磁通量磁场的高斯定理

合集下载

大学物理-7-3 磁通量 磁场的高斯定理

大学物理-7-3 磁通量 磁场的高斯定理

B
磁通量:通过某一曲面 的磁感线数为通过此曲面 的磁通量.
Φ BS cosBS
Φ B S B enS dΦ B dS
B dΦ BdS cos
s
Φ s BdS
单位 1Wb 1T 1m2
B dS1
1 B1
S
B2
2
dS2
dΦ1 B1 dS1 0 dΦ2 B2 dS2 0
SB cosdS 0
S B d S 0
3a
2a 5a
l
Φ s BdS = 0
I
磁场高斯定理
S B d S 0
物理意义:通过任意闭合曲面的磁通量必等于零。
(故磁场是无源的.)
求磁通量(1)用磁通量的定义求(2)用高斯定理求
例1 如图载流长直导线的电流为
积的磁通量.
解 先求
,试I 求 通过矩形面 ,B对变磁场给出
B
后积B 分dΦ求0I
2π x
Φ
B // S
I
l
d1 d2
dΦ BdS 0I ldx
Φ
S
B
dS
2π x
0Il

d2
d1
dx x
o
x Φ 0Il ln d2
2π d1
例2 一半径为a的无限长直载流导线,沿轴向均
匀地流有电流I,若作一个半径为 R= 5a,高为l
的柱形曲面,已知此柱形曲面的轴与载流导线的 轴平行且相距3a(如图),则在圆柱侧面S上的 磁通量=?
第三节 磁场的高斯定理
一 磁感线
规定:曲线上每一点的切线方向就是该点的磁感
强度 B 的方向,曲线的疏密程度表示该点的磁感强 度 B 的大小.
I

2、磁场的高斯定理和安培环路定理

2、磁场的高斯定理和安培环路定理

L
B dl o I i
L

S
B dS 0 j dS

S
B 0 j
安培环路定理的物理意义 磁场是有旋场(或磁场是非保守场,磁感应线 是闭合曲线)。
三、安培环路定理的应用
O
R
r
例3、求长直螺线管内的磁场。设螺线管的长度为 L,共有N匝线圈,单位长度上有 n = N/L匝线圈, 通过每匝线圈电流为I。管内中间部分的磁场是均 匀的,方向与管的轴线平行,在管的外侧磁场很 弱,可以忽略不计。
B
a
b
c d [解]: 若螺线管很长,则边缘效应可以忽略,螺 线管可看成是无限长,由对称性可知管内磁场是 均匀的,方向与管的轴线平行,并由右手螺旋定 则确定。在管的外侧磁场很弱,可以忽略不计。
B dl B 2πr μ0 I ,
j I / R2
且 I j s jπr 2 (r <R)
B
1 B μ0 jr 2
μ0 Ir B 2π R 2
0 I B 2R
μ0 I r = R处 B 2π R
B
0 Ir 1 0 jr, ( r R) 2 2 R 2 0 I 1 R2 0 j , r R ) ( 2 r 2 r
例2、求均匀载流无限长圆柱导体内外的磁场分布。
[解]:当r R时 B dl B 2r 0 I
L
I
R
μ0 I B 2π r
I 由 j πR 2
1 R2 B μ0 j 2 r
(r >R)
I jπR2
r
L
L

5磁通量 磁场的高斯定理

5磁通量 磁场的高斯定理
单位:Wb (韦伯)
4
一般情况 dΦ B dS
dS 2
B
2 S
dS1
1
B2
B1
dΦ 1B 1 dS1 0 dΦ2 B2 dS2 0
B cos dS 0
S
磁场高斯定理
S B d S 0
物理意义:通过任意闭合曲面的为零 ——磁场是无源场。 静电场高斯定理
a
r2
o
r1
dr
r
7
解:在距离左边导线r处取面积元ds=adr,两长直 导线在该处产生的磁感应强度之和为:
0 I 1 1 B ( ) 2 r r r1 r2
通过这个面积元的磁通量为:
为正方向
0 I 1 1 d Bds ( )adr 2 r r r1 r2
2
S2
S
磁场高斯定律 B ds 0
2 B ds B ds (ai bj ck ) dsk s s
2 1
S1
B ds B ds 0
S2

s1
cds S1c R c s
面积元d s取和B相同方向
8
则通过导线框的磁通量为:
d
r1 b
r1
0 I 1 1 ( )adx 2 x x r1 r2
0 Ia (r1 b)(r2 b) ln 2 r1r2
9
例3两根平行无限长直导线相距为d,载有大小相 等方向相反的电流I,一个边长为d的正方形线圈 位于导线平面内与一根导线相距d,如图示。求通 过矩形面积的磁通量. 。

