解一元一次不等式组(习题复习课)

合集下载

一元一次不等式组专题知识点与经典习题

一元一次不等式组专题知识点与经典习题

一元一次不等式(组)专题知识点与经典习题一元一次不等式(组)复习一.知识梳理1.知识结构图(二).知识点回顾1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种:“≠”、“>” 、“<” 、“≥”、“≤”.2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。

解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。

说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值. 3.不等式的基本性质(重点)(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果a b >,那么__a c b c ±±(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.如果,0a b c >>,那么__ac bc(或___a b c c) (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.如果a b >,0c <那么__ac bc (或___a b c c)说明:常见不等式所表示的基本语言与含义还有:①若a -b >0,则a 大于b ;②若a -b <0,则a 小于b ;③若a -b ≥0,则a 不小于b ;④若a -b ≤0,则a 不大于b ;⑤若ab >0或0ab >,则a 、b 同号;⑥若ab <0或0a b <,则a 、b 异号。

任意两个实数a 、b 的大小关系:①a -b>O ⇔a>b ;②a -b=O ⇔a=b ;③a-b<O ⇔a<b .不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。

(完整)一元一次不等式总复习讲义

(完整)一元一次不等式总复习讲义

一元一次不等式知识要点不等式用符号≤≥≠“<”(“”)“>”(“”)“”连接而成的式子,叫 比较等式与不等式的基本性质。

1、若kb ka -<-,则 b a > ( )2、若b a >,则 2323b a-<-( )3、若,,d c b a =<,则 bd ac < ( )4、若0<<b a ,则 b a > ( )5、对于实数若a ,总有 a a 23-> ( )6、若b a >,则22b a > ( )7、若b a >,0≠ab ,则ba 11< ( ) 8、若,1a a <则10<<a ( )一元一次不等式(组)解法解一元一次不等式的一般步骤: (1) 去分母(根据不等式的基本性质3) (2) 去括号(根据单项式乘以多项式法则) (3) 移项(根据不等式的基本性质2) (4) 合并同类项,得ax>b ,或ax 〈b (a≠0)(根据合并同类项法则) (5) 两边同除以a (或乘1/a )(根据不等式基本性质3)(注:若a<0,不等号反向) (6) 不等式的解在数轴上的表示 一、选择题1、 如果a >b ,c <0,那么下列不等式成立的是( ).(A) a +c >b +c ; (B ) c -a >c -b ; (C ) ac >bc ; (D ) a bc c> . 2、如果,2323,11--=++=+x x x x 那么x 的取值范围是( )A 、321-≤≤-xB 、1-≥xC 、32-≤xD 、132-≤≤-x3、已知a 、b 、c 为有理数,且a>b>c ,那么下列不等式中正确的是( )A 。

a+b 〈b+cB 。

a-b 〉b-c C.ab>bc D 。

a bc c>4、如果m<n 〈0那么下列结论中错误的是( )A 。

m —9〈n-9 B.-m 〉—n C 。

初一数学一元一次不等式练习题汇总(复习用)含答案

初一数学一元一次不等式练习题汇总(复习用)含答案

一元一次不等式和一元一次不等式组培优训练一、填空题1. 比较大小:-3________-π,-0.22______(-0.2)2;2. 若2-x<0,x________2;3. 若>0,则xy_________0;4. 代数式的值不大于零,则x__________;5. a、b关系如下图所示:比较大小|a|______b,-6. 不等式13-3x>0的正整数解是__________;7. 若|x-y|=y-x,是x___________y;8. 若x≠y,则x2+|y|_________0;9. 不等式组的解集是____________.二、选择题在下列各题中的四个备选答案中,只有一个是正确的,将正确答案前的字母填在括号内:1.若|a|>-a,则a的取值范围是( ).(A)a>0; (B)a≥0; (C)a<0; (D)自然数.2.不等式23>7+5x的正整数解的个数是( ).(A) 1个;(B)无数个;(C)3个;(D)4个.3.下列命题中正确的是( ).(A) 若m≠n,则|m|≠|n|; (B)若a+b=0,则ab>0;(C)若ab<0,且a<b,则|a|<|b|; (D)互为例数的两数之积必为正.4.无论x取什么数,下列不等式总成立的是( ).(A) x+5>0; (B)x+5<0; (C)-(x+5)2<0;(D)(x-5)2≥0.5.若,则x的取值范围是( ).(A)x>1; (B)x≤1;(C)x≥1; (D)x<1.三、解答题1.解不等式(组),并在数轴上表示它们的解集.(1)(x-1)≥1; (2);(3)(4)2. x取什么值时,代数式的值不小于代数式的值.3. K取何值时,方程=5(x-k)+1的解是非负数.4. k为何值时,等式|-24+3a|+中的b是负数?参考答案一、1.-3>-π,-22 <(-0.2)2; 2.x>2; 3.xy>0; 4.X≥2; 5.|a|>b,-,-b<-; 6.1,2,3,4; 7.x≤y; 8.x2+|y|>0; 9.无解.二、1.A; 2.C; 3.D 4.D; 5.B.三、1.(1)x≤-3;(2)x<1;(3)2≤x<8;(4)x<0;2.x≤-;3.k≥;4.k>-48.一元一次不等式能力测试题一、填空题(每空3分,共27分)1.(1)不等式的解集是________;(2)不等式的非负整数解是________;(3)不等式组的解集是______________;(4)根据图1,用不等式表示公共部分x的范围______________.2.当k________时,关于x的方程2x-3=3k的解为正数.3.已知,且,那么ab________b2(填“>”“<”“=”).4.一个三角形的三边长分别是3,1-2m,8,则m的取值范围是________.5.若不等式的解集为,则m的值为________.6.若不等式组无解,则m的取值范围是________.二、选择题(每小题4分,共24分)7. 如果不等式的解集为,那么( )A.B.C.D.m为任意有理数8.如果方程有惟一解,则( )A.B.C.D.9.下列说法①是不等式的一个解;②当时,;③不等式恒成立;④不等式和解集相同,其中正确的个数为( )A.4个 B.3个 C.2个 D.1个10.下面各个结论中,正确的是( )A.3a一定大于2a B.一定大于aC.a+b一定大于a-b D.a2+1不小于2a11.已知-1<x<0,则x、x2、三者的大小关系是( )A.B.C.D.12.已知a=x+2,b=x-1,且a>3>b,则x的取值范围是( ) A.x>1 B.x<4 C.x>1或x<4 D.1<x<4三、解答题13.解下列不等式(组).(12分)(1)(2)14.已知满足不等式的最小正整数是关于x的方程的解,求代数式的值.(12分)15.某人9点50分离家赶11点整的火车.已知他家离火车站10千米.到火车站后,进站、“非典”健康检查、检票等事项共需20分钟.他离家后以3千米/时的速度走了1千米,然后乘公共汽车去火车站.问公共汽车每小时至少行驶多少千米才能不误当次火车?(12分)16.某企业为了适应市场经济的需要,决定进行人员结构调整.该企业现有生产性行业人员100人,平均每人全年可创造产值a元.现欲从中分流出x人去从事服务性行业.假设分流后,继续从事生产性行业的人员平均每人全年创造产值可增加20%,而分流从事服务性行业的人员平均每人全年可创造产值3.5a元.如果要保证分流后,该厂生产性行业的全年总产值不少于分流前生产性行业的全年总产值,而服务性行业的全年总产值不少于分流前生产性行业全年总产值的一半,试确定分流后从事服务性行业的人数.(12分)一元一次不等式能力测试题参考答案一、填空题1. (1)(2)0,1,2 (3)(4)2.k>-13.>4.5.6.二、选择题7.C 8.D 9.A 10.D 11.D 12.D三、解答题13.(1)(2)x<2 14.15.18千米/时 16.15人功16人一、选择题:(每小题3分,共30分)1、下列不等式中,是一元一次不等式的是()A; B; C; D;2、“x大于-6且小于6”表示为()A -6<x<6;B x>-6,x≤6;C -6≤x≤6; D -6<x≤6;3、解集是x≥5的不等式是()A x+5≥0B x–5≥0C –5–x ≤0D 5x–2 ≤–94、不等式组的解是( )A、x≤2B、x≥2C、-1<x≤2D、x>-15、不等式组的解集在数轴上表示正确的是()6、下列不等式组无解的是()A.B.C.D.7、不等式组的正整数解的个数是()A.1个 B.2个 C.3个 D.4个8、等式组的解集是,则m的取值范围是()A.m ≤2 B.m≥2 C.m≤1 D. m>19、关于x的一元一次方程4x-m+1=3x-1的解是负数,则m的取值范围是()A m=2B m>2C m<2 Dm≤210、ax>b的解集是()A.; B.; C.; D.无法确定;二、填空题(每题4分,共20分)1、不等式的解集是:;不等式的解集是:;2、不等式组的解集为 . 不等式组的解集为 .3、不等式组的解集为 . 不等式组的解集为 .4、当x 时,3x-2的值为正数;x为时,不等式的值不小于7;5、已知不等式组无解,则的取值范围是三、解不等式(组),并在数轴上表示它的解集(每题6分,共24分)(1)(2)(3)(4)三、根据题意列不等式(组)——只列式,不求解;(每题6分,共12分)1、某次知识竞赛共有20道选择题.对于每一道题,若答对了,则得10分;若答错了或不答,则扣3分.请问至少要答对几道题,总得分才不少于70分?解:设,依题意得:2、小华家距离学校2.4千米.某一天小华从家中去上学恰好行走到一半的路程时,发现离到校时间只有12分钟了.如果小华能按时赶到学校,那么他行走剩下的一半路程的平均速度至少要达到多少?解:设,依题意得:四、解答题:(每题7分,共14分)1、若方程组的解、的值都不大于1,求的取值范围。

不等式的解法(复习课)(1)

不等式的解法(复习课)(1)
一、常见不等式
1、一元一次不等式的法
ax>b 或 ax<b
2、绝对值不等式 |x|>a (a>0) x<-a或x>a |x|<a (a>0) -a<x<a
3、一元二次不等式的解法 ax2+bx+c>0 (a>0) 或 ax2+bx+c<0 (a>0)
判别式 一元二次方程 ax2+bx+c=0的 根 二次函数 y=ax2+bx+c的 图象 (a>0) ax2+bx+c>0 (a>0)
二、应用举例:
1、解关于x的不等式: ax+1<a2+x 2、已知a≠b,解关于的不等式:
a2x+b2(1-x) ≥[ax+b(1-x)]2
3、解关于x的不等式
x2-(a+a2)x+a3 >0
4、解关于x的不等式
a x x b 0
ax b
b ( >a>b>0 ) a

