乘法、除法的计算与应用2. 运算律:加法结合律、乘法结合律、加法交换律、乘法交换律、分配律3. 小数的运算:小数的加减法、乘法、除法4. 分数的运算:分数的加减法、乘法、除法5. 括号的运算:带括号的四则运算6. 整数的运算:整数的加减法、乘法、除法三、比例与比例运算1. 比例的概念:比例与比例的意义2. 比例的性质:比例的等价性、比例的反比例性质3. 比例的应用:比例在实际问题中的应用4. 倍数与倍比:倍数的概念、倍比的意义四、数的倍数与公约数、公倍数1. 倍数的概念:倍数的定义与判断2. 公约数与公倍数:公约数的概念、公倍数的概念3. 最大公约数与最小公倍数:最大公约数的求法、最小公倍数的求法4. 分数的化简:约分与分数的最简形式五、分数的加减法与混合运算1. 分数的加法:同分母分数的加法、异分母分数的加法2. 分数的减法:同分母分数的减法、异分母分数的减法3. 带分数的加减法:带分数的加法、带分数的减法4. 分数与整数的加减法:分数与整数的加法、分数与整数的减法六、小数与百分数1. 小数与分数的关系:小数与分数的相互转换2. 小数与百分数的关系:小数与百分数的相互转换3. 百分数的意义与运用:百分数的定义、百分数在实际问题中的应用4. 百分数的计算:百分数的增减、乘除法七、实数的认识1. 无理数的概念:无理数与有理数的关系2. 实数的有序性:实数的大小比较、实数的大小性质3. 实数的运算:实数的加法、减法、乘法、除法4. 实数的应用:实数在实际问题中的应用八、图形的认识与表示1. 二维图形:点、线、线段、射线、角、平行线、垂直线、平行四边形、三角形、四边形、多边形、圆等的概念与性质2. 三维图形:立体图形的概念与种类3. 简单图形的绘制与测量:直线的绘制与测量、角的绘制与测量、实物对应的图形九、图形的运动1. 图形的平移:平移的概念与性质、平移的表示方法2. 图形的旋转:旋转的概念与性质、旋转的表示方法3. 图形的对称:对称的概念与性质、对称的表示方法4. 图形的相似:相似的概念与性质、相似的判定方法十、图形的应用1. 图形的投影:图形的正射投影与斜投影2. 图形的计算:图形面积的计算、图形周长的计算、体积的计算3. 图形的应用:图形在实际问题中的应用2024年湘教版初一数学知识点总结(2)2024年湘教版初一数学知识点总结(3)湘教版初一数学主要包括以下几个知识点:1. 小数与分数小数与分数之间的相互转换是初中数学的基础。