大学物理-7-5磁通量磁场的高斯定理

大学物理-7-5磁通量磁场的高斯定理
2π d1
第七章 恒定磁场
6
物理学
第五版
选择进入下一节:
本章目录
7-4 毕奥-萨伐尔定律 7-5 磁通量 磁场的高斯定理
7-6 安培环路定理
7-7 带电粒子在电场和磁场中的运动 7-8 载流导线在磁场中所受的力 7-9 磁场中的磁介质
第七章 恒定磁场
7
量必等于零(故磁场是无源的).
第七章 恒定磁场
5
物理学
第五版
7-5 磁通量 磁场的高斯定理
例 如图载流长直导线的电流为 I,试求
通过矩形面积的磁通量.

解 B 0I
B
2π x
dx
dΦBdS0I ldx
I
l
d1 d2
2πx
ΦSB dS20πIldd12dxx
ox
x Φ 0Il ln d2
磁通场过中的某磁点感处 线垂 数直 目等B 矢于量该的点单B 的位数面值积.上
第七章 恒定磁场
3
物理学
第五版
7-5 磁通量 磁场的高斯定理


B
磁通量:通过
en
某曲面的磁感线数
s
s
B

B dS

B
匀强磁场中,通 过面曲面S的磁通量:
Φ B SB enS
ΦBcSo sBS
物理学
第五版
7-5 磁通量 磁场的高斯定理
一 磁感线
切线方向—— 疏密程度——
B B的 的方 大向 小.;
I
I
I
第七章 恒定磁场
1
物理学
第五版
7-5 磁通量 磁场的高斯定理
I
S
I
S

毕奥-萨伐尔定律 磁通量 磁场的高斯定理

毕奥-萨伐尔定律 磁通量 磁场的高斯定理
0 Idz sin B dB 4 r2
解:(1)判断电流元产生 每个电流元产生磁场同方向
磁场的方向是否一致
z
D

2
z r 0 cot
dz
I

z
1
r
r0
x
C
o
r0 dz d 2 sin dB r0 又r * y P sin 0 Idl sin (1) 大小 dB 2 4 r
B
0 I
2πr
I
B
I
X
B
电流与磁感强度成右手螺旋关系
2013-7-5
10
[例14-2] 圆电流轴线上的磁场。
0 Idl 解: dB sin 90 2 4 r 0 Idl B dB sin 90 2 4 r
x 因为圆线圈上各个电流元在P点产生的磁感应强度 的方向是不同的,所以只能用它的矢量表示:
第五版
四.运动电荷的磁场
7-4
毕奥-萨伐尔定律
考虑一段导体,其截面积为S,其 中载流子的密度为n,载流子带电 q,以漂移速度 v 运动。
毕奥—萨伐尔定律:
0 Idl r dB 4 π r3 0 nSdlqv r dB 3 4π r
P r dB Idl j Sdl nSdlqv
z
o

r
Idl
y
R
0 I dl sin x 2 2 2 r2 r R z 4 2 2 R 0 IR 0 I sin dl 3 2 0 2 2 4 r 2( R z ) 2
B
0 IR
2
2 2 32
2( R z )

磁高斯定理

磁高斯定理

磁高斯定理
磁高斯定理是一个重要的物理学理论,由哥本哈根大学的挪威物理学家,诺贝尔物理学家奥古斯特·磁高斯于1839年提出。

这个定理指出,任何给定的磁场,都可以由一个合适的磁向量场,即磁通量密度场来定义。

它表明,磁场是由磁向量场产生的,而不是由电荷分布引起的。

磁高斯定理的定义如下:对于任意闭合面S和其上的磁向量f,它们之间具有以下关系:
∫f•dl= ∫B•nds
其中f是内积,B是磁场,dl是封闭曲线的方向投影,nds是闭合面的法向量。