>0
2

=0

无实根
<0
两相异实根
b b 4ac x 1 、2 = 2a
两相等实根 b x1=x2= 2a
{x|x<x1或 {x|x∈ R x>x2 } 且X≠X1}
R
ax2+bx+c<0 {X|X1<X (a>0) <X2}
4、分式不等式的源自法x 0 (1)简单分式不等式的解法 如: 3 x
5、解关于x的不等式:
ax2-2(a+1)x+4>0 6、解不等式: |x+3|-|x-5|>7 (其中a≠0)
7、已知关于x的不等式 ax+b>0的解 集为 (1,+∞ ) ,解不等式

北师大版2019-2020八年级数学下册第二章 一元一次不等式与一元一次不等式组章末复习课件(共60张)

北师大版2019-2020八年级数学下册第二章 一元一次不等式与一元一次不等式组章末复习课件(共60张)
分析 先求出不等式组的解集, 即x的取值范围, 然后根据不等式组 的整数解的个数确定其整数解, 再借助数轴进行直观分析得到b的 取值范围.
章末复习
解 解不等式组, 得xx≤≥b4,.5. 由题意知原不等式组有解, 所以原不等式 组的解集为4.5≤x≤b, 如图2-Z-2所示, 将x≥4.5表示在数轴上. 由整数解 有3个, 可知整数解为5, 6, 7.结合图形可知7≤b<8.
章末复习
链接1 [南宁中考]若m>n, 则下列不等式正确的是( ).
解析 ①分别求出两个不等式的解集;②求两个不等式解集的公共部分; ③在两个不等式解集的公共部分中确定整数解.
章末复习
解:解不等式 3x-1<x+5,得 x<3. 解不等式x-2 3<x-1,得 x>-1. ∴不等式组的解集为-1<x<3,它的整数解为 0,1,2.
章末复习
专题三 根据不等式(组)的解集确定字母的值(取值范围)
分析 由题意可得不等关系:购买乒乓球的花费+购买球拍的花≤200元, 由此可列不等式解决问题.
章末复习
解 设购买 x个球拍. 根据题意, 得1.5×20+22x≤200.
解这个不等式,
得x≤
8 711
. 因为x取整数,
所以x的最大值为7.
故孔明应该买7个球拍.
章末复习
相关题4 为加强中小学生安全和禁毒教育, 某校组织了“防溺水、 交通安全、禁毒”知识竞赛, 为奖励在竞赛中表现优异的班级, 学校准备从体育用品商场一次性购买若干个足球和篮球(每个足 球的价格相同, 每个篮球的价格相同). 已知购买1个足球和1个篮 球共需159元;1个足球的价格比1个篮球的价格的2倍少9元. (1)足球和篮球的单价各是多少? (2)根据学校实际情况, 需一次性购买足球和篮球共20个, 但要求 购买足球和篮球的总费用不超过1550元, 学校最多可以购买多少 个足球?

2024年中考数学复习专题课件(共30张PPT)一元一次不等式(组)及其应用

2024年中考数学复习专题课件(共30张PPT)一元一次不等式(组)及其应用

解:设普通水稻的亩产量是 x kg,则杂交水稻的亩产量是 2x kg,依题 意得 7 200 9 600
x - 2x =4,解得 x=600, 经检验,x=600 是原分式方程的解,且符合题意,则 2x=2×600=1 200(kg). 答:普通水稻的亩产量是 600 kg,杂交水稻的亩产量是 1 200 kg.
__00__.
6.[2023·贵州第 17(2)题 6 分]已知 A=a-1,B=-a+3.若 A>B,求 a 的取值范围. 解:由 A>B 得 a-1>-a+3, 解得 a>2, 即 a 的取值范围为 a>2.
7.[2021·贵阳第 17(1)题 6 分]有三个不等式 2x+3<-1,-5x>15, 3(x-1)>6,请在其中任选两个不等式, 组成一个不等式组,并求出它 的解集.
4.风陵渡黄河公路大桥是连接山西、陕西、河南三省的交通要塞 ,该 大桥限重标志牌显示,载重后总质量超过 30 t 的车辆禁止通行,现有一 辆自重 8 t 的卡车,要运输若干套某种设备,每套设备由 1 个 A 部件和 3 个 B 部件组成,这种设备必须成套运输,已知 1 个 A 部件和 2 个 B 部件 的总质量为 2.8 t,2 个 A 部件和 3 个 B 部件的质量相等. (1)求 1 个 A 部件和 1 个 B 部件的质量各是多少; (2)卡车一次最多可运输多少套这种设备通过此大桥?
解:(1)设出售的竹篮 x 个,陶罐 y 个,依题意有 5x+12y=61, x=5, 6x+10y=60,解得y=3. 答:小钢出售的竹篮 5 个,陶罐 3 个.
(2)设购买鲜花 a 束,依题意有 0<61-5a≤20, 解得 8.2≤a<12.2, ∵a 为整数, ∴共有 4 种购买方案, 方案一:购买鲜花 9 束; 方案二:购买鲜花 10 束; 方案三:购买鲜花 11 束; 方案四:购买鲜花 12 束.

一元一次不等式复习课(鄞州实验中学王维)

一元一次不等式复习课(鄞州实验中学王维)

变式4:若不等式组仅有一个整数解x=1 ,求 m-6n的最大值。
(1) 2 x 1 x +m 1 x 1 2 x n 2 ≤ 3 +(2)
在人生的道路上,今天的收获>昨天的收获, 蛮干的成果<巧干的成果,自负的态度≠自信的态 度,祝愿同学们带着一颗进取的心,走向属于自己 的那一片蓝天!
鄞州实验中学 王维
1、如图,请比较a,-a,1的大小,并用不等式表示。
-1 a 0 —a 1
2、如图,请尽可能多地写出含有a,b的不等式。
0 a b 3、看图直接读出不等式组的解。
(1)
a
(2)
x
a x≤b
bxaຫໍສະໝຸດ bx≥b4 、请在数轴上表示下列不等式组的解;
x 2 (1) x a 解:
变式3:若不等式组的解集为 -1≤x 1,求 m-6n的值。
(1) 2 x 1 x +m 1 x 1 2 x n 2 ≤ 3 +(2)
例:解不等式组,并将它表示在数轴上,同时写出它的所有整数解。
(1) 2 x 1 x+1 1 x 1 2 x 1 2 ≤ 3 (2)
变式2:若不等式组只有4个整数解,求m的取 值范围。
(1) 2 x 1 x +m 1 x 1 2 x 1 2 ≤ 3 (2)
例:解不等式组,并将它表示在数轴上,同时写出它的所有整数解。
(1) 2 x 1 x +1 1 x 1 2 x 1 2 ≤ 3 (2)
x≥2 (2) x a
2
a
a
2
例:解不等式组,并将它的解在数轴上表示出
来 ,同时写出它的所有整数解。

不等式的解法(复习课)(1)

不等式的解法(复习课)(1)
一、常见不等式
1、一元一次不等式的法 ax>b 或 ax<b
2、绝对值不等式 |x|>a (a>0) x<-a或x>a |x|<a (a>0) -a<x<a
3、一元二次不等式的解法 ax2+bx+c>0 (a>0) 或 ax2+bx+c<0 (a>0)
判别式
>0
=0 <0
一元二次方程 ax2+bx+c=0的 根
6、解不等式: |x+3|-|x-5|>7
7、已知关于x的不等式 ax+b>0的解 集为 (1,+∞ ) ,解不等式
ax b x2 5x 6 >0
1、含参数不等式要注意参数的范围、参数引起 的讨论
2、含两个绝对值不等式的解法 ——零值点法
二、应用举例:
1、解关于x的不等式: ax+1<a2+x
2、已知a≠b,解关于的不等式: a2x+b2(1-x) ≥[ax+b(1-x)]2
3、解关于x的不等式 x2-(a+a2)x+a3 >0
4、解关于x的不等式
a xxb 0
b
( >a>b>0 )
ax b
a
5、解关于x的不等式: ax2-2(a+1)x+4>0 (其中a≠0)
注意:
1、以后解不等式最后的结果都要写成集合或区间。
2、解不等式时一定要注意“是否有=”。
3、对绝对值不等式一定要分清是 “或”还是“且”, 是求并集还是要求交集。
4、对一元二次不等式,要注意二次项系数a是否大于0
5、数轴标根法—分式不等式—高次整式不等式
6、有关计算的要求------移项、去括号、通分、两边同 乘一个数是正还是负。

专题10 一元一次不等式(组)(课件)2023年中考数学一轮复习(全国通用)

专题10 一元一次不等式(组)(课件)2023年中考数学一轮复习(全国通用)
知识点梳理
1. 一元一次不等式的定义:不等式中只含有一个未知数,未知数的次数是1,且不 等式的两边都是整式,这样的不等式叫做一元一次不等式.
2. 一元一次不等式的解法: 一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将未知项的 系数化为1.
知识点2:一元一次不等式及其解法
典型例题
知识点3:一元一次不等式组及其解法
知识点梳理
3. 解不等式组:求不等式组的解集的过程,叫做解不等式组.
4. 一元一次不等式组的解法: (1)分别求出不等式组中各个不等式的解集; (2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集.
知识点3:一元一次不等式组及其解法
知识点梳理
5. 解集在数轴上的表示(令a>b):
典型例题
【例8】(2022•聊城)关于x,y的方程组
2x y x 2 y
2k k
3
的解中x与y的和不小于5,
则k的取值范围为( )
A.k≥8 B.k>8 C.k≤8 D.k<8
【解答】解:把两个方程相减,可得x+y=k-3, 根据题意得:k-3≥5, 解得:k≥8. 所以k的取值范围是k≥8. 故选:A.
知识点4:一元一次不等式(组)的实际应用
典型例题
【解答】解:(1)设生产A产品x件,B产品y件,
根据题意,得
100x 75y 8250 (120 100)x (100 75) y 2350

解这个方程组,得
x 30
y
70

所以,生产A产品30件,B产品70件.
知识点4:一元一次不等式(组)的实际应用
知识点梳理
知识点1:不等式及其性质
5. 不等式基本性质:

一元一次不等式复习课

一元一次不等式复习课

17、某单位计划在新年期间组织员工到某地旅游,参如旅 游的的人数估计为10~25人,甲、乙两家旅行社的服 务质量相同,且报价都是每人200元,经过协商,甲 旅行社表示可给予每位游客七五折优惠;乙旅行社表 示可先免去一位游客的旅游费用,其余游客八折优惠, 该单位选择哪一定旅行社支付的旅游费用较少? 解答:设该单位参加这次旅游的人数是x人, 选择甲旅行社时,所需的费用为y1, 选择乙旅行社时,所需的费用为y2,则: y1=200×0.75x,即y1=150x, y2=200×0.8(x-1),即y2=160x-160, y1= y2时,150x=160x-160, 解得x=16; y1 >y2时,150x>160x-160, 解得x<16; y1< y2时,150x<160x-160, 解得x>16; 答案:所以,当人数为16人时,甲、乙两家旅行社的收费 相同;当人数为17~25人时,选择甲旅行社费用较少; 当人数为10~15人时,选择乙旅行社费用较少。
无解,则m的取值范围是________。
1、一群女生住若干间宿舍,每间住4人, 剩19人无房住;每间住6人,有一间宿舍 住不满, 1.设有x间宿舍,请写出x应满足的不等式组; 2.可能有多少间宿舍,多少名 学生?
2、某次会议的费用,由参加者平均分摊。若每人 交350元,则多余600元;若每人交310元,则其 中就有1人交的钱数要多于310元;若每人交320 元,则其中就有1人交的钱数少于220元。 求:(1)参加这次会议的人数;(2)这次会议 的总费用。
(2)有哪几种符合的生产方案?
(3)若生产一件A产品可获利700元,生产一件B 产品可获利1200元,那么采用哪种生产方案可使 生产A、B两种产品的总获利最大?最大利润是多 少?