新湘教版七年级数学上知识点总结

新湘教版七年级数学上知识点总结

七年级数学上册主要包括数与式、数据与图、几何、函数等模块。

下面是新湘教版七年级数学上册的知识点总结。

一、数与式1.整数的概念与表示方法:自然数、零和负整数的概念及表示方法。

2.整数的加法与减法:整数加法与减法的概念及运算法则,整数的加法逆元与减法逆元。

3.整数的乘法:整数乘法的概念及运算法则,整数乘法逆元和零的乘法。

4.整数的除法:整数的除法概念及运算法则,整数除法的除法逆元,整数除法中的“舍去法”。

5.有理数的知识:整数的概念及有理数的概念,有理数的加法、减法、乘法和除法运算法则。

6.数的倍数和因数:数的倍数、公倍数、最小公倍数和数的因数、公因数和最大公因数的概念。

7.平方与平方根:平方与平方根的概念和性质。

二、数据与图1.数据的整理与分析:数据的整理与统计、频数表、统计图。

2.常见的统计图:条形图、线形图。

三、几何1.直线与线段:点、直线、线段的定义及表示方法,有向线段的概念。

2.线段的比例:线段的比例及线段比例定理。

3.角的概念:角的定义、顶点、边、对顶角、邻补角、对补角。

4.角的分类:锐角、直角、钝角的概念。

5.角的比较:角的大小比较。

6.垂线、平行线:垂线、平行线的概念,平行线的性质。

7.三角形的概念:三角形的定义及分类,等边三角形、等腰三角形。

8.角的平分线:角的平分线,垂直平分线。

9.平行线的判定:平行线的三种判定方法。

四、函数1.函数的概念:函数的定义及函数符号表示法。

2.函数的特点:函数的自变量和函数值的关系,函数的增减性。

3.线性函数:线性函数的概念及函数的图象。

4.一次函数:一次函数的定义及函数的图象。

5.函数图象的平移:函数图象的平移概念及平移后的位置。

6.函数的应用:函数在实际问题中的应用,函数图象的解读。

湘教版七年级上册数学知识点归纳

湘教版七年级上册数学知识点归纳

湘教版(湖南教育出版社)七年级上册数学的知识点主要包括以下几个方面:
1. 有理数
-有理数的概念,包括正数、负数和零。

-数轴及其上点的表示方法。

-有理数的四则运算及其运算律。

2. 整式的加减
-单项式与多项式的概念。

-同类项的合并。

-整式的加法与减法运算。

3. 一元一次方程
-一元一次方程的定义和解法。

-等式的性质。

-方程的应用题。

4. 几何图形初步
-平面直角坐标系的引入及坐标点的表示。

-线段、射线和直线的基本性质。

-角的种类及其性质。

-三角形的分类及性质。

5. 数据的收集与整理
-数据的收集方法和来源。

-数据的整理,包括分类和制作频数分布表。

-简单的统计图表,如柱状图和折线图的绘制。

6. 比和比例
-比的含义及性质。

-比例的含义及其性质。

-比例尺的概念及其应用。

7. 平面图形的认识
-多边形的性质。

-平行线和垂线的性质。

-相交线形成的角的关系。

这些知识点是七年级上册数学学习的基础,为学生后续学习打下坚实的基础。

在学习过程中,注重理解和掌握概念,并通过大量的练习来巩固和运用所学知识。

(完整word版)最新湘教版七年级上册数学知识点总结

(完整word版)最新湘教版七年级上册数学知识点总结

(完整word版)最新湘教版七年级上册数学知识点总结第一章有理数1.0既不是正数,也不是负数。

2.负数大于0,正数小于0。

3.正整数、零和负整数统称为整数4.正分数、负分数统称为分数;5.分数和整数统称为有理数。

6.任何有理数都可以用数轴上唯一的一个点表示。

7.数轴的三要素:原点、单位长度、正方向。

8.0的相反数是0。

9.正数的绝对值等于本身;负数的绝对值等于它的相反数;0的绝对值等于0;互为相反数的两个数的绝对值相等。

10.正数大于一切负数。

11.两个负数,绝对值大的反而小。

12.在以向右为正方向的数轴上的两点,右边的点表示的数比左边的点表示的数大。

13.加法法则:①同号两数相加,取相同的符号,并且把它们的绝对值相加。

②异号两数相加,绝对值不相等时,取绝对值较大的加数的符号,并且用绝对值大的减去绝对值小的。

③互为相反数的两个数相加得0。

④一个数与0相加,任得这个数。

14.加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c)。

15.减法法则:减去一个数,等于加上这个数的相反数。

16.乘法法则:①同号两数相乘得正数,并且把绝对值相乘。

②任何数与0相乘都得0。

③异号两数相乘得负数,并且把绝对值相乘。

17.乘法交换律:a×b=b×a;乘法结合律:(a×b)×c=a×(b×c);乘法对于加法的分配律:a×(b±c)=a×b±a×c 18.同号两数相除得正数,异号两数相除得负数,并且把它们的绝对值相除。

