第六章 实数单元检测试题
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故答案为:C.
【点睛】
本题考查了无理数估算的应用,主要考查学生的阅读能力和理解能力,解题的关键是读懂题意.
3.D
解析:D
【分析】
由于无理数就是无限不循环小数,由此即可判定选择项.
【详解】
在下列各数 (两个1之间,依次增加1个0),其中有理数有:
无理数有 ,π,0.1010010001……共3个.
故选:D.
(1)请你认真思考上述运算,归纳☆运算的法则:
两数进行☆运算时,同号,异号.
特别地,0和任何数进行☆运算,或任何数和0进行☆运算,.
(2)计算:(﹣11)☆[0☆(﹣12)]=.
(3)若2×(﹣2☆a)﹣1=8,求a的值.
25.让我们规定一种运算 ,如 .再如 .按照这种运算规定,请解答下列问题,
(1)计算 ; ;
A.1个B.2个C.3个D.4个
5.下列数中π、 ,﹣ , ,3.1416,3.2121121112…(每两个2之间多一个1), 中,无理数的个数是( )
A.1个B.2个C.3个D.4个
6.对于任意不相等的两个实数a,b,定义运算:a※b=a2﹣b2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( )
19.若x<0,则 等于____________.
20. 的整数部分是________.
三、解答题
21.如图,长方形ABCD的面积为300cm2,长和宽的比为3:2.在此长方形内沿着边的方向能否并排裁出两个面积均为147cm2的圆(π取3),请通过计算说明理由.
22.规律探究,观察下列等式:
第1个等式:
16.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)的结果是_____.
17.若 ,则 =__________.
18.对于实数a,我们规定:用符号 表示不大于 的最大整数,称为a的根整数,例如: ,如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2次: 这时候结果为1.则只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是__________.
12.若已知 ,则 _____.
13.如果一个有理数a的平方等于9,那么a的立方等于_____.
14.若实数a、b满足 ,则 =_____.
15.对于这样的等式:若(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,则﹣32a0+16a1﹣8a2+4a3﹣2a4+a5的值为_____.
一、选择题
1.D
解析:D
【详解】
因为 , , , ,
,所以 , ,所以
,故选D.
2.C
解析:C
【分析】
对各选项中的数分别连续求根整数即可判断得出答案.
【详解】
解:当x=5时, ,满源自文库条件;
当x=10时, ,满足条件;
当x=15时, ,满足条件;
当x=16时, ,不满足条件;
∴满足条件的整数 的最大值为15,
A.﹣40B.﹣32C.18D.10
7.按照下图所示的操作步骤,若输出y的值为22,则输入的值x为()
A.3B.-3C.±3D.±9
8.如图,数轴上表示实数 的点可能是( )
A.点PB.点QC.点RD.点S
9.若a、b为实数,且满足|a-2|+ =0,则b-a的值为( )
A.2B.0C.-2D.以上都不对
【点睛】
此题考查无理数的定义.解题关键在于掌握无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
4.B
解析:B
【分析】
利用无理数的概念,邻补角、平方根与立方根的定义、实数与数轴的关系,两直线的位置关系等知识分别判断后即可确定正确的选项.
第六章 实数单元检测试题
一、选择题
1.对一组数 的一次操作变换记为 ,定义其变换法则如下:
,且规定 ( 为大于 的整数),
如, , , ,
则 ( ).
A. B. C. D.
2.对于实数 ,我们规定,用符号 表示不大于 的最大整数,称 为 的根整数,例如: , .我们可以对一个数连续求根整数,如对 连续两次求根整数: .若对 连续求两次根整数后的结果为 ,则满足条件的整数 的最大值为( )
A. B. C. D.
3.在下列各数 (两个1之间,依次增加1个0),其中无理数有()
A.6个B.5个C.4个D.3个
4.有下列命题:
①无理数是无限不循环小数;②平方根与立方根相等的数有1和0;③过一点有且只有一条直线与这条直线平行;④邻补角是互补的角;⑤实数与数轴上的点一一对应.
其中正确的有( )
解:设 为A, 为B,
则原式=B(1+A)﹣A(1+B)=B+AB﹣A﹣AB=B﹣A= .请用上面方法计算:
① × - ×
② - .
24.定义☆运算:
观察下列运算:
(+3)☆(+15)=+18
(﹣14)☆(﹣7)=+21
(﹣2)☆(+14)=﹣16
(+15)☆(﹣8)=﹣23
0☆(﹣15)=+15
(+13)☆0=+13
第2个等式:
第3个等式:
第4个等式:
请回答下列问题:
(1)按以上规律写出第5个等式:= ___________ = ___________
(2)用含n的式子表示第n个等式:= ___________ = ___________(n为正整数)
(3)求
23.阅读理解:
计算 × ﹣ × 时,若把 与 分别各看着一个整体,再利用分配律进行运算,可以大大简化难度.过程如下:
(2)当x=-1时,求 的值(要求写出计算过程).
26.定义:若两个有理数a,b满足a+b=ab,则称a,b互为特征数.
(1)3与互为特征数;
(2)正整数n(n>1)的特征数为;(用含n的式子表示)
(3)若m,n互为特征数,且m+mn=-2,n+mn=3,求m+n的值.
【参考答案】***试卷处理标记,请不要删除
10.借助计算器可求得 , , ,仔细观察上面几道题的计算结果,试猜想 等于()
A. B. C. D.
二、填空题
11.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b= .
例如:(-3)☆2= = 2.
从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a,b(a≠b)的值,并计算a☆b,那么所有运算结果中的最大值是_____.