人教版七年级数学下册第九章第三节一元一次不等式组作业复习题(含答案) (23)

人教版七年级数学下册第九章第三节一元一次不等式组作业复习题(含答案) (23)

人教版七年级数学下册第九章第三节一元一次不等式组作业复习题(含答案)已知点P(a,1a-)在平面直角坐标系的第一象限内,则a的取值范围在数轴上可表示为()A.A B.B C.C D.D【答案】A【解析】【分析】根据平面直角坐标系第一象限内点的特征即可确定a的取值范围,然后再依据不等式解集在数轴上的表示方法(大于向右画,小于向左画,有等实心点,无等空心圆)表示出来即可.【详解】解:由第一象限内的点的坐标的符号特征为(+,+),可得10aa>⎧⎨->⎩,解得a>1,这个不等式组的解集在数轴上表示如图所示:,故选:A.【点睛】本题考查了平面直角坐标系各象限点的坐标的符号特征以及一元一次不等式组的解集在数轴上的表示,正确掌握这两点是解题的关键,平面直角坐标系各象限点的坐标的符号特征:第一象限(+,+),第二象限(−,+),第三象限(−,−),第四象限(+,−).22.若关于x 的不等式组2034x x a x-<⎧⎨+>-⎩恰好只有2个整数解,且关于x 的方程21236x a a x +++=+的解为非负整数解,则所有满足条件的整数a 的值之和是( )A .1B .3C .4D .6【答案】C【解析】【分析】先解不等式组,根据只有2个整数解得到a 的范围,再解方程,得到a 的范围,再根据a 是整数,综合得出a 的值之和.【详解】 解:解不等式2034x x a x -<⎧⎨+>-⎩得: 44a -<x <2, ∵不等式组恰好只有2个整数解,∴-1≤44a -<0, ∴0≤a <4; 解方程21236x a a x +++=+得: x=52a -,∵方程的解为非负整数,∴52a-≥0,∴a≤5,又∵0≤a<4,∴a=1,3,∴1+3=4,∴所有满足条件的整数a的值之和为4.故选:C.【点睛】本题考查一元一次不等式组及一元一次方程的特殊解,熟练掌握一元一次不等式组及一元一次方程的解法是解题的关键.23.下列不等式组中,解集5x>为的是()A.2050xx-<⎧⎨-<⎩B.2050xx->⎧⎨-<⎩C.2050xx->⎧⎨->⎩D.2050xx-<⎧⎨->⎩【答案】C【解析】【分析】分别求出各组不等式的解集,即可进行判断.【详解】解:A.解2050xx-<⎧⎨-<⎩可得:x<2;B.解2050xx->⎧⎨-<⎩可得:2<x<5;C .解2050x x ->⎧⎨->⎩可得:x>5; D .解2050x x -<⎧⎨->⎩可得该方程组无解; 故选:C .【点睛】本题考查不等式组的求解,熟练掌握不等式组的解法是解题的关键.二、解答题24.某班级为践行“绿水青山就是金山银山”的理念,开展植树活动.如果每人种3棵,则剩86棵;如果每人种5棵,则最后一人有树种但不足3棵.请问该班有多少学生?本次一共种植多少棵树?(请用一元一次不等式组解答)【答案】共有45名学生,一共种植221棵树.【解析】【分析】设共有x 人,根据如果每人种3棵,则剩86棵;如果每人种5棵,则最后一人有树种但不足3棵,可列出不等式组.【详解】解:设共有x 名学生,依题意有:()()38651386513x x x x ⎧+>-⎪⎨+<-+⎪⎩, 解得:44<x <45.5,∵x 为整数,∴x=45,∴3x+86=221.答:共有45名学生,一共种植221棵树.【点睛】本题考查一元一次不等式组的应用,理解题意的能力,设出人数就能表示出植树棵数,然后根据每人种5棵,则最后一人有树种但不足3棵,可列出不等式组.25.解不等式组,并把解集在数轴上表示出来423(1)5132x x x x -≥-⎧⎪⎨-+>-⎪⎩ 【答案】−1≤x <3;在数轴上的表示见详解【解析】【分析】先求出每个不等式的解集,再求出这些不等式解集的公共部分,然后在数轴上表示出来即可.【详解】 解:423(1)5132x x x x -≥-⎧⎪⎨-+>-⎪⎩①② 由①得:x ≥−1;由②得:x <3;∴原不等式组的解集为−1≤x <3,在坐标轴上表示:.【点睛】此题主要考查了解一元一次不等式组,以及在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.26.解不等式组:53(1)? 21511? 32x x x x --⎧⎪⎨-+-<⎪⎩①② 【答案】不等式组的解集是12x -<≤.【解析】【分析】分别解出两个不等式的解集,然后确定解集的公共部分就可以求出不等式的解集.【详解】解: 53(1)2151132x x x x --⎧⎪⎨-+-<⎪⎩①② 由①得:2x ≤由②得:1x >-所以,不等式组的解集是12x -<≤.【点睛】本题考查了不等式组的解法,关键是求出两个不等式的解,然后根据口诀求出不等式组的解集.27.(1)计算:22|13-⎛⎫- ⎪⎝⎭;(2)已知m是小于0的常数,解关于x的不等式组:41713142x xx m->-⎧⎪⎨-<-⎪⎩.【答案】(1)54-;(2)x>4-6m【解析】【分析】(1)先分别化简各项,再作加减法;(2)分别解两个不等式得到x>-2,x>4-6m,再根据m的范围得出4-6m >0>-2,最后得到到解集.【详解】解:(1)原式9 124 --=54 -;(2)41713142x xx m->-⎧⎪⎨-<-⎪⎩①②解不等式①得:x>-2,解不等式②得:x>4-6m,∵m是小于0的常数,∴4-6m>0>-2,∴不等式组的解集为:x>4-6m.【点睛】本题考查了实数的混合运算,解一元一次不等式组,解题的关键是掌握运算法则和解法.28.为支援抗疫前线,某省红十字会采购甲、乙两种抗疫物资共540吨,甲物资单价为3万元/吨,乙物资单价为2万元吨,采购两种物资共花费1380万元.(1)求甲、乙两种物资各采购了多少吨?(2)现在计划安排,A B两种不同规格的卡车共50辆来运输这批物资.甲物资7吨和乙物资3吨可装满一辆A型卡车;甲物资5吨和乙物资7吨可装满一辆B 型卡车.按此要求安排,A B两型卡车的数量,请问有哪几种运输方案?【答案】(1)甲物资采购了300吨,乙物质采购了240吨;(2)共有3种运输方案,方案1:安排25辆A型卡车,25辆B型卡车;方案2:安排26辆A型卡车,24辆B型卡车;方案3:安排27辆A型卡车,23辆B型卡车.【解析】【分析】(1)设甲物资采购了x吨,乙物质采购了y吨,根据“某省红十字会采购甲、乙两种抗疫物资共540吨,且采购两种物资共花费1380万元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设安排A型卡车m辆,则安排B型卡车(50-m)辆,根据安排的这50辆车一次可运输300吨甲物质及240吨乙物质,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各运输方案.【详解】解:(1)设甲物资采购了x吨,乙物质采购了y吨,依题意,得:540 321380x yx y+⎧⎨+⎩==,解得:300240xy⎧⎨⎩==.答:甲物资采购了300吨,乙物质采购了240吨.(2)设安排A型卡车m辆,则安排B型卡车(50-m)辆,依题意,得:()() 7550300 3750240m mm m⎧+-≥⎪⎨+-≥⎪⎩,解得:25≤m≤2712.∵m为正整数,∴m可以为25,26,27,∴共有3种运输方案,方案1:安排25辆A型卡车,25辆B型卡车;方案2:安排26辆A型卡车,24辆B型卡车;方案3:安排27辆A型卡车,23辆B型卡车.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.29.解不等式组:212541x xx x-+⎧⎨+<-⎩.【答案】x≥3【解析】【分析】根据解不等式组的解法步骤解出即可.【详解】212541x x x x -+⎧⎨+<-⎩①② 由①可得x ≥3,由②可得x>2,∴不等式的解集为:x ≥3.【点睛】本题考查解不等式组,关键在于熟练掌握解法步骤.30.解不等式组:362(5)4x x >⎧⎨->⎩【答案】23x <<.【解析】【分析】分别求出不等式组中两不等式的解集,找出两解集的方法部分即可.【详解】解:()36254x x >⎧⎪⎨->⎪⎩①②, 由①得:2x >,由②得:3x <,则不等式组的解集为23x <<.【点睛】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.。