19.0除以任何一个不等于0的数都得0。

20.除以一个非零数等于乘上这个数的倒数。

21.n个相同的因式的乘积运算,叫做乘方,乘方运算的结果叫做幂。

22.在n a中,a叫做底数,n叫做指数。

23.把一个绝对值大于10的数记作a×n10,其中a是整数数位只有一位的数,这种记数法叫做科学记数法。

湘教版七年级数学知识点总结2024

湘教版七年级数学知识点总结2024

湘教版七年级数学知识点总结2024一、整数1.1 整数的概念整数是由0、正整数和负整数组成的集合。

1.2 整数的大小关系整数的大小关系要根据其绝对值大小来判断,即两数绝对值越大,数值越大。

1.3 整数的加减运算整数的加减运算规则同符号相加,异号相减,差的绝对值为两数绝对值之和。

1.4 整数的乘法运算整数的乘法运算规则是同号得正,异号得负。

1.5 整数的除法运算整数的除法运算和小学的除法运算不同,需要考虑除数与被除数的正、负性质。

二、代数式2.1 代数式的概念代数式是由数和字母(或其他代数符号),按照一定的运算法则组成的式子。

2.2 代数式的化简和展开代数式的化简是指将同类项合并,约分等变形操作,化简成简化式。

代数式的展开是指将一个分式或者一个大式子按照乘法分配律展开成简单的分式或多个小式子的过程。

2.3 代数式的乘法公式代数式的乘法公式包括平方公式、两数积公式、平方差公式、完全平方公式和差与和积公式。

2.4 代数式的因式分解代数式的因式分解是将一个代数式分解成若干个因式的积的形式,是代数中的基本操作。

三、图形的认识3.1 平面图形的基本概念平面图形是由若干条线段或弧线所组成的图形。

常见的平面图形有点、线、角、面等。

3.2 角的概念和度量角是由两条有公共端点的线段所围成的图形。

角的度量是指它所对应的圆周弧的度数。

3.3 三角形的基本概念与性质三角形是由三条线段所围成的图形。

三角形的性质有:内角和定理、外角和定理、等腰三角形的性质等。

3.4 三角形的相似关系和勾股定理三角形的相似关系有相似三角形的概念以及相似三角形的性质。

勾股定理是三角形中的基本定理,指直角三角形两直角边的平方和等于斜边的平方。

四、函数4.1 函数的概念和函数式函数是一种特殊的关系,它将一个自变量对应到唯一的一个因变量上。

函数式是函数的一种表示形式,是自变量和因变量之间的公式或算法。

4.2 一次函数和二次函数一次函数的关系式为y=kx+b,其中k和b分别表示函数的斜率和截距。

七年级数学上湘教版知识点

七年级数学上湘教版知识点

七年级数学上湘教版知识点一、整数与代数1.整数的概念整数是由自然数、0、负自然数组成的数集。

2.整数的大小关系与绝对值同号两数相比较,绝对值大的数更大;异号两数相比较,正数大于负数。

绝对值是一个数到原点的距离,与符号无关。

3.整数的加减法同号两数相加时,保留符号,绝对值相加;异号两数相加时,符号和绝对值由大数决定。

整数相减时,可以转化为加上相反数的方式。

4.代数式的概念和运算代数式是由常数、未知数和运算符号组成的式子,有字母代替数。

代数式的运算包括加、减、乘、除和指数运算。

二、平面几何1.线和角的关系直线是由一些点连成的,不停延伸的图形;角是由两条射线共同确定的,有大小和方向的二次元图形。

2.三角形和四边形的形状和性质三角形是由三条边和三个角组成的,有三种可能的形状;四边形是由四条边和四个角组成的,有多种形状和性质。

3.平行线与平面图形的运动平行线是不相交且平面内任意两条线都不相交的两条直线,运动包括平移、旋转、翻折和镜像等。

三、实数1.实数的概念实数是由有理数和无理数组成的数集。

2.实数的大小关系实数的大小关系与整数相同,可以通过数轴来表示和比较大小。

3.有理数与无理数有理数是可以表示为两个整数比例的数;无理数是无法表示为有理数的数。

4.实数的乘除法实数的乘除法可以化为有理数的乘除法,保留小数点即可。

四、数据分析1.统计图表的绘制和分析统计图表包括柱状图、折线图、饼图等,可以用来展示数据的分布和变化情况,进一步分析数据。

2.平均数与中位数平均数指一组数的总和除以数据个数,可以反映出一组数的总体水平;中位数指排序后位于正中间的数,可以反映出一组数的中心位置。

湘教版七年级上册数学知识点总结归纳

湘教版七年级上册数学知识点总结归纳

第一章知识归纳一、有理数基本概念1.正数与负数我们把以前学过的数大于零叫做正数。

有时在正数前面也加上“+”(正)号。

如+0.5、+3、+1/2……“+”号可以省略。

我们把在以前学过的数(0除外)前面加上负号“-”的数叫做负数。

如-3、-0.5、-2/3……0既不是正数也不是负数,0是正负数的分界。

正数与负数可以用来表示具有相反意义的量。

相反意义的量包含两个要素:一是它们的意义要相反;二是它们都具有数量。

与一个量成相反意义的量不止一个。

2.有理数正整数、0统称自然数;正整数、0、负整数统称整数;正分数和负分数统称分数。

整数和分数统称有理数整数可以看做分母为1的分数。

正整数、0、负整数、正分数、负分数都可以写成分数的形式。

可以这样说:有理数都能写成分数的形式;能写成分数(分子分母互质)形式的数是有理数.有理数的分类(两种)正整数整数零有理数负整数分数正分数负分数正整数正有理数正分数有理数零负有理数负整数负分数3. 数轴规定了原点、正方向、单位长度的直线叫做数轴。

