高中数学第一章 导数及其应用1.4 生活中的优化问题举例(含答案解析)

合集下载

1.4 生活中的优化问题举例

1.4 生活中的优化问题举例
=3.2-2x(m).
4
高为
由题意知 x>0,x+0.5>0,且 3.2-2x>0,
∴0<x<1.6.
设容器的容积为 V m3,
则有 V=x(x+0.5)(3.2-2x)
=-2x3+2.2x2+1.6x(0<x<1.6).
∴V'=-6x2+4.4x+1.6.
目录
退出
令 V'=0,有 15x2-11x-4=0,
解得
4
x1=1,x2=-15(舍去).
∴当 x∈(0,1)时,V'(x)>0,V(x)为增函数,
x∈(1,1.6)时,V'(x)<0,V(x)为减函数.
∴V 在 x∈(0,1.6)时取极大值 V(1)=1.8,这个极大值就是 V 在
x∈(0,1.6)时的最大值,即 Vmax=1.8.这时容器的高为 1.2 m.
此时 Smax=42=16(m2).
答案:16 m2
目录
退出
2.用总长为 14.8 m 的钢条制作一个长方体容器的框架,如果所
制作容器的底面的一边比另一边长 0.5 m,那么高为多少时容器的容
积最大?并求出它的最大容积.
解:设容器底面短边的边长为 x m,则另一边长为(x+0.5) m,
14.8-4x-4(x+0.5)
思路分析:表示面积时,首先要建立适当的平面直角坐标系,借助
椭圆的方程,可表示出等腰梯形的高.
目录
退出
解:(1)依题意,以 AB 的中点 O 为原点建立平面直角坐标系(如
图所示),则点 C 的横坐标为 x,点 C 的纵坐标为