该定理的主要推论是,磁场的总流量,即数学上的积分,可以由已知的电荷分布来求得,而不必求出磁场本身。

这是一个非常重要的理论,因为它简化了对磁场的描述,而不必计算它的实际分布情况。

磁高斯定理表明,磁场是通过电流密度来描述的,而不是由电荷分布来描述。

这一定理最初是由磁高斯发现的,但是帕森斯在1860年重新分析并求得了该定理的希腊符号形式。

磁高斯定理在物理学,工程和其他应用领域有着广泛的应用,可以用来求出磁场的磁向量分布。

通过这种分布,我们可以知道磁场的方向和强度,从而估算磁场的复杂性。

此外,磁高斯定理在电力系统的设计以及磁学感测器的设计中也有重要的应用。

磁通量 磁场的高斯定理

磁通量 磁场的高斯定理

B
B
0 I
dl
(5)多电流情况
I1
I2
I3
B B1 B2 B3 B d l 0 ( I 2 I 3 )
l
l
以上结果对任意形状 的闭合电流(伸向无限远 的电流)均成立.
n B dl 0 Ii i 1
安培环路定理
B
0 I
B
dB
I
.
dI
B
B
的方向与 I 成右螺旋
0 r R,
r R,
I
2π R 0 I B 2π r
B
0 Ir
2
0 I
2π R
B
R
o R
r
rR
0 I B 2r
区域:
rR
0 Ir B 2R 2
区域:
I
思考:具有一圆柱形空腔的无限长载流 圆柱,求空腔内的磁场?
B dl B (d l d l// )
L L
(4) 如果闭合曲线不在垂直 于导线的平面内:
B cos 90 dl B cos dl//
L L
I
0 Br d
L
dl
dl
dl


2
0
0 I r d 2 r
结果一样!
I
L 成右螺旋时,
二 安培环路定理的证明 (1)载流长直导线的情况
0 I l B dl 2π Rdl 0 I l B dl 2π R l dl B dl 0 I
l
0 I B 2πR
I
o
B
R

07磁场的高斯定理和安培环路定理

07磁场的高斯定理和安培环路定理

I
r L
B
7
安培环路定理为我们提供了求磁感应强度的另一种 方法。但利用安培环路定理求磁感应强度要求磁场具有 方法。但利用安培环路定理求磁感应强度要求磁场具有 高度的对称性 。 利用安培环路定理求磁感应强度的关健: 利用安培环路定理求磁感应强度的关健:根据磁 场分布的对称性,选取合适的闭合环路。 场分布的对称性,选取合适的闭合环路。 3、选取环路原则 (1)环路要经过所研究的场点。 环路要经过所研究的场点。 环路要经过所研究的场点 (2)环路的长度便于计算; 环路的长度便于计算; 环路的长度便于计算 r r (3)要求环路上各点 B 大小相等,B 的方向与环路 大小相等, 要求环路上各点 方向一致, 方向一致, r r µ0 ∑ I I 写成 B = 目的是将: B ⋅ dl = µ0 目的是将
3
2、磁通量
dΦm
r B
磁通量: 通过任一曲面的磁力线的条数。 磁通量 通过任一曲面的磁力线的条数。 1)穿过一面元的磁通量dΦ m )
r r d Φ m = B ⋅ dS 单位:韦伯,Wb 单位:韦伯,
2)穿过某一曲面的磁通量 )
dS
S
Φm = ∫
S
r r d Φ m = ∫ B ⋅ dS = ∫ BdScosθ
a
b
r B
d
c
r B外 = 0
r cr r d r r ar r r r b r B ⋅ dl = ∫a B ⋅ dl + ∫b B ⋅ dl + ∫c B ⋅ dl + ∫d B ⋅ dl ∫ r r r c r a r r Q B ⊥ d l , cosθ = 0 ∫b B ⋅ dl = ∫d B ⋅ dl = 0, r d r r B = µ0nI B 螺线管外: 螺线管外: 外 = 0, ∫ B ⋅ dl = 0