数轴的三要素:原点、正方向、单位长度任何有理数都可以用数轴上的点表示,有理数与数轴上的点是一一对应的。

数轴上的点表示的数从左到右依次增大;原点左边的数是负数,原点右边的数是正数。

4.相反数一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,他们分别在原点的左右,表示-a和a,我们说这两点关于原点对称。

只有符号不同的两个数叫做互为相反数.(绝对值相等,符号不同的两个数叫做互为相反数)正数的相反数是负数,负数的相反数是正数,0的相反数是0。

在一个数前面添上“-”号,表示这个数的相反数。

5.绝对值在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值。

对任意有理数a ,总有0a ≥。

正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

(互为相反数的两个数的绝对值相等。

)6.比较大小(1)数轴上两个点表示的数,右边的总比左边的大。

新湘教版七年级数学上知识点总结

新湘教版七年级数学上知识点总结

新湘教版七年级数学上知识点总结新湘教版七年级数学上册知识点总结第一章:有理数总复习一、有理数的基本概念2.1正数:大于。

的数叫做正数;例如:3,3,0.32负数:小于0的数叫做负数。

例如:一2、9。

4备注:在正数前面加的数是负数;“0”既不是正数,也不是负数。

(我们把正数和。

统称为非负数)2.有理数:整数和分数统称有理数。

(有理数是指有限小数和无限循环小数。

切记:杯是有理数)6整数正分数负分数J正整数1正分数箕整数正整数整缴有王里缴分数正有王里.育王里缴等负有理缴3.数轴:规定了愿直、正方向和单位长度的直线。

性质:在数轴上表示的两个数,右边的数总比左边的数大;正数都大于(),负数都小于0;正数大于一切负数;所有有理数都可以用数轴上的点表示。

4.相反数:只有如殳不同的两个数,其中一个是另一个的相反数。

例如:5与一5。

性质:数a的相反数是-a(a是任意一个有理数)。

例如:(_ 1)的相反数是一(工1) 0的相反数是0;若a、b互为相反数,则a b=();5,倒数:乘积是1的两个数互为倒数。

性质:a的倒数是(aO);()没有倒数;若a与b互为倒数,则ab=l;6、倒数与相反数的区别和联系:。

与互为相反数;。

与(a_()互为倒数;a符号上:互为相反数(除()外)的两数的符号相反;互为倒数的两数符号相同;a、b互为相反数,则a b=();a、b互为倒数则ab=l;相反数是本身的数是0,倒数是本身的数是1。

7,绝对值:一个数a的绝对值就是数轴上表示数a的点与原点的距离。

性质:数a的绝对值记作。

例如:一12的绝对值表示为HZ若a(),则二a;即正数的绝对值是它本身。

若aV(),则=-a;负数的绝对值是它的相反数;若a=(),则=();()的绝对值是0.对任何有理数%总有_).8.有理数大小的比较:可通过数轴比较:在数轴上的两个数,右边的数总比左边的数大;正数都大于(),负数都小于0;正数大于一切负数;两个负数,绝对值大的反而小。

(完整)新湘教版七年级数学上知识点总结_,推荐文档

(完整)新湘教版七年级数学上知识点总结_,推荐文档

新湘教版七年级数学上册知识点总结第一章:有理数总复习、有理数的基本概念21. 正数:大于0的数叫做正数;例如:3, 3 ,0.3212, 0.04,-负数:小于0的数叫做负数。

例如:5备注:在正数前面加“-”的数是负数;“ 0”既不是正数,也不是负数。

(我们把正数和0统称为非负数)2. 有理数:整数和分数统称有理数。

(有理数是指有限小数和无限循环小数。

切记:r正整数不是有理数)正分數3.数轴:规定了原点、正方向和单位长度的直线。

性质:(1)在数轴上表示的两个数,右边的数总比左边的数大;(2)正数都大于0,负数都小于0;正数大于一切负数;(3)所有有理数都可以用数轴上的点表示。

4. 相反数:只有符号丕同的两个数,其中一个是另一个的相反数。

例如:5与一5 o性质:(1 )数a的相反数是-a(a是任意一个有理数)。

例如:(x 0的相反数是(x 1)(2)0的相反数是0;(3)若a、b互为相反数,则a+b=0;5. 倒数:乘积是1的两个数互为倒数。

性质:(1) a的倒数是(0); ( 2) 0没有倒数;(3)若a与b互为倒数,则ab=1;6、倒数与相反数的区别和联系:1(1) a与-a互为相反数;a与(a工0 )互为倒数;a(2) 符号上:互为相反数(除0夕卜)的两数的符号相反;互为倒数的两数符号相同;(3) a、b互为相反数,则a+b=0 ; a、b互为倒数则ab=1 ;9.科学记数法:把一个绝对值大于 10的数记成a x 10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫做科学记数法。