人教版高中数学选修 课后习题参考答案

人教版高中数学选修 课后习题参考答案

新课程标准数学选修2—2第一章课后习题解答第一章 导数及其应用 3.1变化率与导数 练习(P6)在第3 h 和5 h 时,原油温度的瞬时变化率分别为1-和3. 它说明在第3 h 附近,原油温度大约以1 ℃/h 的速度下降;在第5 h 时,原油温度大约以3 ℃/h 的速率上升.练习(P8)函数()h t 在3t t =附近单调递增,在4t t =附近单调递增. 并且,函数()h t 在4t 附近比在3t 附近增加得慢. 说明:体会“以直代曲”1的思想. 练习(P9) 函数33()4Vr V π=(05)V ≤≤的图象为根据图象,估算出(0.6)0.3r '≈,(1.2)0.2r '≈.说明:如果没有信息技术,教师可以将此图直接提供给学生,然后让学生根据导数的几何意义估算两点处的导数. 习题1.1 A 组(P10)1、在0t 处,虽然1020()()W t W t =,然而10102020()()()()W t W t t W t W t t t t--∆--∆≥-∆-∆. 所以,企业甲比企业乙治理的效率高.说明:平均变化率的应用,体会平均变化率的内涵.2、(1)(1) 4.9 3.3h h t h t t t∆+∆-==-∆-∆∆,所以,(1) 3.3h '=-. 这说明运动员在1t =s 附近以3.3 m /s 的速度下降. 3、物体在第5 s 的瞬时速度就是函数()s t 在5t =时的导数.(5)(5)10s s t s t t t∆+∆-==∆+∆∆,所以,(5)10s '=.因此,物体在第 5 s 时的瞬时速度为10 m /s ,它在第 5 s 的动能213101502k E =⨯⨯= J.4、设车轮转动的角度为θ,时间为t ,则2(0)kt t θ=>. 由题意可知,当0.8t =时,2θπ=. 所以258k π=,于是2258t πθ=. 车轮转动开始后第3.2 s 时的瞬时角速度就是函数()t θ在 3.2t =时的导数.(3.2)(3.2)25208t t t t θθθππ∆+∆-==∆+∆∆,所以(3.2)20θπ'=. 因此,车轮在开始转动后第3.2 s 时的瞬时角速度为20π1s -. 说明:第2,3,4题是对了解导数定义及熟悉其符号表示的巩固.5、由图可知,函数()f x 在5x =-处切线的斜率大于零,所以函数在5x =-附近单调递增. 同理可得,函数()f x 在4x =-,2-,0,2附近分别单调递增,几乎没有变化,单调递减,单调递减. 说明:“以直代曲”思想的应用.6、第一个函数的图象是一条直线,其斜率是一个小于零的常数,因此,其导数()f x '的图象如图(1)所示;第二个函数的导数()f x '恒大于零,并且随着x 的增加,()f x '的值也在增加;对于第三个函数,当x 小于零时,()f x '小于零,当x 大于零时,()f x '大于零,并且随着x 的增加,()f x '的值也在增加. 以下给出了满足上述条件的导函数图象中的一种.说明:本题意在让学生将导数与曲线的切线斜率相联系. 习题3.1 B 组(P11)1、高度关于时间的导数刻画的是运动变化的快慢,即速度;速度关于时间的导数刻画的是速度变化的快慢,根据物理知识,这个量就是加速度.2、说明:由给出的()v t 的信息获得()s t 的相关信息,并据此画出()s t 的图象的大致形状. 这个过程基于对导数内涵的了解,以及数与形之间的相互转换.3、由(1)的题意可知,函数()f x 的图象在点(1,5)-处的切线斜率为1-,所以此点附近曲线呈下降趋势. 首先画出切线的图象,然后再画出此点附近函数的图象. 同理可得(2)(3)某点处函数图象的大致形状. 下面是一种参考答案.说明:这是一个综合性问题,包含了对导数内涵、导数几何意义的了解,以及对以直代曲思想的领悟. 本题的答案不唯一. 1.2导数的计算 练习(P18)1、()27f x x '=-,所以,(2)3f '=-,(6)5f '=.2、(1)1ln 2y x '=; (2)2x y e '=; (3)4106y x x '=-; (4)3sin 4cos y x x '=--;(5)1sin 33xy '=-; (6)21y x '=-.习题1.2 A 组(P18)1、()()2S S r r S r r r r r π∆+∆-==+∆∆∆,所以,0()lim(2)2r S r r r r ππ∆→'=+∆=. 2、()9.8 6.5h t t '=-+. 3、3213()34r V Vπ'=.4、(1)213ln 2y x x '=+; (2)1n x n x y nx e x e -'=+; (3)2323sin cos cos sin x x x x xy x-+'=; (4)9899(1)y x '=+; (5)2x y e -'=-; (6)2sin(25)4cos(25)y x x x '=+++. 5、()822f x x '=-+. 由0()4f x '=有 04822x =-+,解得032x =. 6、(1)ln 1y x '=+; (2)1y x =-. 7、1xy π=-+.8、(1)氨气的散发速度()500ln 0.8340.834t A t '=⨯⨯.(2)(7)25.5A '=-,它表示氨气在第7天左右时,以25.5克/天的速率减少. 习题1.2 B 组(P19) 1、(1)(2)当h 越来越小时,sin()sin x h xy h+-=就越来越逼近函数cos y x =.(3)sin y x =的导数为cos y x =.2、当0y =时,0x =. 所以函数图象与x 轴交于点(0,0)P . x y e '=-,所以01x y ='=-.所以,曲线在点P 处的切线的方程为y x =-.2、()4sin d t t '=-. 所以,上午6:00时潮水的速度为0.42-m /h ;上午9:00时潮水的速度为0.63-m /h ;中午12:00时潮水的速度为0.83-m /h ;下午6:00时潮水的速度为 1.24-m /h.1.3导数在研究函数中的应用 练习(P26)1、(1)因为2()24f x x x =-+,所以()22f x x '=-.当()0f x '>,即1x >时,函数2()24f x x x =-+单调递增;当()0f x '<,即1x <时,函数2()24f x x x =-+单调递减. (2)因为()x f x e x =-,所以()1x f x e '=-.当()0f x '>,即0x >时,函数()x f x e x =-单调递增; 当()0f x '<,即0x <时,函数()x f x e x =-单调递减. (3)因为3()3f x x x =-,所以2()33f x x '=-.当()0f x '>,即11x -<<时,函数3()3f x x x =-单调递增; 当()0f x '<,即1x <-或1x >时,函数3()3f x x x =-单调递减. (4)因为32()f x x x x =--,所以2()321f x x x '=--.当()0f x '>,即13x <-或1x >时,函数32()f x x x x =--单调递增;当()0f x '<,即113x -<<时,函数32()f x x x x =--单调递减.2、3、因为2()(0)f x ax bx c a =++≠,所以()2f x ax b '=+. (1)当0a >时,()0f x '>,即2bx a >-时,函数2()(0)f x ax bx c a =++≠单调递增; ()0f x '<,即2bx a<-时,函数2()(0)f x ax bx c a =++≠单调递减.(2)当0a <时,()0f x '>,即2bx a <-时,函数2()(0)f x ax bx c a =++≠单调递增;()0f x '<,即2bx a>-时,函数2()(0)f x ax bx c a =++≠单调递减.4、证明:因为32()267f x x x =-+,所以2()612f x x x '=-. 当(0,2)x ∈时,2()6120f x x x '=-<,因此函数32()267f x x x =-+在(0,2)内是减函数. 练习(P29)1、24,x x 是函数()y f x =的极值点,注:图象形状不唯一.其中2x x =是函数()y f x =的极大值点,4x x =是函数()y f x =的极小值点. 2、(1)因为2()62f x x x =--,所以()121f x x '=-. 令()1210f x x '=-=,得112x =. 当112x >时,()0f x '>,()f x 单调递增;当112x <时,()0f x '<,()f x 单调递减.所以,当112x =时,()f x 有极小值,并且极小值为211149()6()212121224f =⨯--=-. (2)因为3()27f x x x =-,所以2()327f x x '=-. 令2()3270f x x '=-=,得3x =±. 下面分两种情况讨论:①当()0f x '>,即3x <-或3x >时;②当()0f x '<,即33x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当3x =-时,()f x 有极大值,并且极大值为54; 当3x =时,()f x 有极小值,并且极小值为54-. (3)因为3()612f x x x =+-,所以2()123f x x '=-. 令2()1230f x x '=-=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即22x -<<时;②当()0f x '<,即2x <-或2x >时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极小值,并且极小值为10-; 当2x =时,()f x 有极大值,并且极大值为22 (4)因为3()3f x x x =-,所以2()33f x x '=-. 令2()330f x x '=-=,得1x =±. 下面分两种情况讨论:①当()0f x '>,即11x -<<时;②当()0f x '<,即1x <-或1x >时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当1x =-时,()f x 有极小值,并且极小值为2-; 当1x =时,()f x 有极大值,并且极大值为2 练习(P31)(1)在[0,2]上,当112x =时,2()62f x x x =--有极小值,并且极小值为149()1224f =-. 又由于(0)2f =-,(2)20f =.因此,函数2()62f x x x =--在[0,2]上的最大值是20、最小值是4924-. (2)在[4,4]-上,当3x =-时,3()27f x x x =-有极大值,并且极大值为(3)54f -=; 当3x =时,3()27f x x x =-有极小值,并且极小值为(3)54f =-; 又由于(4)44f -=,(4)44f =-.因此,函数3()27f x x x =-在[4,4]-上的最大值是54、最小值是54-.(3)在1[,3]3-上,当2x =时,3()612f x x x =+-有极大值,并且极大值为(2)22f =.又由于155()327f -=,(3)15f =.因此,函数3()612f x x x =+-在1[,3]3-上的最大值是22、最小值是5527.(4)在[2,3]上,函数3()3f x x x =-无极值. 因为(2)2f =-,(3)18f =-.因此,函数3()3f x x x =-在[2,3]上的最大值是2-、最小值是18-. 习题1.3 A 组(P31)1、(1)因为()21f x x =-+,所以()20f x '=-<. 因此,函数()21f x x =-+是单调递减函数.(2)因为()cos f x x x =+,(0,)2x π∈,所以()1sin 0f x x '=->,(0,)2x π∈. 因此,函数()cos f x x x =+在(0,)2π上是单调递增函数. (3)因为()24f x x =--,所以()20f x '=-<. 因此,函数()24f x x =-是单调递减函数. (4)因为3()24f x x x =+,所以2()640f x x '=+>. 因此,函数3()24f x x x =+是单调递增函数. 2、(1)因为2()24f x x x =+-,所以()22f x x '=+.当()0f x '>,即1x >-时,函数2()24f x x x =+-单调递增. 当()0f x '<,即1x <-时,函数2()24f x x x =+-单调递减. (2)因为2()233f x x x =-+,所以()43f x x '=-.当()0f x '>,即34x >时,函数2()233f x x x =-+单调递增. 当()0f x '<,即34x <时,函数2()233f x x x =-+单调递减.(3)因为3()3f x x x =+,所以2()330f x x '=+>. 因此,函数3()3f x x x =+是单调递增函数.(4)因为32()f x x x x =+-,所以2()321f x x x '=+-. 当()0f x '>,即1x <-或13x >时,函数32()f x x x x =+-单调递增. 当()0f x '<,即113x -<<时,函数32()f x x x x =+-单调递减.3、(1)图略. (2)加速度等于0.4、(1)在2x x =处,导函数()y f x '=有极大值; (2)在1x x =和4x x =处,导函数()y f x '=有极小值; (3)在3x x =处,函数()y f x =有极大值; (4)在5x x =处,函数()y f x =有极小值.5、(1)因为2()62f x x x =++,所以()121f x x '=+. 令()1210f x x '=+=,得112x =-. 当112x >-时,()0f x '>,()f x 单调递增; 当112x <-时,()0f x '<,()f x 单调递减.所以,112x =-时,()f x 有极小值,并且极小值为211149()6()212121224f -=⨯---=-.(2)因为3()12f x x x =-,所以2()312f x x '=-. 令2()3120f x x '=-=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极大值,并且极大值为16;当2x =时,()f x 有极小值,并且极小值为16-. (3)因为3()612f x x x =-+,所以2()123f x x '=-+. 令2()1230f x x '=-+=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极大值,并且极大值为22; 当2x =时,()f x 有极小值,并且极小值为10-. (4)因为3()48f x x x =-,所以2()483f x x '=-. 令2()4830f x x '=-=,得4x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当4x =-时,()f x 有极小值,并且极小值为128-; 当4x =时,()f x 有极大值,并且极大值为128. 6、(1)在[1,1]-上,当112x =-时,函数2()62f x x x =++有极小值,并且极小值为4724.由于(1)7f -=,(1)9f =,所以,函数2()62f x x x =++在[1,1]-上的最大值和最小值分别为9,4724. (2)在[3,3]-上,当2x =-时,函数3()12f x x x =-有极大值,并且极大值为16; 当2x =时,函数3()12f x x x =-有极小值,并且极小值为16-. 由于(3)9f -=,(3)9f =-,所以,函数3()12f x x x =-在[3,3]-上的最大值和最小值分别为16,16-.(3)在1[,1]3-上,函数3()612f x x x =-+在1[,1]3-上无极值.由于1269()327f -=,(1)5f =-,所以,函数3()612f x x x =-+在1[,1]3-上的最大值和最小值分别为26927,5-.(4)当4x =时,()f x 有极大值,并且极大值为128.. 由于(3)117f -=-,(5)115f =,所以,函数3()48f x x x =-在[3,5]-上的最大值和最小值分别为128,117-. 习题3.3 B 组(P32)1、(1)证明:设()sin f x x x =-,(0,)x π∈. 因为()cos 10f x x '=-<,(0,)x π∈ 所以()sin f x x x =-在(0,)π内单调递减因此()sin (0)0f x x x f =-<=,(0,)x π∈,即sin x x <,(0,)x π∈. 图略(2)证明:设2()f x x x =-,(0,1)x ∈. 因为()12f x x '=-,(0,1)x ∈所以,当1(0,)2x ∈时,()120f x x '=->,()f x 单调递增,2()(0)0f x x x f =->=;当1(,1)2x ∈时,()120f x x '=-<,()f x 单调递减,2()(1)0f x x x f =->=;又11()024f =>. 因此,20x x ->,(0,1)x ∈. 图略(3)证明:设()1x f x e x =--,0x ≠. 因为()1x f x e '=-,0x ≠所以,当0x >时,()10x f x e '=->,()f x 单调递增,()1(0)0x f x e x f =-->=;当0x <时,()10x f x e '=-<,()f x 单调递减,()1(0)0x f x e x f =-->=;综上,1x e x ->,0x ≠. 图略 (4)证明:设()ln f x x x =-,0x >. 因为1()1f x x'=-,0x ≠ 所以,当01x <<时,1()10f x x'=->,()f x 单调递增, ()ln (1)10f x x x f =-<=-<; 当1x >时,1()10f x x'=-<,()f x 单调递减, ()ln (1)10f x x x f =-<=-<;当1x =时,显然ln11<. 因此,ln x x <. 由(3)可知,1x e x x >+>,0x >.. 综上,ln x x x e <<,0x > 图略2、(1)函数32()f x ax bx cx d =+++的图象大致是个“双峰”图象,类似“”或“”的形状. 若有极值,则在整个定义域上有且仅有一个极大值和一个极小值,从图象上能大致估计它的单调区间.(2)因为32()f x ax bx cx d =+++,所以2()32f x ax bx c '=++. 下面分类讨论:当0a ≠时,分0a >和0a <两种情形: ①当0a >,且230b ac ->时,设方程2()320f x ax bx c '=++=的两根分别为12,x x ,且12x x <,当2()320f x ax bx c '=++>,即1x x <或2x x >时,函数32()f x ax bx cx d =+++单调递增;当2()320f x ax bx c '=++<,即12x x x <<时,函数32()f x ax bx cx d =+++单调递减.当0a >,且230b ac -≤时,此时2()320f x ax bx c '=++≥,函数32()f x ax bx cx d =+++单调递增. ②当0a <,且230b ac ->时,设方程2()320f x ax bx c '=++=的两根分别为12,x x ,且12x x <,当2()320f x ax bx c '=++>,即12x x x <<时,函数32()f x ax bx cx d =+++单调递增;当2()320f x ax bx c '=++<,即1x x <或2x x >时,函数32()f x ax bx cx d =+++单调递减.当0a <,且230b ac -≤时,此时2()320f x ax bx c '=++≤,函数32()f x ax bx cx d =+++单调递减 1.4生活中的优化问题举例 习题1.4 A 组(P37)1、设两段铁丝的长度分别为x ,l x -,则这两个正方形的边长分别为4x ,4l x -,两个正方形的面积和为 22221()()()(22)4416x l x S f x x lx l -==+=-+,0x l <<.令()0f x '=,即420x l -=,2lx =.当(0,)2l x ∈时,()0f x '<;当(,)2lx l ∈时,()0f x '>.因此,2lx =是函数()f x 的极小值点,也是最小值点.所以,当两段铁丝的长度分别是2l时,两个正方形的面积和最小.2、如图所示,由于在边长为a 的正方形铁片的四角截去四个边长为x 的小正方形,做成一个无盖方盒,所以无 盖方盒的底面为正方形,且边长为2a x -,高为x .(1)无盖方盒的容积2()(2)V x a x x =-,02ax <<.(2)因为322()44V x x ax a x =-+, 所以22()128V x x ax a '=-+.令()0V x '=,得2a x =(舍去),或6a x =. 当(0,)6a x ∈时,()0V x '>;当(,)62a ax ∈时,()0V x '<.因此,6ax =是函数()V x 的极大值点,也是最大值点.所以,当6ax =时,无盖方盒的容积最大.3、如图,设圆柱的高为h ,底半径为R , 则表面积222S Rh R ππ=+由2V R h π=,得2V h R π=. 因此,2222()222V V S R R R R R Rππππ=+=+,0R >. 令2()40V S R R R π'=-+=,解得R =.当R ∈时,()0S R '<;当)R ∈+∞时,()0S R '>. 因此,R =是函数()S R 的极小值点,也是最小值点. 此时,22V h R R π===. 所以,当罐高与底面直径相等时,所用材料最省.4、证明:由于211()()n i i f x x a n ==-∑,所以12()()n i i f x x a n ='=-∑.令()0f x '=,得11ni i x a n ==∑,(第3题)可以得到,11ni i x a n ==∑是函数()f x 的极小值点,也是最小值点.这个结果说明,用n 个数据的平均值11ni i a n =∑表示这个物体的长度是合理的,这就是最小二乘法的基本原理.5、设矩形的底宽为x m ,则半圆的半径为2xm ,半圆的面积为28x π2m ,矩形的面积为28x a π-2m ,矩形的另一边长为()8a xx π-m 因此铁丝的长为22()(1)244xa x a l x x x x x πππ=++-=++,0x <<令22()104a l x x π'=+-=,得x =.当x ∈时,()0l x '<;当x ∈时,()0l x '>.因此,x =()l x 的极小值点,也是最小值点.时,所用材料最省. 6、利润L 等于收入R 减去成本C ,而收入R 等于产量乘单价. 由此可得出利润L 与产量q 的函数关系式,再用导数求最大利润.收入211(25)2588R q p q q q q =⋅=-=-,利润2211(25)(1004)2110088L R C q q q q q =-=--+=-+-,0200q <<.求导得1214L q '=-+令0L '=,即12104q -+=,84q =.当(0,84)q ∈时,0L '>;当(84,200)q ∈时,0L '<;因此,84q =是函数L 的极大值点,也是最大值点.所以,产量为84时,利润L 最大,习题1.4 B 组(P37)1、设每个房间每天的定价为x 元,那么宾馆利润21801()(50)(20)7013601010x L x x x x -=--=-+-,180680x <<.令1()7005L x x '=-+=,解得350x =.当(180,350)x ∈时,()0L x '>;当(350,680)x ∈时,()0L x '>. 因此,350x =是函数()L x 的极大值点,也是最大值点.所以,当每个房间每天的定价为350元时,宾馆利润最大. 2、设销售价为x 元/件时,利润4()()(4)()(5)b x L x x a c c c x a x b b-=-+⨯=--,54ba x <<.令845()0c ac bc L x x b b+'=-+=,解得458a bx +=. 当45(,)8a b x a +∈时,()0L x '>;当455(,)84a b bx +∈时,()0L x '<.当458a bx +=是函数()L x 的极大值点,也是最大值点.所以,销售价为458a b+元/件时,可获得最大利润.1.5定积分的概念 练习(P42) 83. 说明:进一步熟悉求曲边梯形面积的方法和步骤,体会“以直代曲”和“逼近”的思想.练习(P45)1、22112()[()2]()i i i i i s s v t n n n n n n'∆≈∆=∆=-+⋅=-⋅+⋅,1,2,,i n =.于是 111()n n ni i i i i is s s v t n ==='=∆≈∆=∆∑∑∑2112[()]ni i n n n ==-⋅+⋅∑22211111()()()2n n n n n n n n -=-⋅--⋅-⋅+2231[12]2n n=-++++31(1)(21)26n n n n ++=-⋅+111(1)(1)232n n =-+++取极值,得1111115lim [()]lim [(1)(1)2]323nnn n i i i s v n n n n →∞→∞====-+++=∑∑说明:进一步体会“以不变代变”和“逼近”的思想.2、223km.说明:进一步体会“以不变代变”和“逼近”的思想,熟悉求变速直线运动物体路程的方法和步骤. 练习(P48)2304x dx =⎰. 说明:进一步熟悉定积分的定义和几何意义.从几何上看,表示由曲线3y x =与直线0x =,2x =,0y =所围成的曲边梯形的面积4S =.