一元一次不等式和一元一次不等式组的复习

一元一次不等式和一元一次不等式组的复习

a 2 > 0 (2)例 2:在 2 y 2- 3 y + 1 > 0 , y 2+ 2 y + 1 = 0 , - 6 < -2 , ab 2 , 3x 2 + 2 - 1 ,3- y < 0 ,7 x + 5 ≥ 5x + 6 中,是一元一次不等式的是 1 - a 则 a 的取值范围是 n > a ,那么 a 的取值范围是(a , a 之间的大小关系是 m - 3 ,则 m 的取值范围是b > 1 ,则下列各式正确的是( A. a B. a C. a b > -1 b < -1 b > 1 b < 1 b > 0 1、例 1:解不等式① x + 1 2 - x + 23 < x + 52 ② 学习好资料欢迎下载第一章 一元一次不等式和一元一次不等式组的复习一、 不等式的概念和性质 (一)不等式的概念(1)例 1:已知① x + y = 1 ;② x > y ;③ x + 2 y ;④ x 2 - y ≥ 1 ;⑤ x < 0 其中属于不等式的有()A. 2 个B. 3 个C.4 个 D.5 个2 x72 y - 1(二)不等式的性质:1、例:如果不等式 (a - 1) x > a - 1 的解集是 x < 1 ,那么 a 的取值范围是。

2、练习:A. ab 2>0B. a 2+ab >0C.a +b >0D. b⑽当 a <0,b >0,a +b >0 时,把 a 、b 、-a 、-b 四个数用“<”连接是⑾若 x > y ,则 ax > ay ,那么一定有( )A. a >0B. a <0C. a ≥0D. a ≤0⑿若 x > y 则 ax ≤ ay ,那么一定有( )A. a >0B. a <0C. a ≥0D. a ≤0⒀若 x < y ,则 a 2 x < a 2 y 那么一定有( )A. a>0B. a<0C. a ≠0D. a 是任意实数 ⒁若 4a >5a 成立,那么一定有( )A. a >0B. a <0C. a ≥0D. a ≤0⒂ 已 知 x < 0 , - 1<y < 0 , 将 x , xy , xy 2 从 小 到 大 依 次 排⑴已知关于 x 的不等式 (1 - a) x > 2 的解集为 x < 2⑵如果 m < n < 0 那么下列结论错误的是( )。

数学:第七章《一元一次不等式》复习课件(苏科版八年级下)

数学:第七章《一元一次不等式》复习课件(苏科版八年级下)

x<6 在同一条数轴上表示不等式①②的解集, 如下图
-1 0 1 2 3 4 5 6 7


因此,不等式组的解集为
3 <x<6
1
例1 如图是一个一次函数,请根据图像回答问题: (1)写出直线对应的一次函数的表达式 ; (2)当x=0时,y= ,当y=0时,x= ; 当y=4时,x= .
1 (3)一元一次方程 x 2 0 和一次 2 1 函数 有什么联系? y x2 2
(3) x 3 x 2 . 5 2
下列解不等式过程是否正确,如果不正确 请给予改正。 x x 1 x 8 1 解不等式 x 2 3 6 去分母得 6x-3x+2(x+1)<6+x+8 去括号得 6x-3x+2x+2 <6+x+8 移项得 6x-3x+2x—x<6+8-2 合并同类项得 6x<16 8 系数化为1,得 x〉
7
X 4 3
3X 1 - >1, 2
值比的值大1。
5 所以,当x取小于 的任何数时,代数式的 7
x4 解不等式: 2

2x 1 1 3
并把解集在数轴上表示出来
解不等式,并把它的解集表示在数轴上 :
4 2x 3x 1 (1) <3- 4 2 1 2 x 1 (2) 1- ( x 2) ≤ 6 3
例2 画出函数y=-3x+12的图像, 利用图像求: (1)不等式-3x+12>0的解集. (2)不等式-3x+12≤0的解集. (3)当2<y<16时,x的取值范围.
随堂演练 1、在一次函数y=2x-3中,已知x=0 则y= ;若已知y=2则x= ; 2、当自变量x 时,函数 y=3x+2的值大于0;当x 时, 函数y=3x+2的值小于0。

人教版七年级数学下册第九章第三节一元一次不等式组作业习题(含答案) (70)

人教版七年级数学下册第九章第三节一元一次不等式组作业习题(含答案) (70)

人教版七年级数学下册第九章第三节一元一次不等式组作业复习题(含答案)解下列不等式:(1) 3(x +2)-1≤11-2(x -2) (2)2x -1≤73x -. 【答案】(1)2x ≤ (2)4x ≤【解析】【分析】学会解代数不等式,学会解分式不等式。

【详解】(1)解:3(2)1112(2)x x +-≤--351124x x +≤-+35152x x +≤-510x ≤2x ≤(2)2723x x --≤ 3(2)2(7)x x -≤-36142x x -≤-520x ≤4x ≤【点睛】本题要领:不等号两边同乘负数时,不等号要变号。