磁场的高斯定理和安培环路定律

磁场的高斯定理和安培环路定律

0I
是否成立???
设任意回路L在垂直于导线的平面内,与电流
成右手螺旋。
l B dl Bdl cos
0I
2πr
dlc
os
d
B
I
dl
r
0I
2πr
rd
0I

d
l
B dl
l
0I
dl cos rd
闭合回路不环绕电流时
B1
0I
2 π r1
B2
0I
2 π r2
B1
B2
d
I
dl1
r1
dl2
I
I
解:取垂直纸面向里为法
B
线方向,以导线1所在位
置为坐标原点,建立如图 所示的坐标轴。
x
l
取细长条面元,面元内为
均匀磁场
a aa
B
0I 2x
2
0I
3a
x
o
x
窄条形面元的元磁通为
dm B dS BdS Bldx I
通过矩形面积内的磁通量
m
dm
2a
Bldx
a1
2a
a
0I 2x
2
0I
o
B 0I
2π x
B // S
x
方向垂直于纸面向里
dΦ BdS 0I ldx I
2π x
B
Φ
S
B dS
0Il

d2
d1
dx x
l
Φ 0Il ln d2
2π d1
d1 d2
o
x
例2 两平行的无限长直导线通有电流 I , 相距3a,
矩形线框宽为a,高为l与直导线共面,求通过线框的

13-2-磁场的高斯定理-安培环路定理

13-2-磁场的高斯定理-安培环路定理

L1
电流在闭合回路内
n B dl 0 I i L i 1
电流在闭合回路外
——安培环路定理
路径的积分的值,等于 0 乘以该闭合路径所穿过 的各电流的代数和.
在真空的恒定磁场中,磁感强度 B 沿任一闭合
二、安培环路定理
说明:
n B dl 0 I i i 1
解方程求出B的大小,指出B的方向。
二、安培环路定理
例2.无限大载流薄平板的磁场
d B1
j
d
dB
P
dB 2
d l1
O
c
d l2
结论:
B
1 2
0 j
a
L
b
在无限大均匀平面电流的两侧的磁场都为均匀 磁场,大小相等,但方向相反。
二、安培环路定理
例3.载流螺线环内的磁场 一环形载流螺线管,匝数为 N ,内径为 R1 ,外径为 R2 ,通有电流 I ,求管内 磁感应强度。
计2 有两半径分别为 R 和 2 R 的金属球壳同心放置
分析:(1) 内球壳接地,电势为零,但电量未必为零
(方法一:定义式求电势) 设内球壳带电为 q ,由高斯定理得
r
R
2R
q 4 r 2 0 r E q q0 40 r 2
2R R R
R r 2R r 2R
q
q q0 外球壳 (q q0 ) 无穷远
2R
C C1 C2 4 π 0 r 1 R 1 2R 4 π 0 2 R
24 π 0 R
L
(3)若 B d l 0 ,则回路内无电流穿过。
L
二、安培环路定理

磁场中的高斯定理及安培环路定理

磁场中的高斯定理及安培环路定理

P
r B
则 B dN -磁感应线密度
dS
2. 几种典型的磁感应线
I
直线电流
圆电流
载流长螺线管
3. 磁感应线特性
磁感应线是环绕电流的无头尾的闭合曲线,无起点无终点; 磁感应线不相交。
二. 磁通量(magnetic flux)
1. 定义 通过磁场中任一给定面的
磁感线数目称为通过该面的 磁通量,用 表示。 2. 磁通量的计算 ① 磁场不均匀,S 为任意曲面
a
b
B
eeeeeeeeeeeee
Ñ B dl μ0 NI
l
B 0 NI
2 r
Amperian loop
B
o R1 R2 r
若 R1、R2 R2 R1
n N N
2 R1 2 r

B
μ 0
nI
B 0 NI 2 r
I
R2
R1
例题3 :
设在无限大导体薄板中有均匀电流沿平面流动, 在垂直于电流方向的单位长度上流过的电流为i (电流密度)。求此电流产生的磁场。
因而,同静电场中利用高斯定理确定已知电荷分 布的电场分布一样,需要满足一定的对称性。
例题1 :
已知:I 、R,电流沿轴向在截面上均匀分布, 求“无限长”载流圆柱导体内外磁场的分布
解: 首先分析对称性
电流分布——轴对称
I
磁场分布——轴对称
R
r
dS1
dB
dB2 dB1
O
l
P
dS2
电流及其产生的磁场具有轴对称分布时
B 0I 2 x
方向:
I
a
阴影部分通过的磁通量为:
rr B dS