习题1.5 A 组(P50) 1、(1)10021111(1)[(1)1]0.495100100i i x dx =--≈+-⨯=∑⎰; (2)50021111(1)[(1)1]0.499500500i i x dx =--≈+-⨯=∑⎰; (3)100021111(1)[(1)1]0.499510001000i i x dx =--≈+-⨯=∑⎰. 说明:体会通过分割、近似替换、求和得到定积分的近似值的方法.2、距离的不足近似值为:18112171310140⨯+⨯+⨯+⨯+⨯=(m ); 距离的过剩近似值为:271181121713167⨯+⨯+⨯+⨯+⨯=(m ).3、证明:令()1f x =. 用分点 011i i n a x x x x x b -=<<<<<<=将区间[,]a b 等分成n 个小区间,在每个小区间1[,]i i x x -上任取一点(1,2,,)i i n ξ=作和式11()nni i i b af x b a nξ==-∆==-∑∑, 从而11lim nban i b adx b a n→∞=-==-∑⎰, 说明:进一步熟悉定积分的概念.4、根据定积分的几何意义,0⎰表示由直线0x =,1x =,0y =以及曲线y =所围成的曲边梯形的面积,即四分之一单位圆的面积,因此4π=⎰.5、(1)03114x dx -=-⎰. 由于在区间[1,0]-上30x ≤,所以定积分031x dx -⎰表示由直线0x =,1x =-,0y =和曲线3y x =所围成的曲边梯形的面积的相反数.(2)根据定积分的性质,得1133311011044x dx x dx x dx --=+=-+=⎰⎰⎰.由于在区间[1,0]-上30x ≤,在区间[0,1]上30x ≥,所以定积分131x dx -⎰等于位于x 轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积.(3)根据定积分的性质,得202333110115444x dx x dx x dx --=+=-+=⎰⎰⎰由于在区间[1,0]-上30x ≤,在区间[0,2]上30x ≥,所以定积分231x dx -⎰等于位于x 轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积.说明:在(3)中,由于3x 在区间[1,0]-上是非正的,在区间[0,2]上是非负的,如果直接利用定义把区间[1,2]-分成n 等份来求这个定积分,那么和式中既有正项又有负项,而且无法抵挡一些项,求和会非常麻烦. 利用性质3可以将定积分231x dx -⎰化为02331x dx x dx -+⎰⎰,这样,3x 在区间[1,0]-和区间[0,2]上的符号都是不变的,再利用定积分的定义,容易求出031x dx -⎰,230x dx ⎰,进而得到定积分231x dx -⎰的值. 由此可见,利用定积分的性质可以化简运算.在(2)(3)中,被积函数在积分区间上的函数值有正有负,通过练习进一步体会定积分的几何意义.习题1.5 B 组(P50)1、该物体在0t =到6t =(单位:s )之间走过的路程大约为145 m.说明:根据定积分的几何意义,通过估算曲边梯形内包含单位正方形的个数来估计物体走过的路程. 2、(1)9.81v t =.(2)过剩近似值:8111899.819.8188.292242i i =⨯⨯⨯=⨯⨯=∑(m );不足近似值:81111879.819.8168.672242i i =-⨯⨯⨯=⨯⨯=∑(m ) (3)49.81tdt ⎰;49.81d 78.48t t =⎰(m ).3、(1)分割在区间[0,]l 上等间隔地插入1n -个分点,将它分成n 个小区间:[0,]l n ,2[,]l l n n ,……,(2)[,]n ll n -, 记第i 个区间为(1)[,]i l iln n-(1,2,i n =),其长度为 (1)il i l l x n n n-∆=-=.把细棒在小段[0,]l n ,2[,]l l n n ,……,(2)[,]n ll n-上质量分别记作:12,,,n m m m ∆∆∆,则细棒的质量1ni i m m ==∆∑.(2)近似代替当n 很大,即x ∆很小时,在小区间(1)[,]i l iln n-上,可以认为线密度2()x x ρ=的值变化很小,近似地等于一个常数,不妨认为它近似地等于任意一点(1)[,]i i l il n n ξ-∈处的函数值2()i i ρξξ=. 于是,细棒在小段(1)[,]i l il n n-上质量2()i i i lm x nρξξ∆≈∆=(1,2,i n =).(3)求和得细棒的质量 2111()nnni i i i i i l m m x nρξξ====∆≈∆=∑∑∑. (4)取极限细棒的质量 21lim ni n i lm nξ→∞==∑,所以20l m x dx =⎰..1.6微积分基本定理练习(P55)(1)50; (2)503; (3)533-; (4)24; (5)3ln 22-; (6)12; (7)0; (8)2-.说明:本题利用微积分基本定理和定积分的性质计算定积分. 习题1.6 A 组(P55)1、(1)403; (2)13ln 22--; (3)9ln 3ln 22+-;(4)176-; (5)2318π+; (6)22ln 2e e --. 说明:本题利用微积分基本定理和定积分的性质计算定积分.2、3300sin [cos ]2xdx x ππ=-=⎰.它表示位于x 轴上方的两个曲边梯形的面积与x 轴下方的曲边梯形的面积之差. 或表述为:位于x 轴上方的两个曲边梯形的面积(取正值)与x 轴下方的曲边梯形的面积(取负值)的代数和. 习题1.6 B 组(P55)1、(1)原式=221011[]222x e e =-; (2)原式=4611[sin 2]22x ππ=; (3)原式=3126[]ln 2ln 2x =. 2、(1)cos 1sin [][cos cos()]0mx mxdx m m m m ππππππ--=-=---=⎰;(2)sin 1cos [sin sin()]0mx mxdx m m m m ππππππ--=|=--=⎰;(3)21cos 2sin 2sin []224mx x mx mxdx dx m πππππππ----==-=⎰⎰;(4)21cos 2sin 2cos []224mx x mx mxdx dx mπππππππ---+==+=⎰⎰.3、(1)0.202220()(1)[]49245245t kt kt t kt t g g g g g gs t e dt t e t e t e k k k k k k----=-=+=+-=+-⎰.(2)由题意得 0.2492452455000t t e -+-=.这是一个超越方程,为了解这个方程,我们首先估计t 的取值范围. 根据指数函数的性质,当0t >时,0.201t e -<<,从而 5000495245t <<, 因此,500052454949t <<. 因此50000.2749245 3.3610e-⨯-≈⨯,52450.2749245 1.2410e-⨯-≈⨯,所以,70.271.2410245 3.3610t e ---⨯<<⨯.从而,在解方程0.2492452455000t t e -+-=时,0.2245t e -可以忽略不计.因此,.492455000t -≈,解之得 524549t ≈(s ). 说明:B 组中的习题涉及到被积函数是简单的复合函数的定积分,可视学生的具体情况选做,不要求掌握. 1.7定积分的简单应用 练习(P58)(1)323; (2)1.说明:进一步熟悉应用定积分求平面图形的面积的方法与求解过程. 练习(P59)1、52533(23)[3]22s t dt t t =+=+=⎰(m ).2、424003(34)[4]402W x dx x x =+=+=⎰(J ).习题1.7 A 组(P60)1、(1)2; (2)92.2、2[]b b a a q q q qW k dr k k k r r a b==-=-⎰. 3、令()0v t =,即40100t -=. 解得4t =. 即第4s 时物体达到最大高度.最大高度为 4240(4010)[405]80h t dt t t =-=-=⎰(m ). 4、设t s 后两物体相遇,则20(31)105ttt dt tdt +=+⎰⎰,解之得5t =. 即,A B 两物体5s 后相遇. 此时,物体A 离出发地的距离为523500(31)[]130t dt t t +=+=⎰(m ).5、由F kl =,得100.01k =. 解之得1000k =. 所做的功为 0.120.10010005005W ldl l ==|=⎰(J ).6、(1)令55()501v t t t=-+=+,解之得10t =. 因此,火车经过10s 后完全停止. (2)1021000551(5)[555ln(1)]55ln1112s t dt t t t t =-+=-++=+⎰(m ). 习题1.7 B 组(P60)1、(1)a -⎰表示圆222x y a +=与x 轴所围成的上半圆的面积,因此22aa π-=⎰(2)1]x dx ⎰表示圆22(1)1x y -+=与直线(第1(2)题)y x =所围成的图形(如图所示)的面积,因此,2120111[1(1)]114242x x dx ππ⨯---=-⨯⨯=-⎰. 2、证明:建立如图所示的平面直角坐标系,可设抛物线的方程为2y ax =,则2()2b h a =⨯,所以24ha b =.从而抛物线的方程为 224hy x b =.于是,抛物线拱的面积232202204422()2[]33b bh h S h x dx hx x bh b b =-=-=⎰. 3、如图所示.解方程组223y x y x⎧=+⎨=⎩得曲线22y x =+与曲线3y x =交点的横坐标11x =,22x =. 于是,所求的面积为122201[(2)3][3(2)]1x x dx x x dx +-+-+=⎰⎰.4、证明:2[]()R hR h R RMm Mm MmhW Gdr G G r r R R h ++==-=+⎰. 第一章 复习参考题A 组(P65)1、(1)3; (2)4y =-.2、(1)22sin cos 2cos x x xy x+'=; (2)23(2)(31)(53)y x x x '=-+-; (3)22ln ln 2x xy x x '=+; (4)2422(21)x x y x -'=+. 3、32GMm F r '=-. 4、(1)()0f t '<. 因为红茶的温度在下降.(2)(3)4f '=-表明在3℃附近时,红茶温度约以4℃/min 的速度下降. 图略. 5、因为32()f x x =,所以32()3f x x'=.当32()03f x x'=>,即0x >时,()f x 单调递增;yxh b O(第2题)当()0f x '=<,即0x <时,()f x 单调递减.6、因为2()f x x px q =++,所以()2f x x p '=+. 当()20f x x p '=+=,即12px =-=时,()f x 有最小值. 由12p-=,得2p =-. 又因为(1)124f q =-+=,所以5q =. 7、因为2322()()2f x x x c x cx c x =-=-+, 所以22()34(3)()f x x cx c x c x c '=-+=--. 当()0f x '=,即3cx =,或x c =时,函数2()()f x x x c =-可能有极值. 由题意当2x =时,函数2()()f x x x c =-有极大值,所以0c >. 由于所以,当3c x =时,函数2()()f x x x c =-有极大值. 此时,23c=,6c =. 8、设当点A 的坐标为(,0)a 时,AOB ∆的面积最小. 因为直线AB 过点(,0)A a ,(1,1)P ,所以直线AB 的方程为001y x a x a --=--,即1()1y x a a =--.当0x =时,1a y a =-,即点B 的坐标是(0,)1aa -.因此,AOB ∆的面积21()212(1)AOBa a S S a a a a ∆===--.令()0S a '=,即2212()02(1)a aS a a -'=⋅=-. 当0a =,或2a =时,()0S a '=,0a =不合题意舍去.由于所以,当2a =,即直线AB 的倾斜角为135︒时,AOB ∆的面积最小,最小面积为2.9、D .10、设底面一边的长为x m ,另一边的长为(0.5)x +m. 因为钢条长为14.8m. 所以,长方体容器的高为14.844(0.5)12.88 3.2244x x xx --+-==-.设容器的容积为V ,则32()(0.5)(3.22)2 2.2 1.6V V x x x x x x x ==+-=-++,0 1.6x <<.令()0V x '=,即26 4.4 1.60x x -++=. 所以,415x =-(舍去),或1x =. 当(0,1)x ∈时,()0V x '>;当(1,1.6)x ∈时,()0V x '<. 因此,1x =是函数()V x 在(0,1.6)的极大值点,也是最大值点. 所以,当长方体容器的高为1 m 时,容器最大,最大容器为1.8 m 3. 11、设旅游团人数为100x +时,旅行社费用为2()(100)(10005)5500100000y f x x x x ==+-=-++(080)x ≤≤. 令()0f x '=,即105000x -+=,50x =.又(0)100000f =,(80)108000f =,(50)112500f =. 所以,50x =是函数()f x 的最大值点.所以,当旅游团人数为150时,可使旅行社收费最多. 12、设打印纸的长为x cm 时,可使其打印面积最大.因为打印纸的面积为623.7,长为x ,所以宽为623.7x,打印面积623.7()(2 2.54)(2 3.17)S x x x=-⨯-⨯ 23168.396655.9072 6.34x x =--,5.0898.38x <<.令()0S x '=,即23168.3966.340x -=,22.36x ≈(负值舍去),623.727.8922.36≈. 22.36x =是函数()S x 在(5.08,98.38)内唯一极值点,且为极大值,从而是最大值点.所以,打印纸的长、宽分别约为27.89cm ,22.36cm 时,可使其打印面积最大. 13、设每年养q 头猪时,总利润为y 元.则 21()20000100300200002y R q q q q =--=-+-(0400,)q q N <≤∈.令0y '=,即3000q -+=,300q =.当300q =时,25000y =;当400q =时,20000y =.300q =是函数()y p 在(0,400]内唯一极值点,且为极大值点,从而是最大值点. 所以,每年养300头猪时,可使总利润最大,最大总利润为25000元.14、(1)2; (2)22e -; (3)1;(4)原式=22222000cos sin (cos sin )[sin cos ]0cos sin x xdx x x dx x x x xπππ-=-=+=+⎰⎰; (5)原式=22001cos sin 2[]224x x x dx πππ---==⎰. 15、略. 说明:利用函数图象的对称性、定积分的几何意义进行解释.16、2.17、由F kl =,得0.0490.01k =. 解之得 4.9k =.所做的功为 20.30.30.10.14.9 4.90.1962l W ldl ==⨯|=⎰(J )第一章 复习参考题B 组(P66)1、(1)43()10210b t t '=-⨯. 所以,细菌在5t =与10t =时的瞬时速度分别为0和410-.(2)当05t ≤<时,()0b t '>,所以细菌在增加;当55t <<+时,()0b t '<,所以细菌在减少.2、设扇形的半径为r ,中心角为α弧度时,扇形的面积为S .因为212S r α=,2l r r α-=,所以2lrα=-.222111(2)(2)222l S r r lr r r α==-=-,02l r <<.令0S '=,即40l r -=,4lr =,此时α为2弧度.4l r =是函数()S r 在(0,)2l内唯一极值点,且是极大值点,从而是最大值点.所以,扇形的半径为4l、中心角为2弧度时,扇形的面积最大.3、设圆锥的底面半径为r ,高为h ,体积为V ,那么222r h R +=.因此,222231111()3333V r h R h h R h h ππππ==-=-,0h R <<.令22103V R h ππ'=-=,解得h =.容易知道,h R =是函数()V h 的极大值点,也是最大值点.所以,当h R =时,容积最大.把3h R =代入222r h R +=,得3r R =.由2R r απ=,得3α=.所以,圆心角为α=时,容积最大. 4、由于28010k =⨯,所以45k =. 设船速为x km /h 时,总费用为y ,则2420204805y x x x=⨯+⨯ 960016x x=+,0x >令0y '=,即29600160x-=,24x ≈.容易知道,24x =是函数y 的极小值点,也是最小值点. 当24x =时,960020(1624)()9412424⨯+÷≈(元/时)所以,船速约为24km /h 时,总费用最少,此时每小时费用约为941元.5、设汽车以x km /h 行驶时,行车的总费用2390130(3)14360x y x x =++⨯,50100x ≤≤ 令0y '=,解得53x ≈(km /h ). 此时,114y ≈(元) 容易得到,53x ≈是函数y 的极小值点,也是最小值点.因此,当53x ≈时,行车总费用最少.所以,最经济的车速约为53km /h ;如果不考虑其他费用,这次行车的总费用约是114元.6、原式=4404422022[]2xx x x x e dx e dx e dx e e e e -----=+=-+|=+-⎰⎰⎰.7、解方程组 2y kx y x x=⎧⎨=-⎩ 得,直线y kx =与抛物线2y x x =-交点的横坐标为0x =,1k -.抛物线与x 轴所围图形的面积2312100111()[]23236x x S x x dx =-=-=-=⎰.由题设得 1120()2k k S x x dx kxdx --=--⎰⎰31221001()[]23kkk x x x kx dx x ---=--=-⎰3(1)6k -=.又因为16S =,所以31(1)2k -=. 于是12k =-.说明:本题也可以由面积相等直接得到111220()()kk k x x kx dx kxdx x x dx -----=+-⎰⎰⎰,由此求出k 的值. 但计算较为烦琐.新课程标准数学选修2—2第二章课后习题解答第二章 推理与证明2.1合情推理与演绎推理练习(P77)1、由12341a a a a ====,猜想1n a =.2、相邻两行数之间的关系是:每一行首尾的数都是1,其他的数都等于上一行中与之相邻的两个数的和.3、设111O PQ R V -和222O P Q R V -分别是四面体111O PQ R -和222O P Q R -的体积, 则111222111222O PQR O P Q R V OP OQ OR V OP OQ OR --=⋅⋅. 练习(P81) 1、略.2、因为通项公式为n a 的数列{}n a , 若1n na p a +=,其中p 是非零常数,则{}n a 是等比数列; ……………………大前提 又因为0cq ≠,则0q ≠,则11n n nn a cq q a cq ++==; ……………………………小前提所以,通项公式为(0)n n a cq cq =≠的数列{}n a 是等比数列. ……………………结论3、由AD BD >,得到ACD BCD ∠>∠的推理是错误的. 因为这个推理的大前提是“在同一个三角形中,大边对大角”,小前提是“AD BD >”,而AD 与BD 不在同一个三角形中.习题2.1 A 组(P83)1、21n a n =+()n N *∈. 2、2F V E +=+.3、当6n ≤时,122(1)n n -<+;当7n =时,122(1)n n -=+;当8n =时,122(1)n n ->+()n N *∈.4、212111(2)n n A A A n π++≥-(2n >,且n N *∈). 5、121217n n b b b b b b -=(17n <,且n N *∈).6、如图,作DE ∥AB 交BC 于E .因为两组对边分别平行的四边形是平行四边形, 又因为AD ∥BE ,AB ∥DE . 所以四边形ABED 是平行四边形.(第6题)因为平行四边形的对边相等.又因为四边形ABED 是平行四边形. 所以AB DE =.因为与同一条线段等长的两条线段的长度相等,又因为AB DE =,AB DC =, 所以DE DC = 因为等腰三角形的两底角是相等的.又因为△DEC 是等腰三角形, 所以DEC C ∠=∠ 因为平行线的同位角相等又因为DEC ∠与B ∠是平行线AB 和DE 的同位角, 所以DEC B ∠=∠ 因为等于同角的两个角是相等的,又因为DEC C ∠=∠,DEC B ∠=∠, 所以B C ∠=∠ 习题2.1 B 组(P84)1、由123S =-,234S =-,345S =-,456S =-,567S =-,猜想12n n S n +=-+.2、略.3、略.2.2直接证明与间接证明 练习(P89)1、因为442222cos sin (cos sin )(cos sin )cos 2θθθθθθθ-=+-=,所以,命题得证.2>,只需证22>,即证1313+>+>,只需要22>,即证4240>,这是显然成立的. 所以,命题得证. 3、因为 222222222()()()(2sin )(2tan )16sin tan a b a b a b αααα-=-+==, 又因为 sin (1cos )sin (1cos )1616(tan sin )(tan sin )16cos cos ab αααααααααα+-=+-=⋅22222222sin (1cos )sin sin 161616sin tan cos cos αααααααα-===, 从而222()16a b ab -=,所以,命题成立.说明:进一步熟悉运用综合法、分析法证明数学命题的思考过程与特点.练习(P91)1、假设B ∠不是锐角,则90B ∠≥︒. 因此9090180C B ∠+∠≥︒+︒=︒. 这与三角形的内角和等于180°矛盾. 所以,假设不成立. 从而,B ∠一定是锐角.2成等差数列,则=所以22=,化简得5=225=,即2540=, 这是不可能的. 所以,假设不成立..说明:进一步熟悉运用反证法证明数学命题的思考过程与特点. 习题2.2 A 组(P91)1、由于0a ≠,因此方程至少有一个跟bx a=.假设方程不止一个根,则至少有两个根,不妨设12,x x 是它的两个不同的根,则 1ax b = ①2ax b = ②①-②得12()0a x x -=因为12x x ≠,所以120x x -≠,从而0a =,这与已知条件矛盾,故假设不成立. 2、因为 (1tan )(1tan )2A B ++=展开得 1tan tan tan tan 2A B A B +++=,即tan tan 1tan tan A B A B +=-. ①假设1tan tan 0A B -=,则cos cos sin sin 0cos cos A B A B A B -=,即cos()0cos cos A B A B += 所以cos()0A B +=.因为A ,B 都是锐角,所以0A B π<+<,从而2A B π+=,与已知矛盾.因此1tan tan 0A B -≠.①式变形得 tan tan 11tan tan A BA B +=-, 即tan()1A B +=.又因为0A B π<+<,所以4A B π+=.说明:本题也可以把综合法和分析法综合使用完成证明.3、因为 1tan 12tan αα-=+,所以12tan 0α+=,从而2sin cos 0αα+=.另一方面,要证 3sin 24cos2αα=-, 只要证226sin cos 4(cos sin )αααα=-- 即证 222sin 3sin cos 2cos 0αααα--=, 即证 (2sin cos )(sin 2cos )0αααα+-=由2sin cos 0αα+=可得,(2sin cos )(sin 2cos )0αααα+-=,于是命题得证. 说明:本题可以单独使用综合法或分析法进行证明,但把综合法和分析法结合使用进行证明的思路更清晰.4、因为,,a b c 的倒数成等差数列,所以211b a c=+. 假设2B π<不成立,即2B π≥,则B 是ABC ∆的最大内角,所以,b a b c >>(在三角形中,大角对大边), 从而11112a c b b b +>+=. 这与211b a c=+矛盾. 所以,假设不成立,因此,2B π<.习题2.2 B 组(P91)1、要证2s a <,由于22s ab <,所以只需要2s s b<,即证b s <.因为1()2s a b c =++,所以只需要2b a b c <++,即证b a c <+. 由于,,a b c 为一个三角形的三条边,所以上式成立. 于是原命题成立. 2、由已知条件得 2b ac = ① 2x a b =+,2y b c =+ ② 要证2a cx y+=,只要证2ay cx xy +=,只要证224ay cx xy += 由①②,得 22()()2ay cx a b c c a b ab ac bc +=+++=++, 24()()2xy a b b c ab b ac bc ab ac bc =++=+++=++, 所以,224ay cx xy +=,于是命题得证. 3、由 tan()2tan αβα+= 得sin()2sin cos()cos αβααβα+=+,即sin()cos 2cos()sin αβααβα+=+. ……①要证 3sin sin(2)βαβ=+即证 3sin[()]sin[()]αβααβα+-=++即证 3[sin()cos cos()sin ]sin()cos cos()sin αβααβααβααβα+-+=+++ 化简得sin()cos 2cos()sin αβααβα+=+,这就是①式.。