同时解分式方程时,记得通分,不等号两边要同时乘以同一个数。

92.为了保护环境,某企业决定购买10台污水处理设备,现有A 、B 两种型号的设备,其中每台价格,月处理污水量极消耗费如下表:经预算,该企业购买设备的资金不高于105万元.⑴ 请你为企业设计几种购买方案.⑵ 若企业每月产生污水2040吨,为了节约资金,应选那种方案?【答案】(1)有三种购买方案:方案一:不买A 型,买B 型10台,方案二,买A 型1台,B 型9台,方案三,买A 型2台,B 型8台;(2)为了节约资金应购买A 型1台,B 型9台,即方案二.【解析】【分析】(1)设购买污水处理设备A 型x 台,则B 型(10-x )台,列出不等式求解即可,x 的值取正整数;(2)根据企业每月产生的污水量为2040吨,列出不等式求解,再根据x 的值选出最佳方案.【详解】解:(1)设购买污水处理设备A 型x 台,则B 型(10-x )台,根据题意得 ()0121010105x x x ≥⎧⎪⎨+-≤⎪⎩, 解得0≤x ≤52,∵x为整数,∴x可取0,1,2,当x=0时,10-x=10,当x=1,时10-x=9,当x=2,时10-x=8,即有三种购买方案:方案一:不买A型,买B型10台,方案二,买A型1台,B型9台,方案三,买A型2台,B型8台;(2)由240x+200(10-x)≥2040解得x≥1由(1)得1≤x≤52故x=1或x=2当x=1时,购买资金12×1+10×9=102(万元)当x=2时,购买资金12×2+10×8=104(万元)∵104>102∴为了节约资金应购买A型1台,B型9台,即方案二.【点睛】本题考查不等式组在现实生活中的应用,将现实生活中的事件与数学思想联系起来,读懂题意列出不等式关系式是解题关键.93.随着开学季的到来,我校观音桥校区旁水果超市生意火爆,老板发现甲、乙两种水果的销量很好,于是第一次果断购进甲、乙水果共200千克,甲种水果进价每千克5元,售价每干克8元;乙种每千克进价8元,每干克售价10元.(1)由于进货资金有限,第一次购进甲乙两种水果的金额不得超过1360元,则乙种水果至多购进多少千克?(2)由于学生数量庞大,甲、乙水果供不应求,开学一周甲乙水果随即售罄.超市决定第二次购进甲、乙水果,它们的进价不变.甲种进货量在(1)中甲的最少进货量的基础上增加了2m%,售价比第一次提高了m%;乙种水果的售价和第一次相同,进货量为100千克,但是由于乙种水果不易存放,在销售过程中乙种水果损耗了其进货量的10%.结果第二次两种水果销售完后超市获利536.8元,求m的值.【答案】(1)120千克;(2)m的值为15.【解析】【分析】(1)设甲种水果购进x千克,则乙购进(200-x)千克,根据题意得列式计算即可;(2)由(1)可知甲种水果现购进80(1+2m%),售价为8(1+m%),根据利润=售价-进价列式计算即可.【详解】解:(1)设甲种水果购进x千克,则乙购进(200-x)千克根据题意得5x+8(200﹣x)≤1360,解得x≥80,则200﹣x≤120.答:乙种水果至多购进120千克;(2)由(1)可知甲种水果现购进80(1+2m%),售价为8(1+m%),所以甲种水果的利润为80(1+2m%)[8(1+m%)﹣5],乙种的利润为100×(1﹣10%)×10﹣100×8,根据题意得80(1+2m%)[8(1+m%)﹣5]+100×(1﹣10%)×10﹣100×8=536.8,解得m1=15,m2=﹣102.5(不合题意舍去),即m的值为15.【点睛】本题考查的是一元一次不等式的应用,能够根据题意列式计算是解题的关键.94.某县有A、B两个大型蔬菜基地,共有蔬菜700吨.若将A基地的蔬菜全部运往甲市所需费用与B基地的蔬菜全部运往甲市所需费用相同.从A、B两基地运往甲、乙两市的运费单价如下表:(1)求A、B两个蔬菜基地各有蔬菜多少吨?(2)现甲市需要蔬菜260吨,乙市需要蔬菜440吨.设从A基地运送m吨蔬菜到甲市,请问怎样调运可使总运费最少?【答案】(1)A、B两基地的蔬菜总量分别为300吨和400吨;(2)当A 基地运300吨到乙市,B基地运260吨到甲市,B基地运140吨到乙市时,总运费最少为14760元.【解析】【分析】(1)设A 、B 两基地的蔬菜总量分别为x 吨、y 吨,根据题意列方程组求出x 、y 的值即可;(2)先根据题意列不等式组求出m 的取值范围,根据A 、B 两基地运往甲、乙两市的运费得出总费用w 的表达式,根据一次函数的性质求出w 的最小值即可得答案.【详解】(1)设A 、B 两基地的蔬菜总量分别为x 吨、y 吨.根据题意得:7002015x y x y +=⎧⎨=⎩解得:300400x y =⎧⎨=⎩, 答:A 、B 两基地的蔬菜总量分别为300吨和400吨.(2)由题可知:026003000400(260)0m m m m ≥⎧⎪-≥⎪⎨-≥⎪⎪--≥⎩ ∴0260m ≤≤∵()2025(300)15(260)24400260w m m m m ⎡⎤=+-+-+--⎣⎦414760m =+.∵4>0,∴w 随m 的增大而增大,∴min w =14760.答:当A 基地运300吨到乙市,B 基地运260吨到甲市,B 基地运140吨到乙市时,总运费最少为14760元.【点睛】本题考查二元一次方程组、一元一次不等式组的应用及一次函数的性质,正确得出等量关系列出方程组并熟练掌握一次函数的性质是解题关键.95.七(1)班为“壮丽70年,奋斗新时代”演讲比赛购买A ,B 两种奖品.已知A 奖品每件x 元,B 奖品每件y 元.⑴ 若购买A 奖品m 件,B 奖品n 件,共需要多少元;⑵ 设购买A 奖品m 件,购买A ,B 两种奖品共10件:① 购买两种奖品共需要多少元;② 若购买A 奖品至少2件,B 奖品至少6件,请设计出购买方案,并说明每种方案的共需要多少元.【答案】(1)xm +yn 元;(2)①xm +()10y m -元;②方案一:购买A 奖品2件,B 奖品8件;则一共需要的费用为28x y +元. 方案二:购买A 奖品3件,B 奖品7件;则一共需要的费用为37x y +元. 方案三:购买A 奖品4件,B 奖品6件;则一共需要的费用为46x y +元.【解析】【分析】(1)根据费用=单价⨯数量,总费用=两种奖品的费用之和列出关系式即可;(2)①根据题意列代数式即可;②根据题意列出不等式组,求出m 的范围,即可得到所有的方案.【详解】(1)根据题意,购买A 奖品的费用为xm 元,购买B 奖品的费用为yn 元, 则购买A ,B 两种奖品,一共需要的费用为xm +yn 元,答:共需要xm +yn 元;(2)①根据题意,购买A 奖品的费用为xm 元,购买B 奖品的费用为()10y m -元,则购买两种奖品,一共需要的费用为xm +()10y m -元,答:购买两种奖品共需要xm +()10y m -元;②由题意知2106m m ≥⎧⎨-≥⎩,解得24m ≤≤(m 为正整数), 方案一:购买A 奖品2件,B 奖品8件;则一共需要的费用为28x y +元; 方案二:购买A 奖品3件,B 奖品7件;则一共需要的费用为37x y +元; 方案三:购买A 奖品4件,B 奖品6件;则一共需要的费用为46x y +元.【点睛】本题考查了一元一次不等式的应用,找出题目中的等量关系和不等关系是解题关键.96.新定义:对非负数“四舍五入”到个位的值记为[]x ,即当n 为非负整数时,若11-22n x n ≤<+,则[]x n =如:[0][0.48]0,[0.64][1.493]1,[2]2,[3.5][4.12]4=======,试解决下列问题(1)填空:①[]π= ②若[]3x =,则实数x 的取值范围为(2)在关于,x y 的方程组21322x y m x y +=+⎧⎨+=⎩中,若未知数,x y 满足5722x y ≤+<,求[]m 的值.(3)当[21]4x -=时,若49y x =-,求y 的最小值.(4)求满足3[]2x x =的所有非负实数x 的值,请直接写出答案 . 【答案】(1)①3;②5722x ≤<;(2)2;(3)0;(4)0或23【解析】【分析】(1)①利用对非负实数x “四舍五入”到个位的值记为[]x ,进而得出[]π的值; ②利用对非负实数x “四舍五入”到个位的值记为[]x ,且值为3,进而得出x 的取值范围;(2)根据方程组得到x+y 的值,再利用5722x y ≤+<得出m 的范围,从而根据题干中[]x 的意义得出结果;(3)根据[21]4x -=得出x 的取值范围,据此求出49y x =-中y 的最小值;(4)利用3[]2x x =,设3=2x k ,k 为整数,得出关于k 的不等关系求出即可. 【详解】解:(1)①由题意可得:[]π=3;②∵[]3x =, ∴113322x -≤<+ ∴5722x ≤<; (2)∵21322x y m x y +=+⎧⎨+=⎩①②, ①+②得:()3=33x y m ++,∴=1x y m ++, ∵5722x y ≤+<, ∴57122m ≤+<, 解得:3522m ≤<, ∴[]m =2;(3)∵[21]4x -=,∴792122x ≤-<, ∴91144x ≤<, 当x=94时,y 最小,且为0; (4)设3=2x k ,k 为整数,则2=3x k , ∴2[]=3k k , ∴121232k k k -≤+<,k ≥0, ∴302k ≤≤, ∴k=0,1,则x=0或23. 【点睛】此题主要考查了新定义以及一元一次不等式的应用,根据题意正确理解[]x 的意义是解题关键.97.小赵为班级购买笔记本作为晚会上的奖品,回来时向生活委员交账说“一共买了36本,有两种规格,单价分别为1.8元和2.6元,去时我领了100元,现在找回27.6元.”生活委员算了一下,认为小赵稿错了.(1)请你用方程的知识说明小赵为什么搞错了.(2)小赵一想,发觉的确不对,因为他把自己口袋里的零用钱一起当做找回的钱给了生活委员,如果设购买单价为1.8元的笔记本a 本,并且小赵的零用钱数目是整数,且少于3元,试求出小赵零用钱的数目.【答案】(1)见解析;(2)2元【解析】【分析】(1)设小赵购买单价为1.8元的笔记本x本,可得出购买单价为2.6元的笔记本(36-x)本,根据购买1.8元的笔记本的钱数+购买2.6元的笔记本钱数=100-27.6列出方程,求出方程的解得到x的值为小数,不合题意,可得出小赵搞错了;(2)由购买单价为1.8元的笔记本a本,可得出购买单价为2.6元的笔记本(36-a)本,表示出购买两种笔记本应花的钱,根据应花的钱-(100-27.6),表示出小赵口袋中的零花钱,再根据小赵的零用钱数目是整数,且少于3元,列出不等式组,求出不等式解集的正整数解得到a的值,经检验得到满足题意a 的值,即为小赵的零用钱数目.【详解】解:(1)设小赵购买单价为1.8元的笔记本x本,则购买单价为2.6元的笔记本(36-x)本,∴1.8x+2.6(36-x)=100-27.6,解得:x=26.5,因笔记本本数应该为整数,而计算出来的本数为小数,∴小赵搞错了;(2)由题意得:小赵零用钱的数目为[1.8a+2.6(36-a)]-(100-27.6)=21.2-0.8a,∵小赵的零用钱少于3元,∴0<21.2−0.8a<3,解得:22.75<a<26.5,因a取整数,所以a为23或24或25或26,经检验a=23或25或26时,21.2-0.8a不为整数,故a=24,此时21.2-0.8a=2,所以小赵的零用钱数目为2元.【点睛】此题考查了一元一次不等式组的应用,以及一元一次方程的应用,弄清题意,找出题中的等量关系及不等关系是解本题的关键.98.已知方程组713x y mx y m+=--⎧⎨-=+⎩的解满足x为非正数,y为负数.(1)求m的取值范围(2)在(1)的条件下,若不等式(21)21m x m+-<的解为1x>,求整数m 的值.【答案】(1)-2<m≤3;(2)-1【解析】【分析】(1)将m当做已知数解方程组,把x和y用含有m的式子表示出来,再根据x为非正数,y为负数,列出关于m的一元一次不等式组,解之即可,(2)不等式(2m+1)x-2m<1的解为x>1,根据不等式得性质得到2m+1<0,得到m的取值范围,再根据(1)m的范围,求得m最终的取值范围,即可得到答案.【详解】解:(1)解方程组得:=324x my m-⎧⎨=--⎩,∵x≤0,y<0,∴30 240mm-≤⎧⎨--⎩<,解得:-2<m≤3;(2)不等式(2m+1)x-2m<1移项得:(2m+1)x<2m+1,∵不等式(2m+1)x-2m<1的解为x>1,∴2m+1<0,解得:m<12-,又∵-2<m≤3,∴m的取值范围为-2<m<12 -,整数m的值为-1,故答案为:-1.【点睛】本题考查了解二元一次方程组及解一元一次不等式组,根据数量关系列出一元一次不等式组是解决本题的关键.99.解不等式组:31213(1)8xx x-⎧≤⎪⎨⎪--<-⎩①②并求出该不等式组的整数解的和.【答案】-2<x≤5;14【解析】【分析】解不等式组,并找出整数解,相加可解答.【详解】解:解不等式①得:x≤5,解不等式②得:x>-2,∴不等式组的解集为:-2<x ≤5,∴不等式组的整数解为:-1,0,1,2,3,4,5,和为-1+0+1+2+3+4+5=14.【点睛】本题考查了解不等式组,解题的关键是准确计算两个不等式的解.100.解不等式组:11323312x x x x x +-⎧<-⎪⎪⎨-⎪+≥+⎪⎩,并在数轴上表示它的解集. 【答案】−1<x ≤1【解析】【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】 解:11323312x x x x x +-⎧<-⎪⎪⎨-⎪+≥+⎪⎩①②由①得,x >−1,由②得,x ≤1, 故不等式组的解集为:−1<x ≤1.在数轴上表示为:【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.。

人教版七年级数学下册第九章第三节一元一次不等式组复习题(含答案) (83)

人教版七年级数学下册第九章第三节一元一次不等式组复习题(含答案) (83)