其中 1 w |a| v 10,n 为正整数,n 等于原数的整数位二、有理数的运算1、运算法则:(1)有理数加法法则: ①同号两数相加,取相同的符号,并把绝对值相加;② 异号两数 相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两数相加得0;③一个数同0相加,仍得这个数。

(即:任意两个数相加,符号看大数字的。

湘教版七年级数学上知识点总结

湘教版七年级数学上知识点总结

一、数的四则运算1.加法和减法:两个数相加或相减,得出结果。

2.乘法和除法:两个数相乘或相除,得出结果。

3.复合运算:多个运算符一起进行运算,按照一定的优先级依次进行计算。

二、数的整除与倍数1.整除:数a除以数b,如果商是整数,那么称a能被b整除。

2.倍数:数a如果除以数b的商是整数,那么称a是b的倍数。

三、质数与合数1.质数:大于1的整数,除了1和自身之外没有其他因数的数。

2.合数:大于1的整数,可以分解为两个或两个以上质数的乘积。

四、最大公约数和最小公倍数1.最大公约数:两个或多个数公共的约数中最大的一个。

2.最小公倍数:两个或多个数公有倍数中最小的一个。

五、分数和小数1.分数:由一个整数和一个非零的分母组成的数。

2.真分数:分数的分子小于分母的分数。

3.假分数:分数的分子大于等于分母的分数。

4.小数:以十进制形式表示的数。

5.循环小数:小数部分有一段重复的数的小数。

六、比例1.比例:表示两个量之间相等关系的式子。

2.比率:两个量相比的关系。

3.直接比例:两个量之间的比率保持不变。

4.反比例:两个量之间的比率成反比。

七、百分数1.百分数:百分之一(1%)表示单位。

2.百分数的运算:通过百分数与数的四则运算,可以得出结果。

八、平均数1.算术平均数:一组数值的和除以这组数值的个数。

2.权数平均数:每个数值的权与数值的乘积之和除以权的和。

九、图形的周长和面积1.周长:封闭曲线的长度。

2.面积:图形所围成的平面上的部分的大小。

十、计数与概率1.可数数与不可数数:可以数出个数的数与不能数出个数的数。

2.概率:件事件发生的可能性大小。

以上是湘教版七年级数学上的知识点总结,涵盖了数的四则运算、整除与倍数、质数与合数、最大公约数和最小公倍数、分数和小数、比例、百分数、平均数、图形的周长和面积、计数与概率等内容。

这些知识点是学好七年级数学的基础,希望同学们能够牢固掌握,为后续学习打下坚实的基础。

最新湘教版七年级上册数学知识点总结

最新湘教版七年级上册数学知识点总结

第一章最新湘教版七年级上册数学知识点总结1.0既不是正数,也不是负数。

2.负数大于0,正数小于0。

3.正整数、零和负整数统称为整数4.正分数、负分数统称为分数;5.分数和整数统称为有理数。

6.任何有理数都可以用数轴上唯一的一个点表示。

7.数轴的三要素:原点、单位长度、正方向。

8.0的相反数是0。

9.正数的绝对值等于本身;负数的绝对值等于它的相反数;0的绝对值等于0;互为相反数的两个数的绝对值相等。

10.正数大于一切负数。

11.两个负数,绝对值大的反而小。

12.在以向右为正方向的数轴上的两点,右边的点表示的数比左边的点表示的数大。

13.加法法则:①同号两数相加,取相同的符号,并且把它们的绝对值相加。

②异号两数相加,绝对值不相等时,取绝对值较大的加数的符号,并且用绝对值大的减去绝对值小的。

③互为相反数的两个数相加得0。

④一个数与0相加,任得这个数。

14.加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c)。

15.减法法则:减去一个数,等于加上这个数的相反数。

16.乘法法则:①同号两数相乘得正数,并且把绝对值相乘。

②任何数与0相乘都得0。

③异号两数相乘得负数,并且把绝对值相乘。

17.乘法交换律:a×b=b×a;乘法结合律:(a×b)×c=a×(b×c);乘法对于加法的分配律:a×(b±c)=a×b±a×c 18.同号两数相除得正数,异号两数相除得负数,并且把它们的绝对值相除。