1.4 生活中的优化问题---市级优质课课件

1.4 生活中的优化问题---市级优质课课件

价为180元/天时,房间会全部住满;房间单
价每增加10元,就会有一个房间空闲。如果
游客居住房间,宾馆每天每间需花费20元的
各种维护费用,房间定价为多少时,宾馆利 润最大?
解:设每个房间每天的定价为x元, x 180 则利润f(x)=(50)(x-20) 10 1 2 =- x 70 x 1360(180 x 680) 10 1 ' 令f ( x) x 70 0, 解得x 350. 5 当x (180,350)时,f ' ( x) 0; 当x (350, 680)时,f ' ( x) 0. 因此,x 350是函数f ( x)的极大值点,也是最大值点, 所以当每个房间定价为350元/天时,宾馆利润最大. 答:当每个房间定价为350元/天时,宾馆利润最大.
练习3:在边长为a的正方形铁皮的四角切去相 等的正方形,再把它的边沿虚线折起,做成一 个无盖的方底箱子,箱底边长为多少时,箱子 容积最大?
x
x
解:设箱底边长为 x,则箱高
2
3x 求导数,得V ( x) ax 2 2
ax a 2 x V ( x) Sh x ( ) x , (0 x a) 2 22 2
ax h 2 箱子容积 3
2a 即当x 时,箱子容积最大。 3 2a
3x 2a 令V ( x) ax 0,解得x 或x (舍去) 0 2 32a 2a 当x (0, )时,V ( x) 0;当x ( , a)时,V ( x) 0. 3 3 2a x 是函数V ( x)的极大值点,也是最大值点。 3
新课标人教A版选修2—2第一章 导数及其应用
巩固练习
答案:D
答案:A

2012高考数学热点考点精析:导数在研究函数中的应用与生活中的优化问题举例(新课标地区)

2012高考数学热点考点精析:导数在研究函数中的应用与生活中的优化问题举例(新课标地区)

考点10 导数在研究函数中的应用与生活中的优化问题举例一、选择题1.(2011·安徽高考文科·T10)函数()()21n f x ax x =-在区间[]0,1上的图象如图所示,则n 可能是( )(A )1 (B )2 (C )3 (D )4 【思路点拨】 代入验证,并求导得极值,结合图象确定答案.【精讲精析】选A. 代入验证,当n=1时,)2()1()(232x x x a x ax x f +-=-=,则)143()(2+-='x x a x f ,由)143()(2+-='x x a x f =0可知,1,3121==x x,结合图象可知函数应在(0,31)递增,在)(1,31递减,即在31=x 处取得最大值,由,21)311(31)31(2=-⨯⨯=a f 知a 存在. 2.(2011·辽宁高考理科·T11)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,2)(>'x f ,则f (x )>2x+4的解集为(A )(-1,1) (B )(-1,+∞) (C )(-∞,-1) (D )(-∞,+∞)【思路点拨】先构造函数)42()()(+-=x x f x g ,求其导数,将问题转化为求)(x g 单调性问题即可求解.【精讲精析】选B.构造函数)42()()(+-=x x f x g ,则=-)1(g 022)42()1(=-=+---f ,又因为2)(>'x f ,所以02)()(>-'='x f x g ,可知)(x g 在R 上是增函数,所以)42()(+>x x f 可化为0)(>x g ,即)1()(->g x g ,利用单调性可知,1->x .选B.3.(2011·安徽高考理科·T10)函数()()1n m f x ax x =-在区间[]0,1上的图象如图所示,则,m n 的值可能是(A )1,1m n == (B) 1,2m n == (C) 2,1m n == (D) 3,1m n == 【思路点拨】本题考查函数与导数的综合应用,先求出)(x f 的导数,然后根据函数图像确定极值点的位置,从而判断m,n 的取值. 【精讲精析】选B.函数()()1nm f x ax x =-的导数11()()(1)(),m n m f x m n ax x x m n--'=-+--+则)(x f '在),0(nm m +上大于0,在)1,(nm m +上小于0,由图象可知极大值点为31,结合选项可得m=1,n=2.二、填空题4.(2011·广东高考理科·T12)函数32()31f x x x =-+在x = 处取得极小值.【思路点拨】先求导函数的零点,然后通过导数的正负分析函数的增减情况,从而得出取得极值的时刻. 【精讲精析】答案:2 由063)(2=-='x xx f 解得0=x 或2=x ,列表如下:x()0,-∞0 ()2,02 ()+∞,2)(x f ' +-+)(x f 增 极大值 减 极小值 增∴当2=x 时,y 取得极小值.5.(2011·辽宁高考文科·T16)已知函数a x e x f x +-=2)(有零点,则a 的取值范围是【思路点拨】先求)(x f ',判断)(x f 的单调性.结合图象找条件.本题只要使)(x f 的最小值不大于零即可. 【精讲精析】选A ,)(x f '=2-x e .由)(x f '0>得2-xe 0>,∴2ln >x .由)(x f '0<得,2ln <x .∴)(x f 在2ln =x 处取得最小值. 只要0)(min ≤x f 即可.∴02ln 22ln ≤+-a e ,∴22ln 2-≤a .∴a 的取值范围是]22ln 2,(--∞6.(2011·江苏高考·T12)在平面直角坐标系xOy 中,已知点P 是函数)0()(>=x e x f x 的图象上的动点,该图象在P 处的切线l 交y 轴于点M ,过点P 作l 的垂线交y 轴于点N ,设线段MN 的中点的纵坐标为t ,则t 的最大值是_________【思路点拨】本题考查的是直线的切线方程以及函数的单调性问题,解题的关键是表示出中点的纵坐标t 的表达式,然后考虑单调性求解最值。

2014-2015学年高中数学(人教版选修2-2)配套课件第一章 1.4 1.4.2 导数应用(二)

2014-2015学年高中数学(人教版选修2-2)配套课件第一章 1.4 1.4.2 导数应用(二)
第一章
导数及其应用
1.4 生活中的优化问题举例 1.4.2 导数应用(二)
栏 目 链 接
1.会解决生活中的优化问题. 2.会利用导数解决某些实际问题.
栏 目 链 接
栏 目 链 接
基 础 梳 理
1.用导数解应用题的步骤: (1)根据实际问题写出函数关系; (2)正确确定函数的定义域; (3)利用导数法求出函数的最值; (4)根据实际问题回答(注意反思结果是否符合实际). 2.在具体解题过程中,当得到函数解析式后,要正确选择 解题方法.看是否是最值问题,如果是,需要用导数法,或利 用不等式、利用函数单调性求最值等.注意选择恰当的方法, 不要盲目动手.
栏 目 链 接
跟 踪 训 练
a 解析:(1)因为 x=5 时,y=11,所以 +10=11,所以 a=2. 2 (2)由(1)可知,该商品每日的销售量 y= 2 +10(x-6)2, x-3
栏 目 链 接
所 以 商 场 每 日 销 售 该 商 品 所 获 得 的 利 润 : f(x) = (x -
栏 目 链 接
点评:(1)解决此类有关利润的实际应用题,应灵活 运用题设条件,建立利润的函数关系,常见的基本等量 关系有:①利润=收入-成本;②利润=每件产品的利 润×销售件数. (2)对于单峰函数来说极值点就是最值点.
栏 目 链 接
跟 踪 训 练
1.某商场销售某种商品的经验表明,该商品每日的销 售量 y(单位:千克)与销售价格 x(单位:元/千克)满足关系 a 式 y= +10(x-6)2,其中 3<x<6,a 为常数.已知销售 x-3 价格为 5 元/千克时,每日可售出该商品 11 千克. (1)求 a 的值; (2)若该商品的成本为 3 元/千克,试确定销售价格 x 的 值,使商场每日销售该商品所获得的利润最大.

高中数学 第一章 导数及其应用 1.4 生活中的优化问题举例 生活中的优化问题5素材 新人教A版选修2-2

高中数学 第一章 导数及其应用 1.4 生活中的优化问题举例 生活中的优化问题5素材 新人教A版选修2-2

交通管理最优化
我国城市道路一般交叉口的交通灯只分成两个时段,通行规则是:绿灯亮时,准许车辆通行(可直行和左转弯,但转弯车让直行车先行):红灯亮时,禁止车辆通行;在不防碍绿灯放行车辆行驶的情况下,准许向右转弯。

实际情况是:在车流量较小的情况下,这种交通能力较大:但在车流量较大的情况下,转弯车辆妨碍直行车辆通行,使道路交叉口通行能力降低。

解决方案如下:1交叉口通行能力与车流量的关系。

选定一个城市车流量较大的交叉口,采集数据,检验你的模型。

2设计交叉路口的分车道,并把交通灯只分成多个时段,让转弯车辆和直行车辆互不影响。

建立数学建模,描述这类样的交叉路口通行能力与车流量的关系。

3比较这两种交叉口设计的车辆通行能力。

道路交叉路口一般可以用交通灯控制或设置环岛,交通灯控制的交叉路口的通行规则是:绿灯亮时,准许车辆通行(可直行和左转弯。

右转弯时,要转弯车辆让直行车先行):红灯亮时,禁止车辆通行:在不妨碍绿灯放行车辆行使的情况下,准许向右转弯。

设置环岛的交叉口通行规则是:入环岛的车辆不妨碍已在环岛上行驶的车辆。

4建立车辆通过交通控制交叉路口的时间与车流量的数学关系。

5建立车辆通过环岛交叉路口的时间与车流量的数学关系
6选定一交通灯控制交叉口与一环岛交叉路口,采集数据,检验你的模型7比较车辆通过两种交叉路口时间,提出在何种情况下,道路的交叉口应设计为交通灯控制;在何种情况下,道路的交叉口应设置为环岛。