人教版七年级数学下册第九章第三节一元一次不等式组复习练习题(含答案)以方程组2127x y tx y t+=-⎧⎨-=+⎩的解x,y分别作为某个点的横、纵坐标,得到一个点(x,y),若点(x,y)在第四象限,则t的取值范围是( ) A.-5<t<-2 B.t>-2 C.-2<t<5D.t>-5【答案】B【解析】解这个方程组得2{5x ty t=+=--,又因点(x,y)在第四象限,可得20{50tt+--,解得t>-2,故选B.点睛:先求出解方程组的解,然后根据第四象限内点的坐标特征,列出关于t的不等式组,从而得出t的取值范围.22.如图,在数轴上表示不等式组120xx>⎧⎨->⎩的解集,其中正确的是()A.B. C.D.【答案】B【解析】解不等式组得:2x>,故选B.23.对于不等式组131722523(1)x xx x⎧-≤-⎪⎨⎪+>-⎩,下列说法正确的是()A.此不等式组无解B.此不等式组有7个整数解C .此不等式组的负整数解是-3,-2,-1D .此不等式组的解集是522x -<≤ 【答案】B【解析】分别解两个不等式得到x ≤4和x >﹣2.5,利用大于小的小于大的取中间可确定不等式组的解集,再写出不等式组的整数解,然后对各选项进行判断.解:,解①得x ≤4,解②得x >﹣2.5,所以不等式组的解集为﹣2.5<x ≤4,所以不等式组的整数解为﹣2,﹣1,0,1,2,3,4.故选B .“点睛”本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解. 24.已知关于x 的不等式组221x a b x a b -≥⎧⎨-<+⎩的解集是35x ≤<,则b a 的值是( )A .-2B .12-C .-4D .14- 【答案】A【解析】......{22 1......x a b x a b -≥-<+①②解①得,a ≥a+b ,解②得,x ≤212b a ++ , 又∵35x ≤<,3{2152a b b a +=++= 解得3{6a b =-= ∴2b a=- ; 故选A .25.若不等式组30x a x >⎧⎨-≤⎩,只有三个正整数解,则a 的取值范围为( ) A .0a 1≤<B .0a 1<<C .0a 1? <≤D .0a 1≤≤【答案】A【解析】解不等式组得:a<x ≤3,因为只有三个整数解,∴0≤a<1;故选A .26.已知关于x 的不等式组无解,则a 的取值范围是 A .a ﹥2B .a ≥ 2C .a ﹤2D .a ≤2 【答案】A【解析】先求出不等式组的两个不等式的解集,再根据不等式组无解即可得到关于a的不等式,解之即可得出a 的取值范围.解:解不等式①得,x a ≥ ;解不等式②得,2x ≤因为此不等式组无解,所以a ﹥2故选A.点睛:本题主要考查不等式组的解集.解题的关键在于要先用含字母a 的式子表示第一个不等式的解集,再根据不等式组无解来列关于a 的不等式.27.若不等式组643x x x m +<-⎧⎨>⎩的解集是x >3,则m 的取值范围是( ) A .m >3B .m =3C .m ≤3D .m <3【答案】C【解析】 643x x x m +<-⎧⎨>⎩①② 解①得3x >;∵不等式组的解集是x >3,∴m ≤3 .故选C.点睛:首先解第一个不等式求得不等式的解集,然后根据不等式组解集的确定方法,求得m 的范围.28.某种商品价格为33元/件,某人只带有2元和5元的两种面值的购物劵各若干张,买了一件这种商品;若无需找零钱,则付款方式中张数之和(指付2元和5元购物券的张数)最少和张数之和最多的方式分别是( )A .8张和16张B .8张和15张C .9张和16张D .9张和15张【答案】D【解析】【分析】根据题意可列出一个整式方程,但要分情况讨论结果要符合“只有2元和5元两种面值的人民币”和“无需找零钱”两个条件,注意不要漏解.【详解】解:设付出2元钱的张数为x ,付出5元钱的张数为y ,且x ,y 的取值均为自然数,依题意可得方程:2x+5y=33.则 x=3352y x -=, 解不等式组335020y y -⎧≥⎪⎨⎪≥⎩ 解得3305y ≤≤, 又∵y 是整数.∵y=0或1或2或3或4或5或6.又∵x 是整数.∵y=1或3或5. 从而此方程的解为:45x y =⎧⎨=⎩,141x y =⎧⎨=⎩,由45xy=⎧⎨=⎩得9x y+=,由141xy=⎧⎨=⎩得15x y+=.所以付款方式中张数之和(指付2元和5元购物券的张数)最少和张数之和最多的方式分别是9张和15张.故选D.【点睛】本题考查了一元一次不等式的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.要注意题解要符合生活常识.29.如图1为图2中三角柱ABCEFG的展开图,其中AE、BF、CG、DH 是三角柱的边.若图1中,AD=10,CD=2,则下列何者可为AB长度?()A.2 B.3 C.4 D.5【答案】C【解析】由图可知,AD=AB+BC+CD,∵AD=10,CD=2,∵AB+BC=8,设AB=x,则BC=8−x,所以8282x x x x -<+⎧⎨->-⎩①② , 解不等式∵得x >3,解不等式∵得,x <5,所以,不等式组的解集是3<x <5,综合各选项,只有C 符合。

2022学年上海六年级数学下学期同步教材满分攻略第08讲一元一次不等式组(核心考点讲与练)(练习版)

2022学年上海六年级数学下学期同步教材满分攻略第08讲一元一次不等式组(核心考点讲与练)(练习版)

第08讲一元一次不等式组(核心考点讲与练)一.解一元一次不等式组(1)一元一次不等式组的解集:几个一元一次不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.(2)解不等式组:求不等式组的解集的过程叫解不等式组.(3)一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.二.一元一次不等式组的整数解(1)利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.(2)已知解集(整数解)求字母的取值.一般思路为:先把题目中除未知数外的字母当做常数看待解不等式组或方程组等,然后再根据题目中对结果的限制的条件得到有关字母的代数式,最后解代数式即可得到答案.三.由实际问题抽象出一元一次不等式组由实际问题列一元一次不等式组时,首先把题意弄明白,在此基础上找准题干中体现不等关系的语句,根据语句列出不等关系.往往不等关系出现在“不足”,“不少于”,“不大于”,“不超过”等这些词语出现的地方.所以重点理解这些地方有利于自己解决此类题目.四.一元一次不等式组的应用对具有多种不等关系的问题,考虑列一元一次不等式组,并求解.一元一次不等式组的应用主要是列一元一次不等式组解应用题,其一般步骤:(1)分析题意,找出不等关系;(2)设未知数,列出不等式组;(3)解不等式组;(4)从不等式组解集中找出符合题意的答案;(5)作答.一.一元一次不等式组的定义(共2小题)1.(2020春•安庆期中)下列不等式组:①;②;③;④;⑤,其中是一元一次不等式组的个数()A.2个B.3个C.4个D.5个2.(2017春•雁塔区校级月考)下列不等式组:①,②,③,④,⑤.其中一元一次不等式组的个数是()A.2个B.3个C.4个D.5个二.解一元一次不等式组(共4小题)3.(2021春•杨浦区期中)若n<m,则不等式组的解集是()A.x>m B.x<n C.n<x<m D.无解4.(2021春•杨浦区期末)若与2﹣3x<0的解集是相同的,那么m的值是()A.B.C.D.5.(2021•浦东新区校级自主招生)有一个解集为﹣2<x<2,它可能是下面哪个不等式组的解集?(a,b均为实数)()A.B.C.D.6.(2021春•杨浦区期末)如果不等式组无解,那么a的取值范围是.三.一元一次不等式组的整数解(共8小题)7.(2021春•浦东新区月考)不等式组的整数解为.8.(2021春•浦东新区期末)解不等式组:,并写出它的所有非负整数解.9.(2021•长宁区二模)解不等式组:,并求出它的正整数解.10.(2021•叙州区校级模拟)不等式组有两个整数解,则m的取值范围为()A.﹣5<m≤﹣4B.﹣5<m<﹣4C.﹣5≤m<﹣4D.﹣5≤m≤﹣4 11.(2021春•杨浦区期中)已知不等式组,则它的正整数解是.12.(2021春•松江区期末)求不等式组的自然数解.并把它的解集在数轴上表示出来.13.(2021•浦东新区二模)解不等式组:并写出这个不等式组的自然数解.14.(2021春•扶沟县期末)解不等式组:,把它的解集在数轴上表示出来,并写出该不等式的整数解.四.由实际问题抽象出一元一次不等式组(共3小题)15.(2021春•澄城县期末)鱼缸里饲养A、B两种鱼,A种鱼的生长温度x℃的范围是20≤x≤28,B种鱼的生长温度x℃的范围是19≤x≤25,那么鱼缸里的温度x℃应该控制在范围内.16.(2021秋•杭州期末)检测游泳池的水质,要求三次检验的pH的平均值不小于7.2,且不大于7.8.前两次检验,pH的读数分别是7.4,7.9,那么第三次检验的pH应该为多少才能合格?设第3次的pH值为x,由题意可得()A.7.2×3≤7.4+7.9+x≤7.8×3B.7.2×3<7.4+7.9+x≤7.8×3C.7.2×3>7.4+7.9+x>7.8×3D.7.2×3<7.4+7.9+x<7.8×317.(2021春•红谷滩区校级期末)一个四位数,记千位数字与个位数字之和为x,十位数字与百位数字之和为y,如果x=y,那么称这个四位数为“对称数”(1)最小的“对称数”为;四位数A与2020之和为最大的“对称数”,则A的值为;(2)一个四位的“对称数”M,它的百位数字是千位数字a的3倍,个位数字与十位数字之和为8,且千位数字a使得不等式组恰有4个整数解,求出所有满足条件的“对称数”M的值.五.一元一次不等式组的应用(共4小题)18.(2019秋•浦东新区期中)小明的外婆从家乡带来一篮苹果,小明数了数,发现每次拿出4个、每次拿出5个或每次拿出6个,都恰好拿完,又知道苹果的总数超过100个,但又不足150个,试问这篮苹果共多少个?19.(2021秋•青浦区校级期中)已知某校六年级学生超过130人,而不足150人,将他们按每组12人分组,多3人,将他们按每组8人分组,也多3人,该校六年级学生有多少人?20.(2019春•奉贤区期中)为了更好治理黄浦江水质,保护环境,市治污公司决定购买10台污水处理设备.现有A、B两种型号的设备,经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.A、B两种型号设备的月处理污水量如下表:A型B型价格(万元/台)a处理污水量(吨/月)240180(1)设A型设备每台的价格为a万元,则B型每台的价格为万元;(2)求A、B两种型号的设备的价格;(3)经预算:市治污公司购买污水处理设备的资金不超过105万元,且每月要求处理黄浦江的污水量不低于1860吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.21.(2020春•虹口区期中)一件商品的成本价是30元,若按标价的八八折销售,至少可获得10%的利润:若按标价的九折销售,可获得不足20%的利润.设这件商品的标价为x元,则x在范围内.题组A 基础过关练一.选择题(共4小题)1.(2018春•普陀区期中)不等式组的非负整数解有( ) A .1个B .2个C .3个D .4个2.(2019•金山区二模)不等式组的解集是( )A .x >﹣3B .x <﹣3C .x >1D .x <1 3.(2015春•辽阳校级期中)登山前,登山者要将矿泉水分装在旅行包内带上山.若每人2瓶,则剩余3瓶,若每人带3瓶,则有一人所带矿泉水不足2瓶(不为0瓶),登山人数及矿泉水的瓶数是( ) A .5、13B .3、5C .5、15D .无法确定4.(2013春•九江期末)把一盒苹果分给几个学生,若每人分4个,则剩下3个;若每人分6个,则最后一个学生能得到的苹果不超过2个,则学生人数是( ) A .3B .4C .5D .6二.填空题(共3小题)5.(2018秋•杨浦区校级期中)若﹣<x <,则x可以取 个整数值. 6.(2020•哈尔滨模拟)不等式组的解集是 .7.(2021•浦东新区模拟)不等式组的解集是 .三.解答题(共2小题)分层提分8.(2018春•黄浦区期末)解不等式组:,并把不等式组的解集表示在数轴上.9.(2018春•松江区期末)求不等式组:的整数解.题组B 能力提升练一.填空题(共4小题)1.(2021•崇明区二模)不等式组的解集是.2.(2021•普陀区二模)不等式组的解集是.3.(2020•青浦区二模)不等式组的整数解是.4.(2000•上海自主招生)今有浓度分别为3%、8%、11%的甲、乙、丙三种盐水50千克、70千克、60千克,现要用甲、乙、丙这三种盐水配制浓度为7%的盐水100千克,则丙种盐水最多可用千克.二.解答题(共9小题)5.(2021春•青浦区期中)解不等式组:并把它的解集在数轴上表示出来.6.(2021•徐汇区二模)解不等式组:.7.(2021•奉贤区二模)解不等式组:,并把解集在数轴上表示出来.8.(2019春•松江区期末)求不等式组:的非负整数解;并把它的解集在数轴上表示出来.9.(2019春•奉贤区期中)解不等式组:,并写出不等式组的非负整数解.10.不足100名同学跳集体舞时有两种组合:一种是中间一组5人,其他人按8人一组围在外圈;另一种是中间一组8人,其他人按5人一组围在外圈.问最多有多少名同学?11.若2x+|4﹣5x|+|1﹣3x|+4的值恒为常数,求x该满足的条件及此常数的值.12.(2015春•闵行区期末)先阅读下列一段文字,然后解答问题:某食品研究部门欲将甲、乙、丙三种食物混合研制成100千克食物,并规定:研制成的混合食品中至少需含44000单位的维生素A和48000单位的维生素B,三种食物的维生素A、B的含量如表1所示:甲种食物乙种食物丙种食物每千克生产成本(元)甲种食物9维生素A(单位/千克)400600400乙种食物12维生素B(单位/千克)800200400丙种食物8(表1)(表2)设所取甲、乙、丙三种食物的质量分别为x千克、y千克、z千克,(1)试根据题意列出等式和不等式,并说明:①y≥20;②2x﹣y≥40;(2)设甲、乙、丙三种食物的生产成本如表2所示:①试用含x、y的代数式表示研制的混合食品的总成本P(元);②如果限定混合食品中甲种食物的质量为40千克,试求此时总成本P 的取值范围,并确定当P取最小值时,所取乙、丙两种食物的质量.13.(2015春•普陀区期末)(1)解不等式组,并把不等式组的解集在图所示的数轴上表示出来;(2)若(1)中所求得的不等式组的解集中的最大或最小的整数值是关于x的方程2x﹣ax=3的解,求a的值.。