19.0除以任何一个不等于0的数都得0。

20.除以一个非零数等于乘上这个数的倒数。

21.n个相同的因式的乘积运算,叫做乘方,乘方运算的结果叫做幂。

22.在n a中,a叫做底数,n叫做指数。

23.把一个绝对值大于10的数记作a×n10,其中a是整数数位只有一位的数,这种记数法叫做科学记数法。

24.先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。

湘教版七年级数学上知识点

湘教版七年级数学上知识点

第一章:有理数总复习、有理数的基本概念1. 正数:大于0的数叫做正数;负数:小于0的数叫做负数。

备注:在正数前面加“ - ”的数是负数;“ 0”既不是正数,也不是负数2. 有理数:整数和分数统称有理数。

3. 数轴:规定了原点、正方向和单位长度的直线性质:(1)在数轴上表示的两个数,右边的数总比左边的数大;(2)正数都大于0, 负数都小于0;正数大于一切负数;(3)所有有理数都可以用数轴上的点表示。

4. 相反数:只有符号不同的两个数,其中一个是另一个的相反数。

性质:(1)数a的相反数是-a(a 是任意一个有理数);(2)0的相反数是0;(3)若a、b互为相反数,则a+b=0;若a、b互为相反数且a、b都不等于零,则a1;b5. 倒数:乘积是1 的两个数互为倒数。

性质:(1)a的倒数是(a≠0);(2)0没有倒数;(3)若a与b互为倒数,则ab=1;若a 与b 互为负倒数,则ab=-1 。

倒数与相反数的区别和联系:(1)a与- a互为相反数;a与1(a≠ 0 )互为倒数;(2)符号上:互为相反a数(除0 外)的两数的符号相反;互为倒数的两数符号相同;(3)a、b 互为相反数→→ a+b=0 ;a、b 互为倒数→→ ab=1 ;(4)相反数是本身的数是0,倒数是本身的数是± 1 。

6. 绝对值:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。

性质:(1)数a的绝对值记作︱a︱;(2)若a>0,则︱a︱= a;若a<0,则︱a︱= -a ;若a =0,则︱a︱=0;(3)对任何有理数a,总有︱a︱≥0.7. 有理数大小的比较: (1)可通过数轴比较:在数轴上的两个数,右边的数总比左边的数大;正数都大于0,负数都小于0;正数大于一切负数;(2)两个负数,绝对值大的反而小。

即:若a<0,b <0,且︱a︱>︱b︱,则a < b.8. 科学记数法:把一个绝对值大于10 的数记成a×10n的形式,其中a 是整数数位只有一位的数,这种记数法叫做科学记数法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新湘教版七年级数学上册知识点总结第一章:有理数总复习一、有理数的基本概念1.正数:大于0的数叫做正数;例如:3, 32,0.32负数:小于0的数叫做负数。

例如:51,04.0,2---备注:在正数前面加“-”的数是负数;“0”既不是正数,也不是负数。

(我们把正数和0统称为非负数)2.有理数:整数和分数统称有理数。

(有理数是指有限小数和无限循环小数。

切记:不是有理数π)3.数轴:规定了原点、正方向和单位长度的直线。

性质:(1)在数轴上表示的两个数,右边的数总比左边的数大; (2)正数都大于0,负数都小于0;正数大于一切负数;(3)所有有理数都可以用数轴上的点表示。

4.相反数:只有符号不同的两个数,其中一个是另一个的相反数。

例如:5与-5。

性质:(1)数a 的相反数是-a (a 是任意一个有理数) 。

例如:)1()1+-+x x 的相反数是( (2)0的相反数是0;(3)若a 、b 互为相反数,则a+b=0;5.倒数 :乘积是1的两个数互为倒数 。

性质:(1)a 的倒数是(a ≠0); (2)0没有倒数 ;(3)若a 与b 互为倒数,则ab=1;6、倒数与相反数的区别和联系:(1)a 与-a 互为相反数;a 与a1(a ≠ 0)互为倒数; (2)符号上:互为相反数(除0外)的两数的符号相反;互为倒数的两数符号相同;(3)a 、b 互为相反数,则 a+b=0;a 、b 互为倒数则 ab=1;(4)相反数是本身的数是0,倒数是本身的数是±1。