【成才之路】高中数学 2、1-4生活中的优化问题举例同步检测 新人教版选修2-2

【成才之路】高中数学 2、1-4生活中的优化问题举例同步检测 新人教版选修2-2

选修2-2 1.4 生活中的优化问题举例一、选择题1.内接于半径为R 的球且体积最大的圆锥的高为( ) A .R B .2R C.43RD.34R [答案] C[解析] 设圆锥高为h ,底面半径为r ,则R 2=(R -h )2+r 2,∴r 2=2Rh -h 2∴V =13πr 2h =π3h (2Rh -h 2)=23πRh 2-π3h 3V ′=43πRh -πh 2.令V ′=0得h =43R .当0<h <43R 时,V ′>0;当4R3<h <2R 时,V ′<0.因此当h =43R 时,圆锥体积最大.故应选C.2.若底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,底面边长为( ) A.3V B.32V C.34VD .23V[答案] C[解析] 设底面边长为x ,则V =34x 2h ,∴h =4V3x2 .∴S 表=2×34x 2+3x ·4V 3x2=32x 2+43V x ,∴S ′表=3x -43Vx 2,令S ′表=0得x =34V .当0<x <34V 时,S ′<0;x >34V 时,S ′>0. 因此当底边长为34V 时,其表面积最小.3.某公司生产某种产品,固定成本为20000元,每生产一单位产品,成本增加100元,已知总收益R 与产量x 的关系式R (x )=⎩⎪⎨⎪⎧400x -12x 2,0≤x ≤400,80000,x >400.则总利润最大时,每年生产的产品是( )A .100B .150C .200D .300[答案] D[解析] 由题意,总成本为C =20000+100x . 所以总利润为P =R -C=⎩⎪⎨⎪⎧300x -x 22-20000,0≤x ≤400,60000-100x ,x >400,∴P ′=⎩⎪⎨⎪⎧300-x ,0≤x ≤400,-100,x >400,令P ′=0,得x =300,当0<x <300时,P ′>0,当300<x <400时,P ′<0,分析可知当x =300时,取得最大值,故应选D.4.用长为18m 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2 1,则该长方体的最大体积为( )A .2m 3B .3m 3C .4m 3D .5m 3[答案] B[解析] 设长方体的宽为x (m),则长为2x (m),高为h =18-12x 4=4.5-3x (m)⎝⎛⎭⎫0<x <32 故长方体的体积为V (x )=2x 2(4.5-3x )=9x 2-6x 3⎝⎛⎭⎫0<x <32从而V ′(x )=18x -18x 2=18x (1-x ) 令V ′(x )=0,解得x =1或x =0(舍去) 当0<x <1时,V ′(x )>0;当1<x <32时,V ′(x )<0故在x =1处V (x )取得极大值,并且这个极值就是V (x )的最大值 从而最大体积V =V (1)=9×12-6×13=3(m 2).5.若球的半径为R ,作内接于球的圆柱,则其侧面积的最大值为( ) A .2πR 2B .πR 2C .4πR 2D.12πR 2 [答案] A[解析] 设内接圆柱的高为h ,底面半径为x , 则x =R 2-h 24∴S 侧=2πxh =2πhR 2-h 24=2πR 2h 2-h 44令t =R 2h 2-h 44,则t ′=2R 2h -h 3令t ′=0,则h =2R当0<h <2R 时,t ′>0,当2R <h <2R 时,t ′<0, 所以当h =2R 时,圆柱侧面积最大. ∴侧面积最大值为2π2R 4-R 4=2πR 2,故应选A.6.(2010·山东文,8)已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大的年利润的年产量为( )A .13万件B .11万件C .9万件D .7万件[答案] C[解析] 本题考查了导数的应用及求导运算. ∵x >0,y ′=-x 2+81=(9-x )(9+x ),令y ′=0,解得x =9,所以x ∈(0,9)时,y ′>0,x ∈(9,+∞)时,y ′<0,y 先增后减.∴x =9时函数取最大值,选C ,属导数法求最值问题.7.内接于半径为R 的半圆的矩形中,周长最大的矩形的边长为( )A.R 2和32R B.55和455R C.45R 和75RD .以上都不对[答案] B[解析] 设矩形一边的长为x , 则另一边长为2R 2-x 2, 则l =2x +4R 2-x 2(0<x <R ),l ′=2-4xR 2-x 2,令l ′=0,解得x 1=55R ,x 2=-55R (舍去).当0<x <55R 时,l ′>0;当55R <x <R 时,l ′<0. 所以当x =55R 时,l 取最大值,即周长最大的矩形的边长为55R ,455R . 8.要做一个圆锥形的漏斗,其母线长为20cm ,要使其体积最大,则高为( ) A.33cmB.1033cm C.1633D.2033cm [答案] D[解析] 设圆锥的高为x ,则底面半径为202-x 2, 其体积为V =13πx (202-x 2)(0<x <20),V ′=13π(400-3x 2),令V ′=0,解得x 1=2033,x 2=-2033舍去.当0<x <2033时,V ′>0;当2033<x <20时,V ′<0.所以当x =2033时,V 取得最大值. 9.在半径为r 的半圆内作一内接梯形,使其底为直径,其他三边为圆的弦,则梯形面积最大时,其梯形的上底为( )A.r2 B.32C.33r D .r[答案] D[解析] 如下图所示,为圆及其内接梯形,设∠COB =θ,则CD =2r cos θ,h =r sin θ,∴S =2r (1+cos θ)2·r sin θ=r 2sin θ(1+cos θ)∴S ′=r 2[cos θ(1+cos θ)-sin 2θ] =r 2(2cos 2θ+cos θ-1)令S ′=0得cos θ=-1(舍去)或cos θ=12.即当cos θ=12时,梯形面积最大,此时上底CD =2r cos θ=r .故应选D.10.某厂生产某种产品x 件的总成本:C (x )=1200+275x 3,又产品单价的平方与产品件数x 成反比,生产100件这样的产品的单价为50元,总利润最大时,产量应定为( )A .25件B .20件C .15件D .30件[答案] A[解析] 设产品单价为a 元,又产品单价的平方与产品件数x 成反比,即a 2x =k ,由题知k =250000,则a 2x =250000,所以a =500x.总利润y =500x -275x 3-1200(x >0), y ′=250x-225x 2, 由y ′=0,得x =25,当x ∈(0,25)时,y ′>0,x ∈(25,+∞)时,y ′<0,所以x =25时,y 取最大值.二、填空题11.某工厂需要围建一个面积为512平方米的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁,当墙壁所用的材料最省时堆料场的长和宽分别为________.[答案] 32m,16m[解析] 设长,宽分别为a ,b ,则ab =512,且l =a +2b ,∴l =2b +512b,∴l ′=2-512b2,令l ′=0得b 2=256,∴b =16,a =32. 即当长、宽分别为32m 、16m 时最省材料.12.容积为256L 的方底无盖水箱,它的高为________时最省材料. [答案] 4[解析] 设水箱高为h ,底面边长为a ,则a 2h =256,其面积为S =a 2+4ah =a 2+4a ·256a2=a 2+210a.令S ′=2a -210a 2=0,得a =8.当0<a <8时,S ′<0;当a >8时,S ′>0;当a =8时,S 最小,此时h =2826=4.13.内接于半径为R 的球,且体积最大的圆柱的高为____________. [答案]233R [解析] 如图,ABCD 为球面内接圆柱的轴截面,BD =2R ,设圆柱的高为x ,则圆柱底面半径为r =124R 2-x 2,圆柱体积V =πr 2x =π4(4R 2-x 2)x (0<x <2R )令V ′=π4(4R 2-3x 2)=0得x =233R . 因为V (x )只有一个极值,所以当圆柱的高为233R 时,球内接圆柱体积最大.14.如图(1),将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器(图(2)).当这个正六棱柱容器的底面边长为________时,其容积最大.[答案]23[解析] 设四边形较短边为x ,则较长边为3x ,正六棱柱底面边长为1-2x ,高为3x ,∴V =6×12×sin60°×(1-2x )2×3x =92x (1-2x )2.V ′=92(1-2x )(1-6x ),令V ′=0,得x =16或x =12(舍去).当0<x <16时,V ′>0;当16<x <12时,V ′<0.因此当x =16时,V 有最大值,此时底面边长为1-2×16=23.三、解答题15.一艘轮船在航行中燃料费和它的速度的立方成正比.已知速度为每小时10千米时,燃料费是每小时6元,而其它与速度无关的费用是每小时96元,问轮船的速度是多少时,航行1千米所需的费用总和为最小?[解析] 设速度为每小时v 千米的燃料费是每小时p 元,那么由题设的比例关系得p =k ·v 3,其中k 为比例常数,它可以由v =10,p =6求得,即k =6103=0.006.于是有p =0.006v 3. 又设当船的速度为每小时v 千米时,行1千米所需的总费用为q 元,那么每小时所需的总费用是0.006v 3+96(元),而行1千米所需用时间为1v小时,所以行1千米的总费用为q =1v (0.006v 3+96)=0.006v 2+96v .q ′=0.012v -96v 2=0.012v2(v 3-8000),令q ′=0,解得v =20.因当v <20时,q ′<0;当v >20时,q ′>0,所以当v =20时取得最小值. 即当速度为20千米/小时时,航行1千米所需费用总和最小.16.(2009·湖南理,19)某地建一座桥,两端的桥墩已建好,这两墩相距m 米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x 米的相邻两墩之间的桥面工程费用为(2+x )x 万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其它因素.记余下工程的费用为y 万元.(1)试写出y 关于x 的函数关系式;(2)当m =640米时,需新建多少个桥墩才能使y 最小?[分析] 考查函数的性质和导数的运算及利用导数研究函数性质的能力和解决实际应用问题的能力.[解析] (1)设需新建n 个桥墩,则(n +1)x =m , 即n =mx1,所以y =f (x )=256n +(n +1)(2+x )x =256⎝⎛⎭⎫m x -1+m x(2+x )x =256mx+m x +2m -256.(2)由(1)知,f ′(x )=-256m x 2+12mx -12=m 2x2x 32-512).令f ′(x )=0,得x 32=512,所以x =64.当0<x <64时,f ′(x )<0,f (x )在区间(0,64)内为减函数, 当64<x <640时,f ′(x )>0,f (x )在区间(64,640)内为增函数. 所以f (x )在x =64处取得最小值,此时n =m x -1=64064-1=9, 故需新建9个桥墩才能使y 最小.17.(2010·湖北理,17)为了在夏季降温和冬季供暖时减少能源损耗 ,房屋的屋顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系:C (x )=k3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式.(2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值.[解析] (1)设隔热层厚度为x cm ,由题设,每年能源消耗费用为C (x )=k3x +5,再由C (0)=8,得k =40,因此C (x )=403x +5,而建造费用为C 1(x )=6x .最后得隔热层建造费用与20年的能源消耗费用之和为f (x )=20C (x )+C 1(x )=20×403x +5+6x =8003x +5+6x (0≤x ≤10). (2)f ′(x )=6-2400(3x +5)2,令f ′(x )=0,即2400(3x +5)2=6,解得x =5,x =-253(舍去).当0<x <5时,f ′(x )<0,当5<x <10时,f ′(x )>0,故x =5是f (x )的最小值点,对应的最小值为f (5)=6×5+80015+5=70. 当隔热层修建5 cm 厚时,总费用达到最小值70万元.18.(2009·山东理,21)两县城A 和B 相距20km ,现计划在两县城外以AB 为直径的半圆弧上选择一点C 建造垃圾处理厂,其对城市的影响度与所选地点到城市的距离有关,对城A 和城B 的总影响度为城A 与对城B 的影响度之和.记C 点到城A 的距离为x km ,建在C 处的垃圾处理厂对城A 和城B 的总影响度为y .统计调查表明:垃圾处理厂对城A 的影响度与所选地点到城A 的距离的平方成反比,比例系数为4;对城B 的影响度与所选地点到城B 的距离的平方成反比,比例系数为k ,当垃圾处理厂建在弧的中点时,对城A 和城B 的总影响度为0.065.(1)将y 表示成x 的函数;(2)讨论(1)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A 和城B 的总影响度最小?若存在,求出该点对城A 的距离;若不存在,说明理由.[解析] (1)根据题意∠ACB =90°,AC =x km ,BC =400-x 2km ,且建在C 处的垃圾处理厂对城A 的影响度为4x 2,对城B 的影响度为k400-x 2,因此,总影响度y 为y =4x2+k400-x2(0<x <20).又因为垃圾处理厂建在弧AB 的中点时,对城A 和城B 的总影响度为0.065, 所以4(102+102)2+k400-(102+102)2=0.065,解得k =9,所以y =4x2+9400-x 2(0<x <20).(2)因为y ′=-8x3+18x(400-x 2)2=18x 4-8×(400-x 2)2x 3(400-x 2)2=(x 2+800)(10x 2-1600)x 3(400-x 2)2由y ′=0解得x =410或x =-410(舍去). 易知410∈(0,20).y ,y ′随x 的变化情况如下表:y 最小值=y |x =410=116,此时x =410,故在上存在C点,使得建在此处的垃圾处理厂对城A和城B的总影响最小,该点与城A的距离x=410km.。

导数及其应用生活中的优化问题举例

导数及其应用生活中的优化问题举例
根据数据特点和预测需求,选择适合的时间序列预测模型,如 ARIMA、SARIMA、LSTM等。
模型参数设置
为预测模型设置合适的参数,以便进行模型训练和预测。
模型训练和优化
使用历史数据训练预测模型,并不断优化模型参数,以提高预测准 确性。
时间序列预测模型的检验与应用
模型检验
使用独立的验证数据集评估预测模型的性能,比较实际值与预测值的差异。
导数及其应用生活中的优化 问题举例
2023-11-08
contents
目录
• 导数的定义与计算 • 导数在生活中的应用 • 导数在优化问题中的应用举例 • 导数在最优问题中的应用 • 导数在时间序列预测中的应用 • 导数在其他领域的应用举例
01
导数的定义与计算
导数的定义
函数在某一点的导数
函数在某一点的导数描述了函数在该点的变化率。
通过运用导数,企业可以找到运营成本的最优解,以 降低企业的运营成本。
在最小成本问题中,企业需要通过对运营成本的分析 ,寻找降低成本的途径。导数方法可以通过对成本函 数进行求导,找到成本最低的运营方案。例如,在物 流行业中,通过优化运输路线和装载方式可以降低运 输成本。
04
导数在最优问题中的应用
最优路径问题
模型应用
将经过验证的预测模型应用于实际时间序列数据的预测,为决策提供支持。
06
导数在其他领域的应用举 例
工程领域:结构优化设计、强度分析等
结构优化设计
在航空航天、建筑等领域,结构优化设计是至关重要的。导数可以帮助我们更好地理解结构的形状、尺寸和材料 等参数对结构强度、刚度和稳定性的影响,从而优化设计。例如,通过有限元分析方法,利用导数求解结构中的 应力、应变分布,进一步优化结构设计。

2014-2015学年高中数学(人教版选修2-2)配套课件第一章 1.4 1.4.1 导数应用(一)

2014-2015学年高中数学(人教版选修2-2)配套课件第一章 1.4 1.4.1 导数应用(一)
1 2 解析:因为 s(t)=v0t- gt ,所以 s′(t)=v0-gt,所以 2 s′(m)=v0-gm,即物体在时刻 m 处的瞬时速度 v0-gm. 答案:v0-gm
栏 目 链 接
点评:导数在物理中的应用,主要是求物体运 动的瞬时速度.另外,必须了解的内容是:对位移 求导得到的是物体运动的速度,对速度求导,得到 的是物体运动的加速度.
第一章
导数及其应用
1.4 生活中的优化问题举例 1.4.1 导数应用(一)
栏 目 链 接

1.会解决生活中的优化问题. 2.会利用导数解决某些实际问题.
栏 目 链 接

栏 目 链 接

基 础 梳 理
1.导数在几何中的应用:如求切线问题,要正确求出相应 函数的导数,看清题意,如果求过某点的函数的曲线的切线, 首先要判断该点是否在曲线上,再确定切线条数,最后再应用 导数求出切线. 2.导数在物理中的应用,导数的物理意义:s′(t0)是路程 为 s(t)的变速直线运动的瞬时速度 v(t0),利用导数的物理意义 可求变速直线运动在某时刻的瞬时速度.
栏 目 链 接
答案:D
例:函数 f(x)=x2-2x-9,则当 x=________时, 函 数取得最________值,最值为________.
答案:1