6-2磁场的高斯定理和安培环路定理

6-2磁场的高斯定理和安培环路定理

例6-3 如图所示,载流长直导线上的电流强度为 I , 它与边长分别为 a 和 b 矩形共面,边与长直导线平 行,两者之间的距离 d .求载流长直导线的磁场穿过 该平面的磁通量. 0 I 解 B 2π x B C B I
dΦ BdS
0
I
b
A dx D
2π x
bdx
o
x
d
a
0 Ib d a dx Φ 2 π d x 0 Ib d a ln 2π d
I2 I 3
l
B B1 B2 B3 B d l 0 ( I 2 I 3 )
l
L
I1
B d l 0 (I1 I1 I1 I 2 )
L
0 I1 I2) (
第六章 恒定磁场
11
6-2
磁场的高斯定理和安培环路定理
即在真空的稳恒磁场中,磁感应强度 B 沿任
0 乘以该闭合路径
I
电流 I 正负的规定 :I 与 为正;反之为负.
L 成右螺旋时,
第六章 恒定磁场
9
6-2
磁场的高斯定理和安培环路定理
注意
(1)环路定理中的磁感强度 B
为闭合路径 L 上的 磁感强度,它是由空间所有电流产生的。 (2)磁感强度沿闭合路径的环流,仅与闭合路径所包
6-2
磁场的高斯定理和安培环路定理
一、磁 感 线 规定:曲线上每一点的切线方向就是该点的磁感 强度 B 的方向,曲线的疏密程度表示该点的磁感强度 B 的大小.
I I I
第六章 恒定磁场
1
6-2
磁场的高斯定理和安培环路定理
I S S N I
N

14-2磁场高斯定理和安培环路定理

14-2磁场高斯定理和安培环路定理
环路L上的 B 与 L 相切或垂直,且相切部 分的 B 相等。这样才有可能将 B 提到积 分号外。积分环路一般为同心圆周和矩形。
步骤:
(1)分析磁场对称性
(2)选择合适回路通过待求的 B 场点
(3)求L内包围的电流的代数和 I内 (4)用安培环路定理求B;并说明方向 有时还可灵活应用叠加原理和“补偿 法”。
I
o
B d l
L
L
r
B
o I dl cos 0 L 2 r
o I 2 r dl 0 I 2 r 0
以无限长直电流的磁场为例验证 若电流反向
I
o
2 r 0 I dlcos LB dl 0 2 r
L
r B
可证: 对任何形式的电流所激 发的磁场、对任何形状的闭 合路径(环路), 安培环路定理 都成立。

S
B dS B cos d S 0
S
磁场是“无源场” 磁场是“涡旋场”
例:无限长直导线通以电流I,求通过如图所示的矩
形面积的磁通量。
解: a
I
非均匀场
b
面积元
l
x
元通量
0 I B 2x dS ldx dΦm B dS
I 0 O d B d S l d x m x dx 2x 0 Il a b 1 0 Il a b m d m dx ln S 2 a x 2 b
I内: 环路内,穿过以L为边界的所有曲面的电流。
规定:与L绕向成右旋的电流为正,反之为负。
I1
B d l I 2 I 0 1 2
L
I2
L

磁通量 磁场的高斯定理

磁通量 磁场的高斯定理

目前仍然不能在 实验中确认磁单 极子存在。
上式是磁场的高斯定理。 该定理表示:通过任意 闭合曲面的磁通量必等 于零,磁力线是闭合, 无头无尾,磁场是无源 的场。
7
7-5 磁通量 磁场的高斯定理
例1. 无限长载流直导线的电流为I,求通过矩形 面积的磁通量。 解:无限长载流直导线的磁 场为: B 0 I
dS2
2
B2
dΦ2 B2 dS2 B2dS2 cos2 0
所以通过任一闭合面的 磁通量为零: m B d S 0
S
6
7-5 磁通量 磁场的高斯定理
B
S
dS1 1 B1
dS2
2
B2
即: 进入闭合面的磁通量= 穿出闭合面的磁通量
磁通量: m B S
2) 通过曲面的磁通量
m d m B d s
s s
3) 通过闭合面的磁通量 m B d S
S
S
dS
dS
B
5
7-5 磁通量 磁场的高斯定理
B
S
dS1 1 B1
2、磁场的高斯定理 因为通过两对应面元的 磁通量为: dΦ1 B1 dS1 B1dS1 cos1 0
B 2π x
I
x
l
d2
通过矩形面积元的磁通量为
d1
dΦ BdS
0 I
2π x
ldx
o
x 通过矩形面积的磁通量为
8
7-5 磁通量 磁场的高斯定理
Φ d
S
0 Il