7.绝对值:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。

性质:(1)数a 的绝对值记作︱a ︱。

例如:1212-的绝对值表示为-(2)若a >0,则︱a ︱= a ;即正数的绝对值是它本身。

若a <0,则︱a ︱= -a ;负数的绝对值是它的相反数;若a =0,则︱a ︱=0;0的绝对值是0.(3) 对任何有理数a,总有︱a ︱≥0.8.有理数大小的比较:(1)可通过数轴比较:在数轴上的两个数,右边的数总比左边的数大;正数都大于0,负数都小于0;正数大于一切负数;(2)两个负数,绝对值大的反而小。

例如:95,95,99;55->-<=-=-所以--因为 9.科学记数法:把一个绝对值大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫做科学记数法。

其中1≤|a|<10,n 为正整数, n 等于原数的整数位数减去1。

例如:7102.332000000⨯-=-二、有理数的运算1、运算法则:(1)有理数加法法则:① 同号两数相加,取相同的符号,并把绝对值相加;② 异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两数相加得0; ③ 一个数同0相加,仍得这个数。

(即:任意两个数相加,符号看大数字的。

符号相同,数字相加;符号不同,数字相减。

)(2)有理数减法法则:减去一个数,等于加上这个数的相反数。

即a-b=a+(-b)。

(3)有理数的乘法法则:两个数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0。

规律:① 几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。

② 几个数相乘,有一个因数为0,积就为0。

(4)有理数除法法则:①除以一个数等于乘上这个数的倒数;即ba b a 1⨯=÷ (b ≠0); ② 两数相除,同号得正,异号得负,并把绝对值相除; 0除以任何一个不等于0的数,都得0。

(5)有理数的乘方①求n 个相同因数的积的运算,叫做乘方。

即a ·a ·a ·····a= a n(注意:)0(1;01≠==a a a a 2、运算顺序:先算乘方,再算乘除,最后算加减;如果有括号,就先进行括号里面的运算。

3、有理数的运算律:(1)加法交换律:a+b=b+a ;(2)加法结合律:(a+b)+c=a+(b+c);(3)乘法交换律:ab=ba ;(4)乘法结合律:(ab)c=a(bc);(5)乘法分配律:a(b+c)=ab+ac 。

第二章:代数式总复习一、用字母表示数的书写要求:1、在含有字母的式子里出现的乘号,通常写作“·”或省略不写,如:a×b写成a·b或ab;2、字母和数字相乘,数字应写在字母左边,如“4x”. 当字母前的数字为1或-1时,将“1”省略不写;3、带分数与字母相乘, 把带分数写成假分数;4、在式子中出现除法运算时,一般按分数写法来写;5、若式子中有“+、-”运算,式子后面有单位,则式子要用括号括起来。

二、代数式的概念:用运算符号把数或表示数的字母连接而成的式子叫做代数式。

单独一个字母或者一个数也是代数式。

注意:等式、不等式都不是代数式,但它们的两边都由代数式组成;注意代数式的书写格式以及是否加括号。

三、单项式的概念:像2a2、πr2、a2h这样的代数式,数字与字母只进行了乘法(包含乘方)运算,这样的代数式叫做单项式(monomial)。

特别地,单独一个字母或一个数也是单项式。

★单项式的系数:单项式中与字母相乘的数叫作单项式的系数。

特别注意:“系数”必须包括数字前面的符号,另外,当系数是“1”时,通常省略不写;系数是“-1”时,只写“-”就可以了。

★单项式的次数:一个单项式中,所有字母的指数的和,叫做这个单项式的次数。

四、多项式的概念:像xy2+8x2和2x5-5x2y+3xy-1这样,几个单项式的代数和叫做多项式。

其中的每个单项式叫多项式的项,不含字母的项叫做常数项。

一个多项式含有几个项就叫几项式。

★多项式的次数:多项式里,次数最高项的次数,就是多项式的次数。

如:多项式2x5-5x2y+3xy-1共4项,次数分别为5、3、2、0,故该多项式的次数是五次,称为“五次四项式”。

★多项式的排列:(1)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母的降幂排列;(最高次项在最左边);(2)把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母的升幂排列。