-10

自 测 自 评
1.已知 f(x)=x2+3xf′(1),则 f′(2)=( A.1 B.2 C.4
) D.8
栏 目 链 接

x2 -
, 以 下 只 需 证 明 g(x1) = ≥0 在(0,+∞)上恒成立. g′(x1) = ,当 x1∈ , 令 g′(x1) = 0 , 得 x1 = 0 或 时,g′(x1)<0,g(x1)单调递减;

1.4生活中的优化问题举例(二)

1.4生活中的优化问题举例(二)

生活中的优化问题举例(二)..P 35~ P 36,找出疑惑之处)复习1:已知物体的运动方程是23s t t=+(t 的单位:s ,s 的单位:m ),则物体在时刻4t =时的速度v = ,加速度a =复习2:函数32()23125f x x x x =--+在[0,3]上的最大值是 最小值是二、新课导学※ 学习探究探究任务一:磁盘的最大存储问题问题:(1)你知道计算机是如何存储、检索信息的吗?(2)你知道磁盘的结构吗?(3)如何使一个圆盘的磁盘存储尽可能多的信息?新知:计算机把信息存储在磁盘上.磁盘是带有磁性介质的圆盘,并由操作系统将其格式化成磁道和扇区.磁道是指不同半径所构成的同心圆轨道,扇区是指被圆心角分割成的扇形区域.磁道上的定长的弧可作为基本存储单元,根据其磁化与否可分别记录数据0和1,这个基本单元通常称为比特,磁盘的构造如图:为了保障磁盘的分辨率,磁道之间的宽度必须大于m ,所占用的磁道长度不得小于n .为了数据检索的方便,磁盘格式化时所要求所有磁道具有相同的比特数.试试:现有一张半径为R 的磁盘,它的存储区是半径介于r 与R 的环行区域.(1)是不是r 越小,磁盘的存储量越大?(2)r 为多少时,磁盘具有最大存储量(最外面的磁道不存储任何信息)?解析:存储量=磁道数×每磁道的比特数.设存储区的半径介于r 与R 之间,由于磁道之间的宽度必须大于m ,且最外面的磁道不存储任何信息,所以磁道数最多可达到 .又由于每条磁道上的比特数相同,为获得最大的存储量,最内一条磁道必须装满,即每条磁道上的比特数可达到 .所以,磁盘总存储量为:()f r =※ 典型例题例1圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才能使所用的材料最省?变式:当圆柱形金属饮料罐的表面积为定值S 时,它的高与底面半径应怎样选取,才能使饮料罐的容积最大?例2已知某商品生产成本C 与产量q 的函数关系式为1004C q =+,价格p 与产量q 的函数关系式为q p 8125-=.求产量q 为何值时,利润L 最大? 分析:利润L 等于收入R 减去成本C ,而收入R 等于产量乘价格.由此可得出利润L 与产量q 的函数关系式,再用导数求最大利润.三、总结提升※ 学习小结1. 解决优化问题与应用传统知识解应用题的唯一区别是:解题过程中需运用导数求出函数的最值.2. 在解决导数与数学建模问题时,首先要注意自变量的取值范围,即考虑问题的实际意义. .※ 当堂检测(时量:5分钟 满分:10分)计分:1.(A) 以长为10的线段AB 为直径为圆,则它的内接矩形面积的最大值为( )A .10B .15C .25D .50 2.(B) 设底为正三角形的直棱柱的体积为V ,那么其表面积最小时,底面边长为( )A B C D .3.(B) 某商品在最近30天的价格()f t 与时间t (天)的函数关系是()10(030,)f t t t t N +=+<≤∈,销售量()g t 与时间t 的函数关系是()35(030,)g t t t t N +=-+<≤∈,则这种商品的销售多额的最大值为( )A .406B .506C .200D .500 4.(B ) 要做一个底面为长方形的带盖的箱子,其体积为723cm ,其底面两邻边长之比为1:2,则它的长为 ,宽为 ,高为 时,可使表面积最小.5.(C) 做一个无盖的圆柱形水桶,若需使其体积是27π,且用料最省,则圆柱的底面半P37B 组1,2。

生活中的优化问题举例

生活中的优化问题举例

=v3 -5v2+6 000(0<v≤100).
48 2
(2)Q′= v2 - 16
5v,
令 Q′=0,则 v=0(舍去)或 v=80,
当 0<v<80 时,Q′<0;
当 80<v≤100 时,Q′>0,
∴v=80 千米/时时,全程运输成本取得极小值,即最小值,

Qmin= Q(80)=2
000(元). 3
栏目 导引
第一章 导数及其应用
由V′=12x2-552x+4 320=0,得x1=10,x2=36. ∵0<x<10时,V′>0,10<x<36时,V′<0,x>36时, V′>0, ∴当x=10时,V有极大值V(10)=19 600. 又∵0<x<24, ∴V(10)又是最大值. ∴当x=10时,V有最大值V(10)=19 600. 故当容器的高为10 cm时,容器的容积最大,最大容积是19 600 cm3.
栏目 导引
第一章 导数及其应用
方法归纳 注意利用导数的方法解决实际问题时,如果在定义区间内只 有一个点使f′(x)=0,且函数在这点有极大(小)值,那么不 与端点值比较,也可以知道该点的函数值就是最大(小)值.
栏目 导引
第一章 导数及其应用
2.甲、乙两地相距 400 千米,汽车从甲地匀速行驶到乙 地,速度不得超过 100 千米/时,已知该汽车每小时的运 输成本 P(元)关于速度 v(千米/时)的函数关系是 P= 1 v4- 1 v3+15v.
栏目 导引
用料(费用)最省问题
第一章 导数及其应用
一艘轮船在航行中每小时的燃料费和它的速度的立方 成正比.已知速度为每小时10海里时,燃料费是每小时6元, 而其他与速度无关的费用是每小时96元,问轮船的速度是多 少时,航行1海里所需的费用总和最小? [解] 设速度为每小时 v 海里的燃料费是每小时 p 元,那 么由题设的比例关系得 p=k·v3,其中 k 为比例系数,它

2022年高考分类题库考点11 导数在研究函数中的应用与生活中的优化问题举例

2022年高考分类题库考点11 导数在研究函数中的应用与生活中的优化问题举例

考点11导数在研究函数中的应用与生活中的优化问题举例1.(2022·全国乙卷理科·T16)已知x=x1和x=x2分别是函数f(x)=2a x-e x2(a>0且a≠1)的极小值点和极大值点.若x1<x2,则a的取值范围是.【命题意图】考查导数的几何意义,函数的单调性、极值,考查转化思想、分类讨论思想以及分析问题解决问题的能力.【解析】因为x1,x2分别是函数f(x)=2a x-e x2的极小值点和极大值点,所以函数f(x)在(-∞,x1)和(x2,+∞)上递减,在(x1,x2)上递增,所以当x∈(-∞,x1)∪(x2,+∞)时,f'(x)<0,当x∈(x1,x2)时,f'(x)>0,若a>1,当x<0时,2ln a·a x>0,2e x<0,则此时f'(x)>0,与前面矛盾,故a>1不符合题意,若0<a<1,则方程2ln a·a x-2e x=0的两个根为x1,x2,即方程ln a·a x=e x的两个根为x1,x2,即函数y=ln a·a x 与函数y=e x的图象有两个不同的交点,令g(x)=ln a·a x,则g'(x)=ln2a·a x,0<a<1,设过原点且与函数y=g(x)的图象相切的直线的切点为(x0,ln a· 0),则切线的斜率为g'(x0)=ln2a· 0,故切线方程为y-ln a· 0=ln2a· 0(x-x0),则有-ln a· 0=-x0ln2a· 0,解得x0=1ln ,则切线的斜率为ln2a· 1ln =eln2a,因为函数y=ln a·a x与函数y=e x的图象有两个不同的交点,所以eln2a<e,解得1e<a<e,又因为0<a<1,所以1e<a<1,综上所述,a的取值范围为1e,1.答案:1e,12.(2022·全国乙卷理科·T21)(12分)已知函数f(x)=ln(1+x)+ax e-x.(1)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若f(x)在区间(-1,0),(0,+∞)各恰有一个零点,求a的取值范围.【命题意图】考查导数的几何意义、切线的求法、运用导数研究函数的性质及零点个数,考查分类讨论思想,数学运算能力、逻辑推理能力等.【解析】(1)f(x)的定义域为(-1,+∞),当a=1时,f(x)=ln(1+x)+ e ,f(0)=0,所以切点为(0,0),f'(x)=11+ +1− e ,f'(0)=2,所以切线斜率为2,所以曲线y=f(x)在点(0,f(0))处的切线方程为y=2x;(2)f(x)=ln(1+x)+ e ,f'(x)=11+ + (1- )e =e + (1- 2)(1+ )e ,设g(x)=e x+a(1-x2),①若a≥0,当x∈(-1,0),g(x)=e x+a(1-x2)>0,即f'(x)>0,所以f(x)在(-1,0)上单调递增,f(x)<f(0)=0,故f(x)在(-1,0)上没有零点,不合题意.②若-1≤a<0,当x∈(0,+∞),则g'(x)=e x-2ax>0,所以g(x)在(0,+∞)上单调递增,所以g(x)>g(0)=1+a>0,即f'(x)>0,所以f(x)在(0,+∞)上单调递增,f(x)>f(0)=0,故f(x)在(0,+∞)上没有零点,不合题意;③若a<-1.a.当x∈(0,+∞),则g'(x)=e x-2ax>0,所以g(x)在(0,+∞)上单调递增,g(0)=1+a<0,g(1)=e>0,所以存在m∈(0,1),使得g(m)=0,即f'(m)=0,当x∈(0,m),f'(x)<0,f(x)单调递减,当x∈(m,+∞),f'(x)>0,f(x)单调递增,所以,当x∈(0,m),f(x)<f(0)=0,当x→+∞,f(x)→+∞,所以f(x)在(m,+∞)上有唯一零点.又(0,m)上没有零点,即f(x)在(0,+∞)上有唯一零点.b.当x∈(-1,0),g(x)=e x+a(1-x2),设h(x)=g'(x)=e x-2ax,h'(x)=e x-2a>0,所以g'(x)在(-1,0)上单调递增,g'(-1)=1e+2a<0,g'(0)=1>0,所以存在n∈(-1,0),使得g'(n)=0.当x∈(-1,n),g'(x)<0,g(x)单调递减,当x∈(n,0),g'(x)>0,g(x)单调递增,g(x)<g(0)=1+a<0,又g(-1)=1e>0,所以存在t∈(-1,n),使得g(t)=0,即f'(t)=0,当x∈(-1,t),f(x)单调递增,当x∈(t,0),f(x)单调递减,有x→-1,f(x)→-∞,而f(0)=0,所以当x∈(t,0),f(x)>0,所以f(x)在(-1,t)上有唯一零点,(t,0)上无零点,即f(x)在(-1,0)上有唯一零点,所以a<-1,符合题意.所以若f(x)在区间(-1,0),(0,+∞)各恰有一个零点,则a的取值范围为(-∞,-1).【误区警示】本题的关键是对a的范围进行合理分类,否定和肯定并用,否定只需要说明一边不满足即可,肯定要两方面都说明.。