d2
d1
dx x

磁通量 磁场的高斯定理

磁通量 磁场的高斯定理
d
R
磁的高斯定理、安培环路定理
17
物理学
第五版
(2)选回路

l B dl 2π RB 0NI
B 0NI
2π R
d
令 L 2πR
R
B 0 NI L 0nI
当 2R d 时,螺绕环内可视为均匀场 。
磁的高斯定理、安培环路定理
18
物理学
第五版
例3 无限大均匀带电(单位长度电流密度为i)平
B dl ?
★ 安培环路定理的表述
在稳恒磁场中,磁感应强度 B 在任意闭合曲线上的环流,
等于该闭合曲线所包围的电流的代数和与真空中的磁导率
的乘积。即

B dl 0 Ii
L
i
当环路的方向与包围电流的方向满足右手螺旋关
系时,该电流为正;反之,则为负。
磁的高斯定理、安培环路定理
B 0I
2π r
IR
0I B
2π R
oR r
磁的高斯定理、安培环路定理
14
物理学
第五版 讨论1 无限长载流圆柱面的磁场

0
B


0I 2r
rR rR
0I B
2R
已知:I、R
r
Ir R
0R r
磁的高斯定理、安培环路定理
15
物理学
第五版
讨 论 2
同求轴B的无的限分长布两。筒状导线通有等值反向的电流I,
8
物理学
第五版



B • dl 0 Ii
I1
I2
由环 由

I3
环路 环

磁场的高斯定理

磁场的高斯定理

R
当 2R >> d 时,螺绕环内可视为均匀场 .
例2 无限长载流圆柱体的 磁场 L 解 (1)对称性分析 ) (2) r > R ) v v µ0 I ∫l B ⋅ d l = µ 0 I B = 2π r v v π r2 0 < r < R ∫ B ⋅ d l = µ0 2 I l πR µ0 Ir B= 2 2π R
y
v dF θ
v B
I
v Idl
P
v 解 取一段电流元 Idl v v v dF = Idl × B
o
L
x
dFx = −dF sin θ = − BIdl sin θ
dFy = dF cos θ = BIdl cos θ
Fx = ∫ d Fx = BI ∫ d y = 0
0
0
y
Fy = ∫ dFy = BI ∫ dx = BIl
v v ∫ B⋅dl = µ0(−I1 − I2)
L
= −µ0 I1 + I2) (
I1
I1
L
I2 I 3
v 问(1) 是否与回路 L ) B
外电流有关? 外电流有关?
I1
v v (2)若 ∫ B ⋅ d l = 0 ,是否回路 L 上各处 ) 是否回路 L v 内无电流穿过? B = 0 ?是否回路 L 内无电流穿过?
s⊥
θ
s
v B
θ
v en
v B
磁通量: 磁通量:通过 某曲面的磁感线数 匀强磁场下, 匀强磁场下,面 S的磁通量为: 的磁通量为: 的磁通量为 v v v v Φ = B ⋅ S = B ⋅ enS
Φ = BS cosθ = BS⊥ 一般情况 v v Φ = ∫s B ⋅ dS

大学物理之磁通量磁场的高斯定理

大学物理之磁通量磁场的高斯定理

en
s
s

B
B dS

s
7-5 磁通量 磁场的高斯定理
B
磁通量:通过
某曲面的磁感线数
匀强磁场下,面
S的磁通量为:
B
Φ

B

S

B

ቤተ መጻሕፍቲ ባይዱ
enS
Φ BS cos BS
一般情况
Φ s BdS
7-5 磁通量 磁场的高斯定理
dS2
B
S2
通过矩形面积的磁通量.