(最高次项在最右边)。

五、同类项定义:所含字母相同,相同字母指数也分别相同的项叫同类项。

★合并同类项步骤:1、确定同类项;2、运用加法交换律与结合律将同类项结合在一起;3、利用乘法对加减法分配率合并同类项;4、整理合并后的多项式(按降幂排列)。

合并同类项法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变。

多项式相等:两个多项式分别经过合并同类项后,如果它们的对应项系数都相同,则称这两个多项式相等。

六、代数式的值:像上面两个问题那样,用数值代替代数式里的字母,按照代数式指明的运算,计算出的结果叫做代数式的值。

★注意:字母的值是负数,代入时应将负数加上括号;如果字母的值是分数,并要计算其平方、立方,代入时也应将分数加上括号;注意将乘号还原。

(灵活使用整体代入法)七、“去括号”法则:正不变,负变。

要变全都变。

括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号。

“添括号”法则:所添括号前面是“+”号,括到括号里的各项都不改变符号;所添括号前面是“-”号,括到括号里的各项都改变符号。

★注意:添括号刚好和去括号的过程相反,添括号是否正确,可以用去括号去检验。

第三章:一元一次方程总复习一、基本概念:1、方程:含有未知数的等式叫作方程。

2、建立方程模型:把所有要求的量用字母x(或y)等表示,根据问题中的数量关系列出方程,叫做建立方程模型。

3、一元一次方程:只含有一个未知数,并且未知数的次数(即指数)是1,这样的整式方程叫一元一次方程。

4、方程的解:能使方程左、右两边的值相等的未知数的值叫作方程的解。

5、解方程:求方程解的过程叫作解方程。

二、等式性质:等式性质1:等式两边都加上(减去)同一个数(或同一个式),所得结果仍是等式。

数学语言描述:若a=b,则 a±c=b±c ;等式性质2:等式两边都乘(或除以)同一个数(或同一个式)(除数或除式不能为0),所得结果仍是等式。

数学语言描述:若a=b,则 ac=bc,a/d=b/d (d≠0);*传递性:若a=b, b=c, 则 a=c(也称等量代换);*对称性:若a=b, 则 b=a 。

三、解一元一次方程的基本步骤:1、去分母(方程两边每一项都同时乘以最小公分母,不要漏乘!);2、去括号(注意:1.符号问题;2.一个数乘以括号时,不要漏乘。

先去小括号,再去中括号,最后去大括号。

);3、移项(移项要变号,不移的项不变号。

一般将含有未知数的项移到等式左边,把常数项移到等式右边。

);4、化简(合并同类项)成一元一次方程的标准形式:ax=b ;5、未知数系数化为1:(两边都除以x 的系数)。

四、列一元一次方程解应用题的步骤有:1、(审)审清题意:应认真审题,分析题中的数量关系,找出问题所在。

2、(设)设未知数:用字母表示题目中的未知数时一般采用直接设法,当直接设法使列方程有困难可采用间接设法,注意未知数的单位不要漏写。

3、(列)找出等量关系并列出方程:可借助图表分析题中的已知量和未知量之间关系,列出等式两边的代数式,注意它们的量要一致,使它们都表示一个相等或相同的量。

然后根据等量关系列出方程。

列出的方程应满足三个条件:各类是同类量,单位一致,两边是等量。

4、(解)解方程:求出方程的解. 方程的变形应根据等式性质和运算法则。

5、(验)检验解的合理性:不但要检查方程的解是否为原方程的解,还要检查是否符合应用题的实际意义,进行取舍,并注意单位。

6、(答)作答:正确回答题中的问题。

五、常见的一元一次方程应用题:1、和差倍分问题:(1)增长量=原有量×增长率; (2)现在量=原有量+增长量2、等积变形问题:常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变。

(1)圆柱体的体积公式 V=底面积×高=S ·h = r 2h (2)长方体的体积 V =长×宽×高=abc3、数字问题:一般可设个位数字为a ,十位数字为b ,百位数字为c 。

十位数可表示为10b+a , 百位数可表示为100c+10b+a 。

然后抓住数字间或新数、原数之间的关系找等量关系列方程。

4、销售问题:( 以下“成本价”在不考虑其它因素的情况下指“进价” )(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100% (3)售价=成本价×(1+利润率) (4)商品销售额=商品销售价×商品销售量(5)商品的销售利润=(销售价-成本价)×销售量(6)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售。

相关文档
最新文档