高一数学生活中的优化问题举例试题

高一数学生活中的优化问题举例试题

高一数学生活中的优化问题举例试题1.某商品一件的成本为30元,在某段时间内,若以每件x元出售,可卖出(200﹣x)件,当每件商品的定价为元时,利润最大.【答案】115【解析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.解:利润为S(x)=(x﹣30)(200﹣x)=﹣x2+230x﹣6000,S′(x)=﹣2x+230,由S′(x)=0得x=115,这时利润达到最大.故答案为:115.点评:本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.2.已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)函数关系式为,则使该生产厂家获取最大年利润的年产量为.【答案】9万件.【解析】求出函数的导函数,由导函数等于0求出极值点,结合实际意义得到使该生产厂家获取最大年利润的年产量.解:由,得:y′=﹣x2+81,由﹣x2+81=0,得:x1=﹣9(舍),x2=9.当x∈(0,9)时,y′>0,函数为增函数,当x∈(9,+∞)时,y′<0,函数为减函数,所以当x=9时,函数有极大值,也就是最大值,为(万元).所以使该生产厂家获取最大年利润的年产量为9万件.故答案为9万件.点评:本题考查了函数在某点取得极值的条件,考查了运用导函数判断原函数的单调性,此题是基础题.3.某公司租地建仓库,每月土地占用费y1与仓库到车站的距离成反比,而每月库存货物的运费y 2与到车站的距离成正比,如果在距离车站10千米处建仓库,这两项费用y1和y2分别为2万元和8万元,那么,要使这两项费用之和最小,仓库应建在离车站千米处.【答案】5【解析】由题意先解出土地占用费与运费关于车站距离的函数,将费用之和关于车站距离的函数关系式建立起来,再用基本不等式求解.解:设仓库建在离车站d千米处,由已知y1=2=,得k1=20,∴y1=,y 2=8=k2•10,得k2=,∴y2=d,∴y1+y2=+≥2=8.当且仅当=,即d=5时,费用之和最小.故应填5.点评:本题考查选定系数法求解析式,此法的特点是相关函数的解析式的形式已知.求最值时用到了基本不等式求最值.4.用长为90cm,宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?【答案】当高为10,最大容积为19600.【解析】首先分析题目求长为90cm,宽为48cm的长方形铁皮做一个无盖的容器当容器的高为多少时,容器的容积最大.故可设容器的高为x,体积为V,求出v关于x的方程,然后求出导函数,分析单调性即可求得最值.解:根据题意可设容器的高为x,容器的体积为V,则有V=(90﹣2x)(48﹣2x)x=4x3﹣276x2+4320x,(0<x<24)求导可得到:V′=12x2﹣552x+4320由V′=12x2﹣552x+4320=0得x1=10,x2=36.所以当x<10时,V′>0,当10<x<36时,V′<0,当x>36时,V′>0,所以,当x=10,V有极大值V(10)=19600,又V(0)=0,V(24)=0,所以当x=10,V有最大值V(10)=19600故答案为当高为10,最大容积为19600.点评:此题主要考查函数求最值在实际问题中的应用,其中涉及到由导函数分类讨论单调性的思想,在高考中属于重点考点,同学们需要理解并记忆.5.设底为等边三角形的直棱柱的体积为V,那么其表面积最小时,底面边长为.【答案】【解析】设底边边长为a,高为h,利用体积公式V=Sh得出h,再根据表面积公式得S=,最后利用导函数即得底面边长.解:设底边边长为a,高为h,则V=Sh=a2×h,∴h==,则表面积为=,则,令可得,即a=.故答案为.点评:本小题主要考查棱柱、棱锥、棱台、棱柱、棱锥、棱台的侧面积和表面积、基本不等式等基础知识,考查运算求解能力,考查转化思想.属于基础题.6.如图,在边长为60cm的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,最大容积是.【答案】16000cm3【解析】设箱底边长为xcm,结合题意可得容积V(x)=(60x2﹣x3)(0<x<60).再用导数工具研究V(x)在区间(0,60)上的单调性,可知当x=40时V(x)达到最大值.由此得到本题答案.解:设箱底边长为xcm,则箱高h=,∴箱子容积V(x)=x2h=(60x2﹣x3)(0<x<60).求导数,得V′(x)=60x﹣x2,令V′(x)=60x﹣x2=0,解得x=0(不合题意,舍去),x=40,∵x∈(0,40)时,V′(x)>0;x∈(40,60)时,V′(x)<0∴V(x)在区间(0,40)上为增函数,区间(40,60)上为减函数由此可得V(x)的最大值是V(40)=16000.故答案为:16000cm3.点评:本题以一个实际问题为例,求铁箱的容积最大值.着重考查了函数模型及其应用和利用导数研究函数的单调性、求最值等知识,属于中档题.7.做一个无盖的圆柱形水桶,若要使体积是27π,且用料最省,则圆柱的底面半径为.【答案】3【解析】设圆柱的高为h,半径为r则由圆柱的体积公式可得,πr2h=27π,即,要使用料最省即求全面积的最小值,而S=πr2+2πrh==全面积(法一)令S=f(r),结合导数可判断函数f(r)的单调性,进而可求函数取得最小值时的半径=πr2+2πrh==,利用基本不等式可求用料最小时的r(法二):S全面积解:设圆柱的高为h,半径为r则由圆柱的体积公式可得,πr2h=27π=πr2+2πrh==S全面积(法一)令S=f(r),(r>0)=令f′(r)≥0可得r≥3,令f′(r)<0可得0<r<3∴f(r)在(0,3)单调递减,在[3,+∞)单调递增,则f(r)在r=3时取得最小值=πr2+2πrh==(法二):S全面积==27π当且仅当即r=3时取等号当半径为3时,S最小即用料最省故答案为:3点评:本题主要考查了圆柱的体积公式及表面积的最值的求解,解答应用试题的关键是要把实际问题转化为数学问题,根据已学知识进行解决.8.横梁的强度和它的矩形横断面的宽成正比,并和矩形横断面的高的平方成正比,要将直径为d的圆木锯成强度最大的横梁,则横断面的宽是.【答案】d.【解析】据题意横梁的强度同它的断面高的平方与宽x的积成正比(强度系数为k,k>0)建立起强度函数,求出函数的定义域,再利用求导的方法求出函数取到最大值时的横断面的值.解:如图所示,设矩形横断面的宽为x,高为y.由题意知,当xy2取最大值时,横梁的强度最大.∵y2=d2﹣x2,∴xy2=x(d2﹣x2)(0<x<d).令f(x)=x(d2﹣x2)(0<x<d),得f′(x)=d2﹣3x2,令f′(x)=0,解得x=或x=﹣(舍去).当0<x<时,f′(x)>0;当<x<d时,f′(x)<0,因此,当x=时,f(x)取得极大值,也是最大值.故答案为:d.点评:考查据实际意义建立相关的函数,再根据函数的特征选择求导的方法来求最值.9.用长为90cm,宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?【答案】当高为10,最大容积为19600.【解析】首先分析题目求长为90cm,宽为48cm的长方形铁皮做一个无盖的容器当容器的高为多少时,容器的容积最大.故可设容器的高为x,体积为V,求出v关于x的方程,然后求出导函数,分析单调性即可求得最值.解:根据题意可设容器的高为x,容器的体积为V,则有V=(90﹣2x)(48﹣2x)x=4x3﹣276x2+4320x,(0<x<24)求导可得到:V′=12x2﹣552x+4320由V′=12x2﹣552x+4320=0得x1=10,x2=36.所以当x<10时,V′>0,当10<x<36时,V′<0,当x>36时,V′>0,所以,当x=10,V有极大值V(10)=19600,又V(0)=0,V(24)=0,所以当x=10,V有最大值V(10)=19600故答案为当高为10,最大容积为19600.点评:此题主要考查函数求最值在实际问题中的应用,其中涉及到由导函数分类讨论单调性的思想,在高考中属于重点考点,同学们需要理解并记忆.10.如图所示,设铁路AB=50,B、C之间距离为10,现将货物从A运往C,已知单位距离铁路费用为2,公路费用为4,问在AB上何处修筑公路至C,可使运费由A到C最省?【答案】即在离点B距离为的点M处修筑公路至C时,货物运费最省.【解析】由已知,我们可计算出公路上的运费和铁路上的运费,进而得到由A到C的总运费,利用导数法,我们可以分析出函数的单调性,及函数的最小值点,得到答案.解:设M为AB上的一点,且MB=x,于是AM上的运费为2(50﹣x),MC上的运费为4,则由A到C的总运费为p(x)=2(50﹣x)+4(0≤x≤50).p′(x)=﹣2+,令p′(x)=0,解得x1=,x2=﹣(舍去).当x<时,p′(x)<0;当x>时,p′(x)>0,故当x=时,p(x)取得最小值.即在离点B距离为的点M处修筑公路至C时,货物运费最省.点评:本题考查的知识点是导数在最大值最小值问题中的应用,函数最值的应用,其中根据已知条件求出函数的解析式,并确定函数的单调性是解答本题的关键.。

生活中的优化问题举例(教学设计)含答案

生活中的优化问题举例(教学设计)含答案

3.4生活中的优化问题举例(教学设计)(1)(2)(2课时)教学目标:知识与技能目标:会利用导数求利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用,提高将实际问题转化为数学问题的能力。

过程与方法目标:在利用导数解决实际问题中的优化问题的过程中,进一步巩固导数的相关知识,学生通过自主探究,体验数学发现与创造的历程,提高学生的数学素养。

情感、态度与价值观目标:在学习应用数学知识解决问题的过程中,培养学生善于发现问题、解决问题的自觉性,以及科学认真的生活态度,并以此激发他们学习知识的积极性。

教学重点:利用导数解决生活中的一些优化问题.教学难点:将实际问题转化为数学问题,根据实际利用导数解决生活中的优化问题. 教学过程:一.创设情景、新课引入生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节,我们利用导数,解决一些生活中的优化问题. 二.师生互动,新课讲解导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面: 1、与几何有关的最值问题; 2、与物理学有关的最值问题;3、与利润及其成本有关的最值问题;4、效率最值问题。

例1(课本P101例1).海报版面尺寸的设计学校或班级举行活动,通常需要贴海报进行宣传。

现让你设计一如图1.4-1所示的竖向贴的海报,要求版心面积为128dm 2,上、下两边各空2dm,左、右两边各空1dm 。

如何设计海报的尺寸,才能使四周空心面积最小?解:设版心的高为xdm ,则版心的宽为128xdm,此时四周空白面积为 128512()(4)(2)12828,0S x x x x x x=++-=++>。

求导数,得'2512()2S x x =-。

令'2512()20S x x =-=,解得16(16x x ==-舍去)。

1.4_生活中的优化问题举例

1.4_生活中的优化问题举例

(0 ≤ x ≤ 100).
1答案
解:设DA=xkm,那么DB=(100-x)km,CD= 202 x 2 400 x 2 km. 又设铁路上每吨千米的运费为3t元, 则公路上每吨千米的运费为5t元. B D 这样,每吨原料从供应站B运到工厂C的总运费为
C
A
y 5t CD 3t BD 5t 400 x 2 3t (100 x )(0 ≤ x ≤ 100).
'
2p R r , f r mn