第二章 一元一次不等式与一元一次不等式组复习 课件(共23张PPT)

第二章 一元一次不等式与一元一次不等式组复习 课件(共23张PPT)
a<b => a+c<b+c ,a-c<b-c.
不等式的两边都乘(或都除以)同一个正数,所得的
不等式仍成立;
a>b,且c>0 => ac>bc, a b
cc
不等式的两边都乘(或都除以)同一个负数,必须
改变不等号的方向,所得的不等式成立;
a>b,且c>0 => ac<bc, a < b
cc
【练习】
• -5 -4 -3 -2 -1 0 1 2 3 4 5 • -5 -4 -3 -2 -1 0 1 2 3 4 5
x<-2 x≥0 -3<x≤2
a≤x<b
不等式的传递性.
a b,b c a c 推出
不等式的两边都加上(或减去)同一个数,所得到 的不等式仍成立.
a>b => a+c>b+c , a-c>b-c;
-2 -1 0 1 2
× x 1
x 1 1<x< -1
-2 -1 0 1 2
无解
大大取大 小小取小
一大一小夹中间
1.若不等式组
x 2 x a
的解为
x<-2 ,则下列各式正确的是 ( D )
(A) a = -2
(B) a<-2
(C) a ≤ -2
(D) a≥-2
2. 若a x 3有解,则a的范围是 _a_<__3 3. 若a x 3无解,则a的范围是 _a_≥__3
解:设导火索长度为x米,则
3 x 100 0.015
解得 x≥0.5 答:导火索的长度至少取0.5米。
本利和=本金+利息 =本金+本金×利率×期数
某企业向银行贷款1000万元,一年后归还银行贷款的 本利和超过1040万元,问年利率在怎样的一个范围 内?

人教版七年级数学下册第九章第三节一元一次不等式组复习题(含答案) (81)

人教版七年级数学下册第九章第三节一元一次不等式组复习题(含答案) (81)

人教版七年级数学下册第九章第三节一元一次不等式组复习练习题(含答案)如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x -1=0,② 2103x +=③x -(3x+1)=-5 中,不等式组25312x x x x -+>-⎧⎨->-+⎩的关联方程是________ (2)若不等式组 112132x x x ⎧-<⎪⎨⎪+>-+⎩的一个关联方程的根是整数, 则这个关联方程可以是________(写出一个即可)(3)若方程 3-x=2x ,3+x= 122x ⎛⎫+ ⎪⎝⎭都是关于 x 的不等式组 22x x m x m <-⎧⎨-≤⎩的关联方程,直接写出 m 的取值范围. 【答案】(1)①;(2)20x -= ;(3)01m ≤<.【解析】【分析】(1)先求出方程的解和不等式组的解集,再判断即可;(2)先求出不等式组的解集,求出不等式组的整数解,再写出方程即可;(3)先求出方程的解和不等式组的解集,即可得出答案.【详解】(1)解方程3x ﹣1=0得:x =13,解方程23x +1=0得:x =﹣32,解方程x ﹣(3x +1)=﹣5得:x =2,解不等式组25312x x x x -+-⎧⎨--+⎩>>得:34<x <72,所以不等式组25312x xx x-+-⎧⎨--+⎩>>的关联方程是③.故答案为③;(2)解不等式组112132xx x⎧-⎪⎨⎪+-+⎩<>得:14<x<32,这个关联方程可以是x﹣1=0.故答案为x﹣1=0(答案不唯一);(3)解方程3﹣x=2x得:x=1,解方程3+x=2(x+12)得:x=2,解不等式组22x x mx m-⎧⎨-≤⎩<得:m<x≤2+m.∵方程3﹣x=2x,3+x=2(x+12)都是关于x的不等式组22x x mx m-⎧⎨-≤⎩<的关联方程,∴0≤m<1,即m的取值范围是0≤m<1.【点睛】本题考查了解一元一次方程,一元一次方程的解,解一元一次不等式组等知识点,能理解关联方程的定义是解答此题的关键.92.(1)分解因式:3x3﹣27x;(2)解不等式组:21111(21)3x xx x+>-⎧⎪⎨-≤-⎪⎩【答案】(1)3x(x+3)(x﹣3);(2)不等式组的解集为﹣2<x≤3.【解析】分析:(1)先提取公因式3x,再利用平方差公式分解可得;(2)分别求出各不等式的解集,再求出其公共解集.详解:(1)原式=3x(x2-9)=3x(x+3)(x-3);(2)解不等式①,得:x >-2,解不等式②,得:x ≤2,则不等式组的解集为-2<x ≤2.点睛:本题考查的是因式分解和解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.93.解不等式组:426113x x x x >-⎧⎪+⎨≥-⎪⎩,并把解集表示在数轴上.【答案】32x -<≤,将不等式组解集表示在数轴上如图见解析.【解析】【分析】先分别解不等式,再求不等式组的解集,再在数轴上表示解集.【详解】解:解不等式426x x >-,得:3x >-, 解不等式113x x +≥-,得:2x ≤, ∴不等式组的解集为:32x -<≤,将不等式组解集表示在数轴上如图:【点睛】本题考核知识点:解不等式组.解题关键点:分别求不等式的解集.94.(1)计算:2sin45°+(π﹣1)0﹣2|;(2)解不等式组:35131 212 x xxx-<+⎧⎪⎨--≥⎪⎩【答案】(1)1;(2)不等式组的解集为1≤x<3.【解析】分析:(1)先代入三角函数值、计算零指数幂、化简二次根式、去绝对值符号,再计算乘法和加减运算可得;(2)先求出各不等式的解集,再求其公共解集即可.详解:(1)原式=2×2+1﹣+1=1;(2)解不等式3x﹣5<x+1,得:x<3,解不等式2x﹣1≥312x-,得:x≥1,则不等式组的解集为1≤x<3.点睛:本题主要考查解一元一次不等式组和实数的运算,解题的关键是掌握解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了及实数的混合运算顺序和运算法则.95.如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.例如:方程2x6=0-的解为x=3,不等式组x20,x5->⎧⎨<⎩的解集为2x5<<,因为235<<,所以,称方程2x6=0-为不等式组x20,x5->⎧⎨<⎩的关联方程.(1)在方程①520x -=,②3104x +=,③()315x x -+=-中,不等式组2538434x x x x ->-⎧⎨-+<-⎩, 的关联方程是 ;(填序号) (2)若不等式组1144275x x x ⎧-⎪⎨⎪+-+⎩<,>的一个关联方程的根是整数,则这个关联方程可以是 ;(写出一个即可)(3)若方程21+2x x -=,1322x x ⎛⎫+=+ ⎪⎝⎭都是关于x 的不等式组22x x m x m-⎧⎨-≤⎩<,的关联方程,求m 的取值范围. 【答案】(1)③;(2)答案不唯一,只要所给一元一次方程的解为1x =即可,如方程:211x -=(3)m 的取值范围是1≤m <2.【解析】分析:(1)求出所给的3个方程的解及所给不等式组的解集,再按“关联方程”的定义进行判断即可;(2)先求出所给不等式组的整数解,再结合“关联方程”的定义进行分析解答即可;(3)先求出所给不等式组的解集和所给的两个方程的解,再结合“关联方程的定义”和“已知条件”进行分析解答即可.详解:(1)解方程 ①520x -=得 :25x =;解方程②3104x +=得:43x =-; 解方程③()315x x -+=-得:2x =;解不等式组 2538434x x x x ->-⎧⎨-+<-⎩ 得:735x <<, ∵上述3个方程的解中只有2x =在735x <<的范围内, ∴不等式组 2538434x x x x ->-⎧⎨-+<-⎩的关联方程是方程③; (2)解不等式组1144275x x x ⎧-⎪⎨⎪+-+⎩<>得:1594x <<, ∴原不等式组的整数解为1,∵原不等式组的关联方程的解为整数,∴解为1x =的一元一次方程都是原不等式组的关联方程,∴本题答案不唯一,如:211x -=就是原不等式组的一个关联方程;(3)2? 2? x x m x m -⎧⎨-≤⎩<①② 解不等式①,得:x >m ,解不等式②,得:x ≤m+2,∴原不等式组的解集为m <x ≤m+2,解方程:2x-1= x+2得:x=3,解方程:1322x x ⎛⎫+=+ ⎪⎝⎭ 得:x=2, ∵方程2x-1= x+2和方程方程1322x x ⎛⎫+=+ ⎪⎝⎭都是原不等式组的关联方程, ∵2x =和3x =都在m <x ≤m+2的范围内,∵m 的取值范围是1≤m <2.点睛:“读懂题意,理解“关联方程”的定义,熟练掌握一元一次不等式组的解法”是解答本题的关键.96.解不等式组:3(1)5192.4x x x x -≤+⎧⎪⎨-<⎪⎩, 【答案】-2≤x <1.【解析】【分析】按照解一元一次不等式组的一般步骤进行解答即可.【详解】解:解不等式①,得:x ≥-2.解不等式②,得:x <1.∴不等式组的解集为-2≤x <1.点睛:熟练掌握“解一元一次不等式组的一般步骤及确定不等式组解集的方法:同大取大;同小取小;大小小大,中间找;大大小小,找不了(无解)”是解答本题的关键.97.解不等式组:3(1)1922x x x x +>-⎧⎪⎨+>⎪⎩. 【答案】23x -<<.【解析】分析:分别解不等式,找出解集的公共部分即可.详解:()311922x x x x ⎧+>-⎪⎨+>⎪⎩①②由①得,2x >-,由②得,3x <,∴不等式的解集为23x -<<.点睛:考查解一元一次不等式组,比较容易,分别解不等式,找出解集的公共部分即可.98.解不等式组:()()202130x x x -≤⎧⎨---⎩> 【答案】-1<x ≤2.【解析】分析:按照解一元一次不等式组的一般步骤解答即可.详解:()()202130x x x ,①>,②-≤⎧⎪⎨---⎪⎩解不等式∵得:x ≤2 ,解不等式由∵得:x > –1,∴原不等式组的解集为:-1<x ≤2.点睛:熟记“解一元一次不等式组的方法和一般步骤”是解答本题的关键.99.解不等式组{321351x x x +≥--≥【答案】24x ≤≤【解析】分析:首先求出每个不等式的解集,再求出这些解集的公共部分即可. 详解:解不等式x+3≥2x-1,可得:x ≤4;解不等式3x-5≥1,可得:x ≥2;∴不等式组的解集是2≤x ≤4.点睛:此题主要考查了解一元一次不等式组的方法,要熟练掌握,注意解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.100.解不等式组1(1)222323x x x ⎧+≤⎪⎪⎨++⎪≥⎪⎩,并求出不等式组的整数解之和. 【答案】6.【解析】分析:分别求出不等式组中两不等式的解集,找出解集的公共部分确定出解集,找出整数解即可. 详解:解不等式12(x+1)≤2,得:x ≤3, 解不等式2323x x ++≥,得:x ≥0, 则不等式组的解集为0≤x ≤3,所以不等式组的整数解之和为0+1+2+3=6.点睛:此题考查了解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.。