B
B 0I
2π x
I
l
d1 d2
dΦ BdS 0I ldx
2π x
Φ

S
B dS

0Il

d2
d1
dx x
o
x Φ 0Il ln d2
2π d1
7-5 磁通量 磁场的高斯定理
一 磁感线
切线方向—— 疏密程度——
B B
的方向; 的大小.
I
I
I
7-5 磁通量 磁场的高斯定理
I
S
I
S
N
N
7-5 磁通量 磁场的高斯定理
二 磁通量 磁场的高斯定理
S B
B ΔN ΔS
磁通场过中的某磁点感处 线垂 数直 目等B矢于量该的点单B的位数面值积.上

dS1
1
B1

B2
dΦ1 B1 dS1 0
dΦ2 B2 dS2 0
SB cosdS 0
磁场高斯定理
S B d S 0

磁场中的高斯定理

磁场中的高斯定理

磁场中的高斯定理高斯定理是电磁学中的一项基本定理,它描述了磁场的产生和分布规律。

根据这个定理,磁场的通量通过一个闭合曲面等于该曲面内的磁场源的总磁荷。

我们来了解一下什么是磁场。

磁场是由带电粒子运动而产生的,它是一种物质中存在的物理量。

磁场是一个矢量场,它具有大小和方向。

在磁场中,磁力线是描述磁场分布的一种方式。

磁力线是垂直于磁场方向的曲线,磁力线的密度表示磁场的强弱。

接下来,我们来介绍一下高斯定理的具体内容。

高斯定理可以表述为:磁场的通量通过一个闭合曲面等于该曲面内的磁场源的总磁荷。

通量是一个物理量,表示磁场通过某一面积的多少。

而磁场源的总磁荷是指在该闭合曲面内的所有磁荷的代数和。

高斯定理的数学表达式可以写为:∮B·dA = μ0·Φ,其中B表示磁场的磁感应强度,dA表示曲面上的微元面积,μ0是真空中的磁导率,Φ表示曲面内的磁通量。

高斯定理的应用非常广泛。

首先,它可以用来计算磁场的强度。

通过选择合适的闭合曲面,我们可以根据高斯定理计算出磁场通过该曲面的磁通量,从而得到磁场的强度。

高斯定理还可以用来研究磁场的分布规律。

通过选择不同形状和大小的闭合曲面,我们可以得到不同位置和方向上的磁场强度。

这对于研究磁场的特性和应用非常重要。

高斯定理还可以用来计算磁场源的磁荷。

当我们知道一个闭合曲面内的磁通量和磁场的分布情况时,可以通过高斯定理计算出该曲面内的磁场源的总磁荷。

这对于磁场源的研究和应用具有重要意义。

除了以上的应用,高斯定理还可以用来研究磁场的能量和能流。

通过高斯定理,我们可以计算磁场的能量密度和能流密度,从而深入了解磁场的特性和行为。

总结一下,高斯定理是磁场学中的重要定理,它描述了磁场的产生和分布规律。

通过选择合适的闭合曲面,我们可以利用高斯定理计算磁场的强度、分布规律、磁荷以及能量和能流。

高斯定理在磁场学的研究和应用中具有重要的地位和作用。

希望通过本文的介绍,大家对磁场中的高斯定理有了更深入的理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一 磁感线
切线方向—— 疏密程度——
BB的 的方 大向 小.;
I
I
I
I
S
N
特点: 1、每一条磁力线都是环绕电流的闭合曲线,都与闭合电路互相套合,因此磁场是 涡旋场。磁力线是无头无尾的闭合回线。
2、任意两条磁力线在空间不相交。 3、磁力线的环绕方向与电流方向之间可以分别用右手定则表示。
二 磁通量 磁场的高斯定理
量必等于零(故磁场是无源的).
1. 求均匀磁场中 半球面的磁通量
2. 在均匀磁场


中,过YOZ平面内


面积为S的磁通量。
例 : 如图载流长直导线的电流为I ,试求
通过矩形面积的磁通量.
B
dx
解 B 0I
2π x
I
l
d1 d2
o
x
x
dΦ BdS
Φ SB dS
积分结果请同学们计算
作业:7-15
S B
B ΔN ΔS
磁通场过中的某磁点感处 线垂 数直 目等B矢于量该的点单B的位数面值积.上
磁通量:通过某曲面的磁感线数
dS
dS
B
S
dS11B1来自dΦ1 B1 dS1 0
dΦ2 B2 dS2 0
SB cosdS 0
磁场高斯定理
S B d S 0
物理意义:通过任意闭合曲面的磁通
相关文档
最新文档