【点睛】
本题考查了无理数估算的应用,主要考查学生的阅读能力和理解能力,解题的关键是读懂题意.
3.D
解析:D
【分析】
由于无理数就是无限不循环小数,由此即可判定选择项.
【详解】
在下列各数 (两个1之间,依次增加1个0),其中有理数有:
无理数有 ,π,0.1010010001……共3个.
故选:D.
(1)请你认真思考上述运算,归纳☆运算的法则:
两数进行☆运算时,同号,异号.
特别地,0和任何数进行☆运算,或任何数和0进行☆运算,.
(2)计算:(﹣11)☆[0☆(﹣12)]=.
(3)若2×(﹣2☆a)﹣1=8,求a的值.
25.让我们规定一种运算 ,如 .再如 .按照这种运算规定,请解答下列问题,
(1)计算 ; ;
A.1个B.2个C.3个D.4个
5.下列数中π、 ,﹣ , ,3.1416,3.2121121112…(每两个2之间多一个1), 中,无理数的个数是( )
A.1个B.2个C.3个D.4个
6.对于任意不相等的两个实数a,b,定义运算:a※b=a2﹣b2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( )
19.若x<0,则 等于____________.
20. 的整数部分是________.
三、解答题
21.如图,长方形ABCD的面积为300cm2,长和宽的比为3:2.在此长方形内沿着边的方向能否并排裁出两个面积均为147cm2的圆(π取3),请通过计算说明理由.
22.规律探究,观察下列等式:
第1个等式:
16.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)的结果是_____.
17.若 ,则 =__________.
18.对于实数a,我们规定:用符号 表示不大于 的最大整数,称为a的根整数,例如: ,如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2次: 这时候结果为1.则只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是__________.
12.若已知 ,则 _____.
13.如果一个有理数a的平方等于9,那么a的立方等于_____.
14.若实数a、b满足 ,则 =_____.
15.对于这样的等式:若(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,则﹣32a0+16a1﹣8a2+4a3﹣2a4+a5的值为_____.
一、选择题
1.D
解析:D
【详解】
因为 , , , ,
,所以 , ,所以
,故选D.
2.C
解析:C
【分析】
对各选项中的数分别连续求根整数即可判断得出答案.
【详解】
解:当x=5时, ,满源自文库条件;
当x=10时, ,满足条件;
当x=15时, ,满足条件;
当x=16时, ,不满足条件;
∴满足条件的整数 的最大值为15,
A.﹣40B.﹣32C.18D.10
7.按照下图所示的操作步骤,若输出y的值为22,则输入的值x为()
A.3B.-3C.±3D.±9
8.如图,数轴上表示实数 的点可能是( )
A.点PB.点QC.点RD.点S
9.若a、b为实数,且满足|a-2|+ =0,则b-a的值为( )
A.2B.0C.-2D.以上都不对
【点睛】
此题考查无理数的定义.解题关键在于掌握无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
4.B
解析:B
【分析】
利用无理数的概念,邻补角、平方根与立方根的定义、实数与数轴的关系,两直线的位置关系等知识分别判断后即可确定正确的选项.
第六章 实数单元检测试题
一、选择题
1.对一组数 的一次操作变换记为 ,定义其变换法则如下:
,且规定 ( 为大于 的整数),
如, , , ,
则 ( ).
A. B. C. D.
2.对于实数 ,我们规定,用符号 表示不大于 的最大整数,称 为 的根整数,例如: , .我们可以对一个数连续求根整数,如对 连续两次求根整数: .若对 连续求两次根整数后的结果为 ,则满足条件的整数 的最大值为( )
A. B. C. D.
3.在下列各数 (两个1之间,依次增加1个0),其中无理数有()
A.6个B.5个C.4个D.3个
4.有下列命题:
①无理数是无限不循环小数;②平方根与立方根相等的数有1和0;③过一点有且只有一条直线与这条直线平行;④邻补角是互补的角;⑤实数与数轴上的点一一对应.
其中正确的有( )
解:设 为A, 为B,
则原式=B(1+A)﹣A(1+B)=B+AB﹣A﹣AB=B﹣A= .请用上面方法计算:
① × - ×
② - .
24.定义☆运算:
观察下列运算:
(+3)☆(+15)=+18
(﹣14)☆(﹣7)=+21
(﹣2)☆(+14)=﹣16
(+15)☆(﹣8)=﹣23
0☆(﹣15)=+15
(+13)☆0=+13
第2个等式:
第3个等式:
第4个等式:
请回答下列问题:
(1)按以上规律写出第5个等式:= ___________ = ___________
(2)用含n的式子表示第n个等式:= ___________ = ___________(n为正整数)
(3)求
23.阅读理解:
计算 × ﹣ × 时,若把 与 分别各看着一个整体,再利用分配律进行运算,可以大大简化难度.过程如下:
(2)当x=-1时,求 的值(要求写出计算过程).
26.定义:若两个有理数a,b满足a+b=ab,则称a,b互为特征数.
(1)3与互为特征数;
(2)正整数n(n>1)的特征数为;(用含n的式子表示)
(3)若m,n互为特征数,且m+mn=-2,n+mn=3,求m+n的值.
【参考答案】***试卷处理标记,请不要删除
10.借助计算器可求得 , , ,仔细观察上面几道题的计算结果,试猜想 等于()
A. B. C. D.
二、填空题
11.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b= .
例如:(-3)☆2= = 2.
从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a,b(a≠b)的值,并计算a☆b,那么所有运算结果中的最大值是_____.