(完整word版)一元一次不等式习题课

(完整word版)一元一次不等式习题课

(完整word版)一元一次不等式习题课一元一次不等式习题课【学习目标】1.会整理易错点,并能找到错误原因2.能灵活应用不等式的性质解决相关问题,会熟练准确地解一元一次不等式【错误展示】1.去括号时,错用乘法分配律解不等式3x+2(2-4x)<19.错解:去括号,得3x+4-4x<19,解得x>-15.诊断: 诊断: 错解在去括号时,括号前面的数 2 没有乘以括号内的每一项.正解: 正解: 去括号,得3x+4-8x<19,-5x<15,所以x>-3. 2.去括号时,2.去括号时,忽视括号前的负号解不等式5x-3(2x-1)>-6.错解:去括号,得5x-6x-3>-6,解得x<3.诊断:诊断:去括号时,当括号前面是“-”时,去掉括号和前面的“-”,括号内的各项都要改变符号.错解在去括号时,没有将括号内的项全改变符号.正解: 去括号,得5x-6x+3>-6,所以-x>-9,所以x<9.3.移项时,不改变符号解不等式4x-5<2x-9.错解:移项,得4x+2x<-9-5,即6x<-14,所以x<-7/3诊断: 诊断: 一元一次不等式中的移项和一元一次方程中的移项一样,移项就要改变符号,错解忽略了这一点.正解: 移项,得4x-2x<-9+5,解得2x<-4,所以x<-2.4.去分母时,忽视分数线的括号作用解不等式3x-(2x-5)/2>7错解:去分母,得6x-2x-5>15 ,解得:x>19/4诊断:去分母时,如果分子是一个整式,去掉分母后要用括号将分子括起来.错解在去掉分母时,忽视了分数线的括号作用.正解: 去分母,得6x-(2x-5)>14,去括号,得6x-2x+5>14,x>9/45.不等式两边同除以负数,不改变方向解不等式3x-6<1+7x. 错解:移项,得3x-7x<1+6,即-4x <7,所以x<-7/4诊断:将不等式-4x<7 的系数化为1 时,不等式两边同除以-4 后,根据不等式的诊断基本性质:不等式两边同乘以或同除以同一个负数,不等号要改变方向,因此造成了错解.正解:移项,得3x-7x<1+6,即-4x<7,所以所以x>-7/46.去分母时,漏乘不含分母的项解不等式x-(x-1)/3>x/2+1 错解:去分母,得x-2(x-1)>3x+1,去括号,解得x<1/4诊断:去分母时,要用最简公分母去乘不等式两边的每一项.而错解只乘了含有分母的项,漏乘了不含有分母的项.正解: 去分母,得6x-2(x-1)>3x+6,去括号,得6x-2x+2>3x+6,解得x>4.7.忽视对有关概念的理解求不等式(3x+4)/2-3≤7的非负整数解错解:整理,得3x≤16,的非负整数解. 所以x≤16/3 故其非负整数的解是1,2,3,4正解:非负整数的解是0,1,2,3,4,58.在数轴上表示解集时出现错误解不等式:3(1-x)≥2(x+9),并把它的解集在数轴上表示出来.错解:整理,得-5x≥15,所以x≤-3,在数轴上表示如图1 所示.诊断:本题求得的解集并没错,问题出在将解集在数轴上表示出来时出现了错误,即有两处错误:一是方向表示错误,不应该向右,而应该向左;二是不应用空心圆圈表示,而应用实心圆圈表示.正解:整理,得-5x≥15,所以x≤-3,在数轴上表示如图2 所示.上述三例告诉我们解一元一次不等式时一定要认真分析题目的结构特征,灵活运用注:解一元一次不等式的步骤,正确理解有关概念,才能及时避开陷阱,准确、快速的求解. 【典型例题】例1.不等式基本性质的应用(比较大小)已知:a<b< p="">(1)a+1<b-c;<="" p="">(3)2a<2b: (4)-a/2 >-a/b;(5)3a-2<3b-2; (6)-a+c>-b+c例题2.求不等式2x-3≤5的正整数解例3.已知方程3x+y=2,当y取何值时,x<5?例4.解不等式:(x-2)/2 –(x-1)/3<1【巩固练习】一、不等式的解集1.不等式-3≤x<2的整数解是二、不等式的性质1、已知a>b 用”>”或”<”连接下列各式;(1)a-3 ---- b-3,(2)2a ----- 2b,( 3 )- a /3 ----- -b /3 (4)4a-3---- 4b-3 (5)a-b --- 02、不等式ax>a 的解集为x>1,则a 的取值范围是()A. a>0B.a≥0C.a<0D.a≤03、不等式( a -3) x > 1 的解集是x < 3/a-1,则a的取值范围是4、若a > b ,则ac2 ____ bc2.(本组题独立完成后小组内正)三、解不等式,并把解集在数轴上表示出来(1)-3x/4<-2 (2)3x-1<5x+5(3)(2x-1)/3≤(1+x)/2 (4)(x-3)/4<6-(3-4x)/2(5) 2(x-1)/3≤(x+1/3)/5(由5 名同学板演,然后集体订正)四、列不等式并求出x的范围1、x 的1 与5 的差不小于32、代数式3x-5 的值大于5x+33、代数式(x+3)/2 –(x-1)/5<1的解是非负数(独立完成后,小组派代表讲解订正)五、不等式的综合应用1、求不等式x+1 < 3 的正整数解2、若不等式2x3、关于x 的方程3 x +k= 2 的解是非负数,求k 的取值范围4.3x+y= m+1,2x+y=m-1当m 为何值时,x>y?5.已知关于x,y的方程组x+2y=1,x-2y=m(1)求这个方程组的解;(2)当m取何值时,这个方程组的解x大于1,y不小于-1</b<>。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:8.3 解一元一次不等式组(2)
课型:习题练习课 主编:王琳 审核: 编号: 课前反馈:
学习目标:
1、能解决教复杂的一元一次不等式组及不等式组的相关问题
2、掌握求一元一次不等式组的常规方法,会用数轴求出不等式组的解集。

3、熟悉数形结合思想方法,感受类比与化归的思想。

学习过程:
一、高屋建瓴、复习旧知:
二、提出问题、自我练习:
例1:求不等式组 14
10452234
2<-+>+>x x x x
解:由①得:
由②得:
由③得:
所以不等式组的解集为63<<x
例2、已知a =23+x ,b =3
2+x ,且a >2>b ,那么求x 的取值范围。

三、深化思想、迁移拓展:
1、已知方程组⎩⎨⎧+=+=6
5m y 2x -172y -x 的解为负数,求m 的取值范围。

2、当x 取哪些整数时,不等式 2(x +2)<x +5与不等式3(x -2)+9>2x 同时成立?
3、求不等式组 1
2)1(356230
2+>++>+>-x x x x x
4、学校安排高一学生住宿,若每间宿舍住6人,则有8个学生没有宿舍住;若每间宿舍住8人,则有一间宿舍人数少于6个,问:共有几间宿舍,高一共有多少人要住宿?
5、求不等式组
8
6231324->-+<-x x x x 的整数解
课后反思:
当堂检测:
1、不等式组()122431223
x x x x ⎧--≥⎪⎪⎨-⎪>+⎪⎩的解集为 2、若m<n ,则不等式组12x m x n >-⎧⎨<+⎩
的解集是 3.若不等式组2113
x a x <⎧⎪-⎨>⎪⎩无解,则a 的取值范围是 . 4.已知方程组2420x ky x y +=⎧⎨-=⎩
有正数解,则k 的取值范围是 . 5.若关于x 的不等式组61540
x x x m +⎧>+⎪⎨⎪+<⎩的解集为4x <,则m 的取值范围
是 .
6、解下列不等式组
(1)3(2)41214
x x x x --⎧⎪⎨-<-⎪⎩≤ (2)⎪⎩⎪⎨⎧>+--<--x x x x 3238)1(31
(3) ⎪⎩⎪⎨⎧++≤++<-1
213311
315x x x x (4)
⎪⎩⎪⎨⎧<--≤--x x x x 35217)1(3
7、代数式21
3x +的值小于3且大于0,求x 的取值范围.
8、求同时满足2328x x -≥-和12123x
x --<+的整数解。

相关文档
最新文档