f
'
r 0
R r 2
解得
R 因此,当 r 时,磁道具有最大的存储量,最大 2
2 p R 存储量为 .
R R ' ' 当r 时,f r 0;当r 时,f r 0, 2 2
2 mn
由上述例子,我们不难发现,解决优化问题的 基本思路是:
R r
储量越大? (2) r为多少时,磁盘具有最大存储量
(最外面的磁道不存储任何信息)?
解:存储量=磁道数×每磁道的比特数
设存储区的半径介于r与R之间,由于磁道之间的宽 度必须大于m,且最外面的磁道不存储人何信息,所以 Rr 磁道最多可达 , 又由于每条磁道上的比特数相 m 同,为获得最大的存储量,最内一条磁道必须装满,即
2pr .所以,磁道总存储量 每条磁道上的比特数可达到 n
R r 2pr 2pr f r r R r . m n mn
(1)它是一个关于r的二次函数,从函数的解析式上可 以判断,不是r越小,磁盘的存储量越大.
(2)为求 f x 的最大值,计算
'
f r 0,
例2、 某制造商制造并出售球形瓶装的某种饮料,瓶子的制造 成本是0.8pr2分,其中r是瓶子的半径,单位是厘米,已知每出 售1ml的饮料,制造商可获利0.2分,且制造商能制造的瓶子的 最大半径为6cm,则每瓶饮料的利润何时最大,何时最小呢? 解:∵每个瓶的容积为: ∴每瓶饮料的利润:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.4 生活中的优化问题举例考点 学习目标核心素养 优化问题了解利润最大、用料最省、效率最高等优化问题数学抽象导数的实际应用 会利用导数解决简单的实际生活中的优化问题数学建模面积、容积最值问题请你设计一个帐篷,它下部的形状是高为1 m 的正六棱柱,上部的形状是侧棱长为3 m 的正六棱锥(如图所示).试问当帐篷的顶点O 到底面中心O 1的距离为多少时,帐篷的体积最大?【解】 设OO 1为x m ,则1<x <4.由题设可得正六棱锥底面边长为32-(x -1)2=8+2x -x 2.于是底面正六边形的面积为 6·34·(8+2x -x 2)2=332(8+2x -x 2). 帐篷的体积为V (x )=332(8+2x -x 2)⎣⎡⎦⎤13(x -1)+1=32(16+12x -x 3). 求导数,得V ′(x )=32(12-3x 2). 令V ′(x )=0,解得x =-2(不合题意,舍去)或x =2. 当1<x <2时,V ′(x )>0,V (x )为增函数; 当2<x <4时,V ′(x )<0,V (x )为减函数. 所以当x =2时,V (x )最大.解决优化问题的基本思路(1)优化问题往往涉及变量之间的变化,因而就产生了函数关系,这时就可以利用导数解决优化问题.(2)导数是解决优化问题的基本方法之一.利用导数解决生活中的优化问题的基本思路是:用长为90 cm ,宽为48 cm 的长方形铁皮做一个无盖的容器,先在四个角分别截去一个小正方形,然后把四边翻转90°,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?解:设容器的高为x ,容器的容积为V , 则V =(90-2x )(48-2x )x (0<x <24), 即V =4x 3-276x 2+4 320x . 因为V ′=12x 2-552x +4 320,由V ′=12x 2-552x +4 320=0,得x 1=10,x 2=36.因为0<x <10时,V ′>0,10<x <36时,V ′<0,x >36时,V ′>0,所以当x =10时,V 有极大值V (10)=19 600.又因为0<x <24, 所以V (10)也是最大值.所以当x =10时,V 有最大值V (10)=19 600.故当容器的高为10 cm 时,容器的容积最大,最大容积是19 600 cm 3.用料(费用)最省问题现有一批货物由海上从A 地运往B 地,已知轮船的最大航行速度为35海里/时,A 地至B 地之间的航行距离约为500海里,每小时的运输成本由燃料费和其余费用组成,轮船每小时的燃料费与轮船速度的平方成正比(比例系数为0.6),其余费用为每小时960元.(1)把全程运输成本y (元)表示为速度x (海里/时)的函数; (2)为了使全程运输成本最小,轮船应以多大速度行驶? 【解】 (1)依题意得y =500x (960+0.6x 2)=480 000x+300x , 且由题意知,函数的定义域为(0,35],即y =480 000x +300x (0<x ≤35).(2)由第一问知,y ′=-480 000x 2+300, 令y ′=0,解得x =40或x =-40(舍去),因为函数的定义域为(0,35],所以函数在定义域内没有极值点. 又当0<x ≤35时,y ′<0,所以y =480 000x +300x 在(0,35]上单调递减,故当x =35时,函数y =480 000x+300x 取得最小值.故为了使全程运输成本最小,轮船应以35海里/时的速度行驶.利用导数解决优化问题的一般步骤(1)抽象出实际问题的数学模型,列出函数解析式y =f (x ).(2)求函数f (x )的导数f ′(x ),并解方程f ′(x )=0,即求函数可能的极值点.(3)比较函数f (x )在区间端点的函数值和可疑点的函数值的大小,得出函数f (x )的最大值或最小值.(4)根据实际问题的意义给出答案.一艘轮船在航行中每小时的燃料费和它的速度的立方成正比.已知速度为每小时10海里时,燃料费是每小时6元,而其他与速度无关的费用是每小时96元,问轮船的速度是多少时,航行1海里所需的费用总和最小?解:设速度为每小时v 海里的燃料费是每小时p 元,那么由题设的比例关系得p =k ·v 3,其中k 为比例系数,它可以由v =10,p =6求得,即k =6103=0.006,则p =0.006v 3.又设当船的速度为每小时v 海里时,行1海里所需的总费用为q 元,那么每小时所需的总费用是0.006v 3+96(元),而行1海里所需时间为1v 小时,所以行1海里的总费用为q =1v (0.006v 3+96)=0.006v 2+96v .q ′=0.012v -96v 2=0.012v 2(v 3-8 000),令q ′=0,解得v =20.因为当v <20时,q ′<0;当v >20时,q ′>0, 所以当v =20时q 取得最小值,即速度为20海里/小时时,航行1海里所需费用总和最小.利润最大问题某食品厂进行蘑菇的深加工,每公斤蘑菇的成本为20元,并且每公斤蘑菇的加工费为t 元(t 为常数,且2≤t ≤5),设该食品厂每公斤蘑菇的出厂价为x 元(25≤x ≤40),根据市场调查,日销售量q 与e x 成反比,当每公斤蘑菇的出厂价为30元时,日销售量为100公斤.(1)求该工厂的每日利润y 元与每公斤蘑菇的出厂价x 元的函数关系式;(2)若t =5,当每公斤蘑菇的出厂价为多少元时,该工厂的每日利润最大?并求最大值. 【解】 (1)设日销量q =k e x ,则ke 30=100,所以k =100e 30,所以日销量q =100e 30e x ,所以y =100e 30(x -20-t )e x (25≤x ≤40).(2)当t =5时,y =100e 30(x -25)e x ,所以y ′=100e 30(26-x )e x .由y ′>0,得x <26,由y ′<0,得x >26,所以y 在[25,26)上单调递增,在[26,40]上单调递减, 所以当x =26时,y max =100e 4.故当每公斤蘑菇的出厂价为26元时,该工厂的每日利润最大,最大值为100e 4元.(1)经济生活中优化问题的解法经济生活中要分析生产的成本与利润及利润增减的快慢,以产量或单价为自变量很容易建立函数关系,从而可以利用导数来分析、研究、指导生产活动.(2)关于利润问题常用的两个等量关系 ①利润=收入-成本;②利润=每件产品的利润×销售件数.某市旅游部门开发一种旅游纪念品,每件产品的成本是15元,销售价是20元,月平均销售a 件,通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产品的销售价格提高的百分率为x (0<x <1),那么月平均销售量减少的百分率为x 2.记改进工艺后,旅游部门销售该纪念品的月平均利润是y (元).(1)写出y 关于x 的函数关系式;(2)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大. 解:(1)改进工艺后,每件产品的销售价为20(1+x ),月平均销售量为a (1-x 2)件,则月平均利润y =a (1-x 2)·[20(1+x )-15](元),所以y 关于x 的函数关系式为y =5a (1+4x -x 2-4x 3)(0<x <1). (2)由y ′=5a (4-2x -12x 2)=0,得x 1=12,x 2=-23(舍去),当0<x <12时,y ′>0;当12<x <1时,y ′<0, 所以函数y =5a (1+4x -x 2-4x 3)(0<x <1)在x =12处取得极大值,即最大值.故改进工艺后,产品的销售价为20⎝⎛⎭⎫1+12=30元时,旅游部门销售该纪念品的月平均利润最大.1.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大年利润的年产量为( )A .13万件B .11万件C .9万件D .7万件解析:选C.因为x >0,y ′=-x 2+81=(9-x )(9+x ),令y ′=0,解得x =9或x =-9(舍去),当x ∈(0,9)时,y ′>0,当x ∈(9,+∞)时,y ′<0,所以y 先增后减.所以当x =9时函数取得最大值.选C.2.用长为24 m 的钢筋做成一个长方体框架,若这个长方体框架的底面为正方形,则这个长方体体积的最大值为________.解析:设长方体的底面边长为x m ,则高为(6-2x )m ,所以x ∈(0,3),则V =x 2(6-2x )=6x 2-2x 3,V ′=12x -6x 2,令V ′=0得x =2或x =0(舍),所以当x ∈(0,2)时,V ′>0,V 是增函数, 当x ∈[2,3)时,V ′<0,V 是减函数, 所以当x =2时,V max =22×2=8(m 3). 答案:8 m 33.某工厂生产某种产品,已知该产品的月生产量x 吨与每吨产品的价格p (元/吨)之间的函数关系式为p =24 200-15x 2,且生产x 吨产品的成本为R =50 000+200x (元).问:该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?解:依题意,知每月生产x 吨产品时的利润为f (x )=⎝⎛⎭⎫24 200-15x 2x -(50 000+200x )=-15x 3+24 000x -50 000(x >0), 故f ′(x )=-35x 2+24 000.令f ′(x )=0,得x 1=200,x 2=-200(舍去).因为在(0,+∞)内只有x =200使f ′(x )=0,且x =200是极大值点,所以200就是最大值点,且最大值为f (200)=-15×2003+24 000×200-50 000=3 150 000(元).所以该厂每月生产200吨产品时,利润达到最大,最大利润为315万元.[A 基础达标]1.炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x 小时,原油温度(单位:℃)为f (x )=13x 3-x 2+8(0≤x ≤5),那么原油温度的瞬时变化率的最小值是( )A .8 B.203 C .-1D .-8解析:选C.原油温度的瞬时变化率为f ′(x )=x 2-2x =(x -1)2-1(0≤x ≤5),所以当x =1时,原油温度的瞬时变化率取得最小值-1.2.某产品的销售收入y 1(万元)是产量x (千台)的函数:y 1=17x 2(x >0),生产成本y 2(万元)是产量x (千台)的函数:y 2=2x 3-x 2(x >0),为使利润最大,应生产产品台数为( )A .6千台B .7千台C .8千台D .9千台解析:选A.设利润为y ,则y =y 1-y 2 =17x 2-(2x 3-x 2)=-2x 3+18x 2(x >0), 所以y ′=-6x 2+36x =-6x (x -6). 令y ′=0,则x =0或x =6.经检验知x =6既是函数的极大值点又是函数的最大值点. 所以生产产品6千台时利润最大.故选A.3.某公司生产某种产品,固定成本为20 000元,每生产一单位产品,成本增加100元,已知总收益R 与年产量x 的关系式R (x )=⎩⎪⎨⎪⎧400x -12x 2,0≤x ≤400,80 000,x >400,则总利润最大时,每年生产的产品数量是( )A .100B .150C .200D .300解析:选 D.由题意,总成本为C =20 000+100x ,所以总利润为P =R -C =⎩⎪⎨⎪⎧300x -x 22-20 000,0≤x ≤400,60 000-100x ,x >400,P ′=⎩⎪⎨⎪⎧300-x ,0≤x ≤400,-100,x >400,令P ′=0,当0≤x ≤400时,得x =300;当x >400时,P ′<0恒成立,易知当x =300时,总利润最大.4.某出版社出版一读物,一页上所印文字占去150 cm 2,上、下要留1.5 cm 空白,左、右要留1 cm 空白,出版商为节约纸张,应选用的尺寸为( )A .左右长12 cm ,上下长18 cmB .左右长12 cm ,上下长19 cmC .左右长11 cm ,上下长18 cmD .左右长13 cm ,上下长17 cm解析:选A.设所印文字区域的左右长为x cm ,则上下长为150x cm ,所以纸张的左右长为(x +2)cm ,上下长为⎝⎛⎭⎫150x +3cm ,所以纸张的面积S =(x +2)⎝⎛⎭⎫150x +3=3x +300x+156. 所以S ′=3-300x 2,令S ′=0,解得x =10.当x >10时,S 单调递增; 当0<x <10时,S 单调递减.所以当x =10时,S min =216(cm 2),此时纸张的左右长为12 cm ,上下长为18 cm. 故当纸张的边长分别为12 cm ,18 cm 时最节约. 5.内接于半径为R 的球且体积最大的圆锥的高为( ) A .R B .2R C.43R D.34R 解析:选C.设圆锥的高为h ,底面半径为r ,体积为V ,则R 2=(h -R )2+r 2,所以r 2=2Rh -h 2,所以V =13πr 2h =23πRh 2-π3h 3,所以V ′=43πRh -πh 2.令V ′=0,解得h =43R 或h =0(舍去).当0<h <43R 时,V ′>0;当43R <h <2R 时,V ′<0,所以h =43R 时,圆锥体积最大. 6.某箱子的体积与底面边长x 的关系为V (x )=x 2⎝⎛⎭⎫60-x 2(0<x <60),则箱子底面边长为________时,它的体积最大.解析:V ′(x )=-32 x 2+60x =-32x (x -40),当0<x <40时,V ′(x )>0,V (x )单调递增; 当40<x <60时,V ′(x )<0,V (x )单调递减, 所以x =40是V (x )的极大值点也是最大值点. 所以当箱子的底面边长为40时,体积最大. 答案:407.一房地产公司有50套公寓要出租,当月租金定为1 000 元时,公寓会全部租出去,当月租金每增加50元,就会多一套租不出去,而租出去的公寓每月需花费100元维修费,则租金定为________元时可获得最大收入.解析:设没有租出去的公寓数为x ,则收入函数f (x )=(1 000+50x )(50-x )-100(50-x ),所以f ′(x )=1 600-100x ,解得x =16,所以当x =16时,f (x )取得最大值,把租金定为1 800元时,收入最大.答案:1 8008.某厂生产x 件产品的总成本为C 万元,产品单价为P 万元,且满足C =1 200+275x 3,P =500x,则当x =________时,总利润最高.解析:设总利润为L (x )万元,则由题意得L (x )=x ·500x -1 200-275x 3=-275x 3+500x -1 200(x >0).由L ′(x )=-225x 2+250x =0,得x =25.令L ′(x )>0,得0<x <25;令L ′(x )<0,得x >25,得L (x )在区间(0,25)上单调递增,在区间(25,+∞)上单调递减,所以当x =25时,总利润最高.答案:259.已知某商品的进货单价为1元/件,商户甲往年以单价2元/件销售该商品时,年销量为1万件,今年拟下调销售单价以提高销量,增加收益.据测算,若今年的实际销售单价为x 元/件(1≤x ≤2),今年新增的年销量(单位:万件)与(x -2)2成正比,比例系数为4.(1)写出今年商户甲的收益y (单位:万元)与今年的实际销售单价x 间的函数关系式;(2)商户甲今年采取降低单价,提高销量的营销策略是否能获得比往年更大的收益(即比往年收益更多)?说明理由.解:(1)由题意知,今年的销售量为[1+4(x -2)2](万件). 因为每销售一件,商户甲可获利(x -1)元,所以今年商户甲的收益y =[1+4(x -2)2]·(x -1)=4x 3-20x 2+33x -17(1≤x ≤2). (2)由(1)知y =f (x )=4x 3-20x 2+33x -17,1≤x ≤2, 从而y ′=f ′(x )=12x 2-40x +33=(2x -3)(6x -11). 令y ′=0,解得x =32或x =116.列表如下:又f ⎝⎛⎭⎫32=1,f (2)=1,所以f (x )在区间[1,2]上的最大值为1(万元). 而往年的收益为(2-1)×1=1(万元),所以,商户甲采取降低单价,提高销量的营销策略不能获得比往年更大的收益. 10.某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r m ,高为h m ,体积为V m 3.假设建造成本仅与表面积有关,侧面的建造成本为100元/m 2,底面的建造成本为160元/m 2,该蓄水池的总建造成本为12 000π元(π为圆周率).(1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大.解:(1)因为蓄水池侧面的总成本为100×2πrh =200πrh (元),底面的总成本为160πr 2元, 所以蓄水池的总成本为(200πrh +160πr 2)元. 根据题意,得200πrh +160πr 2=12 000π, 所以h =15r (300-4r 2),从而V (r )=πr 2h =π5(300r -4r 3).由h >0且r >0,可得0<r <53, 故函数V (r )的定义域为(0,53). (2)由(1)知V (r )=π5(300r -4r 3),故V ′(r )=π5(300-12r 2).令V ′(r )=0,解得r 1=5,r 2=-5(舍去). 当r ∈(0,5)时,V ′(r )>0, 故V (r )在(0,5)上为增函数; 当r ∈(5,53)时,V ′(r )<0, 故V (r )在(5,53)上为减函数.由此,可知V (r )在r =5处取得最大值,此时h =8, 即当r =5,h =8时,该蓄水池的体积最大.[B 能力提升]11.若球的半径为R ,作内接于球的圆柱,则其侧面积的最大值为( ) A .2πR 2 B .πR 2 C .4πR 2D.12πR 2 解析: 选A.设内接圆柱的高为h ,底面半径为x ,则 x =R 2-h 24, 所以S 侧=2πxh =2πh R 2-h 24=2π R 2h 2-h 44, 令t =R 2h 2-h 44,则t ′=2R 2h -h 3,令t ′=0,得h =2R (舍负)或h =0(舍去),当0<h <2R 时,t ′>0,当2R <h <2R 时,t ′<0,所以当h =2R 时,圆柱的侧面积最大.所以侧面积的最大值为2π2R 4-R 4=2πR 2,故应选A.12.海轮每小时使用的燃料费y (单位:元)与它的航行速度v (单位:n mile/h)的立方成正比.已知某海轮的最大航速为30 n mile/h ,当速度为10 n mile/h 时,它的燃料费是每小时25元.其余费用(无论速度如何)都是每小时400元.如果甲乙两地相距800 n mile ,则要使该海轮从甲地航行到乙地的总费用最低,它的航速应为________.解析:由题意,燃料费y 与航速v 之间满足y =a v 3(0≤v ≤30). 又因为25=a ·103,所以a =140. 设从甲地到乙地海轮的航速为v ,总费用为y 1, 则y 1=a v 3×800v +800v ×400=20v 2+320 000v . 由y ′1=40v -320 000v 2=0,得v =20<30.当0<v <20时,y ′1<0;当20<v <30时,y ′1>0,所以当v =20时,y 1最小.答案:20 n mile/h13.某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =a x -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.解:(1)因为x =5时,y =11,所以a 2+10=11,解得a =2. (2)由(1)可知,该商品每日的销售量y =2x -3+10(x -6)2, 所以商场每日销售该商品所获得的利润f (x )=(x -3)⎣⎡⎦⎤2x -3+10(x -6)2=2+10(x -3)(x -6)2(3<x <6). f ′(x )=10[(x -6)2+2(x -3)(x -6)]=30(x -4)(x -6),解30(x -4)(x -6)=0,得x 1=4,x 2=6(舍去).当x 变化时,f ′(x ),f (x )的变化情况如下表:x(3,4) 4 (4,6) f ′(x )+ 0 - f (x )极大值42 由上表可得所以,当x =4时,函数f (x )取得最大值,最大值为42.故当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.14.(选做题)如图是某市在城市改造中的沿市内主干道城站路修建的圆形休闲广场,圆心为O ,半径为100 m ,其与城站路一边所在直线l 相切于点M ,MO 的延长线交圆O 于点N ,A 为上半圆弧上一点,过点A 作l 的垂线,垂足为点B .市园林局计划在△ABM 内进行绿化,设△ABM 的面积为S (单位:m 2).(1)以∠AON =θ(rad)为自变量,将S 表示成θ的函数;(2)求使绿化面积最大时点A 的位置及最大绿化面积.解:(1)由题意知,BM =100sin θ,AB =100+100cos θ,故S =5 000sin θ(1+cos θ)(0<θ<π).(2)因为S =5 000sin θ(1+cos θ)(0<θ<π),所以S ′=5 000(cos θ+cos 2θ-sin 2θ)=5 000(2cos 2θ+cos θ-1)=5 000(cos θ+1)(2cos θ-1).令S ′=0,得cos θ=12或cos θ=-1(舍去),又θ∈(0,π),故θ=π3. 当0<θ<π3时,12<cos θ<1,S ′>0; 当π3<θ<π时,-1<cos θ<12,S ′<0. 故当θ=π3时,S 取得极大值,也是最大值,最大值为3 7503,此时AB =150. 即当点A 距路边的距离为150 m 时,绿化面积最大,最大面积为3 750 3 m 2.。

相关文档
最新文档